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Abstract 

A MLS-based lattice spring model is presented for numerical modeling of elasticity of materials. In 

the model, shear springs between particles are introduced in addition to normal springs. However, 

the unknowns contain only particle displacements but no particle rotations. The novelty of the 

model lies in that the deformations of shear springs are computed by using the local strain obtained 

by the moving least squares (MLS) approximation rather than using the particle displacements 

directly. By doing so, the proposed lattice spring model can represent the diversity of Poisson’s 

ratio without violating the requirement of rotational invariance. Relationships between micro spring 

parameters and macro material constants are derived from the Cauchy-born rules and the 

hyperelastic theory. Numerical examples show that the proposed model is able to reproduce elastic 

solutions obtained by finite element methods for problems without fractures. Therefore, it is capable 

of simulating solid materials which are initially continuous, but eventually fracture when critical 

stress and/or displacement levels are reached. A demonstrating example is presented. 
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1. Introduction 
 

To model a fracture processes in solid, a family of methods coined as lattice models (LMs) have 

been developed. They are based, in principle, on the atomic lattice models originated from 

condensed matter physics. In these models, material is represented by a system of discrete units (e.g. 

particles) interacting via connecting elements. These discrete units are much coarser than the true 

atomic ones and may represent larger volumes of heterogeneities such as grains or clusters of grains. 

Compared to a true lattice model, the use of coarse lattices in lattice models dramatically reduces 

the number of degrees of freedom, and hence makes simulation of continuum systems affordable 

for medium-sized computers. Lattice models are more suitable for modeling fracture of materials 

than conventional finite element methods (FEMs) because the former ones simulate fracture by 

either simply removing connecting elements that exceed the strength or successively degrading their 

mechanical properties according to cohesive laws. The spatial cooperative effects of crack 

formation and heterogeneities can be easily investigated through the use of LMs [1, 2]. 

 

There exist two different types of lattice models. In the first type models, the material is discretized 

as a network of springs or beams whose geometry is not related to the actual internal geometry of 

the material. Here the discrete units are merely lattice sites (nodes). This type of models can be 

further classified into lattice spring [3-22] and lattice beam [23-26] models according to the number 

of degrees of freedom per node and the mechanical properties of connecting elements. In a lattice 
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spring model (LSM), the unknowns are the nodal displacements and the connecting elements are 

one-dimensional springs. In a lattice beam model, the unknowns are the nodal displacements and 

rotations and the connecting elements are beams transferring normal forces, shear forces and 

bending moments. The second type models are based on the discrete element method originally 

developed for granular media with contact modeling [27]. For example, the rigid body-spring 

network model developed by Kawai [28] subdivides the material into rigid particles interconnected 

along their boundaries through normal and shear springs. It introduces additional rotational degrees 

of freedom on each particle and hence can be viewed as discretization of a micropolar continuum. 

Models in this category also include that of Zubelewicz and Bažant [29], the confinement-shear 

lattice model of Cusatis et al. [30], the bonded-particle model [31], the simple deformable 

polygonal discrete element model [32], and etc. Recently, new models of the mixed type have 

emerged, e.g. the explicit quasi-static lattice model [33] and the hybrid lattice particle modeling 

approach [34]. 

 

This article focuses its attention on LSM. The springs usually form a regular network such as 

triangular lattice in 2D and cubic lattice in 3D. The origin of LSM may trace back to Hrennikoff [3]. 

The simplest LSM is the normal force model in which only central force interactions (normal 

springs) are considered. The normal force model has been extensively applied to investigate the 

elastic and failure properties of a disordered medium [4-9] or the fractal properties of cracks [10-12]. 

It is also frequently used to the study of fracture or other issues of material sciences [13-15]. 

