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Abstract

The integration of modulatory neurons into evolutionary artificial neu-

ral networks is proposed here. A model of modulatory neurons was devised

to describe a plasticity mechanism at the low level of synapses and neu-

rons. No initial assumptions were made on the network structures or on the

system level dynamics. The work of this thesis studied the outset of high

level system dynamics that emerged employing the low level mechanism

of neuromodulated plasticity. Fully-fledged control networks were designed

by simulated evolution: an evolutionary algorithm could evolve networks

with arbitrary size and topology using standard and modulatory neurons

as building blocks.

A set of dynamic, reward-based environments was implemented with

the purpose of eliciting the outset of learning and memory in networks.

The evolutionary time and the performance of solutions were compared for

networks that could or could not use modulatory neurons. The experimen-

tal results demonstrated that modulatory neurons provide an evolutionary

advantage that increases with the complexity of the control problem. Net-

works with modulatory neurons were also observed to evolve alternative

neural control structures with respect to networks without neuromodula-

tion. Different network topologies were observed to lead to a computational

advantage such as faster input-output signal processing.

The evolutionary and computational advantages induced by modulatory

neurons strongly suggest the important role of neuromodulated plasticity for

the evolution of networks that require temporal neural dynamics, adaptivity

and memory functions.
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Chapter 1

Introduction

1.1 Note to Chapter 1

This chapter has the purpose of introducing the topic, scope and findings

of this thesis in a few concise pages. In order to achieve that, a compro-

mise has become necessary to condense some of the main concepts and

provide a comprehensive overview of this work. Given the generality and

wide scope of the following pages, the supporting references that could have

been pertinently cited amount to a great number of the scientific studies

cited throughout this thesis. Therefore, it was judged appropriate to delay

referencing the sources of this thesis to later chapters where they have been

overviewed, when possible, or otherwise suitably placed at relevant loca-

tions in the text. The reader is thus invited to trust the statements of this

introduction as based on good grounds, and refer to the rest of the thesis

for more specific and accurate descriptions and referencing.

1.2 Neural Systems

Advances in biology, medicine and neuroscience are constantly unveiling new

insights into the fascinating and complex world of neural systems. Neural

information processing, from the forms it assumes in invertebrates to the

1



1. INTRODUCTION

complexity of the human brain, is a subject of interest and extensive study.

The increasing knowledge on biological neural systems reveals continuously

and more clearly a complexity previously unforeseen for such systems. On

one hand this contributes to a better understanding of human and animal

behaviour, and physiological or pathological processes; on the other hand,

the new insights outline clearly the limitations of current computational

models and the state-of-art of bio-inspired machines. As a consequence, the

investigation of neural systems like the human brain – considered by some

as the most complex machine in the universe – is currently a discipline that

provides a remarkably large source of continuous surprise and inspiration.

Neural systems are considered responsible for a variety of unique aspects

of living creatures and animals. Motor function, feeding, hunting, escaping,

and many other skills are achieved by a fine coupling of sensors, motors and

the central neural system. The same neural basis is deemed to result in

further skills like adaptation, a range of cognitive skills, learning, memory,

and eventually consciousness in humans.

1.3 Artificial Neural Controllers

The brain can be considered as the ultimate control machine. Although this

definition is perhaps reductive to describe life and intelligence to their full

extent, it is true that no artificial control device can compete on the variety

of tasks that humans and animals accomplish with ease. It is perhaps

a baffling idea that despite the invention of sophisticated and innovative

machines like space-crafts and computers – previously unseen in nature

– we are struggling to reproduce and imitate the most basic functions of

biological systems of which we have a large variety and number of examples.

In the quest of reproducing animal skills, Artificial Neural Networks

2



1. INTRODUCTION

(ANNs), as devised in the second half of the 20th century, were a first

attempt to simulate the information processing that takes place in brains.

Possibly, the scientific progress will reveal in time to what extent the early

models were inadequate for such purpose. Biology and neuroscience already

suggest that ANNs capture only an extremely small part of the features of

neural systems. Many obstacles lie before the synthesis of more accurate and

powerful artificial neural systems, from the lack of design procedures and

knowledge to technological limitations. However, the simplicity of current

neural models and the evident gap with the biological counterparts offer a

possible justification to the limited capabilities achieved so far.

From the first basic artificial neuron, models have been enriched with

a variety of bio-inspired features. Among those, neural models can now

implement pulsed signals, simulation of ion currents and membrane poten-

tial, a large variety of synaptic modification mechanisms, and recently also

developmental processes for neural growth.

If in theory more accurate models would better simulate natural systems,

enriching neural models with bio-inspired features leads also to challenges in

design and analysis. With the tools and knowledge currently available, even

a small dynamical neural system of an invertebrate represents a challenge

for simulation and satisfactory understanding. In general, the introduction

of more complexity in neural models is best suited when the additional fea-

tures are a requisite to achieve specified functions. The identification of

the computational roles of basic biological mechanisms is essential to the

understanding of neural systems and to the synthesis of artificial ones. An

important research direction seeks the links between basic neural mech-

anisms and the overall effect that those mechanisms bring about at the

system and organism level. Neuroscience is providing a large set of data

on neural mechanisms whose specific function is only guessed. An intricate

3



1. INTRODUCTION

neural circuitry, a variety of neuron shapes, synapse types and a myriad of

neurotransmitter chemicals are only a few examples of the many puzzling

features of a neural system that scientists are endeavouring to fathom.

1.4 About the Thesis

Among the many alluded features of neural systems, neural synaptic plastic-

ity covers a central role. Synaptic plasticity refers to the set of phenomena

that regulates the strength and other dynamic characteristics of connec-

tions among neurons. Plasticity is observed in biological networks to occur

under diverse conditions and with different dynamics, many of which are

not clear. Plasticity in a broad sense is an important mechanism that con-

tributes to wire the brain, to adjust its parts and allow it to learn and

memorise. Among plasticity mechanisms, a specific type named neuromod-

ulated or heterosynaptic plasticity has been identified and has received con-

siderable attention in recent years. Heterosynaptic modulation occurs when

specific modulatory neurons cause the change of synaptic efficacy without

requiring pre- or postsynaptic activity. A number of studies support the

idea that neuromodulated plasticity has an important contribution in the

implementation of learning, memory and the overall stabilisation of neural

connectivity and function. A seminal review is given in (Bailey et al., 2000).

The intent of this thesis was the investigation from an evolutionary per-

spective of the emergence and role of modulatory neurons and modulated

plasticity. For such purpose, a computational model for modulatory neu-

rons was devised and introduced. The model encoded the cellular plasticity

mechanisms under investigation. Simulated evolution was consequently em-

ployed to search and design the system-level dynamics produced by networks

embedding standard and modulatory neurons. The evolutionary processes,

4



1. INTRODUCTION

in terms of speed of evolution and quality of the solutions, and the charac-

teristics of the evolved networks were analysed to identify evolutionary and

computational advantages of modulatory neurons and plasticity.

The scope of the thesis, centred on evolutionary and computational ad-

vantages of neuromodulation, expands onto and describes related topics

that are essential to the investigation of the hypotheses, or constitute im-

portant underlying choices and background. Such aspects include the type

of adaptation and learning problems, evolutionary search, choices of neural

models and dynamics, types of plasticity rules and other.

An important consideration that supersedes the details is: why is there

a need for studying computational models of neuromodulated plasticity?

My answer is that a genuine curiosity in neuroscience often results in an

overwhelming feeling of complexity. Such feeling is given principally by the

observation of the exorbitant number of components, the surprising parallel

dynamics and the subtle interactions even in the most simple neural systems.

Kupfermann (1987) said that

In recent years it has become evident that neurons are subject to

an extraordinary degree of modulation of diverse kinds.

Even allowing for the significant advances in neuroscience, the function of

many neurotransmitters, neuromodulators and receptors is still mysterious,

and their known number is increasing as new and better techniques allow

for the discovery of new transmitters and receptors in the brain. But while

neurophysiology makes progress,

understanding the subtle and diffuse influence of neuromodula-

tors requires the broad view of network dynamics provided by

computational techniques (Hasselmo, 1995).

5



1. INTRODUCTION

On these considerations, a gap between ANNs and biological networks delin-

eates clearly: ANNs have focused so far mostly on 1-transmitter/1-receptor

types of network. The need for expanding ANNs to a broader and more

frequent use of modulated multi-neurotransmitter networks is pressing.

1.4.1 Research Questions

The topics mentioned above, and the main objectives during the investiga-

tions for this thesis have been progressively classified and formalised into

research questions. Research questions were regarded loosely as broad and

primitive forms of hypotheses. These have helped directing the work that

has spanned many years. The following list summarises the key-questions

that guided the work of this thesis.

• Which neural features help in constructing neural controllers with

complex, adaptive and hierarchical functions?

• What main limitations and problems characterise current neural con-

trollers?

• Models of neuromodulation are promising paradigms to expand func-

tions of networks. What computational aspects have been achieved in

models of neuromodulation formulated or implemented so far?

• What tasks are considered to benefit from neuromodulation and, con-

sequently, which neural functions are achieved by means of it?

• What advantages and computational capabilities in neural informa-

tion processing can be attributed to heterosynaptic plasticity?

• Is neuromodulation involved in other aspects of neural systems such

as evolution or development?
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These broad research questions could not be answered or entirely dealt

with in this thesis. However, they depict the direction and general moti-

vations that guided the research of this thesis and led to the statements of

more precise hypotheses.

1.4.2 Hypotheses and Method

The focus of the research in this thesis falls on the effects that modulatory

neurons have when they become available to an evolutionary process that

evolves neural control networks. Such effects can be classified mainly in:

1) a change in the speed of evolution towards well performing solutions;

2) a change in evolved neural topologies and, consequently, a change in

the computation that takes place in the networks. These points have been

formalised in two main hypothesis.

The first hypothesis is that neuromodulated plasticity by means of mod-

ulatory neurons increases the speed of the evolution of adaptive and learn-

ing behaviour. This hypothesis also suggests that modulatory neurons are

important building blocks of neural systems and, once discovered by an

evolutionary system, are likely to be preserved in order to achieve complex

functions such as adaptivity and learning.

A second hypothesis is that neuromodulated plasticity, when imple-

mented into a neural model, results in different neural structures, which in

turn lead to different computation than non-modulated networks. This can

provide advantageous computational features with respect to non-modulated

plastic networks. Examples include feed-forward anticipatory control struc-

tures. A precise statement and explanation of both the hypotheses is given

in Chapter 5.

The hypotheses are investigated by combining three fundamental points:

1) the model of a modulatory neuron and its interaction within a network of
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other modulatory and standard neurons; 2) an evolutionary algorithm capa-

ble of parameter-tuning, network topology search and feature selection; 3)

a set of control problems that require adaptation during an agent’s lifetime,

therefore requiring levels of learning and memory. The experimental setup

resulting from the integration of those three points allowed for an assess-

ment of the neural model when immersed in certain control problems and

subjected to simulated evolution. These three aspects are described thor-

oughly throughout this thesis, whose structure is presented later in Section

1.4.4.

1.4.3 Contribution to Knowledge

The experimental results validated both the hypotheses by showing for the

first time that: 1) in certain control problems the speed of evolution of well

performing networks is increased by the availability of modulatory neurons

that are preserved in networks by selective advantage; 2) evolved networks

with modulatory neurons have different topologies with respect to networks

without neuromodulation. Different topologies are in turn observed to lead

to computational advantages.

The contribution to knowledge is briefly outlined hereafter. The experi-

mental results outlined that neuromodulation was not necessary to solve the

proposed control problems because solutions that did not use neuromodula-

tion were found. Nevertheless, neuromodulation resulted in an evolutionary

advantage that emerged more clearly in the more complex control problems

used as benchmark in this thesis. Different topological motifs were observed

between networks that used and did not use neuromodulation, leading to

the observation that the same input-output sequences are computed differ-

ently by networks that use and networks that do not use neuromodulation.

A particular aspect of neuromodulation, i.e. pure heterosynaptic plasticity,
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was used as the only plasticity mechanism of evolving networks to show that

levels of learning and memory can be achieved by it without the presence of

correlation-based plastic mechanisms. Finally, an important evolutionary

advantage was observed in evolutionary modulatory networks that evolved

in dynamic environment where the alternation of different behaviours was

necessary, but learning was not involved: this indicated that neuromodula-

tion can be advantageous also in problems that do not require learning.

