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Abstract. Programming languages are not only useful to command computers, they also increas-
ingly are a medium for human communication. I will use the framework of distributed cognition to
discuss how knowledge is shared in a team of programmers and to show that computer code plays
an important role in it. The resulting model of how programmers comprehend code suggests that
common grounds play an important role in it. I propose two hypotheses concerning the means used
by programmers to refer to common grounds from within their code. The hypotheses imply that
modern languages, such as Scala, offer advantages as human communication mediums. I describe an
experiment, using an eye-tracking device, that measures the performance of code comprehension.
The hypotheses are tested by varying the degree of reference to common grounds.

Introduction

The original role of programming languages is that of a communication medium between a
human and a computer. Today, the life span of software has increased, and programming teams
have grown in size. As programmers need to communicate about software, computer code has
also become an important human communication medium.

To describe computer codes, programmers often use words like “confused”, “complicated”,
“to-the-point”, “elegant”, or “coherent”, words not unlike those used for texts written in human
languages. Of course, this literary quality of code is influenced by the experience and talent
of their programmers. But contrary to human languages — where communication in English,
Swahili or Chinese is about equally efficient — some programming languages seem superior
in their potential to write “to-the-point”, “elegant”, or “coherent” codes. Such languages would
obviously be superior mediums for human communication.

Improper collaboration has a destructive impact on software projects. It is widely reported
in the professional literature that as much as one half of large projects fail. Most do not fail
because technology is not mature, but because communication amongst stake holders, particu-
larly programmers, is poor. The development process eventually stalls when the effort of sharing
knowledge amongst programmers is equal to the amount of work all programers can achieve. A
popular book by Brooks [3] describes how additional manpower can actually decrease the output
of a team in such situations.

There is ample evidence — see, for example, Brooks [4] — that the maximum workable size
of software projects has considerably increased in half a century. One amongst many factors may
be that programming languages are improving in how suitable they are as mediums for human
communication, thereby lowering the cost of collaboration.

In this article, I question whether relatively simple object-oriented languages, such as Java
,and richer object-functional languages, such as Scala [10], differ in their quality as mediums for
human communication. To do so, I propose a model that emphasises the role of program code
— and of programming languages — in the process of sharing knowledge in software projects.
I describe two specific and testable factors that may impact the performance of a language
performance in this role. These factors were tested in a controlled experiment, the results of
which are reported in this article.

Section 1 presents related work on code comprehension as well as related work on applying
the theoretical framework of distributed cognition to software development.
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Section 2 describes a model of sharing knowledge in software projects based on the framework
of distributed cognition. The model highlights the importance of computer code and of code
comprehension in the process of sharing knowledge. It also emphasises the central role played by
common grounds — knowledge that is shared by all members of a community. I formulate two
hypotheses about what methods are used to reference common grounds from computer code.
– Code can refer to language constructs for which all programmers already have a mental

model, lowering the cognitive load of comprehending it.
– Code can contain hints to its domain, simplifying the process of relating specific words or

constructs in the code to concepts in the model, a process called “grounding”.

Section 3 describes and section 4 analyses an experiment that tests these hypotheses. Code
is modified to either resemble that of a simple object-oriented language (Java) or to utilise
advanced constructs found in richer object-functional languages (Scala), as common grounds
are referenced differently in these two forms. An eye-tracking device and questionnaires are used
to measure variables related to code comprehension.

Section 5 discusses whether the result of the experiment support the model of code compre-
hension and whether they validate the hypotheses.

1 Related Work

Code comprehension has been recognised as a problem by the programming community for a
long time. A 1989 article by Corbi [6] cites a study that concludes that “more than half of the
programmer’s task is in understanding the system.” It goes on to postulate the existence of a
“multileveled internal semantic structure to represent the program”. Two methods of program
comprehension are described, based on empirical research. Whilst not grounded in distributed
cognition or in another cognitive theory, the intuitions described in Corbi’s article are consistent
with the model described in section 2.

Corritore and Wiedenbeck [7] further studied what mental representations are constructed
during a code comprehension task, and compared the performance of procedural and object-
oriented C/C++ code. Using questionnaires, their study differentiates between mental repre-
sentations that are related to the domain and those that are related to the actual program,
a distinction similar to that made in the present article. However, the study does not show a
difference between procedural and object-oriented code in the mental representations built by
experts.