However, for the normal force model, it is known that Poisson’s ratio obtained by the model 

approaches, in the limit of an infinite number of particles, a fixed value, namely, 0.25 for 



 4 

three-dimensional cases and 0.33 for two-dimensional cases. Such restriction is not suitable for 

many materials and it can be overcome by introducing non-central force interactions (shear springs) 

between particles. Hassold and Srolovitz [16] proposed a method to modify the Poisson’s ratio by 

introducing a harmonic potential for rotation of bonds from their initial orientation. Here bonds 

denote the connecting elements between particles. A non-central two-body interaction limiting the 

rotational freedom of bonds is introduced in the Born spring model [17, 18] to allow a broad choice 

of Poisson’s ratio. Nevertheless, rotational invariance of the models can only be recovered if a 

three-body interaction is considered. The Kirkwood-Keating spring model [19-22] introduces 

angular springs to penalize the angular variations between the contiguous bonds incident onto the 

same node. It is worth mentioning that LSMs are a close relative of FEMs. It has been shown that 

LSMs are algebraically equivalent to simple FEMs [19, 35]. A finite element mapping procedure 

has also been proposed to define the spring network representations of solids with an attempt to 

reproduce all possible material’s parameters [36]. Literature review on the development of LSMs 

can be found in [37, 38]. 

 

The present paper proposes an alternative MLS-based lattice spring model, which allows one to 

overcome the restriction on Poisson’s ratio while preserving the rotational invariance. The model 

presented in this paper is two-dimensional and it includes a normal spring and a shear spring for 

each pair of particles. The deformation of the springs is evaluated by using the local strain rather 

than the particle displacements. It will be shown that this technique makes the model rotationally 

invariant. The local strain is calculated via the moving least squares method (MLS) or by using the 

constant strain triangular element. Firstly, the proposed model and associated numerical techniques 
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are described. Secondly, the relationship between spring stiffnesses and elastic constants are derived. 

Then, the model is validated by numerical simulations of two elastic problems, the effect of 

negative shear stiffness is studied, and the importance of rotational invariance is revealed. Finally, 

an example showing the application of the model for fracture simulation is presented. 

 

2. The model 
 

The proposed lattice spring model is illustrated in Figure 1 in which the material is represented by a 

distribution of particles linked through bonds. Each bond includes one normal spring and one shear 

spring. The bond stiffness matrix is of the form 

n
bond

s

0
0
k

k
 

=  
 

K                                       (1)  

where nk  is the normal stiffness and sk  is the shear stiffness. Assume the strain of the bond is 

[ ] xx xy

xy yy

ε ε
ε ε
 

=  
 

ε , then the normal and shear deformation of the bond can be expressed as 

[ ]( )ˆnu l= ⋅ ⋅ε n n
                                   

(2)
 

[ ] [ ]( )( )( )ˆ -su l l ′= ⋅ ⋅ ⋅ ⋅ε n ε n n n n
                              

(3)
    

 

where l  is the original length of the bond, n is the normal vector of the bond which is 

( ),
T

x yn n=n  and ( ),
T

y xn n′ = −n  is the unit vector perpendicular to n . Equations (2) and (3) can 

be further rewritten as 

2 2ˆ 2n
x xx y yy x y xyu ln ln ln nε ε ε= + +

                            
(4)

   
 

( )2 2ˆ s
x y xx x y yy x y xyu ln n ln n l n nε ε ε= − + + −

                     
(5)

 

Using the matrix form as ˆ =u Ts  to represent these equations, where T  and s  are given as  
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2 2

2 2

2x y x y

x y x y x y

n n n n
l

n n n n n n
 

=  − −  
T                                 ( )6  

T
, ,xx yy xyε ε ε =  s                                      (7)  

Here s  is the vector composed of the three strain components. It can be calculated according to 

=s Bu                                            (8)  

where B  is the interpolation matrix and u  is the displacement vector. For the type-I bond (see 

Fig. 1) which only belongs to one triangular element, we use the common finite element 

interpolation which gives 

e e e
1, 2, 3,

e e e
1, 2, 3,

1 1 1 1 1 1e e e e e e
1, 1, 2, 2, 3, 3,2 2 2 2 2 2

0 0 0
0 0 0

x x x

y y y

y x y x y x

N N N
N N N

N N N N N N

 
 =  
  

B                   (9)  

[ ]T1 1 2 2 3 3, , , , ,u v u v u v=u                                (10)  

where e
iN  is the element shape function associated with the node i . For the type-II bond (see Fig. 

