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Abstract

Transactional memory (TM) is a promising paradigm for concurrent pro-
gramming. This paper is an overview of our recent work on defining a theory
of TM. We first present a correctness condition of a TM, ensured by most
existing TM implementations. Then, we describe two progress properties
that characterize the two main classes of TM implementations: obstruction-
free and lock-based TMs. We use these properties to establish several results
on the inherent power and limitations of TMs.

1 Introduction

Multi-core processors are predicted to be common in home computers, laptops,
and maybe even smoke detectors. To exploit the power of modern hardware,
applications will need to become increasingly parallel. However, writing scalable
concurrent programs is hard and error-prone with traditional locking techniques.
On the one hand, coarse-grained locking throttles parallelism and causes lock
contention. On the other hand, fine-grained locking is usually an engineering
challenge, and as such is not suitable for use by the masses of programmers.

Transactional memory (TM) [28] is a promising technique to facilitate con-
current programming while delivering performance comparable to that of fine-
grained locking implementations. In short, a TM allows concurrent threads of
an application to communicate by executing lightweight, in-memory transac-
tions [15]. A transaction accesses shared data and then either commits or aborts.
If it commits, its operations are applied to the shared state atomically. If it aborts,
however, its changes to the shared data are lost and never visible to other transac-
tions.

The TM paradigm has raised a lot of hope for mastering the complexity of
concurrent programming. The aim is to provide the programmer with an abstrac-
tion, i.e., the transaction, that makes concurrency as easy as with coarse-grained
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critical sections, while exploiting the underlying multi-core architectures as effi-
ciently as hand-crafted fine-grained locking. It is thus not surprising to see a large
body of work directed at experimenting with various kinds of TM implementation
strategies, e.g. [28, 43, 26, 33, 8, 34, 23, 45, 27, 40, 23, 2, 44, 12, 14]. What might
be surprising is the little work devoted so far to the formalization of the precise
guarantees that TM implementations should provide. Without such formalization,
it is impossible to verify the correctness of these implementations, establish any
optimality result, or determine whether various TM design trade-offs are indeed
fundamental or simply artifacts of certain environments.

From a user’s perspective, a TM should provide the same semantics as critical
sections: transactions should appear as if they were executed sequentially, i.e., as
if each transaction acquired some global lock for its entire duration. (Remem-
ber that the TM goal is to provide a simple abstraction to average programmers.)
However, a TM implementation would be inefficient if it never allowed different
transactions to run concurrently. Hence, we want to reason formally about execu-
tions with interleaving steps of arbitrary concurrent transactions. First, we need
a way to state precisely whether a given execution in which a number of trans-
actions execute steps in parallel “looks like” an execution in which these trans-
actions proceed one after the other. That is, we need a correctness condition for
TMs. Second, we should define when a TM implementation is allowed to abort
a transaction that contends for shared data with concurrent transactions. Indeed,
while the ability to abort transactions is essential for all optimistic schemes used
by TMs, a TM that abuses this ability by aborting every transaction is, clearly,
useless. Hence, we need to define progress properties of TM implementations.

We overview here our work on establishing the theoretical foundations
of TMs [20, 19, 21]. We first present opacity—a correctness condition for
TMs, which is indeed ensured by most TM implementations, e.g., DSTM [26],
ASTM [33], SXM [24], JVSTM [8], TL2 [9], LSA-STM [40], RSTM [34],
TinySTM [12], BartokSTM [23], McRT-STM [2], AVSTM [18], and the STM
in [39]. The technical challenge in specifying opacity is the ability to reason about
concurrent transactional executions in a general and high-level model (a) with ar-
bitrary objects, beyond simple read/write variables, (b) supporting multiple ver-
sions of each object (i.e., multi-version protocols, used, e.g., in JVSTM), and
(c) not precluding various TM strategies and optimization techniques, such as in-
visible reads, lazy updates, or caching.

At first glance, it seems very likely that such a criterion would correspond to
one of the numerous ones defined in the literature, e.g., linearizability [29], seri-
alizability [37, 5], global atomicity [48], recoverability [22], or rigorous schedul-
ing [7]. However, none of these criteria, nor any straightforward combination
or extension thereof, is sufficient to describe the semantics of TM with its sub-
tleties [20]. In particular, none of them captures exactly the very requirement that



every transaction, including a live (i.e., not yet completed) one, accesses a consis-
tent state, i.e., a state produced by a sequence of previously committed transac-
tions. A live transaction that accesses an inconsistent state might create significant
dangers when executed within a general TM framework [45]. It is thus not sur-
prising that most TM implementations employ mechanisms that disallow such
situations, sometimes at a big cost. At a very high abstraction level, disallowing
transactions to access inconsistent states resembles, in the database terminology,
preventing dirty reads or, more generally, the read skew phenomenon [4], when
generalized to all transactions (not only committed ones as in [4]) and arbitrary
objects. Capturing this intuitive idea in a precise manner is not trivial.

It is worth noting that the difference between opacity and classical database
properties like serializability is not “cosmetic”. In fact, we showed in [20] that
opacity is inherently more expensive to implement than the combination of (strict)
serializability [37, 5] (or global atomicity [48]) and the strongest form of recov-
erability [22]. Basically, we proved a complexity lower bound that holds for TMs
that ensure opacity, but does not hold for TMs that ensure serializability and re-
coverability.