Bednarik et al. [1] study the relation between gaze patterns and mental models. Whilst
not comparing code comprehension in different languages, their concerns are homologous to
those described in section 4. They report that a subject’s code comprehension outcome that
contains info-high information — comparable to the present article’s “conceptual” outcomes —
does not indicate correct comprehension, something that is also observed in section 4. They
further observe that the proportional time spent reading certain families of code tokens does not
correlate to the quality of mental models. That differs from the results reported in the present
article, most likely because it uses a different model of token families.

Burkhardt et al. [5] refine the notion of mental model into distinct levels of cognitive represen-
tation. They report on a study which shows that tasks of different nature, such as documenting
or modifying code, as well as different levels of expertise, lead to different levels of cognitive
representation.

Bednarik and Tukiainen [2] use eye-tracking to analyse debugging with multiple representa-
tions. Beside code, subjects were presented with a visualisation of the problem domain and with
debugging output. They report that, in later phases of debugging, experts rely more on code and
on debugging output than novices, who heavily rely on visualisation. These results may provide
insights into the actual process of building a mental model, something which was not discussed
in the present paper.



Contrary to the previously-cited works, the present article relies on the framework of dis-
tributed cognition to ground its analysis. Distributed cognition [9, 11] has been proposed as a
framework to analyse programming-related tasks, for example by Flor and Hutchins [8] in an
analysis of a software enhancement task. They do not, however, detail the role of program code
in the system. Wright et al. [14] propose to use the “resource model”, an extension of distributed
cognition, to analyse human-computer interaction. This model clarifies the distinction between
“abstract information structures” and their representation. Wright’s article does not discuss pro-
gramming or code comprehension; it is manifest, however, that an analysis of such tasks benefits
from making that distinction. The present article does not directly refer to the resource model,
but the distinction between abstract information structures and their representation underpins
it.

Below I report some experimental results on code comprehension within the framework of
distributed cognition. The need for “[extreme programming] teams to maintain considerable
common ground” is reported by Sharp and Robinson [12]. This result is in line with the model
presented in section 2, although extreme programming may not be representative of all pro-
gramming processes. Zayour and Lethbridge [15] discuss cognitive issues related to the design of
software comprehension tools (reverse engineering). They claim that a tool must primarily aim
at reducing cognitive load, instead of reducing the time required to perform individual tasks.
Whilst this claim relates to comprehension tools, it is similar in nature to the first hypothe-
sis that the present paper makes about programming languages. A similar notion permeates
through Walenstein’s investigation into the application of the resource model to the design of
software comprehension tools (error tracking) [13].

To the author’s knowledge, there is no previously published research that uses the framework
of distributed cognition to describe the specific role played by program code in communication
amongst members of a software development team.

2 A Distributed Cognition Model of Software Projects

A software project, whether large or small, is a knowledge-intensive endeavour. As a system, the
project must memorise large amounts of knowledge, which is composed:
– of a model of the domain to which the software relates, including its vocabulary, concepts,

et cetera (domain model),
– of the goals of the project, in term of reliability, performance, design, et cetera (project goals).
For the code of every component (object, function, algorithm, module, et cetera), it is further-
more composed:
– of a model of its design (design model),
– of a model of its purpose, of what it offers to the rest of the program, and under which

conditions (purpose model).
Not all of this knowledge is in all programmer’s memories. Programmers need knowledge about
the design of the components that they change and about the purpose of the components that
they use. They also require a limited knowledge of the domain model and of the goals. A large
part of the knowledge is also, or only, stored in artefacts — code, documentation, et cetera —,
which thus accomplish memory tasks on behalf of the project. Because memory is distributed,
knowledge about the locations of knowledge (transactive memory) is further required. In such
a system, artefacts simultaneously serve to carry knowledge from one programmer to another,
and to store knowledge that isn’t presently needed, for future retrieval. Natural language doc-
uments obviously serve as memory artefacts; in my experience, however, it is code itself that
is the primary medium for storing knowledge. After all, programming languages are designed
to describe the subtle and detailed properties typically relevant to programming. Furthermore,
computer code necessarily exists for the entire software, something that is rarely true for other
forms of distributed memory.



