
Detecting the Origin of Text Segments Efficiently

Ossama
Abdel-Hamid

∗

Cairo University
Giza, Egypt

Behshad Behzadi
Google Inc

Zurich, Switzerland

Stefan Christoph
Google Inc

Zurich, Switzerland

Monika Henzinger
Google Inc & EPFL

Lausanne, Switzerland

o.abdelhamid@fci-cu.edu.eg, {behshad, stefanchr, monika}@google.com

ABSTRACT
In the origin detection problem an algorithm is given a set
S of documents, ordered by creation time, and a query doc-
ument D. It needs to output for every consecutive sequence
of k alphanumeric terms in D the earliest document in S
in which the sequence appeared (if such a document exists).
Algorithms for the origin detection problem can, for exam-
ple, be used to detect the “origin” of text segments in D and
thus to detect novel content in D. They can also find the
document from which the author of D has copied the most
(or show that D is mostly original.)

We propose novel algorithms for this problem and evaluate
them together with a large number of previously published
algorithms. Our results show that (1) detecting the origin of
text segments efficiently can be done with very high accuracy
even when the space used is less than 1% of the size of
the documents in S, (2) the precision degrades smoothly
with the amount of available space, (3) various estimation
techniques can be used to increase the performance of the
algorithms.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous

General Terms
Algorithms, Measurement, Experimentation

Keywords
Document Overlap, Shingling

1. INTRODUCTION
According to web search engines the web consists by now

of tens of billions of pages. Not surprisingly most of these
pages do not contain novel information but replicate in some
way the content of other pages. It is estimated [8, 16, 1] that
roughly 20-40% of the pages are exact duplicates. The re-
maining pages with replication can be roughly categorized
into three types [3]: (1) Near-duplicate pages, i.e., pages that
are almost identical to the original page, except for minor
changes, like the insertion or replacement of a few words. (2)

∗Work done while visiting Google Inc.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

Partial replication, where one or more paragraphs are copied
but overall the new document differs significantly from the
original document. For example, if a document contains
paragraphs from multiple sources then it is a partial repli-
cate of all these documents, but a near-duplicate for none
of them. (3) Semantic duplication, where pages contain (al-
most) the same content, but different words. Most attention
in the past has been given to finding near-duplicate pages [4,
6, 10, 11, 12, 16, 17]. Recently, attention has shifted towards
detecting partial replication [7, 15, 14], but none of the prior
work focuses on the origin detection problem.

There are various reasons for this shift. (a) Paragraph
replication is very common in blogs. With the increasing
popularity of blogs there has also been increasing interest
in trying to identify the origin of these copies, for example,
in order to point readers of a blog post to the blog post(s)
on which the copied text originated. (b) Spammers have
become more sophisticated. While earlier spammers copied
whole documents and made only minor changes, spammers
nowadays are more likely to copy just the most relevant para-
graphs (in combination with other spamming techniques) to
attract search engine clicks.1 Detecting partial replication
is thus useful for generating a list of potential spammers [9].
(c) As search engines become more sophisticated they try
to return better search snippets to the users. One improve-
ment for snippets can be to extract the snippets from the
part of the web page that is novel, i.e., that is not copied
from an earlier page. (d) Another application would be to
build a browser that marks the novel (i.e. not copied) con-
tent of the web page it displays. It could also annotate the
copied content with the URL of the page where the content
originated. A user who repeatedly visits the same page can
thus quickly identify which parts of the page have changed.
This would be especially interesting for frequently updated
pages, like new versions of a news page on a hot topic.

The above applications all assume that we know the cor-
rect order in which pages are created. For blogs this is
straightforward as blog posts usually have a timestamp. How-
ever, for general web pages determining the right creation
time is not easy. Web search engines usually keep track
of the first time that they have encountered a URL or a
new version at a known URL. However, there is no guaran-
tee that the search engine visits a URL soon after its con-
tent has changed. Thus it is possible that the content has
been partially replicated and that the search engine crawls

1A study by Beaza-Yates et al. [1, 2] shows that authors of
web pages use search engines to find content that they then
copy and paste into their pages.

WWW 2009 MADRID! Track: Data Mining / Session: Text Mining

61

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147952362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the page that contains the copy before the origin. In this
paper we do not address the problem of correctly ordering
web pages (see instead the recent work by Bendersky and
Croft [3] on this problem). Here we assume that such an
ordering is given and we study how we can efficiently detect
partial replication and its origin given such an ordering.

There are two challenges when building a system for de-
tecting partial replication. One is the amount of data to
be handled. Clearly, comparing every pair of documents is
practically impossible. To avoid this one could build an in-
dex of all text fragments found in all documents. However,
the size of such an index is proportional to the size of all the
documents, which is in the order of hundreds of Terabytes
for the whole web. Thus we use a different approach based
on selection and hashing that uses a small fraction, e.g., 1%,
of the space required for the full index. The second chal-
lenge comes from the fact that many documents have to be
served very shortly after they were created. News and blogs
are two categories of documents of this type. This requires
that the system needs to be able to respond in real-time or
very close to real time.

Based on these two challenges we are focusing on space-
efficient techniques for finding the origin of copied text seg-
ments in a stream of documents in real-time. We design
new techniques for addressing them and discuss various de-
sign decisions. We then compare our techniques with pre-
viously published techniques for this or related problems.
The results show that it is indeed possible to significantly
decrease the amount of space needed while still generating
high-quality results. As in prior art we call a sequence of
k consecutive terms in a document a shingle [5, 6]. In this
paper we focus on the following two problems. (1) Deter-
mine all terms in the document that do not belong to a
copied shingle. Any maximal sequence of such novel terms
is considered to be a novel segment in the document. (2)
Determine the document D′ where most of the content of a
given document D originated. If D = D′, then more content
is unique to D than copied from any single other source.

Our system uses the following architecture: Every shin-
gle in the document is fingerprinted [13]. Then a selection
algorithm determines which shingles to store in a hash ta-
ble. The hash table stores for each shingle some additional
information. For selected shingles for which there is a hit
in the hash table the additional information is sent back to
the algorithm. Based on this information we use various es-
timation techniques to determine which shingles are copied
and from which document most of the content originated.
Since we limit the size of the hash table to be much smaller
than the size of all the documents, shingles frequently have
to be evicted from the hash table. Thus, we also explore the
impact of various eviction algorithms.

In summary, this paper contains the following contribu-
tions: (1) We present a new shingle selection algorithm
called Hailstorm for selecting shingles to send to the hash
table. We compare it with other existing shingle selection
algorithms and show that it outperforms the existing ones.
(2) We present a new eviction strategy for the items in the
hash table which helps in keeping non-redundant and more
useful shingles (“lucky shingles”) for detecting future copy-
ing. We compare this new eviction strategy with various
known strategies, like LRU. (3) We suggest a new technique
called bridging for estimating the origin of all selected shin-
gles in a document even though only information about a

very small number of shingles in the document is available.
(4) We perform an extensive analysis of different algorithms
on two real datasets and show that (1),(2) and (3) together
provide the best solution for our problem.

The paper is organized as follows: In Section 2 we define
formally the problem we are studying and present our sys-
tem architecture as well as the different algorithms that we
are evaluating. In Section 3, we describe our experimental
setup and the results on two real-live datasets.