We also present in this paper progress properties of the two main classes of
existing TM implementations: obstruction-free [26] and lock-based ones. The
intuition behind the progress semantics of such TMs has been known, but precise
definitions were missing.

Roughly speaking, an obstruction-free TM (OFTM), such as DSTM, ASTM,
RSTM, or SXM, guarantees progress for every thread of an application that
executes transactions alone (i.e., without contention) for sufficiently long time.
OFTMs are appealing in real-time systems, where priority inversion is an im-
portant issue, or within operating systems, where kernel-level transactions (e.g.,
inside interrupt handlers) must be able to preempt (and, in many cases, abort)
user-level ones at any time [46]. In an OFTM, a transaction that is preempted,
delayed, or even crashed cannot inhibit the progress of other transactions. This
means that an OFTM cannot internally use any blocking mechanisms such as crit-
ical sections.

Many TM implementations that are considered effective, e.g., TL2, TinySTM,
a version of RSTM, BartokSTM, or McRT-STM are, however, not obstruction-
free. They internally use locking, in order to reduce the overheads of TM mech-
anisms. We define the progress semantics of lock-based TMs by introducing a
property, which we call strong progressiveness,1 and which stipulates the two fol-
lowing requirements: (1) A transaction that encounters no conflict must be able
to commit (basically, a conflict occurs when two or more concurrent transactions

1We call it “strong” by opposition to a weaker form of progressiveness that we also introduce
in [21].
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Figure 1: An example execution of an operation trans on a shared object A by a
process pi. Operation trans is implemented using operations inc and dec on base
objects x and y.

access the same transactional variable and at least one of those accesses is not
read-only); (2) If a number of transactions have only a “simple” conflict, i.e., on
a single transactional variable, then at least one of them must be able to com-
mit. Requirement (1) captures the common intuition about the progress of any
TM (see [41]). Requirement (2) ensures that conflicts that are easy to resolve do
not cause all conflicting transactions to be aborted. This is especially important
when non-transactional accesses to shared variables are encapsulated inside unit
transactions to ensure strong atomicity [6]. Strong progressiveness is ensured by
state of the art lock-based implementations, such as TL2, TinySTM, a version of
RSTM, BartokSTM, and McRT-STM.2

We also give in this paper an overview of the theoretical results proved for
OFTMs and strongly progressive (lock-based) TMs that ensure opacity.

It is important to notice that the paper is only an overview of previously pub-
lished results. In particular, we do not give here any proofs of the theorems and
lemmas that we state. Those proofs, as well as further details and discussions of
the results presented here, can be found in [20, 19, 21].

2 Preliminaries

2.1 Shared Objects and their Implementations

Processes and objects. We consider a classical asynchronous shared-memory
system [25, 32] of n processes p1, . . . , pn that communicate by executing op-
erations on (shared) objects. An example of a very simple object is a register,
which exports only read and write operations. Operation read returns the current
state (value) of the register, and operation write(v) sets the state of the register to
value v.

2The source code of the implementations of BartokSTM and McRT-STM is not publicly avail-
able. We could thus verify strong progressiveness of those TMs only from their algorithm descrip-
tions in [23] and [2], respectively.



An execution of every operation is delimited by two events: the invocation of
the operation and the response from the operation. We assume that, in every run
of the system, all events can be totally ordered according to their execution time.
If several events are executed at the same time (e.g., on multiprocessor systems),
then they can be ordered arbitrarily. We call a pair of invocation of an operation
and the subsequent response from this operation an operation execution.

A object x may be provided either directly in hardware, or implemented from
other, possibly more primitive, base objects (cf. Figure 1). We call the events of
operations on base objects steps. We assume that each process executes operations
on shared objects, and on base objects, sequentially.

Wait-freedom. We focus on object implementations that are wait-free [25]. Intu-
itively, an implementation of an object x is wait-free if a process that invokes an
operation on x is never blocked indefinitely long inside the operation, e.g., wait-
ing for other processes. Hence, processes can make progress independently of
each other. More precisely, an implementation Ix of an object x is wait-free, if
whenever any process pi invokes an operation on Ix, pi returns from the operation
within a finite number of its own steps.

Computational equivalence. We say that object x can implement object y if there
exists an algorithm that implements y using some number of instances of x (i.e., a
number of base objects of the same type as x) and atomic (i.e., linearizable [29])
registers. We say that objects x and y are equivalent if x can implement y and y
can implement x.

The power of a shared object. We use the consensus number [25] as a metric
of the power of objects. The consensus number of an object x is the maximum
number of processes among which one can solve (wait-free) consensus using any
number of instances of x (i.e., base objects of the same type as x) and atomic
registers.

The consensus problem consists for a number of processes to agree (decide)
on a single value chosen from the set of values these processes have proposed.
It is known that, in an asynchronous system, implementing wait-free consensus
is impossible when only registers are available [13]. Solving consensus consists
in ensuring the following properties: (1) every value decided is one of the values
proposed (validity); and (2) no two processes decide different values (agreement).

2.2 Transactional Memory (TM)
A TM enables processes to communicate by executing transactions. A transaction
may perform operations on objects shared with other transactions, called trans-
actional objects (or t-objects, for short), as well as local computations on objects
inaccessible to other transactions. For simplicity, we will say that a transaction T



performs some action, meaning that the process executing T performs this action
within the transactional context of T . We will call t-variables those t-objects that
are registers, i.e., that provide only read and write operations.