1) which belongs to two triangular elements, a moving least squares (MLS) procedure [39] is 

adopted to calculate s . The explicit computation of derivatives of the MLS shape functions is 

provided in [39]. The method will not involve any matrix inversion or linear system solving 

operations. Here, the explicit formularies of MLS shape functions of 4 nodes under linear basis 

provided in [39] will be directly used. Details of this explicit MLS computation method can be 

found in [39]. In this sense, we will have 

1, 2, 3, 4,

1, 2, 3, 4,
1 1 1 1 1 1 1 1

1, 1, 2, 2, 3, 3, 4, 4,2 2 2 2 2 2 2 2

0 0 0 0
0 0 0 0

x x x x

y y y y

y x y x y x y x

N N N N
N N N N

N N N N N N N N

 
 =  
  

B             (11)  

[ ]T1 1 2 2 3 3 4 4, , , , , , ,u v u v u v u v=u                               (12)  

where ,i xN  and ,i yN  are the diffusive derivatives given by 
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( ),
,

( ) , ,i
i x j k j k i j k

j i k j k i

wN w w y y
d ≠ > ≠

= − Θ∑ ∑ x x x                         (13)  

( ),
,

( ) , ,i
i y j k k j i j k

j i k j k i

wN w w x x
d ≠ > ≠

= − Θ∑ ∑ x x x                         (14)  

with 

( ), ,i j k j i k i i j k j i k j kx y x y x y x y x y x yΘ = − + + − − +x x x                          

( )( )2

1,2 1,3 1,4
, ,i j k i j k

i j i k j
d w w w

= = + = +

= Θ∑ ∑ ∑ x x x                                   

The weight function w  used in this paper is the widely used Gauss function 

( ) ( )23rw r e −
=



                                         (15)  

where maxr̂ r r=  with ( ) ( )2 2
m mr x x y y= − + −  and ( )m m,x y  being the reference point (the 

center of the bond in this paper) and maxr  is the maximum distance between the reference point and the 

nodes.  

 

The strain energy stored in each bond is 

T
b bond

1
2

KΠ = u u                                        (16)  

The global stiffness matrix contributed by each bond is obtained as 

( )
2

b b
bondKT

i j

K
u u

 ∂ Π
= = 

∂ ∂  
TB TB                             (17)  

Finally, the global stiffness matrix is assembled bond by bond. The boundary conditions specified 

by displacement or force are treated in the same method as in the standard FEM. The proposed 

model with û  calculated from the local strain as described before is denoted as Distinct Lattice 

Spring Model (DLSM). A proof of rotationally invariant property of DLSM is given Appendix A.  

Hereafter, the proposed model with û  obtained directly from the particle displacements is called 
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Classical Lattice Spring Model (CLSM) and the stiffness element of each bond can be simply 

written as 

 

b
bond

ˆ ˆKT=K T T                                  (18)  

where T̂  is given as  

ˆ x y x y

y x y x

n n n n
n n n n

− − 
=  − − 

T                            ( )19  

 

 

3 Relationship between spring parameters and elastic constants 
 

In this section, the relationship between spring parameters and elastic constants is derived by 

following the approach used in the virtual multi-dimensional internal bond model [40, 41]. The total 

strain energy stored per unit volume is 

( )2
n sb

2
i ij j n nm m i ij j n nm ml k k

A A
ξ ε ξ ξ ε ξ ξ ε η ξ ε η+Π

Π = =
∆ ∆

∑ ∑                   ( )20  

where A  is the area of the modeling domain and ∆  is the unit length in the third dimension, ξ  

is the direction vector of the bond which is ( ),x yn n  and η  is the unit vector perpendicular to ξ  

which is ( ),y xn n− . The stress tensor of the continuum can be obtained through the Cauchy-born 

rule [42] and the hyperelastic theory [43] and it can be written as 

( )2
n si j n nm m i j n nm m

ij
ij

l k k
A

ξ ξ ξ ε ξ ξη ξ ε η
σ

ε

+∂Π
= =
∂ ∆∑                     ( )21  

The elastic modulus is expressed as 

( )22
n si j n m i j n m

ijnm
ij nm

l k k
c

A
ξ ξ ξ ξ ξη ξ η

ε ε

+∂ Π
= =
∂ ∂ ∆∑                      ( )22  
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When the total number of bonds is large enough, Equation ( )22  can be written in the integral form 