It was assumed here that, at this early stage in the proceedings, the

reader is not yet familiar with important concepts, the neural model and

the control problems that will be outlined throughout the thesis. Thus, any

attempt of drafting a more comprehensive description of the contribution

would meet with an implicit difficulty. A thorough statement of the con-

tribution to knowledge can be found in the last chapter of this thesis in

Section 7.1.1.

1.4.4 Structure of the Thesis

Chapters 2 and 3 describe the two fundamental background areas for the

understanding of the work in the rest of the thesis: neural networks in Chap-

ter 2 and evolutionary search processes in Chapter 3. Neural networks are

described in two main parts, a brief overview of biological neural networks,

and an overview of computational models. A particular focus is given to

neuromodulation, both in biology and computational models.

Chapter 4 introduces the environments that were used for evolution and

as benchmarks for the subsequent experimental analysis.

Chapter 5 explains the model of modulatory neuron and plasticity de-

vised for the work of this thesis, and the design algorithm used to investigate

the use of the model. Chapter 5 ends describing the main hypotheses in

this thesis.
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Chapter 6 presents the experimental results obtained by the combina-

tion of the environments of Chapter 4, the modulatory models, and the

evolutionary search algorithms of Chapter 5. The experiments are intended

to cast light on the research questions and to answer specifically to the

hypotheses.

Chapter 7 concludes the thesis by outlining the contribution to the field.

The research in this thesis poses many new research questions. The future

work section outlines possible research directions of high interest.

1.4.5 Publications Resulting From This Study

The work presented in the thesis has resulted in the publications:

• A. Soltoggio, P. Dürr, C. Mattiussi, and D. Floreano. Evolving Neu-

romodulatory Topologies for Reinforcement Learning-like Problems.

In Proceedings of the IEEE Congress on Evolutionary Computation,

CEC 2007, 2007.

• A. Soltoggio. Does Learning Elicit Neuromodulation? Evolutionary

Search in Reinforcement Learning-like Environments. ECAL 2007

Workshop: Neuromodulation: understanding networks embedded in

space and time, 2007.

• A. Soltoggio. Neural Plasticity and Minimal Topologies for Reward-

based Learning Problems. In Proceeding of the 8th International Con-

ference on Hybrid Intelligent Systems (HIS2008), 10-12 September,

Barcelona, Spain, 2008a.

• A. Soltoggio. Neuromodulation Increases Decision Speed in Dynamic

Environments. In Proceedings of the 8th International Conference on

Epigenetic Robotics, Southampton, July 2008, 2008b.

10



1. INTRODUCTION

• A. Soltoggio. Phylogenetic Onset and Dynamics of Neuromodulation

in Learning Neural Models. In Young Physiologist Symposium: Ex-

periment Meets Theory, Integrated Approaches to Neuroscience, 12-13

July, Cambridge, UK, 2008c.

• A. Soltoggio, J. A. Bullinaria, C. Mattiussi, P. Dürr, and D. Floreano.

Evolutionary Advantages of Neuromodulated Plasticity in Dynamic,

Reward-based Scenarios. In Proceedings of the Artificial Life XI Con-

ference 2008. MIT Press., 2008.
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Chapter 2

Neural Networks: Biology,
Neuromodulation and Models

This chapter overviews the large field of science that studies neural net-

works, from the biological examples provided by nature to the artificial mod-

els. The breadth of the field does not allow for a comprehensive overview.

Rather, this chapter outlines the main features of biological and artificial

neural networks to understand the computational model presented later in

this thesis. Section 2.1 introduces basic notions of neural systems like neu-

rons, neurotransmitters and synapses. Sections 2.1.2 and 2.1.3 overview

the current knowledge on the role of neuromodulatory substances and how

those might be responsible for important neural functions.

Moving to nature-inspired models, an overview of Artificial Neural Net-

works (ANNs) is provided in Section 2.2. Section 2.2.1.1 introduces ba-

sic neuron models. Section 2.2.2 describes neural architectures. Finally,

computational models of plasticity and neuromodulation are overviewed in

Section 2.2.3.3.
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2. NEURAL NETWORKS

2.1 Biological Networks

Biological neural networks are complex systems found in most animals.

They allow for a large variety of functions such as motion, feeding, and

sensing both in invertebrates and vertebrates. Ultimately, the intricate

dynamics of the human brain is considered responsible for the higher levels

of cognition like emotions and rational thinking. For this reason, studies

in neuroscience are further classified according to the level of analysis and

focus.

At the most elementary level, molecular neuroscience studies the rich

variety of molecules that function as messengers, sentries and regulators of

growth. Cellular neuroscience focuses mainly on the study of neurons and

their characteristics, variety and computational role. System neuroscience

considers the neural dynamics that originate from the complex circuitry of

connected neurons. Behavioural neuroscience seeks the causes of behaviour

in the neural dynamics. At the highest level, cognitive neuroscience strives

to understand the neural mechanisms that result in rational thinking, imag-

ination, language, and consciousness.

Neuroscience has originated as the science that studies the human brain

and the nervous system. However, given the similarities of the nervous sys-

tems in animals, the analysis has been extended to other primates, mam-

malians, and a range of animals including many invertebrates. The study

of neurobiology and behaviour in animals is referred to as neuroethology

(Plueger and Menzel, 1999). Neuroethology has the advantage that many

neural systems in animals, especially invertebrates, have fewer neurons and

simpler anatomical features than the human brains, yet they maintain a

molecular and cellular complexity found in primates’ brains. Moreover, in-

vasive techniques are ethically accepted on small animals like molluscs and

13
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Figure 2.1: Golgi-stained neurons. Image from (Wikipedia, 2008).

insects. In light of this, many studies on computational models, artificial

neural systems and robotics do not limit to the analysis of the human brain

but draw inspiration from a large variety of animal neural systems.

2.1.1 The Molecular and Cellular Level

2.1.1.1 Neurons

Neurons of different types and shapes are found across neural systems of

animals, and a large variety is observed within individual neural systems as

well. Figure 2.1 shows a picture of Golgi-stained pyramidal neurons.

Three main parts can be identified in a neuron, 1) the soma, 2) a number

of dendrites and 3) the axon. The soma is the central part, resembling

the spheric shape of other cells and containing the cell nucleus and other

structures common to other cells. What distinguishes neural cells from

other cells however is the presence of the axon and dendrites. The axon

extends from the soma and can vary in length from less than a millimetre

to over a metre (Bear et al., 2005). The axon is the channel through which

pulses are propagated. For this reason the axon can be long in order to

reach far cells inside the central nervous system or further to the peripheral

areas. Dendrites also extend and branch from the soma. Their function is

to receive impulses from other neurons. A simplified drawing of a neuron
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Figure 2.2: Simplified drawing of a neuron cell. The image was drawn after
the examples in (Bear et al., 2005).

with its main parts is in Figure 2.2.

2.1.1.2 Classification

Neurons vary considerably according to the shape of the soma, number of

dendrites, ramifications of the axon, properties and functions. Unipolar,

bipolar and multipolar neurons are distinguished by the number of exten-

sions of axons and dendrites. Multipolar neurons are further classified as

pyramidal cells, Purkinje cells, granule cells, and other. A functional classi-

fication divides neurons in afferent (sensory), efferent (motor) and interneu-

rons according to whether they convey signals to the central nervous system

(CNS), from the CNS, or inside the CNS. Neurons can also be distinguished

according to the action they have on other neurons, generally classified as

excitatory, inhibitory or modulatory (Bear et al., 2005).
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Figure 2.3: Simplified drawing of a synapse.

2.1.1.3 Action Potential

The action potential is a transitory state of the neural membrane along the

axon characterised by a rapid increase and decrease of electric potential.

The hysteresis results in a all-or-none state that propagates along the axon.

Given the speed of propagation of the action potential, the electric change

in the membrane potential has the functional role of transmitting impulses

from the soma to the axon terminals. When the action potential reaches

the axon terminals, neurotransmitters are released in the synaptic cleft (see

Figure 2.3). The release of different types of neurotransmitters affects the

local synaptic environment resulting in the excitation or inhibition of the

postsynaptic neurons, or other more complex modulatory effects involving

both pre-, postsynaptic and other surrounding neurons.

2.1.1.4 Synapses

Synapses are junctions between axon terminals and dendrites. A junction

between an axon terminal and a dendrite leaves a narrow cleft between

the two membranes where neurotransmitters are released and bind to the

postsynaptic membrane. Therefore, although action potentials contribute

in some cases to the firing of postsynaptic neurons, the transmission of

the signal is not direct, but is mediated by the chemical synapse. There

exist electrical synapses where a closer connection between two neurons,
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called gap junction, is established and the action potential is transferred

directly without the release of neurotransmitters. Electrical synapses allow

for a quicker propagation of action potentials, however, the large majority

of synapses in the mammalian neural system are chemical, suggesting that

the chemical synapse, although slower in signal propagation, is an essential

computational element. The release of neurotransmitters does not have the

sole role of transferring an excitatory or inhibitory signals: complex bio-

chemical dynamics at the synapse level alter the medium and long term

configuration of synapses. This leads to major changes in the electrical

properties of the neural circuit, due for example to synaptic growth and

modulatory effects, suggesting that synaptic computation is a fundamental

aspect in neural systems (Bear et al., 2005; Abbott and Regehr, 2004).

2.1.1.5 Neurotransmitters

A large variety of neurotransmitter chemicals have been identified as be-

longing to three groups, amino acids, amines and peptides. Fast synaptic

transmission is often mediated by glutamate (Glu), gamma-aminobutryric

acid (GABA) and glycine (Gly). N-methyl-D-aspartate (NMDA) has gen-

erally an excitatory effect on the postsynaptic neuron, whereas GABA has a

inhibitory effect. A number of chemicals have been identified as neurotrans-

mitters, although their effect is not always well known. A few examples of

neurotransmitter are reported in Table 2.1. Some neurotransmitters like

Dopamine (DA), Acetylcholine (ACh), Norepinephrine (NE) and Serotonin

(5-HT) have a modulatory function on synaptic transmission and are there-

fore called neuromodulators.

Different neurons release different types of neurotransmitters. According

to Dale’s principle (Dale, 1935) as described in (Strata and Harvey, 1999;

Bear et al., 2005), each type of neuron releases only one type of neurotrans-
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mitter. There is evidence that Dale’s principle does not hold in general, as

some neurons co-transmit more than one neurotransmitter. However, most

neurons follow Dale’s principle: this results in a classification of neurons

based on their neurotransmitter. The cholinergic system is the ensemble

of neurons that release acetylcholine (ACh), the noradreneric system uses

norepinephrine (NE), and similar for the glutamatergic and GABAergic sys-

tems.

On the postsynaptic membrane of the synaptic cleft, neurotransmitters

bind to specific receptors. Generally, each type of neurotransmitter binds to

a specific receptor. Exceptions to this rule result in a property called diver-

gence where one neurotransmitter binds to more types of receptors. Sim-

ilarly, if more neurotransmitters bind to one type of receptor, the effect is

called convergence. The computational roles of convergence and divergence

are not clear, but the presence of these phenomena suggests an intricate and

subtle network of interactions between transmitters and receptors. So far,

not all receptors have been linked to specific neurotransmitters. An exam-

ple are the numerous cannabinoid receptors. It is generally assumed that

the presence of specific receptors indicates the presence of a corresponding

neurotransmitter and a functional purpose, although this might not have

been discovered yet. It appears that diverse and still unknown brain func-

tions are regulated by the complex set and interaction of neurotransmitters

and receptors.