Performing even simple programming tasks on a component — such as adding a feature or
fixing a bug — requires a fairly thorough model of its design and of its purpose. Despite that,
such knowledge rarely stays in memory for long. It is usual for a programmer to be utterly
unable to comprehend code he had written a few month before. This has probably to do with
the sheer amount of knowledge that design models contain, but it is beyond the scope of this
article to explore further why programmers do not hold to them for longer. On the other hand,
knowledge about the domain model and the goals tend to remain memorised by programmers
for long periods of time. An implication of this reality is that programmers very much depend
upon being able to retrieve components’ models from artefacts, particularly from code. When
that is not possible, the difficulty of recreating fresh models often results in the component being
discarded and rewritten.

The Process of Retrieving Models from Code

I will call the process of retrieving design models and purpose models from code: “code compre-
hension”. Although there is no precise definition of the term “code comprehension” that I am
aware of, its use in the literature usually seems consistent with this definition.

It is insufficient to retrieve only the knowledge contained in code to comprehend it. Rather,
code comprehension is a process that requires putting together knowledge in the code with other,
previous knowledge. Much of the previous knowledge that is required is project-specific — or
domain-specifc — knowledge. To comprehend code, various forms of knowledge are required:
– a purpose model of the components that are used from within the code;
– a design model of the larger component, if the code is part of one;
– grounding in the domain model;
– the goal of the code within the project, which may help to justify design choices.
Knowledge that is not specific to the project will also be used, such as:
– emantic rules of the programming language — what happens when code calls a function, or

how is a condition used to exit a loop;
– a purpose model of the components from the standard libraries that are used;
– recognition of the code of common behaviours in the form of “design patterns”.
These forms of knowledge are “common grounds” that programmers use to comprehend code.
Obviously, these grounds are common to different communities. The project knowledge is shared
amongst members of the project, but parts of the domain model may also be shared by other
domain experts. The other forms of knowledge are shared, depending on their nature, by the
community of users of a language, of a library, of a programming style (object-oriented, func-
tional), or by all programmers. Sometimes, common grounds are built by training or by explicit
documentation. My experience is that much of the common grounds are formed by the process of
code comprehension itself. Building the design and purpose models during code comprehension
simultaneously validates and refines the domain model and the goals of the project. The same
process is useful to construct knowledge about a programming language or about programming
in general. Discussing further the processes of creating common grounds is beyond the scope of
this article.

A corollary of the distributed cognition model of software projects outlined above is that code
is very dependent on the common grounds to serve as an effective memory artefact. Even if all
the necessary common grounds are available to the programmer, it is a non-trivial task to select,
within the common grounds, the knowledge that is relevant to the code. This observation leads
us to making two hypotheses related to how common grounds are used in code comprehension.

Hypothesis 1: Common Grounds Densify Code

Code is built out of pre-existing constructs for which models of their behaviour exists, and
which are part of programmers’ common grounds. These constructs, and the behaviour they



refer to, are like Lego bricks out of which the program is assembled. Code is “denser” if the
constructs used to write code refer to models of more complex behaviour. The hypothesis is that
code comprehension is improved with denser code for programmers whose common grounds are
fitting.

The explanations for the success of the Java programming language are numerous. Most
people do agree, however, that its standard library of reusable components has played a central
role in it. These components provide behaviours that would otherwise have to be implemented
using additional code. Furthermore, all Java programmers use these components and have a
purpose model of their behaviour.

More generally, some languages or their libraries provide constructs with a higher cognitive
content than others. Because these constructs contain additional cognitive meaning, fewer con-
structs are required to express a program of a given complexity, and code becomes shorter and
denser. Of course, the models that a programer must eventually build do not become signif-
icantly simpler when code is denser — in the end, the cognitive content remains roughly the
same.

Another aspect of high-cognitive-content constructs that may play a role in code comprehen-
sion is the literary opportunities that they offer. Languages with such constructs usually give
more choice with respect to how an algorithm is described in code. Different constructs can be
used to describe a similar behaviour, and programmers have to choose which one they use. That
is not unlike choosing synonyms in human language. As an example, in Scala, an operation that
is to be executed on many elements of a list can be coded by using many constructs such as
“for-comprehensions” or higher-order functions. Amongst other things, these constructs differ in
whether they emphasise the operation being carried out (higher-order functions) or the repeti-
tive nature of the task (for-comprehensions). It is quite visible in many codes that programmers
use this nuance as a way to structure better their code, as a way to have their code better “tell
the story of their program”.