Every transaction has a unique identifier (e.g., T1, T2, etc.). (We use the terms
“transaction” and “transaction identifier” interchangeably.) Every transaction,
upon its first action, is initially live and may eventually become either commit-
ted or aborted, as explained in the following paragraphs. A transaction that is not
live does no longer perform any actions. Retrying an aborted transaction (i.e., the
computation the transaction intends to perform) is considered in our model as a
new transaction, with a different transaction identifier.

TM as a shared object. A TM can be viewed as an object with operations that
allow for the following: (1) Executing any operation on a t-object x within a
transaction Tk (returns the response of the operation or a special value Ak); (2) Re-
questing transaction Tk to be committed (operation tryC(Tk) that returns either Ak

or Ck); (3) Requesting transaction Tk to be aborted (operation tryA(Tk) that always
returns Ak). The special return value Ak (abort event) is returned by a TM to indi-
cate that transaction Tk has been aborted. The return value Ck (commit event) is a
confirmation that Tk has been committed.

As for other objects, we assume that every implementation of a TM is wait-
free, i.e., that the individual operations of transactions are wait-free. This is indeed
the case for most TM implementations (including lock-based ones; see [21]).

If x is a t-object (provided by a given TM), then we denote by invk(x.op),
retk(x.op→ v), and x.opk → v an invocation, response, and execution (invocation
and the subsequent response), respectively, of operation op on x by transaction Tk

(returning value v). We also denote by Ak (and Ck) an abort (commit) event of
transaction Tk.

Histories. Consider any TM and any run. A history (of the TM) is a sequence of
invocation and response events of operations executed by processes on the TM in
this run. Let M be any implementation of the TM. An implementation history of
M is the sequence of (1) invocation and response events of operations executed by
processes on M, and (2) the corresponding steps of M in a given run.

Let H be any (implementation) history of a TM and Tk be any transaction. We
denote by H|Tk the sequence of all events executed by Tk in H. We say that Tk is
in H, and write Tk ∈ H, if there is some event executed by Tk in H, i.e., if H|Tk

is a non-empty sequence. We also denote by H|x the restriction of H to events
executed on t-object x.

We say that transaction Tk is committed (respectively, aborted) in H, if H con-
tains commit event Ck (resp., abort event Ak). A transaction that is neither com-
mitted nor aborted is called live. We say that transaction Tk is forcefully aborted
in H, if Tk is aborted in H but there is no invocation of operation tryA(Tk) in H.



We say that Tk is commit-pending in H, if H contains an invocation of operation
tryC(Tk) but Tk is still live in H.

We say that a transaction Tk precedes a transaction Tm in history H, and write
Tk ≺H Tm, if Tk is completed and the last event of Tk precedes (in H) the first event
of Tm. We say that transactions Tk and Tm are concurrent in a history H, if neither
Tk precedes Tm, nor Tm precedes Tk (in H).

We say that history H is sequential if no two transactions in H are concurrent.
We say that H is complete if H does not contain any live transaction.

We assume that every transaction Tk in H is executed by a single process.
Conversely, we assume that every process pi executes only one transaction at a
time, i.e., that no two transactions are concurrent at any given process. Note
also that, because a completed transaction does not perform any further action, a
commit/abort event (if any) of every transaction Tk in H must be the last event in
sub-history H|Tk.
Sequential specification of a t-object. We use the concept of a sequential spec-
ification to describe the semantics of t-objects, as in [48, 29]. Intuitively, a se-
quential specification of a t-object x lists all sequences of operation executions
on x that are considered correct when executed outside any transactional context,
e.g., in a standard, single-threaded application.3 For example, the sequential spec-
ification of a t-variable x, denoted by Seq(x), is the set of all sequences of read
and write operation executions on x, such that in each sequence that belongs to
Seq(x), every read (operation execution) returns the value given as an argument to
the latest preceding write (regardless transaction identifiers). (In fact, Seq(x) also
contains sequences that end with a pending invocation of read or write, but this
is a minor detail.) Such a set defines precisely the semantics of a t-variable in a
single-threaded, non-transactional system.

More formally, let an object-local history of a t-object x be any prefix S of a
sequence of operation executions, such that S |x = S . Then, a sequential specifi-
cation Seq(x) of a t-object x can be any prefix-closed set of object-local histories
of x. (A set Q of sequences is prefix-closed if, whenever a sequence S is in Q,
every prefix of S is also in Q.)

3 Opacity
Opacity is a safety property that captures the intuitive requirements that (1) all
operations performed by every committed transaction appear as if they happened
at some single, indivisible point during the transaction lifetime, (2) no operation

3An operation execution specifies a transaction identifier, but the identifier can be treated as part
of the arguments of the executed operation. In fact, in most cases, the semantics of an operation
does not depend on the transaction that issues this operation.



performed by any aborted transaction is ever visible to other transactions (includ-
ing live ones), and (3) every transaction always observes a consistent state of the
system.

We start by explaining informally, step by step, how one can determine
whether a given history of a TM ensures opacity. Next, we give a precise defi-
nition of opacity and the related terms, and provide an example.