as 

( )2

1

2
n s0

1 ( , )
l

ijnm i j n m i j n ml
c l k k D l d dl

A
π

ξ ξ ξ ξ ξη ξ η β β= +
∆ ∫ ∫                ( )23  

where ( , )D l d dlβ β  is the number of bonds with bond length between ( , )l l dl+  and bond 

orientation between ( , )dβ β β+ . For the isotropic material, the bonds distribute uniformly in each 

direction. So the bond distribution function ( , )D l β  is reduced to ( )N l π  with ( )N l dl being the 

number of bonds with length between ( , )l l dl+ . In numerical methods e.g. FEM, the elastic tensor 

ijnmc  is often written in the elastic matrix form as follows: 

( )
( )
( )

1
1111 1122 1112 11212

1
2211 2222 2212 22212

1
1211 1222 1212 12212

C C C C
C C C C
C C C C

 +
 = + 
 + 

Ω                        (24)  

For the linear elastic cases, the tangent modulus is equal to the secant modulus and Equation (23) 

can be considered as the secant modulus. So the following relationship exists: 

= ⋅σ Ω ε                                        (25)  

where [ ]T11 22 12, ,σ σ σ=σ , [ ]T11 22 12, , 2ε ε ε=ε . Here ijσ  and ijε  are the components of stress and 

strain tensor, respectively. By integrating Equation (23) and using Equation (24), the corresponding 

elastic matrix is obtained as: 

2

1

2 n s n s

n s

n s

3 0( )
3 0

8
symmetry

l

l

k k k kl N l dl
k k

A
k k

+ − 
 = + ∆
 + 

∫
Ω                     (26)  

Let 2

1

2 2 ( )
lD

l
l N l dl Aα = ∆∫ , then the relationship between the spring parameters nk , sk  and the 

macro elastic constants, i.e. the Young’s modulus E  and the Poisson ratio ν  can be obtained 

from Equation (26) as follows: 
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n 2

s 2 2

2
(1 )

2(1 3 )
(1 )

D

D

Ek
v

v Ek
v

α

α

=
−

−
=

−

                                    (27)  

for the plane-stress problems and 

n 2

s 2

2
(1 )(1 2 )

2(1 4 )
(1 )(1 2 )

D

D

Ek
v v

v Ek
v v

α

α

=
+ −
−

=
+ −

                            (28)  

for the plain-strain problems. Given the geometry data of the lattice spring model, 2Dα  can be 

estimated through:  

2
2 iD l

A
α =

∆
∑                                 (29)  

where il  is the original length of the ith bond. Equations (27) and (28) are used to estimate the two 

spring stiffnesses of the proposed LSM for numerical simulation of elastic problems. It is seen that 

the addition of shear spring allows the materials of Poisson’s ratios less than 1/3 (in case of plane 

stress) or 1/4 (in case of plain strain) to be modeled. In the next section, numerical examples of 

validation and application of the proposed model will be presented. 

 

4 Numerical Examples 
 

4.1 Beam subjected to bending 
 

The geometry and boundary conditions of this plain-stress problem are described in Figure 2. The 

left side of the beam is fixed in the x direction and the left-bottom corner is fixed in both x and y 

directions. A shear stress (1MPa ) is applied on the right side of the beam. The top and bottom 

boundaries are subject to the stress free condition. The elastic constants of the material and the 
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corresponding spring parameters for the proposed LSM are given in Table 1. The final algebraic 

equation assembled from the bond stiffness matrix given by Eq. (17) with the implementation of the 

boundary conditions is solved by a direct method for sparse matrix. The lattice size is 4m, which 

corresponds to a total of 1250 lattice nodes approximately. Figure 3 shows the displacement results 

predicted by FEM, CLSM and DLSM with the Poisson’s ratio of 0.1. The results of DLSM are in 

good agreement with those obtained by FEM, while this is not true for the results of CLSM. 