Inexperienced programmers with a tenuous understanding of a language will not know how
to decipher references to common grounds, and will probably not pick up the literary content
of the code. In that sense, hypothesis 1 does not imply that all programmers will benefit from
denser code. Instead, one would expect a decrease in the comprehension performance for those
programmers who have not mastered the common grounds of the language.

Hypothesis 2: Hints Help Grounding in the Domain Model

Code has an imperfect relationship with the domain model, in the sense that, when considered by
themselves, most codes imply a domain model which is too simple to allow for the comprehension
of the code. Comprehension requires a programmer to flesh out the relationship between the code
and the domain model. If the programmer already has a mental model of the domain, fleshing out
the relationship is reduced to a task of grounding the code in the domain model. Furthermore,
if the domain model is shared by programmers — if it is part of common grounds — code can
be written so as to hint to the domain model and make grounding easier. The second hypothesis
is that grounding hints improve code comprehension if the domain model is part of common
grounds.

Depending on the programming language or programming style, grounding hints of different
nature will be available.
– Programmers can freely name functions, values, data structures, et cetera. Some program-

mers keenly use this feature to ground their code, using complex names and the vocabulary
of the domain model to describe, in English, the behaviour of a function, but many do not.

– Many languages allow data to be annotated with an expected type in the code. Types can
be defined so as to correspond to the vocabulary and to the structure of the domain model
— a concept the team refers to as “xyz” will be annotated using a type called “xyz”. In some



languages, the coherence of type annotations can be checked automatically prior to executing
a program.

– Error messages, which are part of the code, often serve as “negative” grounding hints.
Natural text comments inside code also play an important role. Modern languages have mostly
concentrated on improving types. But even so, there is disagreement as to whether defining types
that faithfully represent a domain model is worth their complexity. On the other hand, some
have argued types to be useful as grounding hints even if they cannot be checked automatically.

3 Experiment

Each subject taking part in the experiment is asked to comprehend algorithms written in the
Scala language. Scala is a modern object-functional language that allows denser code-writing
styles than Java. To test the hypotheses described above, the coding style of the algorithms
varies. We test the first hypothesis by presenting subjects with either code that uses dense
Scala constructs or with code that only uses constructs available in Java. We test the second
hypothesis by either using intermediate variable names relevant to the domain model — which
serve as grounding hints — or by using meaningless variable names. Because of the relatively long
duration of the comprehension task, the number of subjects is small (twelve); the experiment
is not designed to yield statistically significant results on the dependent variable, namely the
overall comprehension performance. Instead, it is primarily designed to observe process variables,
particularly:
– the overall time spent looking at code during the comprehension task;
– the relative time spent looking at grounding hints and implementation code.

Method of Experiment

The subjects for the experiment are students in fields related to computer science or engineering
from École Polytechnique Fédérale de Lausanne. The sample contains bachelor, master, and
doctoral students. For the students I knew from teaching, they seemed fairly representative of
the programming skills found in the student population.

Subjects are first presented with a short textual description of the concepts of relational
algebra and with its vocabulary. In this experiment, relational algebra is the domain model
against which code can be grounded.

Subjects are then presented with three algorithms, of varying complexities related to rela-
tional algebra. Each algorithm is coded by using one of three styles: S/G, D/G and D/U, which
are described below. The same algorithms, in the same order, are presented to each subject,
but the coding style for each algorithm changes from one subject to the other. For example, one
subject is presented with algorithm 1 coded using style S/G and algorithm 2 using style D/U,
whilst another subject is presented with algorithm 1 coded using style D/U and algorithm 2
using style S/G. Each subject will therefore be confronted with all three styles, although not in
the same order and not for the same algorithms. The Scala language documentation is available
during this phase of the experiment.