2. ALGORITHMS
We study the following origin detection problem. Its input

consists of three parts: (1) It contains a set S of sequences
of tokens. For example, a sequence of tokens can be a docu-
ment, consisting of a sequence of terms, or a DNA sequence,
consisting of a sequence of nucleotide bases. For simplic-
ity, we refer to a sequence of tokens in S as a document,
even though all of our techniques apply to the more general
setting. Each document in S has a unique timestamp or,
more generally, the documents are totally ordered with no
ties. We refer to documents that are smaller in this order as
being earlier and to documents that are larger in this order
as being later. (2) The “query” part of the input consists
of an additional sequence D of tokens, referred to as query
document D. (3) The last part of the input is a parameter
k. We refer to a sub-sequence of k consecutive tokens of a
document as a k-shingle or shingle. The algorithm outputs
for every shingle s in D the earliest document D′ of S that
contains s. We call D′ the origin of shingle s. If D′ 6= D,
we call s a copied shingle, otherwise s is a new shingle. Note
that shingles can overlap in up to k − 1 tokens, i.e., they
correspond to sliding windows of the document. We say a
token is covered by a shingle s if the token is one of the
tokens in the sub-sequence that forms s.

The origin detection problem can be used to find novel
content in documents as follows: Assume that an earlier
version D0 of a document D1 belongs to S and that D1 is the
query document. If a subsequence T of D1 is covered only by
new shingles then this part of the document did not belong
to D0, otherwise the shingles would have been detected as
being copied. Thus T is a novel text segment of D1.

One algorithm to solve the origin detection problem is
to convert every document in S into a set of shingles and
to build an inverted index data structure for these shingles.
This is the k-gram approach taken by Seo and Croft [15]. As
they point out it requires a large amount of space, since every
document of n tokens is represented by n−k+1 shingles. Seo
and Croft studied four different ways of selecting a subset
of the shingles reducing the average number of shingles per
document by a factor of 6. Their goal was, however, not to
solve the origin detection problem, but to study how well
these selection techniques work to detect partial overlap,
considerable overlap, or almost complete overlap between
documents.

We want to build a system whose space usage is much
smaller. Thus we use the following two-step approach. (1)
In the preprocessing step we hash the shingles that are se-
lected from the documents in S together with per-shingle
information into a fixed-size bucketed hash table. When a
bucket becomes full, we evict one of its shingles. (2) In the
subsequent query step we hash the shingles selected from
the query document D into the hash table. When there is a
“hit” for a shingle s in the hash table we retrieve the infor-

WWW 2009 MADRID! Track: Data Mining / Session: Text Mining

62



mation stored for s. We then use the information collected
from all “hits” to determine (or estimate) the origin of every
selected shingle of D. Note that both steps require to select
and hash shingles for a given document. The query step
needs to additionally determine the origin of selected shin-
gles. Thus, we partition our system into three algorithmic
components, namely the selection phase, the hashing phase,
and the estimation phase. In the selection phase a document
D is converted into a sequence of shingles and a subset of
shingles is selected. In the hashing phase each selected shin-
gle is hashed into a hash table (in the order of selection), the
hash table is updated, and potentially information about the
shingle is returned. In the estimation phase the origin of ev-
ery selected shingles is determined. The preprocessing step
applies the selection and the hashing phase to each docu-
ment in S. The query step applies the selection phase, the
hashing phase, and in addition the estimation phase to the
query document D.

To summarize, our main algorithmic differences to the
work by Seo and Croft [15] are: (a) We assume that a fixed
amount of space is given for solving the problem and we
study how different algorithms work for different memory
sizes. Note that fixing the amount of space is often prefer-
able in the deployment of systems as increasing the size of
the input set S does not lead to an increased space require-
ment, but instead to a (hopefully smooth) degradation of
the output quality. To deal with the fixed space we exper-
iment with various eviction strategies. (b) We study more
shingle selection algorithms, namely all the algorithms that
Seo and Croft evaluated (including Winnowing [14]), and
additionally some new ones that we specifically designed to
work well for our problem setup. (c) We add an “estimation
phase” where we use information about other shingles in D
to estimate the origin of shingles missing in the hash table.

2.1 Selection Phase
In the selection phase a given document is converted into a

set of selected shingles. For two of the selection algorithms
described below (Hash-breaking and DCT) a given docu-
ment is actually converted into a set of fingerprints that do
not correspond to shingles in the document as defined above.
However, to simplify our notation we call these fingerprints
as well selected shingles. For the other algorithms the set of
selected shingles is created as follows: (i) All the shingles of
D are generated and each shingle is converted into a 62-bit
fingerprint2. (ii) Next a subset of shingles is selected, often
based on their fingerprints. In the following we do not distin-
guish between a shingle and its fingerprint, i.e., we assume
the internal representation of a shingle is its fingerprint. We
describe next all our selection algorithms in detail.

All. Our baseline algorithm selects all shingles.
Every l-th (lth). For a given integer l select every l-th

shingle, i.e., select only the shingles that start at position
0, l, 2l, 3l, . . . in the document. This approach selects a 1/l-
fraction of the shingles. We used l = 4, 6, and 8.

Modulo l (M-l). For a given integer l select a shingle
iff its value is divisible by l. With Rabin’s fingerprints the
probability for a shingle to be divisible by l is 1/l. Thus, this

approach expects to select a 1/l-fraction of the shingles. We

2Converting a string of characters into a single integer such
that the probability of a collision is small is called finger-
printing. We use Rabin’s fingerprints [13] throughout the
paper.

experimented with l = 2, 3, ..., 8.
Winnowing w [14] (W-w). Winnowing uses a second win-

dow size w and for each consecutive sequence of w shingles
it outputs the shingle with the smallest fingerprint value. If
there is no unique smallest shingle, the right-most smallest
shingle is selected. Schleimer et al [14] showed that the ex-
pected number of shingles selected is a 2

w+1
-fraction of all

the shingles. We experimented with w = 5, 6, ..., 9.
Revised Hash-breaking [15] (Hb-p). The original hash-

breaking algorithm [5] first applies a hash function h to each
token and then breaks the document into non-overlapping
(text) segments at the tokens whose hash value is divisible
by some fixed integer p. Then it fingerprints all the tokens
that are contained in the segment. The expected number of
fingerprints is a 1/p-fraction of the shingles for longer doc-
uments. Seo and Croft [15] proposed a revised version of
hash-breaking where segments of length less than p are ig-
nored, removing “noisy” segments. Recall that we call the
fingerprints of the segments selected shingles by abuse of no-
tation. We experimented with p = 3, 4, ..., 8.

DCT [15] (Dct-p). DCT first breaks the document into
non-overlapping text segments in the same way as hash-
breaking. Next it constructs an integer representation of
each text segment as follows: It treats the sequence of fin-
gerprints of the text segments as a discrete time domain
signal sequence and after normalizing the values applies a
discrete cosine transform to it. The resulting coefficients
are quantized and used to construct one 64-bit fingerprint
for the text segment. The number of fingerprints equals the
number of fingerprints for hash-breaking. The fingerprints
produced by DCT are tolerant to small changes in the seg-
ment. Recall that we call these fingerprints selected shingles
by abuse of notation. We experimented with p = 3, 4, ..., 8.