3.1 Opacity Step by Step
To help understand the definition of opacity, we first consider very simple his-
tories, and increase their complexity step by step. The precise definitions of the
terms that correspond to the steps described here are given in Section 3.2.

Opacity is trivial to express and verify for sequential histories in which every
transaction, except possibly the last one, is committed. Basically, if S is such
a history, then S is considered correct, and called legal, if, for every t-object x,
the sub-history S |x respects the semantics of x, i.e., S |x belongs to the sequential
specification of x. For example, if a transaction Ti writes value v to a t-variable x
at some point in history S , then all subsequent reads of x in S , performed by Ti or
by a following transaction, until the next write of x, must return value v.

The situation becomes more difficult if S is sequential but contains some
aborted transactions followed by committed ones. For example, if an aborted
transaction Ti writes value v to a t-variable x (and no other transaction writes v
to x), then only Ti can read v from x thereafter. A read operation on x executed by
a transaction following Ti must return the last value written to x by a preceding
committed transaction. Basically, when considering a transaction Ti (committed
or aborted) in S , we have to remove all aborted transactions that precede Ti in S .
We then say that Ti is legal in S , if Ti together with all committed transactions pre-
ceding Ti in S form a legal history. Clearly, for an arbitrary sequential history S
to be correct, all transactions in S must be legal.

To determine the opacity of an arbitrary history H, we ask whether H “looks
like” some sequential history S that is correct (i.e., in which every transaction is
legal). In the end, a user of a TM should not observe, or deal with, concurrency
between transactions. More precisely, history S should contain the same transac-
tions, performing the same operations, and receiving the same return values from
those operations, as history H. We say then that H is equivalent to S . Equiva-
lent histories differ only in the relative position of events of different transactions.
Moreover, the real-time order of transactions in H should be preserved in S .

There is, however, one problem with finding a sequential history that is equiv-
alent to a given history H: if two or more transactions are live in H, then there is
no sequential history that is equivalent to H. Basically, if S is a sequential history,
then ≺S must be a total order; however, if a transaction Ti precedes a transac-



tion Tk in S , i.e., if Ti ≺S Tk, then Ti must be committed or aborted. To solve
the problem, observe that the changes performed by a transaction Ti should not
become visible to other transactions until Ti commits. Transaction Ti commits
at some point (not visible to the user) between the invocation and the response
of operation tryC(Ti) → Ci. That is, the semantics of Ti is the same as of an
aborted transaction until Ti invokes tryC(Ti), but this semantics might change (to
the one of a committed transaction) at any point in time after Ti becomes commit-
pending. Hence, we can safely transform an arbitrary history H into a complete
history H′ by (1) aborting all live and non-commit-pending transactions in H, and
(2) committing or aborting every commit-pending transaction in H.

3.2 Definition of Opacity
Let S be any sequential history such that every transaction in S , except possibly
the last one, is committed. We say that S is legal if, for every t-object x, the
subsequence S |x is in set Seq(x) (the sequential specification of x).

Let S be any complete sequential history. We denote by visibleS (Ti) the
longest subsequence S ′ of S such that, for every transaction Tk ∈ S ′, either
(1) k = i, or (2) Tk is committed and Tk ≺S Ti. We say that a transaction Ti ∈ S is
legal in S , if history visibleS (Ti) is legal.

Let H and H′ be any histories. We say that H and H′ are equivalent if, for
every transaction Ti, H|Ti = H′|Ti. We say that history H′ preserves the real-time
order of (equivalent) history H, if ≺H ⊆≺H′ . That is, if Ti ≺H T j, then Ti ≺H′ T j,
for any two transactions Ti and T j in H.

Intuitively, a completion of a history H is any history H′ obtained from H by
aborting or committing every commit-pending transaction in H, and by aborting
every other live transaction in H. More precisely, a completion of a history H is
any valid history H′ of the form H · Q, where Q is a sequence of invocations of
operation tryC, commit events, and abort events, such that (1) every transaction
that is live and not commit-pending in H is aborted in H′, and (2) every transaction
that is commit-pending in H is either committed or aborted in H′. In particular,
the only completion of a complete history H is H itself.

Definition 1. A history H is opaque if there exists a sequential history S equiva-
lent to any completion of H, such that (1) S preserves the real-time order of H,
and (2) every transaction Ti ∈ S is legal in S .

Note that the definition of opacity does not require every prefix of an opaque
history to be also opaque. Thus, the set of all opaque histories is not prefix-closed.
For example, while the following history is opaque:

H = 〈x.write(1)1, x.read2 → 1, tryC(T1)→ C1, tryC(T2)→ C2〉,



the prefix H′ = 〈x.write(1)1, x.read2 → 1〉 of H is not opaque (assuming the
initial value of x is 0), because, in H′, transaction T2 reads value written by T1

that is not committed or commit-pending. However, a history of a TM is gener-
ated progressively and at each time the history of all events issued so far must be
opaque. Hence, there is no need to enforce prefix-closeness in the definition of
opacity, which should be as simple as possible.

The way we define the real-time ordering between transactions introduces a
subtlety to the definition of opacity. Basically, the following situation is possible
(and considered correct): a transaction T1 updates some t-object x, and then some
other transaction T2 concurrent to T1 observes an old state of x (from before the
update of T1) even after T1 commits. For example, consider the following history
(x and y are t-variables with initial value 0):

H = 〈x.read1 → 0, x.write(5)2, y.write(5)2,

tryC(T2)→ C2, y.read3 → 5, y.read1 → 0〉.