The three algorithms are implementations of relational algebra operators: (1) a natural join,
(2) a left outer join, and (3) a cartesian product. These algorithms were chosen because the model
of relational algebra involves non-trivial concepts and structures, and because the operators
seemed awkward to comprehend without grounding them in the model. Table 1 lists the length
— in number of lines and in code tokens (words and punctuation) — of the code for the three
algorithms and for each coding style.

Independent Variables

The three different coding styles define two independent variables, which are related to the
hypotheses.



Lines of Code Tokens
Sparse Dense Dense Sparse Dense Dense

Algo. grounded ungrounded grounded grounded ungrounded grounded
1 51 17 20 268 135 135
2 73 26 31 448 172 183
3 36 15 18 243 113 117

Table 1. The size, in lines of code and in tokens, for each algorithm in each style.

Variable for Hypothesis One The first independent variable is related to code density, and varies
between the sparse (S/G) style and the two dense (D/G and D/U) styles. The sparse-grounded
(S/G) style is typical for Java programs: it only uses simple iterative control structures, such
as loops, and the entire variable state of the algorithm is represented as local, named variables.
It represents the low-cognitive-content situation of the first hypothesis. As one can see in the
table above, this style leads to long code, both in terms of lines and in terms of tokens. On the
other hand, it visibly lays out the structure of the algorithm: the steps are easy to recognise and
variable state is always explicit. The two dense styles use modern control structures to reduce
the length of algorithms’ code by a factor of more than two. They represent the high-cognitive-
content situation of the first hypothesis. When possible, loops and variables are replaced by
higher-order functions or “for-comprehensions”. These constructs represent operations on lists
at levels of abstraction higher than what loops and variables allow for. As an example, one
can test if a condition is true for all elements in a list by simply using the “forall” higher-order
function. Although the dense styles yield shorter code length than the sparse style, the algorithm
implemented in all three styles are equivalent: the computer will eventually carry out almost the
same calculation.

Variable for Hypothesis Two The second independent variable is related to the presence or ab-
sence of grounding hints. The two grounded styles (S/G and D/G) name elements (intermediate
functions and variables) of the algorithm using words that are meaningful. They aim to ground
the implementation within the domain model of relational algebra, using the same vocabulary
that the subjects were presented with at the beginning of the experiment. A few intermediate
names were added in the D/G style, when compared with the D/U style, to help grounding.
The ungrounded style (D/U) concentrates on the raw implementation of the algorithm, using
as little intermediate names as possible, and always using meaningless words.

Dependent and Process Variables

Once subjects are satisfied with their degree of comprehension, they proceed to write down the
“programming contract” for each algorithm. A programming contract is a list of all pre-conditions
that must be true for the algorithm to execute normally (for example: a certain list must not be
empty), and of all post-conditions that will necessarily be true afterwards. During this phase,
the code of the algorithms is still visible but the explanations on relational algebra and the Scala
documentation are hidden. Finally, subjects are presented with a questionnaire on their level
of confidence in their answers and on their skills in programming, in the Scala language and in
relational algebra.

In order to collect data on the time spent comprehending each algorithm and on the time
spent looking at different families of tokens, the experiment is conducted on a display capable of
tracking gaze positions — a Tobii 1750 eye-tracking display, used without chin rest or bite bar.
Gaze data is recorded during the entire comprehension task, including reading the description
of relational algebra and describing the algorithms’ contracts. Font size is set sufficiently large
so as to allow connecting gaze to specific tokens in the code.



Prior to the experiment, subjects are told that they will participate in an experiment on
“code comprehension using an eye tracker”. All instructions for the experiment are provided
in a written form and verbal interactions between subjects and the experimenter prior to the
experiment are kept to a minimum. Each subject is compensated with twenty Swiss francs at
the end of the experiment. The instructions make it very clear that the compensation is due
irrespective of the way the experiment runs. All twelve subjects completed the task, most in
between 45 minutes and one hour of time.

Method of Analysis

Dependent variables The contracts that the subjects have written for each algorithm are reviewed
by the same experienced programmer who has written the algorithms, and assigned one outcome:
– failed, for evidently wrong contracts;
– serviceable, for contracts related purely to the algorithm’s code. For example: “returns a list of

merged mappings that are compatible; two maps are compatible if every common key contain
identical elements” (“list”, “map” and “key” are concepts related to the implementation);

– conceptual, for contracts placing the algorithm within its model. For example: “The relation
contains all tuples that match common fields in the two relations” (“relation”, “tuple”, “field”
are concepts related to relational algebra);

– unknown, for contracts that are unclear or too short to be placed in another category.