2.1.2 The Diffuse Modulatory Systems:
Modulation at the System Level

Neurons with particularly long axons have been identified in areas of the

brain stem like the Locus coeruleus, the Ventral tegmental area, the Sub-

stantia nigra, and other. These neurons transmit particular kinds of neu-
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Amino acids Amines Peptides

• Gamma-
aminobutyric
acid (GABA)

• Glutamate (Glu)

• Glycine (GLy)

• Acetylcholine
(ACh)

• Dopamine (DA)

• Serotonin
(5-HT)

• Cholecystokinin
(CCK)

• Dynorphin

• Substance P

Table 2.1: Examples of neurotransmitter chemicals.

rotransmitters such as dopamine (DA), acetylcholine (ACh), serotonin (5-

HT), and norepinephrine (NE), and for this reason are classified according

to the specific neurotransmitter being released. These groups of neurons

and their long axons are called diffuse modulatory systems, and are further

classified as the dopaminergic, cholinergic, serotonergic, etc. modulatory

systems. The length of the axons allows these neurons to transmit their

signals to diffuse and far areas of the brain. The term modulatory refers

to the fact that the neurotransmitters being released do not excite directly

or inhibit target neurons, but exert a modulatory action, regulating various

aspects of the neural activity and plasticity mechanisms. Figure 2.4 illus-

trates schematically the pathways of the noradrenergic and dopaminergic

diffuse modulatory systems in the human brain.

Modulatory systems are considered responsible for a large variety of

functions (Humeau et al., 2003), involving regulation of sleep patterns, at-

tention, motivation, learning and reward related prediction errors (Bear

et al., 2005; Dayan and Balleine, 2002; Dayan and Abbott, 2001; Daw,

2003). Studies on mammalian brains have identified modulatory activity in

the cerebellar synapse (Dittman and Regehr, 1997), neostriatum (Arbuth-

nott et al., 2000; Kerr and Wickens, 2001; Reynolds et al., 2001), dorsal
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(a) (b)

Figure 2.4: (a) The noradrenergic diffuse modulatory system arising form

the locus coeruleus. Neurons in this area appear to be activated by new,

unexpected stimuli. (b) The dopaminergic diffuse modulatory system aris-

ing form the substantia nigra and the ventral tegmental area. In certain

conditions, the activity of these neurons seems to encode prediction errors.

These images were drawn after the illustrations in (Bear et al., 2005).

striatum (Centonze et al., 2001), piriform cortex (Linster and Hasselmo,

2001) and other areas.

Initial studies on the function of dopamine (Hornykiewicz, 1966; Beninger,

1983; Wise and Rompre, 1989) suggested the possible link between modu-

latory activity and a measure of reward. Some years later, experiments on

monkeys (Schultz et al., 1993) confirmed the idea, showing that dopamine

activation patterns followed a measure of prediction error in classical con-

ditioning. The significance of this finding lies in the suggested similarity

between levels of dopaminergic activity and prediction errors in machine

learning (Sutton and Barto, 1998). In the following years, the function of

dopamine as a predictive reward signal (Schultz et al., 1997; Schultz, 1998,

2002; Daw and Touretzky, 2002; Daw, 2003; Ludvig et al., 2008) and its

role in cognition and attention (Neioullon, 2002; Wise, 2004) was analysed
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extensively. Novel or unexpected events can also trigger the release of neu-

romodulators. This finding brought the focus on the role of unexpectedness

as a driving mechanism for learning in changing environments (Brown et al.,

1999; Ranganath and Rainer, 2003; Dayan and Yu, 2006; Redgrave et al.,

2008). The role of dopaminergic activity in the brain has not however been

precisely established (Berridge and Robinson, 1998; Berridge, 2007; Lud-

vig et al., 2008). The presence of different modulatory systems suggests a

difference in the roles and possible interactions among modulators. Learn-

ing and memory function deriving from the interaction of the cholinergic

system with the histaminergic system (Bacciottini et al., 2001) and other

modulatory systems (Decker and McGaugh, 1991) have been investigated.

According to the above-cited literature, modulatory signals possibly

transmit prediction errors, unexpectedness and other learning cues that

represent high level instructions. Their effects at the lower synaptic level

depend instead on cellular mechanisms and on the chemical function of neu-

rotransmitters. Therefore, the study of modulatory effects in the brain is

carried out at two levels: a system level that analyses which situations cause

the activation of diffuse modulatory systems and their overall effect, and a

cellular level that studies the effect of neuromodulators at the synaptic level.

2.1.3 Neuromodulated or Heterosynaptic Plasticity:
Modulation at the Cellular Level

The importance of modulatory effects at the synaptic level has been in-

creasingly recognised in recent years. The notion that neural information

processing was fundamentally driven by the electrical synapse has been re-

placed by the more accurate view that modulatory chemicals play a relevant

computational role in neural functions (Abbott and Nelson, 2000; Abbott

and Regehr, 2004). Experimental studies on both invertebrates and verte-
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brates (Kandel and Tauc, 1965; Burrell and Sahley, 2001; Birmingham and

Tauck, 2003) suggest that neuromodulators such as Acetylcholine (ACh),

Norepinephrine (NE), Serotonin (5-HT) and Dopamine (DA) closely affect

synaptic plasticity, neural wiring and the mechanisms of Long Term Po-

tentiation (LTP) and Long Term Depression (LTD). These phenomena are

deemed to affect the long term configuration of brain structures. In turn,

these processes have been linked to the formation of memory, brain function

and considered fundamental in learning and adaptation (Gu, 2002; Marder

and Thirumalai, 2002; Jay, 2003).

The growing focus on modulatory dynamics has coincided with the re-

alisation that various models of the Hebb’s synapse (Hebb, 1949; Cooper,

2005) do not account entirely for many mechanisms of synaptic modification

that have been recorded experimentally. Classical and operant condition-

ing1, and various forms of long-term wiring and synaptic changes seem to

be based on more complex mechanisms than the Hebbian synapse. Stud-

ies on molluscs like the Aplysia californica (Kandel and Tauc, 1965; Clark

and Kandel, 1984; Roberts and Glanzman, 2003) have shown modulatory

cellular mechanisms to regulate classical conditioning (Carew et al., 1981;

Sun and Schacher, 1998), operant conditioning (Brembs et al., 2002) and

wiring in developmental processes (Marcus and Carew, 1998). Other stud-

ies on honeybees (Apis mellifera) (Menzel and Giurfa, 2001) showed that

neuromodulation by means of octopamine is employed in associative learn-

ing and operant conditioning during dance behaviour (Barron et al., 2007),

foraging behaviour (Hammer, 1993), regulation of sensory systems (Perk

and Mercer, 2006) (olfactory neurons in the moth (Kloppenburg and Mer-

cer, 2008)), memory functions (Menzel and Müller, 1996; Menzel, 2001)

and brain development (Perk and Mercer, 2006). Besides Aplysia and Apis

1Two forms of associative learning, see Glossary.
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(a)

(b)

Figure 2.5: (a) Homosynaptic mechanism: the connection strength is up-

dated as function of pre- and postsynaptic activity only. (b) Heterosynap-

tic mechanism: the connection growth is mediated by neuromodulation,

i.e. the amount of modulatory signal determines the response to Hebbian

plasticity. The dots surrounding the synapse represent the concentration of

neuromodulatory chemicals released by the modulatory neuron.

mellifera, neuromodulation has been studied on a number of other inverte-

brates like the silkworm (Antheraea polyphemus), the cabbage looper moth

(Trichoplusia ni), the medicinal leech (Hirudo medicinalis), the sea slug

Hermissenda crassicornis, the butterfly Papilla xuthus, and other (Birm-

ingham and Tauck, 2003), providing an overall picture that modulators are

largely used in many neural systems. The study of neural processes in in-

vertebrates has the advantage that the neural systems are relatively simple,

but the complexity at the molecular and cellular level is similar to that in

vertebrates (Burrell and Sahley, 2001). In mammalian brains, an extensive

review on the effects and variety of modulatory chemicals (Hasselmo, 1995)

suggests an astounding complexity of modulatory dynamics.
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2.1.3.1 Plasticity: Homo- and Heterosynaptic,
Associative and non-Associative

Homosynaptic plasticity refers to conditions when the synaptic strength

changes as a function of activities in the pre- and postsynaptic neurons:

two neurons are involved in the process and the connection between them

undergoes changes. The Hebb’s postulate states that the synaptic strength

is increased when the activities of pre- and postsynaptic neurons are closely

correlated in time. For this reason, Hebbian plasticity is labelled associative.

The connection strength between two neurons can also change indepen-

dently of pre- and postsynaptic activities, but as a function of a third mod-

ulatory neuron (Kandel and Tauc, 1965). If a modulatory neuron releases a

modulatory chemical at the synapse cleft, causing synaptic facilitation, the

effect is named heterosynaptic modulation (Bailey et al., 2000). A graph-

ical representation is provided in Figure 2.5. Heterosynaptic modulation

has been observed to lead to synaptic facilitation in the absence of pre- or

postsynaptic activities (Bailey et al., 2000). In such conditions, plasticity

is named non-associative or pure heterosynaptic.

Homo- and heterosynaptic plasticity are closely related by their com-

bined effect. A significant finding is that when heterosynaptic modulation is

coupled with homosynaptic activity, the overall effect is more than additive,

i.e. the effect is more than the sum of each effect separately. This results in

a long term synaptic facilitation. Figure 2.6 illustrates the idea graphically.

These dynamics appear to derive from the activation of transcription factors

(e.g. CREB) and protein synthesis when modulation is coupled with ho-

mosynaptic facilitation, in turn leading to durable and more stable synaptic

configurations. The underlying idea is that the synaptic growth that occurs

in the presence of modulatory chemicals has a substantially longer decay
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than the same growth in absence of modulation.
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(a) Homosynaptic activation
4 trains
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(b) A single heterosynaptic stimulus
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24 h

0
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(c) Pairing homosynaptic activation with heterosynaptic modulation

1 x 5-HT

0

12 h

24 h
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Figure 2.6: Non-additive interaction of homo- and heterosynaptic plastic-

ity. The figures were redrawn after the graphical representations in (Bailey

et al., 2000). (a) Short term homosynaptic facilitation is observed at both

bifurcated cultures when a train of spikes is applied to the presynaptic neu-

ron. (b) The application of 5-HT produces short term facilitation of that

synapse. (c) The pairing of homo- and heterosynaptic stimulation produces

a long term facilitation that is greater than the sum of each stimulation

separately. See (Bailey et al., 2000) for further detail.
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2.2 Neural Models

Biological neural networks have inspired the formulation of computational

models, generally referred to as Artificial Neural Networks (ANNs) with

novel computational properties (Haykin, 1999). Neural models and ANNs

have a simpler dynamics than biological neurons and networks. Often the

biological plausibility is not a prime criterion, especially when the main ob-

jective is the achievement of new computational techniques and tools for

engineering. However, the modelling of biological mechanisms is an impor-

tant research field where the biological plausibility is a fundamental aspect

(Bugmann, 1997; Nenadic and Ghosh, 2001a,b; Izhikevich, 2003, 2007b).

Normally, the neuron model is considered the fundamental unit from

which networks can be built as connected graphs. Usually, nodes are in-

stances of the same neuron model. Figure 2.7 represents a connected graph

where the units emulate biological neurons, and the arcs represent connec-

tions between dendrites and axons. A directed graph represents an ex-

tremely high level of abstraction of a neural network because it does not

account for many physical and physiological properties of a three dimen-

sional biological network. In other fields such as computational neuroscience

(Dayan and Abbott, 2001) statistical tools are often used to analyse neu-

ral activities, whereas studies in computational embryogeny (Stanley and

Miikkulainen, 2003b; Federici, 2005a) often represent networks in a two or

three dimensional space. However, ANNs have developed initially from sim-

ple models as the single neuron (or perceptron) and basic architectures. For

this reason, the classification of artificial models often follows the historical

progress.
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Figure 2.7: A graph representing an artificial neural network. Nodes can be

distinguished in three categories: inputs, hidden nodes and outputs. Inputs

nodes are afferent nodes whose activities represent a measure of sensory

units. Outputs produce signals that can be used for decision making, motor

control, etc., similarly to efferent neurons.

2.2.1 Neuron Models

2.2.1.1 Rate-based Models

Biological neurons communicate by propagating action potentials that have

a brief duration and are sometimes referred to as spikes or pulses. In basic

computational models, instead of propagating spikes, the output of a neuron

represents the spiking frequency or rate. For this reason, these models are

called rate-based. In the simplest form of neuron, the output is given by a

function transformation of the weighted inputs:

o = f(a) = f

( n∑
i=1

wi · xi

)
, (2.1)

where x are the values of the inputs and w are the weights of the afferent

connections of the neuron. The value inside the brackets is commonly called

activation (noted here with a). Figure 2.8 shows the graphs of common
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Figure 2.8: Functions for neuron output. (a) linear function; (b) step func-

tion; (c) logistic or sigmoid function; (d) Hyperbolic tangent function.

functions used for the neuron output. The step function (Figure 2.8(b)) is

defined as

output =

{
1 , if a ≥ 0
0 , otherwise.