Furthermore, we propose the following new algorithm:
Hailstorm (Hs). The algorithm first fingerprints every to-

ken and then selects a shingle s iff the minimum fingerprint
value of all k tokens in s occurs at the first or the last po-
sition of s (and potentially also in-between.) Due to the
probabilistic properties of Rabin’s fingerprints the probabil-
ity that a shingle is chosen is 2

k
if all tokens in the shingle

are different.
Winnowing fulfills this locality property [14]: Whether a

shingle s is selected or not only depends on the shingles in
the same windows as s and not on other shingles. Algo-
rithms Modulo and Hailstorm fulfill an even stronger prop-
erty, called context-freeness: Whether a shingle is selected or
not only depends on the shingle itself and not on any other
shingle in the document, i.e., any given shingle s is either
selected in all documents containing it or is never selected.
Furthermore, Winnowing guarantees that in each sequence
of w + k − 1 tokens at least one shingle is selected, i.e., it is
not possible that no shingle is selected in an arbitrarily long
sequence of tokens. Note that this could happen with Algo-
rithm Modulo. Hailstorm gives an even stronger guarantee:
Lemma 1 proves that for every token at least one shingle cov-
ering the token is selected. Thus, all tokens are covered by
the selected shingles. We call this total coverage. Algorithm
Every l-th also has this property as long as l ≤ k. However,
Hailstorm is the only shingle-based selection algorithm that
is both context-free and guarantees total coverage.

Lemma 1. In every document D, any token (except for
the first or last k-1 tokens) is covered by at least one k-
shingle selected by Algorithm Hailstorm.

WWW 2009 MADRID! Track: Data Mining / Session: Text Mining

63



Proof. For a position p in D consider the interval of
2k− 1 tokens centered around p and let x be the position of
the smallest token in this interval. If x ≥ p (resp. x ≤ p) then
the k-shingle terminating (resp. starting) at x is selected and
it covers p.

All selected shingles are sent to the hash table. Thus,
the amount of data sent to the hash table varies between
different algorithms and different parameter settings.

For a real-time system the amount of data sent to the
hash table (e.g. via rpc calls) dominates its running time.
Thus we want to reduce the amount of data sent as much
as possible without hurting the quality of the result. Note
that there is a certain redundancy in the data sent to the
hash table. Specifically, a shingle might be selected even
though all its tokens are already covered by other selected
shingles. Thus, we also propose and evaluate a “no complete
overlap” version of the above algorithms that does not send
these redundant shingles. It first selects all shingles, but
before sending them to the hash table it makes a second
pass over them and discards the selected shingles all of whose
tokens are covered by selected, not-discarded shingles. This
significantly reduces the data sent to the hash tables. It also
reduces evictions from the hash tables and usually improves
the quality of the results. Applying this technique to the
algorithms M-p, W-w, and Hs creates the algorithms NM-p,
NW-w, and NHs. Note that Every 8-th is a no-complete-
overlap variant of Every-4th and All. There is no overlap in
HB-p and DCT-p.

2.2 Hashing Phase
Every selected shingle s is hashed into a fixed-sized hash

table. The hash table is split into buckets, each storing the
information for 64 shingles (see Section 3.5 for a discussion
of bucket sizes).

For each shingle in the hash table its value plus some addi-
tional information described below are stored in the bucket.
Each selected shingle s is hashed into one bucket, which is
then searched to see whether it contains s. If s is found,
part of the information stored with s in the hash table is
updated, another part is sent back to be used in the esti-
mation phase. When s is not found in its bucket, it is now
inserted into the bucket together with all the necessary in-
formation, which was sent together with s to the hash table.
If the bucket is already storing 64 shingles, then one of the
shingles in the bucket is evicted to make space for s. We
describe below different eviction policies.

The hash table is the main data structure used by the
algorithm and dominates its memory usage. We want to
understand the impact of different sizes of the hash table
on the performance of various algorithms. Thus we exper-
imented with eight different values for the hash table size
m between 20MB and 5GB. The space needed to store a
shingle s and its information varies between 14 bytes and
18 bytes depending on which eviction algorithm and which
estimation algorithm we use. Since the number of shingles
per bucket is fixed, the number of buckets in the hash table
varies between different algorithms and different hash table
sizes. Depending on the number of buckets the first 14 or
more bits of a shingle are used to hash a shingle.

The per shingle information can contain up to five parts,
namely (1) the fingerprint of s itself, (2) its origin Ds, (3) its
offset in D2 (see below), and (4) information about neigh-
boring selected shingles in Ds, and (5) information for the

eviction algorithm. We now explain them in detail. (1) The
fingerprint of s consists of 62 bits. Since at least the first 14
bits are encoded in the bucket index (no matter how many
buckets there are), we only need 6 bytes to store the shin-
gle itself3. (2) We use 8 bytes to store (a fingerprint of) its
origin Ds. When a new shingle is inserted into a bucket,
its origin is the document that we are currently processing.
(3) Some of the algorithms in the estimation phase need the
offset of s in Ds. The offset of a shingle s in a document
D is the number of shingles that were selected in D before
s in the shingle order of D. If the number is at least 28,
we compute its value modulo 28, i.e., we use a one byte for
the offset. (4) Some algorithms also use the first byte of the
fingerprint of the selected shingle immediately preceding s
and the first byte of the fingerprint of the selected shingle
immediately succeeding s in Ds. Thus for these algorithms
we keep these two bytes. (5) For the Copy-Count and the
Lucky eviction algorithm we use one additional byte, while
for the Random and LRU eviction algorithm, no additional
byte is used. The use of this byte is explained in detail in
the description of the eviction algorithms.

We study three classic eviction algorithms together with
Lucky, a novel eviction algorithm that we propose:

Random (R). Evict a random shingle from the bucket.
LRU. Each hash table bucket is treated as a queue of

shingles. When a new shingle is inserted in the bucket it
is placed at the end of the queue. Every time a shingle is
searched for and found in the bucket, it is placed at the
end of the queue. When a shingle needs to be evicted, the
shingle at the front of the queue is evicted.

Copy-Count (CC). When a new shingle is inserted into the
bucket, its copy-count is set to one. Every time the shingle
is searched for and found in the hash table the copy-count is
incremented by 1. When a shingle needs to be evicted, the
shingle with the smallest copy-count is evicted. When the
counters for 10 shingles in a bucket reach 255, we divide all
the counters by two.

Lucky (LS). We keep a 1-byte lucky score, which is a
weighted variant of the copy count, but with larger incre-
ments for “more important” shingles. The shingle with the
smallest lucky score is evicted. For increments the idea is as
follows: Assume a text segment R of shingles is copied from
one document to another. The bridging technique in the es-
timation phase (described below) will allow us to guess that
all of R was copied if we find the first and last shingle of R
in the hash table. Thus we want the first and the last shin-
gle of R to stay in the hash table and, hence, we increment
the lucky score of them by more than 1. We also give some
higher lucky score to the first and last shingle in the docu-
ment since they have a good chance of becoming the first,
resp., last shingle of some copied segment. Finally, we also
slightly increase the lucky score of every y-th selected shin-
gle in the document. Thus no matter which segment of the
document is copied by later documents, there is a chance
that a selected shingle not “far away” from the boundary
of the copied segment is stored in the hash table. Now we
describe the lucky algorithm more formally. We first hash

3When we need more than 14 bits to encode the bucket
index, we could have stored fewer than 6 bytes per shingle.
However, in the best case this would have increased the num-
ber of shingles stored in the hash table by at most 8%, which
would have had no measurable effect on the performance (as
our data shows).