In H, transaction T1 appears to happen before T2, because T1 reads the initial
values of t-variables x and y that are modified by T2. Transaction T3, on the other
hand, appears to happen after T2, because it reads the value of y written by T2.
Consider the following sequential history:

S = 〈x.read1 → 0, y.read1 → 0, tryC(T1)→ A1,

x.write(5)2, y.write(5)2, tryC(T2)→ C2,

y.read3(5), tryC(T3)→ A3〉.

It is easy to see that S is equivalent to the completion H · 〈tryC(T1) → A1,
tryC(T3) → A3〉 of H, and that S preserves the real-time order of H. As, clearly,
every transaction is legal in S , history H is opaque.

However, at first, it may seem wrong that the read operation of transaction T3

returns the value written to y by the committed transaction T2, while the following
read operation, by transaction T1, returns the old value of y. But if T1 read value
5 from y, then opacity would be violated. This is because T1 would observe an
inconsistent state of the system: x = 0 and y = 5. Thus, letting T1 read 0 from y is
the only way to prevent T1 from being aborted without violating opacity. Multi-
version TMs, like JVSTM and LSA-STM, indeed use such optimizations to allow
long read-only transactions to commit despite concurrent updates performed by
other transactions. In general, it seems that forcing the order between operation
executions of different transactions to be preserved, in addition to the real-time
order of transactions themselves, would be too strong a requirement.



T1

T2

T3

x.read→ 1 x.write(5) y.read→ 2 abort

x.write(1) y.write(2) commit

y.write(3) x.read→ 1 commit

Figure 2: An opaque history H

3.3 Example of an Opaque History

To illustrate our definition, consider the following history H, of three transactions
accessing two t-variables (x and y), corresponding to the execution depicted in
Figure 2:

H = 〈x.write(1)2, y.write(2)2, inv(tryC(T2)), inv1(x.read), C2,

inv3(y.write(3)), ret1(x.read→ 1), inv1(x.write(5)), ret3(y.write(3)),
ret1(x.write(5)), inv1(y.read), inv3(x.read), ret1(y.read→ 2),
inv(tryC(T1)), ret3(x.read→ 1), inv(tryC(T3)), A1, C3〉.

Clearly, the only completion of H is H itself as there is no live transaction in H.
Moreover, ≺H = {(T2,T3)} because T1 is concurrent with T2 and T3. Therefore,
we can find three sequential histories that are equivalent to H and preserve the
real-time order of H (relation ≺H). However, T1 reads from x the value that has
been written by committed transaction T2. Thus, a sequential history in which T1

precedes T2 is not legal. Similarly, T3 cannot precede T1: T1 reads from y the value
written by T2 and not the value written by the committed transaction T3. Consider
the following sequential history S = H|T2 ·H|T1 ·H|T3. Clearly, S is equivalent to
H and preserves the real-time order of H. Furthermore, every transaction is legal
in S , because sequential histories visibleH(T2) = H|T2, visibleH(T1) = H|T2 ·H|T1,
and visibleH(T3) = H|T2 · H|T3 are all legal. Therefore, history H is opaque.

4 Obstruction-Free TMs

In this section, we define precisely the class of obstruction-free TMs (OFTMs).
We also determine the consensus number of OFTMs and show an inherent limita-
tion of those TMs.

Our definition of an OFTM is based on the formal description of obstruction-
free objects from [3]. In [19], we consider alternative definitions but we show,
however, that these are computationally equivalent to the one we give here.



4.1 Definition of an OFTM

The definition we consider here uses the notion of step contention [3]: it says,
intuitively, that a transaction Tk executed by a process pi can be forcefully aborted
only if some process other than pi executed a step of the TM implementation
concurrently to Tk.

More precisely, let E be any implementation history of any TM implementa-
tion M. We say that a transaction Tk executed by a process pi encounters step
contention in E, if there is a step of M executed by a process other than pi in E
after the first event of Tk and before the commit or abort event of Tk (if any).

Definition 2. We say that a TM implementation M is obstruction-free (i.e., is
an OFTM) if in every implementation history E of M, and for every transaction
Tk ∈ E, if Tk is forcefully aborted in E then Tk encounters step contention in E.

4.2 The Power of an OFTM

We show that the consensus number of an OFTM is 2. We do so by first exhibiting
an object, called fo-consensus, that is equivalent to any OFTM, and then showing
that the consensus number of fo-consensus is 2.

Intuitively, fo-consensus (introduced in [3] as “fail-only” consensus) provides
an implementation of consensus (via an operation propose), but allows propose
to abort when it cannot return a decision value because of concurrent invocations
of propose. When propose aborts, it means that the operation did not take place,
and so the value proposed using this operation has not been “registered” by the fo-
consensus object (recall that only a value that has been proposed, and “registered”,
can be decided). A process which propose operation has been aborted may retry
the operation many times (possibly with different proposed value), until a decision
value is returned.

More precisely, let D be any set, such that ⊥ < D. Fo-consensus (object)
implements a single operation, called propose, that takes a value v ∈ D as an
argument and returns a value v′ ∈ D ∪ {⊥}. If a process pi is returned a non-⊥
value v′ from propose(v), we say that pi decides value v′. Once pi decides some
value, pi does not invoke propose anymore. When operation propose returns ⊥,
we say that the operation aborts.