Compared to the displacement results obtained by FEM, the maximal relative errors of CLSM and 

DLSM (denoted as Err_1 and Err_2) are given in Table 1 for four different values of Poisson’s ratio. 

In all cases the errors of DLSM are rather small, while the errors of CLSM are very large except for 

the case of Poisson’s ratio equal to 1/3 where shear spring is absent. Therefore, it can be concluded 

that shear spring must be introduced by preserving rotational invariance as done in DLSM in order 

to reproduce reasonably the elastic solutions for Poisson’s ratios other than 1/3. 

 

The convergence of DLSM is studied by solving the same problem with different lattice sizes. 

Figure 4 shows that when lattice size becomes smaller and smaller, the result of DLSM gets closer 

and closer to the reference one obtained by FEM with a fine mesh. The effect of lattice structure is 

also studied by comparing the results of four different lattice structures as shown in Figure 5, in 

which structure a is made of particles with a slight irregular distribution, structure b consists of 

particles with a regular distribution, and structures c and d are obtained by randomly moving the 

particles in structures a and b respectively. The model parameters and the results for this study are 

summarized in Table 2, from which it is observed that the random lattice structure gives better 

results than the regular lattice does. The reason is that the relationship between the model 
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parameters and the material constants is derived based on the assumption that the bond orientation 

distribution is uniform. Hence, a random lattice is preferable when applying the relationship to 

obtain the model parameters from the material constants. 

 

By inspection of equations (27) and (28), it appears that the proposed model still face a theoretical 

limitation, i.e., Poisson’s ratios greater than 1/3 (plane stress) or 1/4 (plane strain) cannot be 

modeled. However, this limitation is not true practically for DLSM, as the shear spring of negative 

stiffness can be added in the model and the final algebraic equation is still solvable. The behavior of 

the model with negative shear springs shall be examined in the next example. 

 

4.2 Square hole subjected to compression 
 

In this subsection, a more complex plain-stress problem is solved by DLSM. Figure 6 shows the 

geometry, the loading condition, and the lattice structure for this problem. The elastic constants are 

310 MPaE =  and 0.2ν =  or 0.4 . The spring parameters are obtained according to Eq. (27). The 

results are presented in figures 7 and 8. Again, a good match between the results by DLSM and the 

elastic solutions by FEM is observed. It is important to point out that when 0.4ν =  the shear 

stiffness is negative according to Eq. (27). However, the final algebraic equation can be solved and 

yields the correct results (see Fig. 8). Of course, like FEM, the proposed method cannot solve the 

case of 0.5ν = . However, this is not a deficiency of the method, because incompressible solid 

materials do not exist. The negative stiffness of shear spring seems non-physical, but the negative 

stiffness can have a physical explanation molecular level. This is discussed in Appendix B. 

Moreover, in reality materials with negative stiffness are also reported and used for extreme 
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damping in composite materials [44]. In this sense, DLSM provide a solution for the Poisson’s ratio 

problem existing in the lattice spring models.  

 

4.3 Fracture simulation 
 

The proposed model is applied to the fracture simulation of a solid specimen with a side notch 

subjected to quasi-static tensile loading in the plain-stress condition. The geometry and the loading 

setup are shown in Figure 9. The controlled displacement on the top is 0.01m. The elastic constants 

of the material are 310 MPaE =  and 0.2ν = . Again, the spring parameters are obtained according 

to Eq. (27). Because the purpose of this example is to demonstrate the easy feature of the model for 

fracture simulation, we only consider the tensile failure of bond, which occurs when  

n tF F− >                                (30)  

where nF  is the normal force of the bond and t t nF kγ=  is the tensile strength of the bond with 

tγ  being the limit value of the bond’s stretching. More sophisticated bond fracture criteria can be 

implemented in the model for more realistic modelling of fracture processes. During the simulation, 

the normal deformation of each bond is calculated using Eq. (5), from which the normal force is 

obtained by multiplying the normal stiffness. Then, according to Eq. (30), the status of each bond 

(failure or not) is obtained. Whenever a bond fails, it is deleted from the calculation procedure. The 

simulation was performed using 0.0003tγ = . The damage pattern is presented in Figure 10 for four 

stages. The bond in which failure occurs is marked by double red lines around the center of the 

bond. With regard to the crack patterns obtained, the simulation gives a realistic description of the 

fracture process of the notched solid specimen under tensile loading. 