(2.2)

The sigmoid function (Figure 2.8(c)) is

output = σ
(
a) =

1

1 + e−a
(2.3)

and the hyperbolic tangent (Figure 2.8(d)) is

output = tanh(a) =
e2a − 1

e2a + 1
(2.4)

The hyperbolic tangent can also be obtained from the sigmoid as tanh(a) =

2σ(a/2)− 1.

2.2.1.2 Leaky Integrators

For certain problems where the temporal dynamics is not relevant (e.g.

classification problems), feed-forward networks propagate the signals from

input to output where the outcome is read. On the contrary, when temporal
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dynamics play an important role, for example in robotic control and control

systems, it is assumed that certain intervals of time occur between the

moment an input is received and the moment this signal is processed to the

output. Such feature is essential when recurrent connections are present in

the network. In this case, it can be assumed that

a(t) =
n∑

i=1

wi · xi(t− 1) , (2.5)

where t is an integer representing the time in a discretised system. At each

time step, the activation of the neuron – and consequently the output – is

a function of the input values x of the previous time step.

In a more accurate model, the activation value can also follow a leaky-

integrator dynamics when its state varies gradually and continuously with

time. In other words, in leaky-integrator models the activation has a value

of inertia. Assuming a small sampling time step ∆t, the activation can be

computed as

a(t+ ∆t) = a(t) +
∆t

τ ∗

[ n∑
i=1

(
wi · xi(t)

)
− a(t)

]
, (2.6)

where τ ∗ is a time constant that determines the speed of update. In contin-

uous time, the variation of the activation a is expressed by the differential

equation

τ
da

dt
=
[
− a+

n∑
i=1

wixi

]
. (2.7)

Equation 2.7 was used to describe the dynamics of network nodes in (Pearl-

mutter, 1990; Beer and Gallagher, 1992). Those networks, when imple-

mented with recurrent connections, were called Continuous Time Recurrent

Neural Networks (CTRNN) (Yamauchi and Beer, 1994).

With a sufficiently small time step, Equation 2.6 can be used to integrate

Equation 2.7 as in the example reported in (Blynel and Floreano, 2003)
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where a time step of 1 was used in combination with time constant τ ∗ in

the interval [1,70]. Other similar examples are in (Paine and Tani, 2004,

2005; Tuci et al., 2005; Vickerstaff and Di Paolo, 2005).

When a longer time constant is used, Equation 2.6 results in a slower

modification of the activation value. In a network composed by neurons with

different time constants, some neurons will be more reactive to changes in

the inputs, others will modify their activations more slowly, displaying an

inertia-like dynamics. Because this neuron computes the activation value

as a linear combination of the new inputs and the old activation, it is said

to have memory of the previous states. This kind of network has been used

successfully for many robotics tasks such as obstacle avoidance and navi-

gation, maze navigation and sequential tasks where the temporal dynamics

are important (Blynel and Floreano, 2003; Paine and Tani, 2004, 2005; Tuci

et al., 2005; Vickerstaff and Di Paolo, 2005).

2.2.1.3 Spiking Neurons

Spiking Neural Networks (SNNs), also referred to as pulsed neural networks

(Maass and Bishop, 1999), are so called because they try to model the

pulsed nature of action potentials in biological neurons. At a high level

of abstraction, the neuron state can be implemented as a leaky integrator

that accumulates the charges given by the inputs, but also discharges itself

with time. Equations 2.6 and 2.7 can be used to compute the activation.

When the activation crosses a given threshold value, the neuron “fires” a

spike that is transmitted along the axon. After a spike has been fired, the

activation drops to a low value and the neuron is not able to send another

spike for a certain amount of time called refractory period.

SNNs have more complex temporal dynamics that could be beneficial

when the precise time of firing is relevant (Maass and Bishop, 1999; Wil-

31



2. NEURAL NETWORKS

son, 1999). The simulation of SNNs can be used to model and understand

the spiking dynamics of biological neural systems (Rabinovich et al., 1997;

O’Reilly, 1998; Nenadic and Ghosh, 2001a; Izhikevich, 2003, 2004). Wilson

(1999) defines “spikes, decision and actions” as the dynamical foundations

of neuroscience. Models of spiking neurons also match the properties of

analogue VLSI circuits that can be built on small surfaces and have very

small power consumption. Models have been investigated with the final or

proposed target of hardware implementation (Christodoulou et al., 2002;

Eriksson et al., 2003; Moreno et al., 2005; Upegui et al., 2005).

The use of SNNs in robotics and control systems has also been tested.

Several models of SNNs have been experimented on simulated and real

robots (Floreano and Mattiussi, 2001; Floreano et al., 2004; Zufferey and

Floreano, 2004; Srinivasan and Zhang, 2004; Chahl et al., 2004; Federici,

2005a). However, the precise advantages of using SNNs over traditional

ANNs are not always easy to identify.

2.2.2 Neural Architectures

Despite the complexity of biological neural circuitry, the limitations of de-

sign techniques in ANNs do not allow for the synthesis of similarly com-

plex topologies. Network architectures are generally divided in two main

categories, feed-forward networks and recurrent networks (Haykin, 1999).

Feed-forward networks propagate the signals in one direction only, from the

input to the output as in the example in Figure 2.7. On the contrary, re-

current networks have no constraints on the connectivity and neurons can

have cyclic and self connections as illustrated in Figure 2.9(a).

Traditionally, feed-forward networks have been used for a variety of tasks

including classification, system identification, prediction (Pham and Liu,

1995), and robotic control (Zalzala and Morris, 1996; Omidvar and van der
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Figure 2.9: (a) In a recurrent neural network, connections can be established

from and to each node. (b) An Elman network is a feed-forward structure

with the addition of memory units that connect to the inner layer with

recurrent connections. (c) Schematic illustration of a modular network with

three modules A, B, and C. (d) Schematic illustration of a hierarchical

network.
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Smagt, 1997). Their use is suitable for nonlinear systems where a complex

mapping between inputs and output is required. When ANNs are employed

as control systems in complex environments and tasks with temporal dy-

namics, recurrent networks are preferred. Recurrent networks are used to

establish cycles among neurons with the property of retaining information in

time. Memory units implemented with recurrent connections often provide

a behavioural advantage in several tasks like navigation, exploration and

foraging (Floreano and Mondada, 1996). Often the term recurrent may not

indicate a particular topology, but rather an unconstrained neural topology

where any connection is allowed.

Elman networks (Figure 2.9(b)) are hybrid topologies that insert a num-

ber of memory unit (with recurrent connections) in a feed-forward structure

(Elman, 1990). In this way a feed-forward network can be enhanced to dis-

play temporal dynamics.

The idea that different neural functions can have a common computa-

tion led to the concept of modularity (Happel and Murre, 1994; Gruau,

1994). In a modular network, similar structures or modules are repeated

with small variations or different connectivity to expand the capabilities of

the network. From an evolutionary and developmental perspective, modu-

larity is considered to have brought about important computational advan-

tages (Bullinaria, 2007). Figure 2.9(c) illustrates graphically the concept of

modularity.

In robotic control, a widespread notion is that of levels of control. The

idea is that a complex control policy is a combination of more dynamics,

some at lower levels, some at higher levels (Brooks, 1986). For instance, the

act of walking can be considered a low level control activity that involves

the activations a series of muscles to maintain equilibrium and a forward

movement. On the other hand, to walk to the nearest source of food is a
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higher level control activity that involves cognitive abilities such as motiva-

tion and planning. Low levels of control, such as walking, are necessary to

achieve higher level control tasks, such as walking to a specific destination.

For this reason, higher levels of control are believed to act on the lower levels

on a hierarchical fashion for example by biasing, regulating or modulating

the low levels. Figure 2.9(d) shows the scheme of a hierarchical network2.

Control networks were evolved in (Paine and Tani, 2005) to perform both

obstacle avoidance and goal seeking behaviour showing that hierarchical

networks performed better than uniformly connected networks.

A variety of other network architectures have been presented in the

literature, e.g. critic-actor structures, scale-free networks and small world

networks.

2.2.3 Learning and Plasticity

The connection weights between the nodes in a network can be either fixed

or varying during operation. If weights change during execution, those

are said to be plastic. The mechanism according to which the weights

are updated is called plasticity rule and can be inspired – although not

2It is important to note that in the network in Figure 2.9(c), the module A pre-

processes information, and consequently feeds modules B and C with its output. The

fact that the module A precedes B and C in the order the information is processed does

not mean that the network is hierarchical. On the contrary, in the network of Figure

2.9(d), both sub-parts of the network are fed by the same input: however, while the

lower part feeds the output and acts directly on the motors, the upper part does not act

directly on the motors, but rather influences the lower part. The information processing

of this latter network resembles most the concept of hierarchical structure. Nevertheless,

given the different interpretations of the word hierarchy, the classification is intended to

be loose.
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necessarily – by plasticity processes observed in biological neural networks.

A plasticity rule is expressed as

dw

dt
= g
(
p(t)

)
, (2.8)

where g(·) is an arbitrary function of a vector of values p(t). The weight

update can be a function of a variety of values like the activity of the nodes

linked by a connection weight, other signals specific to one or more neurons

in the network, global signals, etc.

Traditionally, functions that update weights according to a global mea-

sure of error in a given task fall into the category of supervised learning

algorithms (Haykin, 1999), and are called learning rules. In this case, the

weight change is viewed as a procedure to minimise an error, giving to the

overall process the resemblance of learning. On the contrary, in control tasks

with temporal dynamics, weight strengths may change continuously with-

out the presence of an explicit error function. In this second case, a weight

update may be based on local values like neural activities of neighbour-

ing nodes. Connections may update continuously their strength in order

to achieve, for example, a cycling dynamics for a central pattern generator

(CPG). This results in a complex temporal dynamics of changing weights

and activations without any external or internal error signal, but solely for

the purpose of achieving certain neural dynamics and overall behaviour.

In this view, the concept of plasticity rule is different from that of learning

rule. Moreover, whether synaptic plasticity leads in some cases to an overall

learning-like behaviour depends also on a series of system level properties

and neural topologies.

Unfortunately, learning-like behaviour, or simply learning is a difficult

concept to define. In (OED, 1989), learning is defined as the act of acquiring

knowledge of (a subject) or skill in (an art, etc.) as a result of a study, ex-
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perience, or teaching. In scientific contexts, learning is usually categorised

and better defined. Simple forms of learning include nonassociative learning

as habituation and sensitisation, associative learning includes classical and

operant conditioning, and the literature presents a large variety of higher

forms of learning (Gallistel, 1993; Britannica, 2007a). Even a short overview

of learning theory is beyond the scope of this thesis. As a consequence, the

use of terms like learning that are inevitably imbued with popular an subjec-

tive acceptations often leads to misinterpretations and ineffectual disputes.

To avoid confusion, although the term learning will be used in general con-

texts, in this thesis the term plasticity rule will be used instead of learning

rule to indicate a mechanism of weight update. Similarly, the term Hebbian

plasticity will be used instead of Hebbian learning.

2.2.3.1 Hebbian Plasticity

An important plasticity mechanism derived from Donald Hebb’s postulate

(Hebb, 1949; Cooper, 2005; Dayan and Abbott, 2001) updates a weight

connection when the pre- and postsynaptic neuron are active at the same

time:

τ
dw

dt
= uv , (2.9)

where w is the connection weight, τ is a time constant that determines the

rate of update, u and v are positive firing rates of the pre- and postsynaptic

neurons. Accordingly, a weight is strengthened when both pre- and postsy-

naptic neurons are active simultaneously. An extension of Equation 2.9 –

which permits only increments – allows also for the decrease of the weight

w by introducing threshold values θu and θv:

τ
dw

dt
= (u− θu)(v − θv) , (2.10)
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Equations 2.9 and 2.10 lead to unstable weights because of the positive

feedback between weight strength and synaptic activities. An alternative

stable rule is the BCM rule (from the inventors Bienenstock, Cooper and

Munro)

dw

dt
= η[v2u− θiv]

∆θi = α · [v2 − θi] (2.11)

that utilises a sliding threshold θ to stabilise weights and implement synap-

tic competition; α is the update rate for θ and should be greater than η

(Bienenstock et al., 1982; Dayan and Abbott, 2001).