Consider any implementation I of a fo-consensus object. We say that an exe-
cution of operation propose of I by a process pi is step contention-free if there is
no step of I executed by a process other than pi between the invocation and the
response events of this operation execution. Fo-consensus satisfies the following
properties: (1) if some process decides value v, then v is proposed by some pro-
pose operation that does not abort; (2) no two processes decide different values;



and (3) if a propose operation is step contention-free, then the operation does not
abort.

Theorem 3. An OFTM is equivalent to fo-consensus.

Theorem 4. Fo-consensus cannot implement (wait-free) consensus in a system of
3 or more processes.

From Theorem 3, Theorem 4, and the claim of [3] that consensus can be im-
plemented from fo-consensus and registers in a system of 2 processes, we have:

Theorem 5. The consensus number of an OFTM is 2.

Corollary 6. There is no algorithm that implements an OFTM using only regis-
ters.

4.3 An Inherent Limitation of OFTMs
We show that no OFTM can be strictly disjoint-access-parallel. To define the
notion of strict disjoint-access-parallelism, we distinguish operations that modify
the state of a base object, and those that are read-only. We say that two processes
(or transactions executed by these processes) conflict on a base object x, if both
processes execute each an operation on x and at least one of these operations
modifies the state of x.

Intuitively, a TM implementation M is strictly disjoint-access-parallel if it en-
sures that processes executing transactions which access disjoint sets of t-objects
do not conflict on common base objects (used by M). More precisely:

Definition 7. We say that a TM implementation M is strictly disjoint-access-
parallel if, for every implementation history E of M and every two transactions
Ti and Tk in E, if Ti and Tk conflict on some base object, then Ti and Tk both
access some common t-object.

Theorem 8. No OFTM is strictly disjoint-access-parallel.

It is worth noting that the original notion of disjoint-access-parallelism, in-
troduced in [30], allows for transactions that are indirectly connected via other
transactions to conflict on common base objects. For example, if a transaction T1

accesses a t-object x, T2 accesses y, and T3 accesses both x and y, then there is a
dependency chain from T1 to T2 via T3, even though the two transactions T1 and
T2 use different t-objects. Disjoint-access-parallelism allows then the processes
executing T1 and T2 to conflict on some base objects. Disjoint-access-parallelism
in the sense of [30] can be ensured by an OFTM implementation, e.g., DSTM.

It is also straightforward to implement a TM that is strictly disjoint-access-
parallel but not obstruction-free, e.g., using two-phase locking [11] or the TL
algorithm [10].



5 Lock-Based TMs
Lock-based TMs are TM implementations that use (internally) mutual exclusion
to handle some phases of a transaction. Most of them use some variant of the
two-phase locking protocol, well-known in the database world [11].

From the user’s perspective, however, the choice of the mechanism used in-
ternally by a TM implementation is not very important. What is important is the
semantics the TM manifests on its public interface, and the time/space complex-
ities of the implementation. If those properties are known, then the designer of a
lock-based TM is free to choose the techniques that are best for a given hardware
platform, without the fear of breaking existing applications that use a TM.

In this section, we define strong progressiveness—a progress property com-
monly ensured by lock-based TMs. We determine the consensus number of
strongly progressive TMs, and show an inherent performance trade-off in those
TMs.

For simplicity of presentation, we assume in this section that all t-objects are
t-variables. That is, they export only read and write operations. We discuss how
to deal with arbitrary t-objects in Section 5.4.

5.1 Strong Progressiveness

Intuitively, strong progressiveness says that (1) if a transaction has no conflict then
it cannot be forcefully aborted, and (2) if a group of transactions conflict on a sin-
gle t-variable, then not all of those transactions can be forcefully aborted. Roughly
speaking, concurrent transactions conflict if they access the same t-variable in a
conflicting way, i.e., if at least one of those accesses is a write operation.4

Strong progressiveness is not the strongest possible progress property. The
strongest one, which requires that no transaction is ever forcefully aborted, cannot
be implemented without throttling significantly the parallelism between transac-
tions, and is thus impractical in multi-processor systems.

Strong progressiveness, however, still gives a programmer the following im-
portant advantages. First, it guarantees that if two independent subsystems of an
application do not share any memory locations (or t-variables), then their trans-
actions are completely isolated from each other (i.e., a transaction executed by
a subsystem A does not cause a transaction in a subsystem B to be forcefully
aborted). Second, it avoids “spurious” aborts: the cases when a transaction can
abort are strictly defined. Third, it ensures global progress for single-operation
transactions, which is important when non-transactional accesses to t-variables
are encapsulated into transactions in order to ensure strong atomicity [6]. Finally,

4We assume no false conflicts here; we discuss this assumption in Section 5.4.



it ensures that processes are able to eventually communicate via transactions (al-
beit in a simplified manner—through a single t-variable at a time). Nevertheless,
one can imagine many other reasonable progress properties, for which strong pro-
gressiveness can be a good reference point.