 



 14 

5 Conclusions 
 

The paper presents an alternative MLS-based lattice spring model, in which the deformation of 

shear springs is calculated by using the local strain instead of the particle displacements. With this 

technique, the proposed model can represent the diversity of Poisson’s ratio while preserving 

rotational invariance. Based on the Cauchy-born rules, the relationship which bridges the spring 

parameters and the elastic constants is derived. The model is capable of capturing the mechanical 

behavior of an elastic solid as demonstrated numerically. It is found that rotational invariance 

should be respected in order to have good agreements with corresponding elastic solutions by FEM. 

Negative shear stiffness does not present numerical problems and can be adopted in the proposed 

model. With this approach, the full range of Poisson’s ratio of an elastic solid can be modeled. The 

fracture process of a notched specimen under tensile loading is simulated by the model. The results 

show that the proposed lattice spring model is suitable and convenient for fracture modeling. The 

proposed method is based on the discrete spring model and has no integration involved in the 

calculation procedure. Therefore, it has the potential of being fully meshless and more 

advantageous than FEM in modeling dynamic fracturing problems. The further development of fully 

meshless explicit 3D DLSM and more realistic modeling of fracture using advanced failure criteria 

will be reported in the forthcoming papers. 
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Appendix A  
Proof of rotation invariant in DLSM 

In this appendix, Equation (3) used for evaluating the deformation of shear springs in DLSM is 

derived. First, consider a cubic unit (a microelement of the elasticity body) containing a bond 

connecting two particles as shown in Figure A1.  

 

The complete 1st order displacement function of the cubic is 

0 1 2

0 1 2

1
x

y

u a a a
x

u b b b
y

 
    =        

 

                        (A.1)  

Assuming the center of the block at ( ),c cx y , then its displacement is represented by 

0 1 2

0 1 2

1
cx

c
cy

c

u a a a
x

u b b b
y

 
    =        

                         

(A.2)  

Subtracting (A.2) from (A.1) gives 

0 1 2 0 1 2

0 1 2 0 1 2

1 1
x cx

c
y cy

c

u u a a a a a a
x x

u u b b b b b b
y y

   
          − = −                    

              

(A.3)  

Equation (A.3) can be further written as 

1 2

2 1

0 0
0 0

x cx c c

y cy c c

u u x x x xa a
u u y y y yb b

− −          
= + +          − −         

           

(A.4)  

From (A.4), we have 

1

2

x
xx

y
yy

u a
x
u

b
y

ε

ε

∂
= =
∂
∂

= =
∂
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( )1 2
1 1
2 2

y x
xy

u u b a
x y

ε
∂ ∂

= + = + ∂ ∂ 
 

( )1 2
1 1
2 2

y xu u b a
x y

ω
∂ ∂

= − = − ∂ ∂   

Using the above relations, Equation (A.4) can be transformed into 

[ ] [ ]( ) [ ] [ ]( )0 1 2 3D D D Dx cx xx
xy

y cy yy

u u
u u

ε
ω ε

ε
     

= + + +     
     

             (A.5)  

where 

 

[ ]0

1 0
D

0 1
 

=  
 

 

  

[ ]1

( )
D c

c

y y
x x

− − 
=  − 

  

 

[ ]2

0
D

0
c

c

x x
y y

− 
=  − 
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Denoting the coordinates of the two particles in the cubic as ( )1 1,x y  and ( )2 2,x y  and their 

displacement as ( )1 1,u v  and ( )2 2,u v , the relative displacement vector between the two particles is  

2 112

2 112

x xx

y yy

u uu
u uu

−   
=     −                                   (A.6)  

and the normal unit vector is 

2 1

2 1

x

y

x x
n l
n y y

l

− 
  

=    −    
 

                                 (A.7)  