WWW 2009 MADRID! Track: Data Mining / Session: Text Mining

64



all selected shingles of a document D to the hash table.
Based on the shingle information stored in the hash table
and various heuristics (described in the estimation phase)
we determine all maximal sub-sequences of selected shingles
of D that have been copied from the same origin. They are
called copied block. We then update the lucky score of the
selected shingles of D that are in the hash table or are in-
serted into it using the following rules: (a) The lucky score of
every new shingle is set to 1, the lucky score of every other
shingle is incremented by 1. (b) We additionally increase
the lucky score of the first and the last shingles of a copied
block by ⌊

√
b − 2⌋, where b is the size of the block. (c) If

a shingle is the first or the last shingle of its document its
lucky score is additionally incremented by 3. (d) For every
y-th selected shingle in D the lucky score is additionally in-
creased by 1. We set y = 7. (e) Whenever the average lucky
score of all shingles in a bucket reaches some fixed limit, we
divide all the lucky score fields by 2. This is necessary to
make sure that the numbers do not become too large. After
some preliminary experiments we set the limit to 11.

2.3 Estimation Phase
The input to the estimation algorithm is the information

retrieved from the hash table (if available) for all selected
shingles from the query document D. The estimation al-
gorithm outputs (a guess of) the origin for each selected
shingle (whether it was found in the hash table or not) and
nothing for not-selected shingles. We present four estima-
tion algorithms. The baseline algorithm No Bridging (NB)
only outputs origins for selected shingles that are found in
the hash table. For them it reports their origin stored in
the hash table. For all the other selected shingles it reports
the current document as its origin. The other three estima-
tion algorithms use additional information retrieved from
the hash table to guess the origin of selected shingles that
were not found in the hash table. If guessing is not possible,
they also output the current document as origin.

Our second algorithm is called Expansion (E). It uses the
information about neighboring selected shingles. When a
selected shingle s from D is found in the hash table, the
algorithm compares the first byte of the immediately pre-
ceding and succeeding selected shingle of s in D with the
corresponding information stored in the hash table. When-
ever a match is found, the origin of the shingle s′ with the
match is set to be the origin of s if s′ was not itself found in
the hash table. Thus it is possible that we set the origin for
up to two additional selected shingles even if they are not in
the hash table.

The Bridging Algorithm (B) uses the offset of each shingle.
Let s and s′ be two selected shingles of D such that (a) the
offset of s in D is less than the offset of s′, (b) for both
shingles the same origin was stored in the hash table, (c)
the difference of their offsets in D is equal to the difference
of their offset (in the origin) stored in the hash table and it
is smaller than a given limit T , and (d) none of the shingles
that occur after s and before s′ in D fulfill all (a), (b) and
(c). When all these conditions hold, we assume that the
whole block between s and s′ was copied from the (common)
origin of s and s′ and thus we label all selected shingles
between s and s′ as having the same origin as s and s′. We
say that we are bridging between s and s′. Note that the
endpoint of one bridge can be the start point of the next
bridge. Thus two bridges of length 50 can “bridge” the same

shingles as one bridge of length 100. We set T = 30, but we
also experimented with different values of T , see Section 3.
Given all selected shingles of D, their offsets and their origins
(if any), all bridges of D can be found in time linear in the
number of selected shingles using a hashing-based approach.

3 4 5 6 7 9

3 6 11 12 13 141097

Bridging

108 12112

1 2 4 5 8

1
Origin Doc A:

Copier Doc B:

Expansion

Figure 1: Bridging and Expansion

Figure 1 illustrates the bridging and expansion concepts.
It shows the shingles of two documents A and B. Document
B is created later and copies 7 shingles from A (A5...A11,
indicated by arrows). Suppose that while processing docu-
ment B we only find the two black copied shingles in the
hash table: B7 as a copy of A5 and B11 as a copy of A9. If
any of the shingles B8 to B10 are selected, bridging would
predict correctly that they are copied from the same origin
A, even though they are not in the hash table. Furthermore,
B8, B10 and B12 could also be detected as copies based on
expansion. Copied shingle B13 remains undiscovered.

Our fourth variant is called Bridging with Expansion (BE).
It uses the offset and the information about neighboring se-
lected shingles. We bridge between two shingle s and s′ iff
conditions (a) - (d) from bridging and these two additional
conditions hold: (e) the first byte of the selected shingle
immediately succeeding s in D matches the corresponding
information in the hash table and (f) the first byte of the
selected shingle immediately preceding s′ in D matches the
corresponding information in the hash table. Additionally
BE applies the expansion techniques. Note that the shingle
origins that the refined bridging heuristic and the expansion
heuristic output never contradict each other.

3. EVALUATION

3.1 Description of the data sets
We evaluated our algorithms on two data sets, namely

on a collection of 8.6 million blogs, called the blogs data
set, and on a collection of 1.3 million German web pages
from the .ch domain, called the Swiss data set. The blogs
data set is ordered according to the time when the blog was
posted. These blogs were collected over 10 days in January
2006, at a rate of 866,000 blogs per day. The Swiss data
set consists of web pages crawled in August 2008 and is in
crawl order. All these documents contain at least 45 tokens,
i.e., alphanumeric sequences. We omit smaller documents
because we observed that frequently their main content is
not their text but a picture or a video that is contained or
can be downloaded from the document. The documents in
the blogs data set consist only of the actual user posts and
do not contain the frame information that appears around
the posts. In the Swiss data set frames were not removed,
but all the HTML meta data was removed.

We experimented with shingle size k = 6 and k = 8 and
achieved slightly better results for 8. Thus we only report
results for k = 8. This corresponds to phrases of 8 terms
and thus allows for a fairly fine-grain origin detection.

WWW 2009 MADRID! Track: Data Mining / Session: Text Mining

65



Recall that in the origin detection problem there is an
initial set S of documents and a query document D We de-
scribe now how we constructed for each of the above data
sets an initial set S and a set of query documents. To de-
termine the origin of every shingle we first ran our system
without shingle selection and with enough memory to hold
all shingles. For each query document D, the most copied
origin is a document D′ that is the origin for the largest
number of shingles in D. If the number of shingles in D
with most copied origin D′ is 10% larger than the num-
ber of shingles for any other individual origin, then we call
D′ the dominant origin. One of our evaluation metrics is
to measure for how many documents we correctly identify
the dominant origin. The metric uses the dominant origin
and not the most copied origin, since the most copied origin
is not necessarily unique and the dominant origin is more
stable against small changes in the algorithms. Not all doc-
uments have a dominant origin but in our data sets most
do, namely 94% of the documents in the blogs data set and
92% in the Swiss data set.