More precisely, let H be any history of a TM and Tk be any transaction in H.
We denote by WSetH(Tk) and RSetH(Tk) the sets of t-variables on which Tk exe-
cuted, respectively, a write or a read operation in H. We denote by RWSetH(Tk)
the union of sets RSetH(Tk) and WSetH(Tk), i.e., the set of t-variables accessed
(read or written) by Tk in history H. We say that two transactions Ti and Tk in H
conflict on a t-variable x, if (1) Ti and Tk are concurrent in H, and (2) either x
is in WSetH(Tk) and in RWSetH(Ti), or x is in WSetH(Ti) and in RWSetH(Tk). We
say that Tk conflicts with a transaction Ti in H if Ti and Tk conflict in H on some
t-variable.

Let H be any history, and Ti be any transaction in H. We denote by CVarH(Ti)
the set of t-variables on which Ti conflicts with any other transaction in history H.
That is, a t-variable x is in CVarH(Ti) if there exists a transaction Tk ∈ H, k , i,
such that Ti conflicts with Tk on t-variable x.

Let Q be any subset of the set of transactions in a history H. We denote by
CVarH(Q) the union of sets CVarH(Ti) for all Ti ∈ Q.

Let CTrans(H) be the set of subsets of transactions in a history H, such that a
set Q is in CTrans(H) if no transaction in Q conflicts with a transaction not in Q.
In particular, if Ti is a transaction in a history H and Ti does not conflict with any
other transaction in H, then {Ti} ∈ CTrans(H).

Definition 9. A TM implementation M is strongly progressive, if in every his-
tory H of M the following property is satisfied: for every set Q ∈ CTrans(H), if
|CVarH(Q)| ≤ 1, then some transaction in Q is not forcefully aborted in H.

5.2 The Power of a Lock-Based TM
We show here that the consensus number of a strongly progressive TM is 2. First,
we prove that a strongly progressive TM is computationally equivalent to a strong
try-lock object that we define in this section. That is, one can implement a strongly
progressive TM from (a number of) strong try-locks and registers, and vice versa.
Second, we determine that the consensus number of a strong try-lock is 2.

All lock-based TMs we know of use (often implicitly) a special kind of locks,
usually called try-locks [42]. Intuitively, a try-lock is an object that provides mu-
tual exclusion (like a lock), but does not block processes indefinitely. That is, if
a process pi requests a try-lock L, but L is already acquired by a different pro-
cess, pi is returned the information that its request failed instead of being blocked
waiting until L is released.



Try-locks keep the TM implementation simple and avoid deadlocks. More-
over, if any form of fairness is needed, it is provided at a higher level than at the
level of individual locks—then more information about a transaction can be used
to resolve conflicts and provide progress. Ensuring safety and progress can be
effectively separate tasks.

More precisely, a try-lock is an object with the following operations: (1) try-
lock, that returns true or false; and (2) unlock, that always returns ok. Let L be any
try-lock. If a process pi invokes trylock on L and is returned true, then we say that
pi has acquired L. Once pi acquires L, we say that (1) pi holds L until pi invokes
operation unlock on L, and (2) L is locked until pi returns from operation unlock
on L. (Hence, L might be locked even if no process holds L—when some process
that was holding L is still executing operation unlock on L.)

Every try-lock L guarantees the following property, called mutual exclusion:
no two processes hold L at the same time.

Intuitively, we say that a try-lock L is strong if whenever several processes
compete for L, then one should be able to acquire L. This property corresponds
to deadlock-freedom, livelock-freedom, or progress [38] properties of (blocking)
locks.

Definition 10. We say that a try-lock L is strong, if L ensures the following prop-
erty, in every run: if L is not locked at some time t and some process invokes
operation trylock on L at t, then some process acquires L after t.

While there exists a large number of lock implementations, only a few are
try-locks or can be converted to try-locks in a straightforward way. The technical
problems of transforming a queue (blocking) lock into a try-lock are highlighted
in [42]. It is trivial to transform a typical TAS or TATAS lock [38] into a strong
try-lock [21].

Theorem 11. A strongly progressive TM is equivalent to a strong try-lock.

Theorem 12. A strong try-lock has consensus number 2.

Hence, by Theorem 11 and Theorem 12, the following theorem holds:

Theorem 13. A strongly progressive TM has consensus number 2.

Corollary 14. There is no algorithm that implements a strongly progressive TM
using only registers.

5.3 Performance Trade-Off in Lock-Based TMs
We show that the space complexity of every strongly progressive TM that uses
invisible reads is at least exponential with the number of t-variables available to



transactions.5 The invisible reads strategy is used by a majority of lock-based
TM implementations [9, 34, 23, 2, 12] as it allows efficient optimistic reading
of t-variables. Intuitively, if invisible reads are used, a transaction that reads a
t-variable does not write any information to base objects. Hence, many proces-
sors can concurrently execute transactions that read the same t-variables, without
invalidating each other’s caches and causing high traffic on the inter-processor
bus. However, transactions that update t-variables do not know whether there are
any concurrent transactions that read those variables. (For a precise definition of
invisible reads, consult [21].)

The size of a t-variable or a base object x can be defined as the number of
distinct, reachable states of x. In particular, if x is a t-variable or a register object,
then the size of x is the number of values that can be written to x. For example,
the size of a 32-bit register is 232.

Theorem 15. Every strongly progressive TM implementation that uses invisible
reads and provides to transactions Ns t-variables of size Ks uses Ω

(
Ks

Ns/Kb

)
base

objects of size Kb.