 

where l  is the length of the bond. The relative normal displacement vector is defined as 
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12 12

12 12

Tn
x xx x

n
y yy y

n nu u
n nu u

         =                  
                            (A.8)  

By vector operation, the relative shear displacement vector is obtained as 

 

12 12 12 12 12

12 12 12 12 12

Ts n
x xx x x x x

s n
y yy y y y y

n nu u u u u
n nu u u u u

               = − = −                                    
              (A.9)  

Now, by applying Equation (A.5), the relative displacement vector can be represented as  

( )2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1

0
 

0

rotation related termstrain related term
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= + +        − − − −        


      

(A.10)

  

 

With the above equation, it is straightforward to show that the relative normal displacement vector 

is only dependent on the strain related term because of the following equivalence 

( ) 2 12 1

2 12 1

0
T x xy y

y yx x
−− −   

=   −−   
 

 

However, for the relative shear displacement vector, if we directly substitute (A.10) into (A.9), the 

rotation related term will not vanish. It is known that rigid rotation of the cubic should not produce 

strain energy. Therefore, in DLSM, the rotation related term is removed from the calculation of the 

relative shear displacement vector, namely, the relative displacement vector in (A.9) is not 

calculated anymore by using (A.10) or (A.6), but by using the following 

12 2 1 2 1 2 1

12 2 1 2 1 2 1

ˆ 0
ˆ 0

xx xx xyx
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yy xy yyy

u x x y y x x
u y y x x y y

ε ε ε
ε
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  − − −        

= + =            − − −         

      

(A.11)

 

      

 

Writing (A.11) in the vector form, we get 

[ ]ˆ ij l= ⋅u nε
                                      (A.12)  

Finally, the relative shear displacement vector (the vector form of (A.9)) can be written as 

[ ] [ ]( )( )ˆ -s
ij l l= ⋅ ⋅ ⋅u n n n nε ε

                              
(A.13)  
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Then, the magnitude of shear deformation can be given as  

 
[ ] [ ]( )( )( )ˆ -su l l ′= ⋅ ⋅ ⋅ ⋅n n n n nε ε

                          
(A.14)  

 

where ( ),
T

y xn n′ = −n  is the unit vector perpendicular to n .  

 
 
Moreover, consider one rigid body rotation defined by 

( ) = ×u x xω                                     (A.15)  

where ω  is the angular displacement vector with components 
T

, ,x y zω ω ω   . By simple derivation, 

the true gradient of this displacement field is found to be 

0
0

0

z y

z x

y x

ω ω
ω ω
ω ω

 −
 

∇ = − 
 − 

u                             (A.16)  

It is obvious that the strain tensor T( ) 2= ∇ +∇ε u u  vanishes given the skew nature of ∇u . The 

least square approximation adopted in DLSM to calculate the gradient of the displacement field is 

first-order consistent, i.e., it is able to reproduce any linear function and its gradient, so the correct 

skew nature of ∇u  is kept numerically. Therefore the calculated strain ε  is also invariant with 

respect to the rigid body rotation. 

 

Overall, it is ensured that the DLSM model is rotationally invariant in the sense that the strain 

energy is independent of rigid rotation. 
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Appendix B  

Physical interpretation of negative spring 

Given a molecular model as shown in Figure B1(a), ( )B suΦ  is the potential variation at molecular 

B versus the displacement of molecular A in the shear direction between A-B. The shape of 

( )B suΦ  determines the shear stiffness (see Figure B1(b)). When the potential function is a constant, 

the shear stiffness equals to zero as there is no work needs to do for a displacement. The shear 

stiffness is positive/negative when the potential function is of an upward/downward bowl shape. 

Therefore, the proof of negative shear spring can be based on the potential functions used in MD 

simulation. It is known that the Poisson’s ratio of silver is 0.37, which corresponds to negative shear 

spring stiffness in the DLSM model. The atomic lattice structure of sliver is shown in Figure B2. 