With this metric in mind we constructed for each of the
two data sets the initial set S and the set of query documents
as follows. (1) We determined the last 100k documents that
have a dominant origin. They form the set of query doc-
uments. (2) The initial set S is formed by all documents
in the data set (no matter whether they have a dominant
origin or not) that occur before all of the query documents.

data # of # of avg # of with avg size shingle
set docu- shingles shingles dom. of cop. copy

ments per doc origin blocks ratio

blogs 8,666,731 1.71 bil. 197 94% 17 0.36

Swiss 1,360,393 0.78 bil. 570 92% 13 0.16

Table 1: Various statistics of our data sets.

Table 1 gives a few statistics about the two data sets,
showing that the average number of shingles per document
is almost a factor of three larger for the Swiss data set than
for the blogs data set. This confirms the intuition that blogs
posts are usually small. The table also gives the shingle copy
ratio, the ratio of the number of copied shingles by the total
number of shingles. It is 36% for the blogs data set and
16% in the Swiss data set. Recall that we call a maximum
sequences of selected shingles with the same origin a copied
block. In the blogs data set the average number of tokens in
a copied block is 17, in the Swiss data set it is 13. 4 All this
data shows that in blogs more and longer text segments are
copied than on the web in general.

As mentioned before we evaluated the algorithms on eight
different hash table sizes m between 5GB and 20MB. Table 2
shows for each size the percentage of all shingles that fit
into the hash table at one time. It varies between 34% for
5GB and 0.1% for 20MB on the blogs data set and between
58% and 0.2% on the Swiss data set. Thus m = 100MB
corresponds to storing about 1% of the space required for
all documents in S.

4These numbers are sightly inflated by the fact that we can-
not identify text segments with less than k = 8 tokens as
copied blocks.

m 5000 2000 1000 500 200 100 50 20
Blogs 34.2 13.7 6.8 3.3 1.4 0.7 0.3 0.1
Swiss 57.5 23.0 11.5 5.8 2.3 1.2 0.6 0.2

Table 2: Different hash table sizes m in MB and the
percentage of all shingles that fit into the hash table
at one time (in percent) for both datasets.

3.2 Evaluation metric
We used three metrics to evaluate our algorithms. The

first metric, selected shingles ratio (ssr), is the percentage of
all shingles that are selected. Since only the selected shingles
are sent to the hash table, ssr measures the data transfer to
the hash table. We use ssr as a measure of the total traf-
fic between the hash table and the algorithm even though
it only measures the amount of data sent to the hash table
and not the amount of data returned from the hash table
because the latter is negligible in comparison to the former.
The reason is that (a) the “hit ratio” in the hash table is
only 2-3%, i.e., we return data for only 2-3% of the shingles
that are sent to the hash table and (2) the data returned per
shingle consists of up to 11 bytes (its origin and up to three
additional bytes) and thus it is not much larger than the
data sent to the hash table which contains as a minimum
the 8-byte fingerprint of the shingle. Since we want to build
a real-time system it is important that ssr is small enough:
The time for transferring the data by far dominates the run-
ning time of the system. Unlike the metrics below ssr does
not measure the quality of the output. Thus any algorithms
with small enough ssr to allow real-time processing is suit-
able, i.e., we selected as “best” algorithm the algorithm with
highest-quality output out of all algorithms with sufficiently
small ssr. After some experimentation with our system we
decided that ssr should be no larger than 25%. However,
this threshold can be different for different system.

Our other two metrics measure the result quality of the
various algorithms. The dominant origin (DO) metric mea-
sures the percentage of query documents for which the algo-
rithm correctly identifies the dominant origin. This models
the application where we point the reader of a blog to the
blog from which most of the copying happened. If most of
the shingles of a document are not found in the hash table,
then the document itself is its own dominant origin. For 62%
of the query documents in the blogs data set and for 69% in
the Swiss data the query document is its own dominant ori-
gin. Thus a trivial baseline algorithm that always outputs
the document itself as its dominant origin would achieve a
DO value of 62%, resp. 69%. For evaluating an algorithm
we computed the DO performance for eight different hash
table sizes m, but for space reasons we usually omit a few.
We also give the average DO score, i.e. the average DO value
over all eight different values of m.

The third metric measures how well we can determine
“new” content in a document. We call a token in a query
document D a fresh token if none of the shingles it belongs
to are found in the hash table when D is processed. A
token that is not fresh is called old. After determining the
origin of every selected shingle in D the estimation algorithm
makes a second pass over D and outputs either fresh or old
for every token. Note that fresh does not mean that the
token has never occurred in any of the preceding documents,
only that it has not be seen in this context in the preceding

WWW 2009 MADRID! Track: Data Mining / Session: Text Mining

66



documents. Using a system with no selection and sufficient
memory to store all shingles we determined the correct label
for each token. For the query documents in the blogs data
set 57% of the tokens are fresh, for the Swiss data set 61%
of the tokens are fresh5. The token freshness (TF) metric
measures the percentage of tokens out of all tokens that are
correctly labeled as fresh or old. Thus, a trivial baseline
that outputs fresh for every token would achieve a TF value
of 57%, resp. 61%, on the two data sets. We also give the
average TF score, i.e. the TF metric averaged over all eight
different hash table sizes.

To simplify the comparison of algorithms we also compute
the arithmetic mean of the average DO score and the average
TF score of an algorithm and call it the overall score.

3.3 Overview of the experiments
We ran two versions of each selection algorithm, one with

random eviction and no estimation, i.e. the baseline algo-
rithm NB, and one with lucky eviction and BE estima-
tion. Based on the results for the selection algorithms, we
chose the best performing selection algorithm and All as a
“no-selection” baseline. For these two selection algorithms
we then experimented with the four different eviction algo-
rithms without any bridging or expansion. In a third set of
experiments we then evaluated the same two selection algo-
rithms and the best two eviction algorithms with the four
different estimation algorithms.

3.4 Comparison of the selection algorithms
We have seven types of selection algorithms, some with

various choices of parameters and some with a no-complete-
overlap variant. This results in 42 different selection algo-
rithms. Table 3 lists the ssr value in the blogs data set6

for each of the 33 selection variants with sufficiently small
ssr value (i.e. ssr ≤ 25%) which we evaluated in our further
experiments. We also evaluated Algorithm All as a base-
line algorithm, even though its ssr is 100%. Table 3 shows
how changing the parameter for each algorithm changes its
ssr value. It also shows that the no-complete-overlap ver-
sions have a significantly smaller ssr value than their original
counterparts, e.g., the ssr of W8 is 23.5%, while the ssr of
NW8 is only 17%.

Every l-th Modulo l

4th 6th 8th NM2 NM3 M4 NM4
25% 17% 13% 15% 15% 25% 14%

Modulo l

M5 NM5 M6 NM6 M7 NM7 M8
20% 14% 16% 12.5% 14% 11% 12%

Winnowing w

NW5 NW6 NW7 W8 NW8 W9 NW9
16% 17% 16.5% 23.5% 17% 21% 16%

Dct p (same ssr as HB-p) Hailstorm M-l
Dct3 Dct4 Dct5 Dct6 Dct8 NHs NM8
20% 15% 12% 10% 8% 17% 10%

Table 3: Percentage of shingles sent to the hash ta-
ble by the selection algorithms in the blogs data set.