Process variables Raw gaze data from the eye-tracker are categorised into reading times for the
following categories of elements:
– english sentences describing relational algebra;
– program code, by algorithm and style;
– text fields, were subjects describe contracts.
Program code is categorised further in token families:
– identifiers, for names identifying sub-functions or values of the algorithm;
– types;
– implementation, for any other code.
Only the last family of tokens contains useful information for comprehending the algorithm itself.
The other two families ground the implementation in its model, either from the point of view of
its correctness (types) or conceptually (identifiers, when in D/G and S/G style).

The reading times measured for different algorithms cannot be compared directly; the algo-
rithms are of different complexities, and the first algorithm that a subject tries to comprehend
can be expected to take longer. Therefore, all times are normalised by the average reading time
for the algorithm they relate to. Normalised times for all algorithms are then compared as if all
algorithms had the same complexity and as if no order effect was present.

Some gaze data that was collected during the experiment is not included in the analysis.
Data for three subjects (nb. 4, 6, and 8) were rejected, based on the following criteria:
– different styles of the same algorithm are presented to a subject;
– gaze data is available for less than 50% of the duration of the experiment.
I do not expect rejected data to introduce a statistical bias, as rejection criteria are purely
technical and are unlikely to be correlated with any other observed variable.

4 Analysis of Results

Results by subject

Table 2 shows the total duration of the experiment for each subject, and the proportion of that
time for which gaze data is available. For each subject, it also shows the self-reported skill levels
in programming, the Scala language, and in the model of relational algebra. Unavailable gaze



data are due either to the eye tracker not recognising the pupil — the subject has partially closed
eyes — or to the subject not looking at the screen, typically when looking at the keyboard.

Skills
Subject Time Gaze. Prog. Scala Rel. Alg.

1 0:48 86% ?? ?? ?
2 0:38 68% ??? ??? ?
3 1:08 61% ?? ?? ??
5 0:51 78% ? ? ??
7 0:48 71% ?? ?? ??
9 0:47 76% ? ? —
10 0:40 50% ??? ?? ?
11 0:43 61% ??? ??? ?
12 1:07 62% ??? ?? —

Table 2. Various data about each subject: duration of the experiment and availability of gaze, as well as reported
skill levels in programming, the Scala language, and relational algebra.

The number of subjects who took part in the experiment is relatively small, which may
be an issue. Despite that, some of the results are statistically significant and even exhibit very
strong effects. However, that increase the risk of unanticipated biases in the sample. The sample is
representative with respect to reported programming and Scala skills, although the two are highly
correlated. On the other hand, the sample does not contain subjects that are very experienced
with the relational model. As was mentioned above, my subjective view is that the sample is fairly
representative of students in computer science or engineering: it contains subjects with varying
aptitudes to programming — both high and low achiever volunteered for the experiment — and
at various points in their studies.

Figure 1 shows the proportion of time each subject looked at various elements on the screen.
Time spent looking at code or at contracts represents 40–80% of the total. Time looking at the
description of the relational model represents 5–10%. Compared to the length of the text, that is
a relatively high percentage. The non-attributable time reported in this figure must be treated
with caution: some of it, lost gazes, should be attributed to relevant categories. I cannot know
how much of attributable time is in fact lost — as opposed to time spent looking elsewhere — and
in which proportion to the various categories. Lost gazes are unlikely to introduce a statistical
bias: it would be surprising if they were correlated with any other observed variable.
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Fig. 1. Relative time for reading the relational
model and the language documentation (white);
reading code or contracts for algorithms 1, 2, and
3 (black, grey and light grey). The dashed part is
non attributed time.
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Fig. 2. Total time (minutes) for reading code to-
kens, by subject. Tokens are categorised into imple-
mentation (white), identifiers (light grey), and types
(grey). The black part is the time used for writing
contracts.