The Finnis-Sinclair potential proposed by Sutton and Chen [45] can be used to describe silver, 

which can be written as 

1 1

n m
N N

i
j jij ij
j i j i

P c
r r
σ σε

= =
≠ ≠

     = −            
∑ ∑                           (B.1) 

Both repulsive and attractive contributions are included in this potential. The repulsive part is 

realized by a pair potential, while the attractive part is realized by a many-body potential. The 

parameters n, m,ε , σ and c are material dependent and related to the specific lattice type. The 

parameter values for silver are given in Table B1. 

 

The potential variation on atom B due to the movement of atom A in different shear planes (see 

Figure B2) can be calculated based on Equation (B.1) and the lattice structure information. The 

results for silver are shown in Figure B3. It can be seen that the shape of the variation function is 
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exactly of the downward bowl shape, which indicates that the shear stiffness is negative. This is 

consistent with the fact that the Poisson’s ratio of silver is greater than the critical value (0.25 for 

3D and 0.33 for 2D). 
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Figure 1. The 2D lattice spring model and the two types of bond. 
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Figure 2．The geometry and boundary conditions for the beam bending problem. 
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(a) The x-direction displacement (FEM) (b) The y-direction displacement (FEM) 

  
(c) The x-direction displacement (CLSM) (d) The y-direction displacement (CLSM) 

  
(e) The x-direction displacement (DLSM) (f) The y-direction displacement (DLSM) 

 
Figure 3．Contour plot of the displacement results predicted by FEM, CLSM and DLSM for the 

beam bending problem with 410 MpaE =  and 0.1ν = . 
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Figure 4．The y-direction displacement along the top surface predicted by DLSM with different 

lattice sizes for the beam bending problem with 410 MPaE =  and 0.2ν = . 
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(a)                                (b) 

 
(c)                                (d) 

  
Figure 5．Different lattice structures for the beam bending problem. 
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Figure 6．The geometry and boundary conditions for the square hole problem. 
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(a) FEM 

 
                             (b) DLSM 

 
Figure 7．Contour plot of the y-direction displacement results for the square hole problem with 

310 MPaE =  and 0.2ν = . 
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Figure 8．The y-direction displacement along the top surface of the square hole with 310 MPaE =  

and two different Poisson’s ratios. 
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Figure 9．The geometry and boundary conditions for the fracture simulation of a notched specimen 
under uniaxial tensile loading. 
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  (a) step=50           (b) step=60       (c) step=70          (d) step=100 

 
Figure 10. The fracture process predicted by DLSM. 
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Figure A1. Illustration of the deformation of a cubic unit with a bond connecting two particles. 
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Figure B1. Physical explanation of the negative stiffness of shear spring.  
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Figure B2. The cubic face-centered lattice (fcc) structure of silver. 
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(a) B1 atom                            (b) B2 atom 

Figure B3. The variation of potential energy at two different atom positions in the case of silver. 
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Table 1. Material constants, model parameters and numerical errors of CLSM and DLSM compared 
with FEM results for the beam bending problem. 

 
 
 E (MPa) ν  2Dα  nk  (MN/m) sk  (MN/m) Err_1 (%) Err_2 (%) 

10000 0.1000 3.6447 6097.1021 3879.9741 88.2 2.8 

10000 0.2000 3.6447 6859.2398 2286.4133 84.8 1.5 

10000 0.3000 3.6447 7839.1313 603.0101 71.2 2.1 

10000 0.3333 3.6447 8231.0878 0.0 2.5 2.0 
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Table 2. Material constants, model parameters and numerical errors of DLSM for the beam bending 
problem using different lattice structures. 

 Structure E  (MPa) ν  2Dα  nk  (MN/m) sk  (MN/m) Err_2 (%) 

a 10000 0.2000 3.5596 7023.1976 2341.0659 6.01 

b 10000 0.2000 4.0750 6134.9693 2044.9898 6.23 

c 10000 0.2000 3.6447 6859.2398 2286.4133 1.46 

d 10000 0.2000 4.2213 5922.3862 1974.1287 3.11 
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Table B1. The set of parameters of Finnis-Sinclair potential for silver. 

m n ε  σ c lattice spacing 
6 12 2.5415×10-3eV 4.09Ǻ 144.41 1.21875 Ǻ 
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