We ran each of these 33 selection algorithms together with
two versions for the eviction and estimate phases, namely

5We believe that the fact that frames are not removed from
the Swiss data set is responsible for this relatively small
percentage of fresh tokens in the Swiss data set.
6The ssr values for the Swiss data set are almost identical.

with random eviction and no estimation (Version A), and
with lucky eviction and BE estimation (Version B). We
chose these two versions as they represent the two extreme
cases of eviction and estimation. Version A assumes no fur-
ther intelligence is used, while Version B is our best com-
bination of eviction and estimation algorithms (see below.)
Running all algorithms with these two versions resulted in
66 average DO and 66 average TF scores. We then picked in
each type of selection algorithm the variant that performed
best, based on the overall score. We chose according to
the overall score as we are interested in both metrics and
there is no algorithm that performs best in both metrics.
Interestingly, for each type of algorithm the same parame-
ter choices performed best on both data sets. These are NHs,
4th, NW8, NM3, Hb3, and Dct8. We call them the (over-
all) best performing selection algorithms and report their DO
performance on the blogs data set in Table 4 and 5.

m All NHs 4th NW8 NM3 Hb3 Dct8
5000 83.2 98.8 89.5 98.2 96.7 96.9 90.0
2000 79.8 97.3 83.2 96.2 95.7 95.6 90.0
1000 77.2 84.6 78.5 84.3 85.1 84.6 89.5

500 75.7 79.8 76.5 79.5 79.4 79.3 82.8

200 74.3 77.5 75.1 77.3 77.3 77.1 77.6

100 73.6 75.8 74.0 75.7 75.7 75.6 76.3

50 73.2 74.7 73.4 74.6 74.6 74.6 75.3

20 72.9 73.7 72.8 73.6 73.7 73.6 74.0

AvgDO 76.2 82.8 77.9 82.4 82.3 82.2 81.9

Table 4: Blogs data set: the DO score (in %) of
the best performing selection algorithms for differ-
ent hash table sizes (in MB) when combined with
random eviction and no estimation. The maximum
in each row is highlighted.

m All NHs 4th NW8 NM3 Hb3 Dct8
5000 99.2 98.5 88.9 98.0 96.3 96.8 85.1
500 90.6 93.7 86.0 92.9 92.0 91.8 85.1
50 79.7 84.3 79.6 83.5 83.1 82.5 82.8

AvgDO 88.0 91.0 84.0 90.2 89.3 89.2 84.1

Table 5: Blogs data set: the DO score (in %) of
the best performing selection algorithms for differ-
ent hash table sizes (in MB) when combined with
lucky eviction and BE estimation.

Based on this data we can draw four conclusions for the
blogs data set: (1) The DO performance gradually decreases
with m (more or less smoothly depending on the algorithm).
(2) Version B clearly outperforms Version A. (3) The no-
complete-overlap version of an algorithm usual has a higher
DO performance than the original version. The only excep-
tion is Every-4th that slightly outperforms Every-8th. (4)
Smart selection clearly helps. Even though some selection
algorithms select many more shingles, they actually perform
worse in the DO metric. The most extreme case is Algorithm
All which is the worst algorithm in combination with Version
A, even though it selects all of its shingles. However, also
Algorithm W5 (not shown in the table) with an ssr value
of 34% performs quite poorly with an average DO value of
80.0% in combination with Version A. (5) Out of the over-
all best performing Algorithms NHs has the highest average
DO score in both versions. Additionally, for almost all mem-
ory sizes its performance is close to the top performance for
that memory size, i.e., it adjusts very well to different hash

WWW 2009 MADRID! Track: Data Mining / Session: Text Mining

67



table sizes. 7 (6) Algorithm Dct8 performs well in Version
A, but not in Version B. While it performs well for small m,
its performance does not increase with m as soon as m ≥
200MB resulting is a very poor performance for m =5GB/
Other variants of Dct exhibit a similar behavior.

Swiss data set. Conclusions (1)-(5) hold also for the Swiss
data set (details omitted for space reasons) with the follow-
ing slight adjustments: The performance of NHs is slightly
lower (80.5%) for Version A and slightly higher (92.0%) for
Version B. In Version A, NM7 outperforms NHs with a DO
score of 81.7%, mostly because it performs very well for
m = 500MB. In Version B, Algorithm NHs has the top DO
score. Conclusion (6) does not hold on the Swiss data set:
All types of Dct performed poorly for all memory sizes. Thus
we conclude that the results of DCT for our problem setting
are inconclusive and deserve further study.

Next we analyze the token freshness metric. Table 6 shows
the results for the overall best performing algorithms for the
blogs data set. We draw the following conclusions from them
and the omitted data for the Swiss data set: (1) As with
the DO metric the token freshness decreases gradually as
m decreases. (2) Version B slightly outperforms Version A.
(3) Algorithm All performs best. Algorithm NHs performs
second best, it is the algorithm with highest average TF
score for all algorithms with ssr ≤ 25%.

m All NHs 4th NW8 NM3 Hb3 Dct8
Version A: Random Eviction + No Estimation

5000 97.7 93.7 89.7 93.4 91.6 90.7 87.5
500 86.9 86.2 82.7 86.2 84.9 84.8 84.4
50 78.2 77.2 75.0 77.3 76.5 77.1 77.3

AvgTF 85.7 84.5 81.1 84.3 83.2 83.1 82.5
Version B: Lucky Eviction + BE Bridging

5000 98.4 93.6 89.7 93.5 91.7 90.8 86.2
500 90.5 89.6 85.1 89.4 88.1 88.1 85.9
50 81.4 81.6 77.9 81.4 80.5 81.6 82.7

AvgTF 87.9 87.2 83.2 87.0 85.8 86.0 84.6

Table 6: Blogs data set: the TF score (in %) of
the best performing selection algorithms for differ-
ent hash table sizes (in MB).

Data& All NHs 4th NW8 NM3 Hb3 Dct8
Version
Blogs A 81.0 83.6 79.5 83.4 82.7 82.6 82.2
Blogs B 87.9 89.1 83.6 88.7 87.6 87.6 84.3
Swiss A 80.9 81.6 76.0 81.4 81.8 81.1 79.3
Swiss B 90.6 88.0 79.2 87.6 87.7 86.7 59.7

Table 7: The overall score, i.e., the mean of the
average DO and the average TF metric (in percent)
on both data sets and both versions for the best
performing selection algorithms. The maximum in
each row (ignoring All) is highlighted.

Table 7 gives the overall score for the best performing
algorithms and for the baseline algorithm All for both data
sets and both versions. Ignoring All (which has an ssr value
of 100%) NHs performs best for three combinations and is
close to the best algorithm (NM8) in the fourth combination.

7Algorithm NM8 (not shown) has the highest DO score in
both data sets, namely 84.9% in Version A and 91.0% (tied
with NHs) in Version B. However its TF score is much lower
(75.9% resp. 77.4%) so that it has a lower overall score.

Thus we use NHs in our experimentation for the eviction and
the estimation phase. Algorithm NW8 is the second best
algorithm.8 It is interesting to note that the best performing
algorithms, i.e., the algorithms with highest overall score
are all “no-overlap”algorithms. The corresponding“overlap”
algorithms select more shingles, which always results in a
higher TF score and in most cases results also in a lower
DO score. For example, Hs with Version B on the blogs
data set has an average DO score of 89.8% and a TF score
of 87.6%, resulting in an overall score of 88.7%, while the
corresponding numbers of NHs are 91.0%, 87.2%, and 89.1%.