Figure 2 shows the time, in minutes, that each subject spent looking at families of tokens, and
writing contracts. Times are quite variable and somewhat coherent with reported skill levels. It
is interesting to notice that the time spent writing contracts varies widely. I cannot fully explain
this variation, although anecdotal evidence obtained from replaying gaze movies makes me think
that some subjects build a mental model of the code prior to writing the contract whilst other
build the model whilst writing. Some subjects thus refined their contracts multiple times, in an
increasingly conceptual style, whilst others wrote the final version immediately.

Results by coding style

Figure 3 compares the time spent looking at algorithms for each coding styles. I analysed the
variance of reading times (using ANOVA) between the group “S/G“ and the group “D/U and
D/G”. Reading time amongst these groups is different in a very significant way (F1,25 = 34.7,
p ≤ 0.001). On the other hand, there is no significant difference between the groups “D/U” and
“D/G” (F1,16 = 0.46, p = 0.51). In other words, for the algorithms presented in this experiment,
a coding style with a low cognitive density leads to an increased reading time, irrespective of the
outcome. On the other hand, identifiers used as grounding hints have no measurable positive
impact on that time, despite the fact that subjects had been reminded of the existence of the
conceptual model that was used for grounding. However, the fact that the sample did not contain
subjects with a thorough prior knowledge of the model must be taken into account.

S�G D�U D�G
0.0

0.5

1.0

1.5

2.0

Fig. 3. For each style, the normalised times spent
reading the code of algorithms.
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Fig. 4. For each style, the average normalised time
spent looking at one token, independently of its na-
ture.

The S/G style leads to much longer codes, as shown in section 3. Figure 4 aims to analyse
how code length relates to comprehension time. It compares the time spent looking at each
token, on average, for each coding style. An analysis of variance did not show any significant
difference between the styles. The interval for mean differences between styles at a confidence
level of 95% is approximatively between -0.3 and 0.5 (using the same normalised units as the
figure). In other words, the data suggests that the time spent comprehending one token does
not change significantly based on its cognitive content.

The major difference between the S/G style and the D/U and D/G styles is the time spent
looking at grounding hints. In D/U and D/G styles, it represents about 10–15% of overall time;
in S/G style, it is more than 25%. I postulate that the task of grounding the S/G code is harder
than for the other two. On the other hand, the difference of time spent looking at non-grounded
code is relatively minor between styles. Types play a minor role in all three styles. Arguably,
types play their most important role in large applications, or in the definition of programming



interfaces and data structures. As such, algorithms like those used in the experiment may not
be very representative of the usefulness of types. Figure 5 represents the time spent looking, for
each style, at each family of tokens, as well as the time spent writing contracts. In line with the
results mentioned above, the total time looking at S/G-style tokens is longer.
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Fig. 5. For each style, the normalised time spent
reading implementation tokens (white), identifier to-
kens (light grey), and type tokens (black).
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Fig. 6. Ratios of outcomes by styles. Black is a failed
outcome, white is serviceable and light grey is con-
ceptual.

Whilst the previous results are related to process variables, figure 6 charts the relation
between coding style and the dependent variable of the experiment: the outcome of the compre-
hension task. As stated previously, the experiment was not actually designed to compare these
variables, but one may be tempted to conclude, by looking at the graph, that D/U and D/G
styles lead to increased code comprehension. The number of observations is too small to con-
duct Pearson’s χ2 test on all three categories of styles and of outcomes. After simplifying both
categories — for style, D/U and D/G are merged into one category; for outcome, the serviceable
and conceptual ones are merged — I could perform Pearson’s χ2 test in somewhat acceptable
conditions. Its result (X2 = 3.74, p = 0.053) is just too high to confirm a relation between style
and outcome. On the other hand, many subjects informally told me that code written in the
S/G style was “annoying” or “messy” and that they felt they had understood the code poorly. No
remarks concerning the difference between the D/U and D/G styles were voiced. In fact, most
subjects probably did not realise that there was a difference.

On Predicting Outcome

The measurement for outcome is too coarse to effectively serve as a statistical indicator of
comprehension. Furthermore, a defect in the conception of the experiment means that self-
reported confidence data cannot be exploited to refine the outcome data into something more
relevant to the degree of comprehension. Despite that, intermediate variables are somewhat
significantly predictive of the outcome. This is particularly true when differentiating between a
serviceable and conceptual outcome.