The Oja rule (Oja, 1982; Dayan and Abbott, 2001)

dw

dt
= η[uv − v2w] (2.12)

limits the weight update by subtracting a factor proportional to the weight

itself times the square of the postsynaptic activation.

2.2.3.2 Other Rules: Presynaptic, Postsynaptic and Decay

Synaptic weights can be updated solely on the activity of the pre- or post-

synaptic neuron:

τ
dw

dt
= u− θ (2.13)

τ
dw

dt
= v − θ (2.14)

τ
dw

dt
= k . (2.15)

Although a growing experimental evidence in biology suggests that pre-

and postsynaptic activities alone can modify synaptic connections3, com-

putational models that employ Equations 2.13-2.15 have not been well in-

vestigated. Later in this thesis, it will be shown that pre- or postsynaptic

3For example in habituation or sensitisation (Bailey et al., 2000).

38



2. NEURAL NETWORKS

plasticity alone can lead to adaptivity and useful functions in computational

models.

A linear combination of a correlation-based rule (Equation 2.9), a presy-

naptic rule, a postsynaptic rule and a decay rule (Equations 2.13, 2.14, and

2.15) was employed in (Montague et al., 1995; Niv et al., 2002). Pre-, post-

synaptic and covariance rules (Equation 2.10) were employed in robotic

navigation tasks in (Floreano and Urzelai, 2001b,a; Urzelai and Floreano,

2001; Nolfi and Floreano, 2002; Blynel and Floreano, 2003). Similar plas-

ticity rules have been implemented for spiking neurons in the form of spike

timing dependent plasticity (STDP)(Roth et al., 1997; Nielsen and Lund,

2003; Federici, 2005a), or other models (Kitajima and Hara, 2000).

2.2.3.3 Computational Models of Neuromodulation

Computational models of neuromodulation can be used to test features on

functional tasks or problem solving, often resulting in a better identification

of the advantages of neuromodulation. Simulated or real robotic controllers

enhanced by neuromodulation and tested in closed-loop conditions can also

suggest similarities between ways of functioning in artificial and biological

controllers. Ultimately, as the role of neuromodulation has not been entirely

clarified in biology, computational and robotics models address tentatively

problems over a large scope in order to identify relations between the fea-

tures of the model and its performance in certain tasks. Neuromodulation

can be employed for a variety of purposes like for implementing CPG, fil-

tering or regulating sensory and motor processes, and achieving adaptation,

learning and memory.
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2.2.3.3.1 Classification. The variety of modulatory effects in biology

have resulted in diverse approaches to computational models. In order

to overview the field, a classification was introduced in the review paper

(Fellous and Linster, 1998), where different features of neuromodulation

were identified and used for categorising existing studies.

It is important to note that categories are not precisely defined, nor

describe accurately the multifarious modulatory effects observed in biology

whose dynamics are still mostly unknown. However, such classification helps

to describe a large variety of different studies in the relatively young field

of computational models of neuromodulation.

Extrinsic and intrinsic modulations refer to the spatial origin of modu-

latory signals. If those are generated outside the neural circuit responsible

for a given computation, modulation is said to be extrinsic. If modulation

is generated inside the circuit being modulated, it is said to be intrinsic

(Katz, 1995). Extrinsic modulation is considered a way of altering the

computational characteristics of a target circuit, but does not sustain the

computation itself. On the other hand, intrinsic modulation is a working

mechanism to achieve specific neural dynamics in a self-contained compu-

tational unit (Katz and Frost, 1996).

Regulatory modulation, generally associated with intrinsic modulation,

refers to the regulatory action that governs a given neural computation.

Therefore, regulatory modulation is essential for the neural computation.

On the other hand, when modulation is decoupled from the network and

its computation, modulation has a tuning function consisting in adjusting

over time parameters or ways of functioning.

The time scale of modulatory dynamics can be classified in two possible

cases 1) fast computations, slow modulation and 2) slow computations, fast

modulation. Most studies consider modulation on a longer time scale dy-
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namics than neural computation. In this case, modulation has the function

of adapting the network behaviour in the medium and long term, for exam-

ple adjusting the neural controller to environmental conditions such as light

and darkness. In other cases, fast modulation can act on slow computa-

tion. This is the situation when modulation encodes environmental cues or

events. For example, a very brief but important reward signal can modulate

a longer-term learning process. For a detailed description of the categories

mentioned above refer to (Fellous and Linster, 1998).

Finally, neuromodulation can act on neural processes as a gating signal

of different nature. These processes can be ion currents, rates of chemical

diffusion, modulation of higher level parameters for plasticity, neural trans-

fer functions, etc. Given the generality of the term neuromodulation, it was

essential for a proper classification and understanding of the work in this

thesis to introduce a classification based on the process being modulated.

At a high level of abstraction, modulatory signals can serve for

1. modulation of synaptic efficacy;

2. modulation of neural properties like spiking modes or rates, or output

transfer functions;

3. modulation of rates in synaptic plasticity;

4. modulation of higher levels of plasticity (metaplasticity) or growing

self-organising networks.

The first case indicates that modulation is used to adjust the efficacy of

diffuse or specific synapses, altering or filtering signal propagation at dif-

fuse or specific sites. This can be useful when a mechanism is required to

enhance or suppress stimuli from different inputs, neural areas, or modulate
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motor actions. The second case refers to the modulation of properties of the

neural cell, for example enhancing or suppressing the firing rate, changing

the firing mode or threshold, or the output function. This can be useful to

change working modes of a network (e.g. regulating slow or fast walking in

a robot). The third situation is when modulation applies a gating effect on

plasticity rates. This case, inspired by heterosynaptic plasticity and there-

fore defined neuromodulated plasticity, is used to modify the plasticity rate

at diffuse or specific areas of the neural circuit. This is the type of neuromod-

ulation studied in this thesis. Finally, whereas normally neuromodulation

acts on existing neurons and connections, modulation of growing processes

and metaplasticity (point 4) deal with more substantial changes in the net-

work topology for example growing or pruning connections in developmen-

tal phases, or radically changing the plasticity mechanism (metaplasticity)

(Abraham and Bear, 1996).

Several computational models spanning over the above categories have

been proposed in the literature particularly in the last two decades. An

overview of studies that relate to the work in this thesis is presented fol-

lowing. Given the large scope and variety of approaches, from theoretical

computation to simulated controllers and real robots, the literature presents

scattered examples of modulatory networks that are often difficult to de-

scribe in an homogeneous picture.

2.2.3.3.2 Aplysia and other invertebrates. An important category

of studies was inspired by neural systems of invertebrates, and in particular

the mollusc Aplysia whose neural dynamics were initially studied in (Kan-

del and Tauc, 1965; Carew et al., 1981). An accurate modelling of a sensory

neurons modulated by serotonin in Aplysia is presented in (Baxter et al.,

1999). In (Deodhar and Kupfermann, 2000), genetic algorithms were used
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to optimise the parameters of a two-neuron system that simulated muscu-

lar oscillations during feeding in Aplysia. In (Birmingham, 2001), sensor

flexibility in the crustacean stomatogastric nervous system is observed to

be enhanced by neuromodulation, and it is suggested that analogue mech-

anisms can be used in artificial motor control systems.

2.2.3.3.3 Role of dopamine. Worthy of a particular note are the nu-

merous studies on the role of dopamine. After dopaminergic neurons were

discovered to encode prediction errors and reward information in monkey’s

brains (Schultz et al., 1993, 1997), a number of studies focused on com-

putational models of dopaminergic systems. A model for dopamine using

predictive Hebbian learning was proposed in (Montague et al., 1996). Sim-

ilarities between dopaminergic activities and temporal difference signals in

reinforcement learning (Sutton and Barto, 1998) were outlined in (Suri,

2002; Dayan and Balleine, 2002; Niv et al., 2005), whereas the computa-

tional implications of dopamine in behaviour control and neural disorders

are suggested in (Fellous and Suri, 2002; Montague et al., 2004). In (Suri and

Schultz, 1999), a neural network with a dopamine-like reinforcement learn-

ing was designed based on a temporal difference model with an actor-critic

architecture (Sutton and Barto, 1998) showing a similar learning dynamics

to those recorded in monkeys’ brains (Schultz et al., 1993). An actor-critic

model of reinforcement learning was also used in (Khamassi et al., 2005) to

simulate reward-seeking behaviour with four pre-designed neural architec-

tures. The function of dopamine has been further modelled in the striatum

(Suri et al., 2001), in the prefrontal cortex (Dreher and Burnod, 2002) and

in basal ganglia (Gruber et al., 2006).

Given the important effect of dopamine at the system and behavioural

level, studies on such neuromodulators allowed for the formulation of hy-
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potheses on the neural bases of decisions in humans (Holroyd and Coles,

2002; Daw et al., 2006; Li et al., 2006; Cohen, 2008). At a similar level,

attempts to model emotions with neuromodulatory dynamics have been re-

viewed in (Parussel, 2006; Levine, 2007). Extending the analysis to other

modulatory chemicals, Doya (2002) suggested a framework where dopamine

signals the error in reward prediction, serotonin controls the time scale of re-

ward prediction, noradrenaline controls the randomness in action selection,

and acetylcholine controls the speed of memory update. As pointed out

in (Decker and McGaugh, 1991; Bacciottini et al., 2001), important neural

dynamics might emerge from the interaction of more modulatory systems.

2.2.3.3.4 The gap between cellular and system levels. Many be-

havioural and system level studies do not explain the cellular mechanisms

that causes the higher level dynamics to emerge. If the final tasks is to re-

produce the features and dynamics of neural systems, the knowledge of the

basic cellular mechanisms is essential to the implementation of a complex

system in the whole. The missing link between synaptic mechanisms and

behavioural control has been outlined in (Harris-Warrick and Marder, 1991)

and following in the review papers (Destexhe and Marder, 2004) and (Dub-

nau et al., 2002) where memory mechanisms are described to emerge from

synapse to system. Moreover, reinforcement learning theories and machine

learning approaches do not account for many computational processes in

the brain (Kawato and Samejima, 2007). As a consequence, studies on the

basic synaptic mechanisms of modulation are important bottom-up inves-

tigations.

2.2.3.3.5 Bottom-up studies. The optimisation of plasticity rules that

apply on synapses and are based on associative local measures like the Heb-
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bian principle was proposed in (Bengio et al., 1992). Abbott (1990) pro-

posed a model of heterosynaptic plasticity to implement a memory mech-

anism for initiating and terminating learning in networks. The model in-

troduced neuromodulation as a multiplicative factor on synaptic plastic-

ity. With a similar multiplication operation, a recent study (Porr and

Wörgötter, 2007b) defines the modulatory signal – the signal that enables

learning – as the third multiplication factor to associate two stimuli. The

third factor is shown to enable learning when auto-correlation of stimuli is

minimal and cross-correlation is maximal, allowing for a stabilisation of con-

nection strengths. Short-term memory with modulated plasticity was inves-

tigated in (Ziemke and Thieme, 2002) where a robot navigated in a T-maze

and remembered turning directions according to visual clues in the maze.

The feed-forward control networks had a decision unit that propagated a re-

current signal to update connection weights. Learning and adaptivity were

shown in navigation tasks in (Sporns and Alexander, 2002). In (French

and Cañamero, 2005), neuromodulation was implemented on a Braitenberg

vehicle (Braitenberg, 1984) to achieve adaptation. Walking behaviour in a

quadruped robot (Fujii et al., 2002) was synthesised using four types of ge-

netically determined neuromodulators to drive a central pattern generator

(CPG). In (Kondo, 2007), an evolutionary design and behaviour analysis of

feed-forward networks with neuromodulators was proposed to fill the gap

between simulation and real robotic control. Improved evolvability in neural

controllers was shown with the use of GasNet (Smith et al., 2002b), where

modulation is co-transmitted with standard activation signals and results

in gating the steepness of the logistic output function of neurons.