3.5 Comparison of eviction algorithms
For the best performing selection algorithm NHs and for

the baseline algorithm All we compared the performance of
all four eviction algorithms without any estimation, i.e. with
the estimation algorithm NB. Table 8 gives the results for
the DO metric and the TF metric on the blogs data set. It
shows that copy count gives the best DO performance when
combined with either NHs or All. For TF the picture is
mixed. With Algorithm All lucky eviction works best, with
NHs LRU is either best or close to best.

m All NHs
R LRU CC LS R LRU CC LS

Dominant Origin Metric
5000 83.2 93.0 96.1 95.0 98.8 98.8 98.8 98.8
500 75.7 77.6 80.9 80.7 79.8 88.2 93.1 87.5
50 73.2 73.4 72.6 73.5 74.7 75.9 78.5 77.8

Avg 76.2 78.9 81.1 80.4 82.8 86.0 88.3 86.7
Token Freshness Metric

5000 97.6 96.1 96.8 98.6 93.5 93.5 93.5 93.5
500 86.9 83.8 84.1 89.6 86.2 88.1 88.8 86.0
50 78.2 76.7 71.8 79.8 77.2 77.9 75.1 77.1

Avg 85.7 83.7 81.8 87.7 84.3 85.3 84.2 84.4
Overall Score

80.7 81.3 81.4 84.1 83.5 85.6 86.2 85.5

Table 8: Blogs data set: the DO and TF score (in
%) of all eviction algorithms for the selection algo-
rithms All and NHs with no estimation algorithm
for different hash table sizes (in MB).

When we average the DO and the TF performance CC
performs best with NHs, and LS performs best with All. It
is not surprising that CC performs well when no bridging is
used, since lucky eviction was specifically designed to work
with bridging and is not expected to work very well with-
out bridging. Algorithms CC and LS are also the best two
eviction algorithms for the Swiss data set. Thus, we decided
to use the two best eviction algorithms CC and LS for the
experiments with different bridging variants.

Each bucket in the hash table keeps 64 shingles. To study
the impact of this choice we varied the number of shingles
per bucket to be 4, 8, 16, 32, 128, and 256, without changing
the amount of data we store per shingle. Thus the total
number of shingles stored in the hash table did not change,
only the bucketing and thus the evictions changed. As a
result we only saw a small impact on the DO and the TF
metric, less than 0.5 percentage points.

3.6 Comparison of estimation algorithms
8The conclusions we draw in Sections 3.5 and 3.6 would not
change if we used NW8 instead of NHs.

WWW 2009 MADRID! Track: Data Mining / Session: Text Mining

68



For the best performing selection algorithm NHs and the
“no-selection” baseline algorithm All combined with the two
best performing eviction algorithms CC and LS we experi-
mented with all four different estimation algorithms. Table 9
and Table 10 give the results on the blogs data set. From
this data we draw the following conclusions: (1) When used
with lucky eviction both expansion and bridging give a con-
siderable improvement when used alone, but they work best
in combination. (2) When using CC eviction all estimation
algorithms perform roughly the same. (3) Algorithm BE
even helps when m = 5GB, i.e., when 34-58% of the shin-
gles can be kept. When combined with the “no-selection”
algorithm All it achieves an almost perfect result of 98.4%
DO score and 99.2% TF score. The results for the Swiss
data set (omitted) confirm these conclusions.

m NHs + CC NHs + LS
NB E B BE NB E B BE

Dominant Origin Metric
5000 98.8 98.8 97.4 98.5 98.8 98.8 97.4 98.5
500 93.1 93.1 92.1 92.7 87.5 92.3 92.6 93.7

50 78.5 78.8 77.9 79.2 77.8 82.4 83.0 84.3

Avg 88.3 88.7 87.6 88.4 86.7 89.7 89.7 91.0

Token Freshness Metric
5000 93.5 93.5 93.6 93.6 93.5 93.5 93.6 93.6

500 88.8 88.6 89.3 88.6 86.0 88.4 89.5 89.6

50 75.1 75.5 76.4 75.8 77.1 80.0 81.5 81.6

Avg 84.2 84.2 85.0 84.5 84.4 86.2 87.1 87.2

Overall Score
86.2 86.4 86.3 86.5 85.5 87.9 88.4 89.1

Table 9: Blogs data set: the DO and TF score (in
%) of all bridging algorithms with the selection al-
gorithm NHs and the eviction algorithms CC and
LS, for different hash table sizes m (in MB).

m ALL + CC ALL + LS
NB E B BE NB E B BE

Dominant Origin Metric
5000 96.8 96.6 96.6 96.4 98.6 98.5 98.4 98.4
500 84.1 84.0 84.4 83.8 89.6 90.5 90.3 90.5

50 71.8 71.9 72.0 71.9 79.8 81.3 81.2 81.4

Avg 81.8 81.8 81.9 81.7 87.7 88.5 88.4 88.6

Token Freshness Metric
5000 96.1 96.6 95.2 96.1 95.0 99.5 97.9 99.2
500 80.9 82.9 82.1 82.3 80.7 90.2 89.2 90.6

50 72.6 75.5 74.4 75.3 73.4 78.9 78.2 79.7

Avg 81.0 82.7 81.5 82.3 80.3 87.7 86.6 87.9

Overall Score
81.4 82.2 81.7 82.0 84.0 88.1 87.5 88.3

Table 10: Blogs data set: the DO and TF score
(in %) of all bridging algorithms with the selection
algorithm All and the eviction algorithms CC and
LS, for different hash table sizes m (in MB).

To understand the performance of BE estimation better
we varied the “length” of bridges, i.e. parameter T that lim-
its how many selected shingles a bridge can span. The tables
above use t = 30. We first report the results for the blogs
data set. For Algorithm All with lucky eviction and BE es-
timation the average DO score (averaged over all values of
m) is 87.4% for T = 10 and it is continuously increasing
with T up to 88.3% for T = 1000. The reason is that in-
creasing T leads to a small improvement for all hash table
sizes, except for m = 5GB where the DO score is unchanged.

The average TF metric shows the same behavior. For the
selection algorithm NHs we see improvements of the same
magnitude on the blogs data set when increasing T , but only
for m ≤ 500MB. On the Swiss data set, however, there is
barely any change when increasing T for All and only an
improvement of up to 0.35 percentage points for NHs. This
results in a small improvement in the overall score when in-
creasing the length of bridges. At first this seems surprising
since the average size of a copied block is less than 20 tokens
(see Table 1.) However, the distribution of the number of
tokens in copied blocks has a very long tail and the larger
we set T the more of these long copied blocks are bridged.