Figure 7 and 8 show how outcome depends on intermediate variables. Reading time does not
predict the outcome (F2,22 = 1.72, p = 0.20) and neither does it predict, assuming the result is
successful, whether the outcome is serviceable or conceptual (F1,10 = 1.78, p = 0.21). The ratio
of time spend reading identifiers — the primary form of grounding tokens — with respect to the
overall reading time effectively predicts whether the outcome will be serviceable (F1,23 = 11.8,
p ≤ 0.01). The ratio of grounding tokens also predicts whether the outcome will be successful
(F2,22 = 5.86, p ≤ 0.01), but only because the variance of the serviceable outcome with respect
to others is so large; this ratio cannot reliably differentiate between a failed and a conceptual
outcome (F1,16 = 0.37, p = 0.55).
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Fig. 7. For each outcome, the time spent reading
algorithms.
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Fig. 8. For each outcome, the time spent reading
implementation (white), identifiers (light grey) and
types (black).

Fig. 9. A screen shot of the code as it was displayed during the experiment, with a “heat map” of relative gaze
times. Left is algorithm 1 by subject 7 in S/G style. Right is algorithm 2 by subject 12 in D/U style. Note the
fixations on the identifiers in S/G style with are absent in D/U style.



5 Discussion

Validity of the first hypothesis. The experimental results suggest that Scala code written using
advanced constructs is superior to Scala code written in a style similar to that of Java. In terms
of comprehension time, that difference is statistically significant despite the small sample size.
In terms of the degree of comprehension that is achieved, there is anecdotal evidence — trends
in the data and informal remarks made by subjects — that using advanced constructs makes the
overall task of code comprehension simpler. It is interesting to note that the benefits of using
Scala are visible even amongst a group containing programmers with a limited grasp of Scala’s
common grounds.

These results corroborate the first hypothesis, namely that code comprehension is improved
when programmers can utilise common grounds to comprehend cognitively very dense code. I
cannot say whether programmers only benefited from reusing their mental models for constructs,
or whether the more literary style found in this code contributed to these results. The fact
that subjects mentioned how “messy” and “annoying” the Java-like style was may however be
interpreted in favour of the latter explanation. The fact that comprehension time per token did
not differ based on the cognitive content of these tokens is unexpected. If this property can be
generalised, it would give language designers a precise goal: the shorter the code, the better. It
may also explain why domain-specific languages are so effective.

Validity of the second hypothesis. The experiment does neither strongly support nor strongly
reject the hypothesis that grounding hints improve code comprehension. Subjects who had built
a conceptual model of the code had spent more time reading grounding hints than those who
had built a more technical model of the code. This result is difficult to analyse, but it may
be used as an argument in favour of the second hypothesis. Many subjects spent a significant
amount of time to write contracts of a relatively unsophisticated nature. The contracts had to be
understood by a third-party (the experimenter). In line with the second hypothesis, the subjects
would have to write contracts in a way that is meaningful within the common grounds they
expect to share with the experimenter. The surprising amount of time that most subjects spent
writing contracts shows that to be difficult. Overall, the experiment proved not very suitable for
settling the second hypothesis’ validity. Grounding code within a common-ground domain such
as relational algebra may arguably become important only when considering large, complex
programs. Still, it seems that a subject with a good grasp of relational algebra would have
found it easier to comprehend the algorithms. On the other hand, the algorithms proved to be
simple enough to be analysed without much reference to their model. Also, the sample was not
completely suitable to analyse grounding, because most subjects lacked experience in relational
algebra.

The design of the experiment made the data somewhat difficult to analyse. It would be useful,
as future work, to run a similar experiment with a larger sample, truly independent measures,
and using a grounding model that is better understood. It would also be interesting to test
whether the difference measured between “styles” of Scala code could also be measured when
different languages are used.

In conclusion, I believe that the results of the experiment do not contradict the distributed
cognition model of software projects proposed in this article. On the contrary: the predictions
of the model about the role played by common grounds in code comprehension are somewhat
corroborated by the experiment. It remains an open question if other forms of knowledge, and
other means of utilising common grounds for code comprehension exist. In reference to the title
of this article, the experiment probably entitles me to conclude that programming languages
are, in fact, improving as a medium for human communication.
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