2.2.3.3.6 Plasticity for reward-based learning. In some testing en-

vironments, a particular importance is given to reward signals that indicate
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to the neural controller the occurrence of a favourable situation, item or

action. Dynamic, reward-based scenarios are environments where reward

items dynamically change location or change the course of actions by which

they can be obtained. Such situations require highly adaptive and learn-

ing behaviour to enable an agent to adjust its strategies during lifetime.

Moreover, reward signals are timed and specific, often requiring a compu-

tation that can differ considerably from other sensory information. Many

of the studies on the role of dopamine described above investigate reward-

based learning. Currently, reward-based learning is often investigated at

the system level dynamics, describing global learning signals as prediction

errors and temporal difference (TD) (Sutton and Barto, 1998). A problem

when modelling classical and instrumental conditioning is to understand the

mechanisms that allow for linking stimuli occurring at different times. The

problem is named the credit assignment problem or distal reward problem

(Izhikevich, 2007a; Nitz et al., 2007; Farries and Fairhall, 2007).

It is important to note that the process by which conditioned stimuli

and unconditioned stimuli or rewards are associated can be classified as

system level dynamics, and although such dynamics emerge possibly from

local synaptic plasticity mechanisms, it is not straight forward to under-

stand the relation that links synapse to system (Wörgötter and Porr, 2005).

In this attempt, a top-down approach consists in describing the system level

(or learning) dynamics, and consequently searching for plasticity rules that

allow for the generation of the target dynamics. Alternatively, bottom-up

approaches consist in the identification of candidate plasticity rules (upon

the supposition that those could be the basis of the dynamics being sought),

and attempt the construction of system level dynamics from those. The

work in this thesis can be classified as bottom-up and belongs to the cat-

egory of studies where instrumental learning was achieved without explicit
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representation of prediction errors or temporal difference signals. Belonging

to this category, a study in (Montague et al., 1995) employs a multiplicative

modulatory effect similar to that in (Abbott, 1990) to simulate reward-based

learning in a foraging bee. The model was inspired by the activity of the

neuron VUMmx1 in the honey bee that carries gustatory stimuli. A similar

model was later used in (Niv et al., 2002) in combination with a genetic

algorithm to optimise a learning rule and weights in a one-neuron network

for the same bee foraging problem.
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Chapter 3

Phylogenetic Search

Artificial evolution is a stochastic search that draws inspiration from the

Darwinian principle of natural selection (Darwin, 1859). Artificial evolu-

tion is a simulated evolutionary process that takes advantage of recent ad-

vances in technology and computation tools. The process is described by

algorithms commonly referred to as Evolutionary Algorithms (EAs). Evolu-

tionary Algorithms have become an important tool in many research fields

with a multitude of applications in optimisation, design, engineering and

other.

3.1 Motivations

Evolutionary Algorithms are flexible search algorithms whose primary pur-

pose can vary considerably and can be adjusted to diverse tasks. Three

mainstreams in the use of EAs can be outlined here.

(1) EAs are often applied as optimisation techniques to difficult prob-

lems where the search space does not allow for exhaustive search or where

good techniques or heuristics have not been established yet. The increased

knowledge and expertise on the use of EAs during the last decades have

made those algorithms a valid and accepted tool in optimisation. However,
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the high requirements in computational power and the lack of reliability do

not consent their use on mission-critical and safety-critical applications.

(2) Evolutionary techniques emulate the natural processes that have

concurred to generate the extent and complexity of living creatures on the

Earth. In this view, the focus does not lie exclusively on finding one fi-

nal solution but rather on the evolutionary process itself, and the analogies

between natural and artificial evolution. In a way, it is possible to un-

dertake the study of natural evolution by means of computational tools, or

computational evolution. Relevant research issues focus on the genomic rep-

resentation of solutions and phenotype mapping, the importance of sexual

recombination of genomic information, the effect of modifying the intensity

and modality of selection pressure, the role of diversity in the population

and speciation mechanisms, the size of the population or the effect of dif-

ferent mutation strengths. A large variety of topics, which go beyond the

purpose of this overview, has been addressed by the Evolutionary Compu-

tation community.

(3) A third approach in using evolutionary techniques focuses on the ten-

tative exploration of innovative designs and solutions that can be achieved

by combining new mathematical tools, software or hardware with evolu-

tionary search. This approach does not focus exclusively on a measure of

quality of the final solution, nor exclusively on the dynamics of the search

process, but rather on the combination of the two to generate innovative

features of evolved solutions. This was the approach used in this thesis to

investigate the potential of a new type of neuron whose use and potential

were unknown. Fields of evolutionary computation that endeavour in this

directions are principally Artificial Life, Evolutionary Robotics, Evolvable

Hardware, Generative and Developmental Systems.
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3.2 Overview of Algorithms for

Artificial Evolution

EAs according to different implementations are named also Evolution Strate-

gies (Bäck and Schwefel, 1993), Evolutionary Programming (Fogel, 1994),

Genetic Algorithms (Goldberg, 1989) and Genetic Programming (Koza,

1992). Search algorithms that can be commonly classified as Evolution-

ary Algorithms have been applied to a wide variety of problems: numerical

and combinatorial optimisation problems, evolutionary arts and design, en-

gineering design processes and many others. EAs are implemented in a large

variety of different algorithms. The fundamental Darwinian idea of natural

selection that inspired EAs is a compelling but broad concept that involves

a number of particular aspects, each of which can be modelled in various

ways. A general procedural steps however can be outlined.

An EA initiates the search by creating a population of random solutions.

The solutions are then tested to associate a measure of quality to each of

them. Generally, because solutions are randomly created, they return dif-

ferent values of fitness, resulting in some solutions performing better, others

worse. After the evaluation, a selection mechanism is in charge of selecting

a subset of solutions from the whole population. The selection mechanism

is biased to select with higher probability solutions that performed better

on average. These solutions are often named parents because they form

a subset of individuals that are allowed to reproduce. The genotypes of

parents are cloned and mutated in order to generate similar but not identi-

cal solutions. If crossover (or recombination) is implemented, two or more

genotypes are combined to form one or more children. The new solutions

represent a new generation that, descending from a small set of well per-

forming parents, have higher probability of scoring higher fitness than the
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Figure 3.1: Scheme of an evolutionary algorithm

initial random population. The phases of testing, selecting and reproducing

are repeated in a cycle for a variable number of times until a termination

criterion is met. A termination criterion may stop evolution when a target

fitness is achieved by one or more solutions, when improvements are not

registered for a long number of iterations or when a maximum time or com-

putational effort has been reached. An illustration of the iteration of the

algorithm is in Figure 3.1.

3.2.1 Set up of an Evolutionary Algorithm

Before the cycle explained above starts, two fundamental entities have to

be defined: 1) the structure and composition of a candidate solution, and

2) a procedure to assess the quality of a given solution.

Because these two steps are required before the cyclic Darwinian process

starts, sometimes they are considered as marginal aspects of the evolution-
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ary search. On the contrary, expertise on the use of EAs indicates that the

correct set up of the algorithm is often more relevant than the evolution-

ary process itself for the achievement of good solutions. Unfortunately, this

view has been unpopular in the past: outlining the importance of the set

up means to lessen the virtue of the algorithm and give back the design

and critical choices in the hands of the engineer, consequently recognising

the limitations of the automatic synthesis and design (Soltoggio, 2004b,c).

A description of issues related to the design of the fitness function is pro-

vided in the following. Topics related to the genotypical and phenotypical

representation will be discussed later in the context of ANNs. For all other

aspects of evolutionary search, refer to the extensive literature in the field

(Goldberg, 1989; Bäck and Schwefel, 1993; Michalewicz, 1996).

3.2.2 Fitness Design

The design of the fitness function is a fundamental issue to guarantee an effi-

cient search especially in the fields of artificial life and evolutionary robotics.

When EAs are employed for optimisation tasks, they are generally tested on

given analytical test functions. On the other hand, in real world scenarios

the objective to be achieved is not always well formulated. At least three

aspects of the fitness design can be identified: 1) how to describe with a

value the quality of a solution, 2) how to design a fitness landscape that

favours a successful search and 3) how to favour the synthesis of incremen-

tally complex solutions and behaviour.

3.2.2.1 Description of Behaviour

In many problems it is difficult to translate a human concept of well func-

tioning or good performance into a measurable quantity. For example, in

the fields of automation, control and robotics, the expertise of engineers
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is often required for a good assessment of quality. Unfortunately, an EA

is an automated design procedure that – with the exception of interactive

EAs – does not rely on human interaction during the search process. This

feature, although normally considered a quality, occasionally leads EAs to

produce unfeasible solutions. An example is provided in (Koza et al., 2000)

where a control system designed by Genetic Programming (GP) was shown

to outperform drastically the mathematically optimal PID control system

described in (Bishop and Dorf, 2001). A later analysis in (Soltoggio, 2004a)

revealed that the GP process exploited a flaw in the fitness definition that

allowed the synthesis of a control system with a virtually infinite bandwidth.

These simulated control systems, despite achieving a high fitness according

to the definition in (Koza et al., 2000), are not realisable from a control

engineering viewpoint, see (Soltoggio, 2004a,b,c) for more details.

On the contrary, a successful example of fitness definition is provided

in (Floreano and Mondada, 1994) where a small two-wheeled robot was

controlled by an evolved neural network to perform navigation, obstacle

avoidance and maximise speed in a cyclic path between walls. In this case,

the task of the robot is to navigate or move around quickly without hitting

the walls. Experiments on this kind of two-wheeled robots carried out as

preliminary studies for the work in this thesis revealed that a variety of odd

behaviours might develop to increase a badly defined fitness: for example

a spinning behaviour maximises the wheel speed without danger of hitting

walls, but does not result in a translation of the robot. The fitness suggested

in (Floreano and Mondada, 1994) is the product of three factors: the average

wheel speed, a component indicating straight direction and the distance

from the walls. Currently, this fitness function is still the most appropriate

for this kind of problems.
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3.2.2.2 Fitness Landscapes

The fitness measure should not just describe the optimal behaviour or qual-

ity, but also many intermediate steps. This is necessary for the progressive

improvement of solutions over the evolutionary process. For example, dur-

ing the early stage of the search, most random solutions will score a very

low fitness and would generally be far from the optimal. However, some

solutions, although poor, will be slightly better and others slightly worse.

The selection mechanism relies on this difference to improve, even slightly,

the average fitness of the population.

A good fitness function should reward good behaviour on a continuous

scale, assigning a positive value of fitness even to small achievements so long

as those achievements could represent an intermediate step to obtain good

solutions. Similarly, if a wrong behaviour can be identified, this should be

punished by decreasing the fitness. However, particular attention should

be given by not exceeding with the punishment of undesired features as

this decreases diversity and eventually hinders the search in ill-behaved

landscape. In landscapes with many local optima, a search based on novelty

of behaviour for a navigation problem showed better results than a fitness-

based evolution (Lehman and Stanley, 2008).

3.2.2.3 Incremental Complex Behaviour

Complex tasks often require a set of incremental skills to be solved. For

example, a robot homing behaviour (a robot explores the environment and

returns to a home location) requires initially the implementation of basic

navigation skills like obstacle avoidance. When basic navigation skills are

acquired, the evolution of exploratory and homing behaviour can take place.

In this type of problem, if the fitness is defined as the number of times the
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robot reaches the home location over many trials, a boot strap problem oc-

curs when none of the robots achieve the home location, because for instance

none is capable of avoiding obstacles. As a consequence, all individuals in

the population will achieve fitness 0, and the selection mechanism can not

select better individuals.

To avoid this problem, the idea of incremental evolution was introduced

to achieve complex general behaviour (Gomez and Miikkulainen, 1997). In

incremental evolution, two or more separate evolutionary processes are per-

formed in succession to achieve incrementally each level of complexity. In

the previous example of the homing robot, a first evolutionary process would

evolve robots with good obstacle avoidance, and subsequently a second evo-

lutionary run is performed to achieve homing behaviour.

A problem in incremental evolution is that individuals evolved during

the first run might have converged to specific solutions, and those might

not easily evolve to achieve the second complex task: for example, a robot

evolved to avoid obstacles, but only by turning left all the time, whereas

homing requires turning right at times. Another problem might occur if the

individuals in the second run – that are not evaluated on the first skill any

longer – start losing that first skill due to mutations. For example, a walking

robot might evolve homing behaviour, but the walking skill decreases and

eventually the robot reaches home by crawling on the ground.