This result might seem surprising, since it is not obvious that modern lock-
based TMs have non-linear space complexity. The exponential (or, in fact, un-
bounded) complexity comes from the use of timestamps that determine version
numbers of t-variables. TM implementations usually reserve a constant-size word
for each version number (which gives linear space complexity). However, an
overflow can happen and has to be handled in order to guarantee opacity. This
requires (a) limiting the progress (strong progressiveness) of transactions when
overflow occurs, and (b) preventing read-only transactions from being completely
invisible [21]. Concretely speaking, our result means that efficient TM implemen-
tations (the ones that use invisible reads) must either intermittently (albeit very
rarely) violate progress guarantees, or use unbounded timestamps.

5.4 Generalizing Strong Progressiveness
The two major assumptions we made when defining the notion of strong progres-
siveness were that all t-objects are t-variables (i.e., they support only read and
write operations), and (implicitly) that the mapping between t-variables and cor-
responding try-locks is a one-to-one relation. We discuss here how those assump-
tions can be relaxed (at the price of increasing the complexity of the definitions).
Arbitrary t-objects. Object-based TMs support t-objects of arbitrary type. How-
ever, most of them classify all the operations of t-objects as either read-only or up-
date ones. In those cases, there is no need to consider arbitrary t-objects, because

5In fact, the result holds also for TMs that ensure a property called weak progressiveness, which
is strictly weaker than strong progressiveness [21].



read-only operations are effectively reads, and update operations are effectively
pairs of reads and writes.

We can, however, imagine a TM that exploits the commutativity relations be-
tween some operations of t-objects of any type. In this case, one can redefine
the notion of a conflict to account for arbitrary t-objects. Indeed, operations that
commute should not conflict. Consider for example a counter object and its oper-
ation inc that increments the counter and does not return any meaningful value. It
is easy to see that there is no real conflict between transactions that concurrently
invoke operation inc on the same counter: the order of those operations does not
matter and is not known to transactions (it would be, however, if inc returned
the current value of the counter). Once the notion of a conflict is redefined, our
definitions of progress properties remain correct even for t-objects with arbitrary
operations. If we assume that a TM must support t-variables (in addition to other
t-objects), then also the consensus number and complexity lower bound results
hold for those TMs.
False conflicts. Many lock-based TMs employ a hash function to map a t-variable
(or, in general, a t-object) to the corresponding try-lock. It may thus happen that
a false conflict occurs between transactions that access disjoint sets of t-variables,
and so, a priori, strong progressiveness might be violated. However, it is easy to
take the hash function h of a TM implementation M into account in the definition
of strong progressiveness. Basically, when a transaction Ti reads or writes a t-
variable x in a history H of M, we add to, respectively, the read set (RSetH(Ti))
or the write set (WSetH(Ti)) of Ti not only x, but also every t-variable y such
that h(x) = h(y). The definition of a conflict hence also takes into account false
conflicts between transactions, and the strong progressiveness property can be
ensured by M. (Such a property could be called h-based strong progressiveness.)
Note, however, that the hash function must be known to a user of a TM, or even
provided by the user. Otherwise, strong progressiveness (and any property that
relies on the notion of a conflict) would no longer be visible, and very meaningful,
to a user.

6 Concluding Remarks
We gave an overview of our recent work on establishing the theoretical founda-
tions of transactional memory (TM). We omitted many related results. We give
here a short summary of some of those.

An important question is how to verify that a given history of a TM, or a given
TM implementation, ensures opacity, obstruction-freedom, or strong progressive-
ness. In [20], we present a graph interpretation of opacity (similar in concept to
the one of serializability [37, 5]). Basically, we show how to build a graph that



represents the dependencies between transactions in a given history H. We then
reduce the problem of checking whether H is opaque to the problem of check-
ing the acyclicity of this graph. In [21], we provide a simple reduction scheme
that facilitates proving strong progressiveness of a given TM implementation M.
Roughly speaking, we prove that if it is possible to say which parts of the al-
gorithm of M can be viewed as logical try-locks (in a precise sense we define
in [21]), and if those logical try-locks are strong, then the TM is strongly progres-
sive. In other words, if the locking mechanism used by M is based on (logical)
strong try-locks, then M is strongly progressive.

The graph characterization of opacity and the reduction scheme for strong
progressiveness do not address the problem of automatic model checking TM
implementations. Basically, they do not deal with the issue of the unbounded
number of states of a general TM implementation. In [16, 17], the problem is
addressed for an interesting class of TMs. Basically, it is proved there that if a
given TM implementation has certain symmetry properties, then it either violates
opacity in some execution with only 2 processes and 2 t-variables, or ensures
opacity in every execution (with any number of processes and t-variables). The
theoretical framework presented in [16, 17] allows for automatic verifications of
implementations such as DSTM or TL2 in a relatively short time.

One of the problems that we did not cover is the semantics of memory trans-
actions from a programming language perspective. A very simple (but also very
convenient) interface to a TM is via an atomic keyword that marks those blocks
of code that should be executed inside transactions. The possible interactions be-
tween transactions themselves are confined by opacity. However, opacity does
not specify the semantics of the interactions between the various programming
language constructs that are inside and outside atomic blocks. Some work on
those issues is presented, e.g., in [47, 31, 1, 36, 35].
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