We also studied for different hash table sizes how many of
the shingles are labeled with an origin that is not the default
origin due to bridging and expansion. More precisely, we
measured for how many selected shingles did the estimation
algorithm NB give the default origin while BE did not give
the default origin. We call such a shingle an extra-labeled
shingle. Table 11 shows for the selection algorithm NHs on
the blogs data set that the number of extra-labeled shingles
increases from 6694 for m=5GB to 133,737 for m=20MB. It
also shows that the percentage of extra-labeled shingles with
correct origin (i.e. the accuracy) increases from 10.5% for
m=5GB to 98.6% for m=20MB. Thus as m decreases many
more shingles are labeled due to bridging and expansion and
more and more of them are correctly labeled. The reason
is that for m=5GB most of the copied selected shingles are
found in the hash table and thus when bridging is applied
it is mostly too aggressive. The situation is completely re-
versed for m=20MB. Barely any copied selected shingles are
found in the hash table and bridging and expansion are a
useful technique for restoring the missing information.

m number of extra-labeled shingles Accuracy
5000 6694 10.5
2000 8139 30.8
1000 33003 84.8
500 122614 96.6
200 163484 98.3
100 155107 98.6
50 154093 98.8
20 133737 98.6

Table 11: Blogs data set and selection algorithm
NHs: The number of extra-labeled shingles and the
accuracy (in percent) of the origin of extra-labeled
shingles for different hash table sizes (in MB).

3.7 Overall evaluation
The performance of NHs with lucky eviction and BE esti-

mation is very strong: On the blogs, resp. Swiss data set its
DO score varies from 98.5%, resp. 97.8% for m = 5GB (34%
of the data) to 79.7%, resp. 80.9% for m = 20MB (0.1% of
the data). Its TF score decreases from 93.4%, resp. 89.0%
(Swiss) for m = 5GB to 78.1%, resp. 76.7% for m = 20MB.
Both metrics are dropping quite smoothly. That is exactly
the kind of behavior one likes to see in real systems. The
average DO score is 90.9% on the blogs data set and 91.0%
for the Swiss data set. Algorithm All (when combined with
lucky eviction and expansion-only estimation) has a lower
DO score than NHs on both data sets for all memory sizes
higher DO score except for m = 5GB, resulting in a lower
average DO score of 87.5% on the blogs data set and 90.4%

WWW 2009 MADRID! Track: Data Mining / Session: Text Mining

69



on the Swiss data set. Thus, intelligent shingle selection
leads to a clear gain in the DO metric.

For the TF metric the results are reversed. Algorithm All
with lucky eviction and BE estimation has a higher average
TF score than Algorithm NHs. It is 88.3% on the blogs
data set and 90.8% on the Swiss data set. Algorithm NHs
with the same eviction and estimation algorithms achieves
an average TF score of 87.2% on the blogs data set and
83.9% on the Swiss data set. Altogether NHs has the higher
overall score for the blogs data set and All has the higher
overall score for the Swiss data set (see Table 7).

Figure 2: For m =20MB the DO metric averaged for
all documents of a fixed size for the selection algo-
rithm NHs with lucky eviction and BE estimation.

We also studied how well the best performing algorithm
works for different document lengths. Let the document
length be the number of shingles in a document. We de-
termined the DO metric for m = 20MB (where the DO
values are the lowest) on the blogs data set and computed
for each document length n the mean of this DO score for
all documents of length n. Figure 2 shows a plot of these
mean DO scores for all document lengths between 38 (i.e.,
45 tokens, our shortest document length) to 350, covering
85% of the documents in the blogs data set. It shows a clear
increase in DO score as length increases. This is not sur-
prising as for longer documents more shingles are selected
and thus more data is available for the determination of the
dominant origin.

4. CONCLUSION
We have shown that it is possible to determine the dom-

inant origin of a document and the novelty of its tokens
with an accuracy of low 80% to high 90%, depending on the
amount of available space. To identify the best algorithm we
compared 33 variants of selection algorithms with 4 different
eviction algorithms and 4 different estimation algorithms,
resulting in 33 · 4 · 4 = 528 different variations of real-time
algorithms. Using space for 34% of the tokens the best al-
gorithm can determine the dominant origin of documents in
a collection of 8.6 million blogs with 99% accuracy and can
label tokens as fresh or old with 99% precision. Its perfor-
mance degrades smoothly with the available space. When
the space is reduced to 1.4% of the tokens, it determines the
dominant origin for every document with 90% accuracy and
can label tokens as fresh or old with 86% precision.

Our system consists of three phases, namely a selection

phase, an eviction phase, and an estimation phase. The
best performing selection algorithm is a new selection algo-
rithm, called Hailstorm. It slightly outperforms Winnowing
for all memory sizes and for all combinations of eviction and
estimation algorithms. We also present a new eviction pol-
icy (lucky eviction) and new estimation techniques (bridging
and expansion). When lucky eviction is used in combination
with bridging and expansion, the performance of the system
is significantly improved. The strong performance and mod-
erate space requirements of our best algorithm suggest that
real-time origin detection on web-scale is possible.

5. REFERENCES
[1] R. A. Baeza-Yates, Á. R. P. Jr., and N. Ziviani.

Understanding content reuse on the web: Static and
dynamic analyses. In WEBKDD, pages 227–246, 2006.

[2] R. A. Baeza-Yates, Á. R. P. Jr., and N. Ziviani.
Genealogical trees on the web: a search engine user
perspective. In WWW, pages 367–376, 2008.

[3] M. Bendersky and W. B. Croft. Find text reuse on the
web. In WSDM, 2009.

[4] Y. Bernstein and J. Zobel. Redundant documents and
search effectiveness. In CIKM, pages 736–743, 2005.

[5] S. Brin, J. Davis, and H. Garcia-Molina. Copy
detection mechanisms for digital documents. In Proc.
of ACM SIGMOD’95, pages 398–409, 1995.

[6] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. In Proc, of
6th WWW, pages 1157–1166, 1997.

[7] H.-C. Chang, J.-H. Wang, and C.-Y. Chiu. Finding
event-relevant content from the web using a
near-duplicate detection approach. In Web
Intelligence, pages 291–294, 2007.

[8] D. Fetterly, M. Manasse, and M. Najork. On the
evolution of clusters of near-duplicate web pages. In
LA-WEB, pages 37–45, 2003.

[9] D. Fetterly, M. Manasse, and M. Najork. Detecting
phrase-level duplication on the world wide web. In
SIGIR ’05, pages 170–177. ACM, 2005.

[10] M. R. Henzinger. Finding near-duplicate web pages: a
large-scale evaluation of algorithms. In SIGIR’06,
pages 284–291, 2006.

[11] T. C. Hoad and J. Zobel. Methods for identifying
versioned and plagiarized documents. J. Am. Soc. Inf.
Sci. Technol., 54(3):203–215, 2003.

[12] U. Manber. Finding similar files in a large file system.
In USENIX Winter, pages 1–10, 1994.

[13] M. O. Rabin. Fingerprinting by random polynomials.
Technidal report, Harvard University, TR-15-81, 1981.

[14] A. A. Saul Schleimer, Daniel S. Wilkerson.
Winnowing: local algorithms for document
fingerprinting. In Proc. of. ACM SIGMOD’03, pages
76–85, 2003.

[15] J. Seo and W. B. Croft. Local text reuse detection. In
SIGIR ’08, pages 571–578. ACM, 2008.

[16] N. Shivakumar and H. Garcia-Molina. Finding
near-replicas of documents and servers on the web. In
WebDB, pages 204–212, 1998.

[17] J. Zobel and Y. Bernstein. The case of the duplicate
documents measurement, search, and science. In
APWeb, pages 26–39, 2006.

WWW 2009 MADRID! Track: Data Mining / Session: Text Mining

70