Often a good design of the fitness function allows for the evolution of

complex behaviour without the need of breaking the evolutionary process

in more phases. This can be achieved by awarding all the necessary skills

for accomplishing the final task. In this way the fitness landscape has a

gradient for each level of complexity.
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3.2.2.4 Parameter Setting and Search Space

EAs are flexible algorithms that can be applied to a large variety of design

areas and optimisation. However, such flexibility is paid by the effort that

each problem requires in designing, not only the fitness function, but also

the most appropriate settings and search space. Few are the rules, and

the expertise of the engineer often makes the difference. In particular, the

search space has to be somehow measured on the computational effort that

can be employed. Large search spaces consent a larger variety of possible

solutions, and are therefore preferred when novel and unseen solutions are

sought. However, large search spaces can lead to unsuccessful search or poor

performance. Smaller search spaces allow for a faster search, and possibly

result in a easier fitness landscape which lead to successful search and good

final performances. However, a small search space implies inevitably a more

limited search and less novel solutions. A remarkable difference in perfor-

mance was measured in a comparison of a Genetic Algorithm (a small search

space was used) with a Genetic Programming algorithm (with a much larger

search space) in the search and optimisation of control systems (Soltoggio,

2004b).

3.3 Design and Evolution of ANNs

The design of ANNs does not benefit from intuitive procedures or estab-

lished methods. For this reason, evolutionary algorithms have been success-

fully applied in this area as thoroughly overviewed in (Yao, 1999). EAs can

be applied to the design of neural networks at different levels. Basic algo-

rithms perform the optimisation of connection weights in a network graph,

assuming that all other network features are specified, i.e. the number,

types and dynamics of nodes, and other parameters. Other algorithms de-
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sign both the network topology and the connectivity among nodes. When

neural models include other bio-inspired features, like synaptic plasticity,

evolution can be used to search for plasticity rules and other parameters

regulating various aspect of the networks. Finally, EAs have been applied

to the search of procedures and rules for developmental processes whose

final result is the desired neural network.

The evolution of networks is therefore a multi-fold problem. Looking at

natural processes that lead to the generation of a fully-fledged neural system,

three main areas can be identified: evolution, developmental processes and

environmental adaptation or learning. The design of neural networks can

proceed along one or more of these dimensions. Moreover, the observation

that a neural system (e.g. the human brain) is not created in its adult

mature state, nor it reaches a stable state at all, led the scientific community

to research new design methods for neural systems from the synergy of

development, evolution and adaptation.

3.3.1 Development, Evolution and Adaptation

Living organisms are complex dynamical systems in the way that their ex-

istence is characterised by highly mutable shapes, dimensions and chemical

composition. The advantage of looking at living organisms as dynamic

systems is that the focus lies on the changes that take place according to

certain rules and mechanisms. These rules or mechanisms are in fact what

builds and constructs such systems. If an organism is seen as a mutable

entity, evolution is the process by means of which the instructions rules

were discovered. Development is the complementary process that governs

the formation of a mature phenotype. Multi cellular organisms grow from a

single cell (zygote) that, with reproduction and differentiation, transforms

itself into millions of cells with different function and positions. Finally,
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Figure 3.2: Phylogenetic, Ontogenetic and Epigenetic space (POE) also

referred to as Evolution, Development and Learning space (Sipper et al.,

1997).

an organism adapts to factors that are not specified in the genotype but

derive from the environment. This process can be seen as a subtle form

of morphogenesis that tunes the organism and its internal mechanisms to

perform best in its own environment. This process is often referred to as

adaptation or learning. These three processes have also been defined Phy-

logeny, Ontogeny and Epigenesis (POE) (Sipper et al., 1997; Moreno et al.,

2005), indicating evolution, development and learning. The POE model has

been used to classify methods and tools for designing biologically inspired

systems, see Figure 3.2. Most of the research so far has focused along one

axis at a time. Approaches that combine two or more processes are in-

evitably more complex but promise to result in more advanced solutions

(Eriksson et al., 2003; Tyrrell et al., 2003; Federici, 2005a,b). The POE
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paradigms are described separately in the following sections on Encoding

and Development, Evolution and Learning.

3.3.1.1 Encoding and Development

Development can be seen as the procedure by which information in the

genome is used to construct the phenotype. Although this procedure is

independent of evolution, the latter depends heavily on the encoding. For

basic EAs, the process of mapping is a simple one-to-one function where each

feature of the phenotype is directly specified by one gene in the genotype.

This is called direct encoding. The use of a direct encoding has limitations

due to the large search space the derives from specifying all phenotypical

features in the genotype. Direct encoding is used very seldom in any engi-

neering field where complex machines, devices, buildings are not described

by a 3D discrete matrix of chemical composition, but rather by a set of

functional instructions, elements, geometry and properties. Even consider-

ing the suitability of EAs for high dimensional problems, direct encoding

appears not to scale or generalise well.

Artificial Embryogeny (AE) is defined as a sub-discipline of EC in which

phenotypes undergo a developmental phase (Stanley and Miikkulainen, 2003b;

Bowers, 2006). Developmental rules permit the exploitation of regularities

in the phenotype. This form of reuse increases the efficiency in the rep-

resentation. Evolutionary processes that use a developmental phase have

been named “artificial ontogeny”, “computational embryogeny”, “cellular

encoding”. Stanley and Miikkulainen (2003b) use the term Artificial Em-

bryogeny to refer to all the previous. There are two main approaches to arti-

ficial embryogeny: grammatical development (grammatical rewriting called

L-systems) and cell chemistry development (reaction-diffusion models). As

reviewed in (Stanley and Miikkulainen, 2003b), the field of artificial embryo-
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geny is developing rapidly and tackles a broad set of issues concerned with

the complex dynamics of developmental systems. Despite the relevance of

AE in evolving neural networks, its use implies an increased complexity in

the algorithms. For small search spaces, AE might not result in a significant

advantage.

3.3.1.1.1 Analog Genetic Encoding (AGE)

AGE is a bio-inspired encoding method for network graphs that uses a

direct representation of network nodes and an implicit representation of net-

work weights. Thus, each node in the phenotype is expressed by a distinct

part in the genome, whilst the connections between nodes are derived as

a function of parts of the genotype associated with the nodes: this will be

made clear shortly. The method AGE is fully described in the Ph.D thesis

(Mattiussi, 2005). An overview is given here, further detail can be found in

the literature (Mattiussi, 2005; Mattiussi and Floreano, 2007; Dürr et al.,

2006; Marbach et al., 2007).

AGE describes an analog network by means of an artificial genome rep-

resented by an ordered sequence of nucleotides. Nucleotides are expressed

with the characters of an alphabet Ω, for instance the letters A-Z. Nodes

in the network, also called devices, are encoded by particular sequences of

characters, the tokens. Each token signals the presence of a device that is

decoded into a network node in the phenotype. Figure 3.3 shows an example

of a fragment of an AGE genome. Each device has a certain number of in-

puts and outputs that, in the case of neurons, represent dendrites and axon

projections. Inputs and outputs of devices are encoded with terminal se-

quences, i.e. arbitrary sequences of characters that follow device tokens (NE

in the example) and are limited by a terminal token (TE). Once all the net-

work nodes have been extracted, the connections among them are derived.
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W EN F Y I S T E L C F T E I LI S E N E DNH T E V B T ET Y

tokens

terminal sequences

tokens

terminal sequences

non-coding sequences

PR

Figure 3.3: Fragment of an AGE genome. In this example, the tokens

NE signal the presence of a neuron. The two tokens TE determine the

end of terminal sequences. Terminal sequences are used to determine the

connection weights among devices.
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Figure 3.4: The devices, once extracted from the genome, are connected

with connection strengths that derive from a measure of similarity between

terminal sequences. To connect three neurons, nine alignments are per-

formed.
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The output terminal sequence of a device is aligned with the input termi-

nal sequences of all other devices; each alignment produces an alignment

score – an index of similarity between the two terminals. This is computed

using a scoring matrix that specifies the score of each couple of nucleotides

when aligned. Examples of scoring matrices are in (Mattiussi, 2005). The

alignment score is consequently mapped into a connection weight. This is

done by pre-setting a number of parameters: for example alignment scores

below 5 result in no connection, alignment scores in the range 6-16 result

in weights with values in the range [1,10], alignment scores higher than 16

result in the maximum weight of 10. Figure 3.4 shows the alignments of the

input and output sequences with three neurons.

3.3.1.2 Evolution

In the POE space, evolution refers to the search algorithm that is applied

to the genome. As described at the beginning of this chapter, evolutionary

search is based on the reproduction and mutation of selected individuals.

In light of this, the evolutionary search is concerned exclusively with the

operations at the genome level and the evaluation of the phenotype. At a

more accurate analysis, natural evolution resulted in the evolution of the

developmental process itself, and studies have shown the strong interac-

tion between evolution and learning (Hinton and Nowlan, 1987; Nolfi, 1999;

Paenke, 2008). For clarity, the evolutionary features will be described sep-

arately from development and learning.

An evolutionary algorithm for neural networks generally includes the

following main features.

• The representation of a population of networks.

• A simulated or physical environment where individuals are tested.
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• A selection mechanism that chooses networks for reproduction.

• A mutation operator that, either during or immediately after repro-

duction, mutates the genome generating offspring that are an imper-

fect copy of the parents. The mutation strength and the probability

distribution of the noise that generates mutation are important fea-

tures. Adaptive mutation strength is a popular feature implemented

in various evolutionary algorithms such as evolution strategies (ES)

(Bäck et al., 1997).

• A crossover operator that combines two or more networks to generate

a new offspring.

• A variable length genotype is useful when the number of features

or complexity of the phenotype is not known a priori. A variable

length genotype empowers the evolutionary algorithm with a large

search space. To such purpose, extra genetic operators are introduced:

addition, duplication and deletion that respectively add, duplicate or

remove parts of the genotype.

For each of these features, the literature on Evolutionary Algorithms

and Neural Networks proposes studies over approximately three decades

resulting in a large theoretical and experimental knowledge on the subjects.

The author refers to the literature for further detail (Yao, 1999; Floreano

et al., 2008). The particular aspects of the evolutionary algorithms used in

this thesis will be described and justified later in Chapter 5.

3.3.1.3 Adaptation and Memory

A desired feature in neural networks is often the robustness to environ-

mental changes and the capability of adapting to new scenarios. In this
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respect, biological networks display remarkable capabilities of adaptation.

In the field of control engineering, adaptive control is a well developed area

that provides theories and expertise in changing control conditions (Bishop

and Dorf, 2001). Apparatuses that govern spacecraft, aircraft, ships and

industrial applications affected by high variations in the systems require

sophisticated control policies. In those situations, a fixed response to en-

vironmental stimuli does not provide a satisfactory control. In the field of

feed-forward neural networks for classification tasks and in many early ap-

proaches to learning in neural networks, supervised learning and forms of

gradient descent – which are not however a focus in this thesis – have been

proposed (Widrob and Lehr, 1990).

Adaptation and learning in animals are important aspects that artificial

devices aim to reproduce. A brief introduction to the use of the term learn-

ing has been given earlier in Section 2.2.3 outlining the variety of meanings

of learning. The examples in the literature of adaptive and learning con-

trol networks are numerous, and their overview goes beyond the scope of

this thesis. A few significant examples of adaptive networks in the field of

robotics and artificial life are reported here.

Adaptive behaviour can be achieved by different means. The most intu-

itive way is to modify the network connectivity, operating a weight update

on some or all connections of the networks. Alternatively, adaptivity and

memory can be achieved in neural networks with fixed weights when infor-

mation can be retained in the activation values rather than in the weights.

Elman networks (Elman, 1990) use nodes with recurrent connections to

memorise past neural states. If neurons are modelled to have an inertia

in their activations, for example in the form of leaky-integrators (Beer and

Gallagher, 1992), they can be said to have a memory. In (Yamauchi and

Beer, 1994), neural networks that used leaky-integrators as activation values
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were shown to display learning-like behaviour. The issue whether adapta-

tion and memory can be better achieved with dynamic weights or with

network states has not been clarified. Although most studies seem to in-

dicate the suitability of weight update for adaptive behaviour (Montague

et al., 1995; Suri and Schultz, 1999; Floreano and Urzelai, 2001b; Urzelai

and Floreano, 2001; Alexander and Sporns, 2002; Soltoggio et al., 2007),

there are examples where adaptive behaviour is achieved with fixed weight

networks (Yamauchi and Beer, 1994; Stanley and Miikkulainen, 2003a). It

is plausible that a combination of weight update and recurrent connections

is potentially the best way to implement adaptation and memory.

It is important to note that adaptation in uncertain and dynamic en-

vironments is distinct from learning in static environments. In the latter

case, where static conditions are preserved across generations of individuals,

evolutionary learning can take place, and an interaction between learning

and evolution is observed (Paenke, 2008).
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Chapter 4

Dynamic, Reward-based
Scenarios

4.1 Control Problems for Online Learning

The artificial environments used in this thesis are characterised by a single

agent operating in reward-based dynamic scenarios. In this type of environ-

ments, an agent performs well when it maximises the reward intake during a

lifetime, which is generally composed of a number of plays, or trials. A trial

is a sequence of events that can be seen as a single experience from which

certain facts about the environment can be learnt. A trial often leads to the

collection of a reward depending on the specific actions performed by the

agent and the current environmental conditions. The term dynamic refers

to the nonstationary environmental conditions, resulting in the occasional

change of type or sequence of optimal actions that maximise the reward

intake. For example, the location of the reward, that is kept fixed for a

number of trials, changes at one point during lifetime. In these uncertain

conditions, a fixed action, or a fixed sequence of actions do not maximise

the reward intake because they might be beneficial at a certain point in

time, but not anymore later.

Within this general definition, a variety of environments can be devised.
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4. DYNAMIC, REWARD-BASED SCENARIOS

The physical environment can be purely symbolic, i.e. without an explicit

dimension in space, or 1-D, 2-D or 3-D. Here, symbolic, 1-D and 3-D envi-

ronments were used.

4.1.1 Why dynamic scenarios

Dynamic scenarios, also defined as uncertain foraging environments in (Niv

et al., 2002), outline differences between adaptive and non-adaptive agents.

Non-adaptive agents do not perform well in such environments because un-

able to change their strategy when the environmental contingencies change.

On the contrary, adaptive agents listen to environmental signals and change

their strategy in order to perform well in different situations. Therefore, dy-

namic environments can be used to test or measure the level of adaptivity

in agents.

4.1.2 Why reward-based scenarios

Reward signals are indispensable environmental cues to detect a change

in a dynamic scenario. Consider an agent that can go alternatively to

position A or to position B. In a stationary (non-dynamic) environment,

going to position A is always good, going to position B is always bad. In an

evolutionary process, agents going to A will survive and reproduce, whilst

agents going to B will not. After few generations, all agents will go to A

and perform optimally.

On the contrary, in a dynamic (nonstationary) scenario, going to po-

sition A can be good at times, and bad later on, and similarly for B. In

such condition, even the most adaptive agent can do nothing if the environ-

mental change cannot be detected. Reward signals are information in the

environment that allow the detection of such changes.
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4.1.3 Types of uncertainties

Consider the previous example of an agent going to locations A or B. In

stationary conditions, A is always good, and B is always bad, or vice versa.

In uncertain conditions, A is good at times and B is good at other times. A

fundamental aspect in nonstationary conditions is when and how A and B

change their reward. An agent can exploit environmental conditions only if

the reward given by A at time t is correlated with the reward given at time

t − 1. Even in nonstationary conditions, the change in rewards must have

a slower time scale than the trials (plays or samples)1: for example, A is

good and B bad in the first half of the agent’s lifetime, and vice versa in the

second half of the lifetime. In this case the change in reward contingencies

has a period of one lifetime of the agent.

The problem is more difficult if a level of noise affects each sample.

Assume that the location A provides a high reward of 1 on average, but each

sample is either 2 or 0 with a probability 0.5. In this condition, the average

reward of 1 can be estimated only by averaging a number of past samples.

A conceptual difficulty arises here because in nonstationary conditions past

samples might describe an old condition of the system that has now changed.

On one hand since the last reward sampled is noisy, it does not describe well

the average, but on the other hand the average over more past samples might

be an outdated value in new conditions. A possible approach is to consider

a weighted average where recent samples have more weight than older ones.

However, if the rule that governs the reward policy is not known to the

1If the reward changes with a high frequency, resulting in a substantial change between

two consecutive samples, there is a low or no correlation in reward between one visit to

a reward source and the next visit to the same source: in this conditions, rewards can

be considered random and learning is not applicable.
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agent, an optimal strategy cannot be defined. The agent can at best apply

an inductive method to extract the hidden state of the system, but even

so the result of the inductive method can be falsified when an unforeseen

slow-frequency change occurs. If the environment is characterised by hidden

states, the reward at each sample can be the product of an arbitrary number

of factors, each of which can change with arbitrary frequency.

Following these observations, the adaptation skills of an agent must

be judged in combination with the reward policies that characterise the

environments. For example, policies of exploration and exploitation2 cannot

be evaluated without a precise definition of elements like the length of an

agent’s lifetime, the autonomy of the agent in the absence or rewards, the

scope of rewards, number and frequency of the factors that produce the

rewards. For example, a large autonomy of the agent in the absence of

rewards and a long lifetime could favour higher levels of exploration versus

exploitation. Figure 4.1 illustrates possible reward policies.

4.1.4 Hidden and non-hidden rewards

The agent can use sensory information to detect the state of the system

at various times during its lifetime. A well-performing agent listens to

environmental stimuli to identify the best course of actions. A reward-

based environment provides two types of information: (a) reward signals

upon the collection of a reward item, either during or at the end of a trial

and (b) reward indicators, predictors or conditioned stimuli that provide

beforehand static or uncertain indications of the reward locations. When

the information of the type (b) is uncertain (in dynamic environments),

the reward, and consequently the correct sequence of actions are hidden

to the agent, because predictors change their meaning with time. The

2Examples are the ε-greedy methods (Sutton and Barto, 1998).
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Figure 4.1: Example of reward policies. The continuous and dashed lines

represent the reward given at two location, say A and B. Graph 1 (upper

left): the reward changes once half way during the represented period of

time. Graph 2 (upper right): the reward changes continuously, but a stable

average reward exists in the first and in the second half. A major transition

happens once half way during the represented period of time as in Graph 1,

the average reward is also as in Graph 1, however, each sample is affected by

a Gaussian noise with σ = 1. Graph 3 (lower left): the reward changes con-

tinuously, and there is not a stable average based on past sample. However,

the reward depends on one factor only (one sinusoid function) whose values

can be easily predicted. Graph 4 (lower right): the reward changes contin-

uously, there is not a stable average based on past sample and two factors

produce the reward, a sinusoid function and a Gaussian noise, resulting in

a difficult problem in estimating the best rewarding option.

70



4. DYNAMIC, REWARD-BASED SCENARIOS

agent can discover the best sequence of actions only by a process of trial

and error, exploring certain actions at first and exploiting the good ones

later. When information of type (b) is static, such information can be

acquired on an evolutionary scale, and the agent can evolve to read certain

indications of the reward locations. In this case, no exploration is required

and a well-performing agent can perform immediately the correct actions to

maximise the reward, provided that it has evolved some innate knowledge

on the meaning of predictors. In the first case, when the environment

hides the rewards, the agent must undertake a process of possibly unfruitful

explorations before discovering the best sequence of actions to exploit: this

process of trials and errors strongly recalls learning in animal behaviour

(Skinner, 1981). In the second case, when information of the type (b) is

static, no exploration is required and the agent can exploit immediately the

successful sequence of action, therefore appearing not to require learning.

However, it is important to note that in both cases adaptation to changing

reward contingencies is required. Dynamic, reward-based scenarios with

hidden rewards are suitable for testing reinforcement learning algorithms

(in machine learning), animal learning skills as operant reward learning,

and the adaptation and memory skills sought in the work of this thesis.

Three main environments were devised for the studies presented here:

1. Symbolic n-armed bandit problems.

2. Simulated foraging flying bees.

3. Agents navigating T-maze environments.

All environments are dynamic, reward-based with hidden rewards, and

non-hidden reward in one case.
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4.2 n-armed Bandit Problems

An n-armed bandit problem (Sutton and Barto, 1998) is described by an

agent choosing an option (an arm) from a set of many possibilities. The

name derives from the analogy with a slot-machine with n levers among

which a player chooses one. Once an arm has been chosen, it returns a

certain amount of reward. The agent repeats the choice and receives a

reward for a number of times – for instance a 1000 times – and each time

is called a play. The task of the agent is to maximise the total reward.

Ideally, choosing the arm that on average returns the highest reward

represents the optimal strategy. However, the average reward of each arm

is not known to the agent that is at best capable of learning an estimate

by trying different arms. An accurate estimate of the average reward of an

arm might require more samples if the rewards are stochastic. Each play

where the agent makes a sub-optimal choice is an implicit cost given that

the total number of trials is limited. However, a number of exploratory

plays are necessary to identify the optimal arm, i.e. the one that returns

the highest reward on average.

In nonstationary armed bandit problems the average reward associated

with each arm varies with time. A variety of machine learning algorithms

have been established for the optimisation of these problems (Sutton and

Barto, 1998). A drawing of a 3-armed bandit problem is illustrated in Figure

4.2

This type of problem represents the higher abstraction of simple rein-

forcement learning problems. Nevertheless it captures several aspects of

real world situations like the balance between exploration and exploitation,

decision making problems, uncertainty in the environments and memory

requirements (Bogaz, 2006)
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Figure 4.2: An agent on the left of both frames picks a card from one of three

decks A,B,C. Further choices are repeated indefinitely. Each deck has cards

that on average return different rewards. In the figure, the coins on the right

side represent the average reward of each deck. The agent does not know

which deck of card is the best and will have to sample them to estimate the

average reward for each of them. In nonstationary situations, the average

reward provided by each deck changes over time, as it is illustrated with

the left and right images that picture two different situations in time.

4.3 The Bee Foraging Problem

Foraging tasks of bees and bumblebees are known problems that require

learning and adaptivity (Keasar et al., 2002). The flight to a flower field for

nectar collection is a risky activity: predators determine a high mortality

rate during foraging missions, and bees need to maximise the nectar intake

during those trips. Visiting preferably flowers that yield high quantities of

nectar is a rewarding strategy. However, the quantity of nectar is strongly
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dependent on the type of flower, the time of the day, season, weather condi-

tions and other variable environmental factors. High rewarding flowers can

be identified only throughout a process of sampling.

These conditions determine an n-armed bandit problem where the nec-

tar intake upon landing represents a measure of reward, and the different

flowers are the arms. The type of flower, often discernible by the colour,

is a conditioned stimulus that becomes a predictor of an expected reward.

Reward expectations determine a strategy aimed to maximise the total re-

ward over a certain number of trials. Upon changes of reward contingencies,

for example at the change of the season, flowers that had a high content

of nectar turn into low rewarding, and others now blossoming become the

current best choice. It is believed (Menzel and Müller, 1996; Gil et al., 2007)

that the learning process is guided by reward expectations that, when not

fulfilled, result in prediction errors and changes of strategy.

To support this view, an identified interneuron in honeybees appears to

deliver gustatory stimuli representing reward values upon nectar collection

(Hammer, 1993). This finding and following studies (Menzel, 1999, 2001;

Menzel and Giurfa, 2001; Keasar et al., 2002) contributed to the explanation

of associative learning in the neural substrate of the honeybee.

A computational model that tries to reproduce the operant conditioning

with neuromodulation is described in (Montague et al., 1995). Later, a

similar experimental setting was used in (Niv et al., 2002) to optimise a

neuromodulatory network by means of a genetic algorithm. In this thesis,

the simulated bee and the uncertain environment in (Niv et al., 2002) were

reproduced. The details are described hereafter.
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Figure 4.3: View on the flying 3D space and the simulated bee. Blue and

yellow flowers are represented by dark and light squares. The bee flies

downwards and approaches the field under its view cone. The dashed line

shows a possible landing trajectory.

4.3.1 The Simulated Bee

A bee flies in a simulated 3D space with a flower field of 60 by 60 metres

drawn on the ground. Two types of flowers are represented on the field by

blue and yellow 1-metre square patches. The outside of the field and the

sky are represented by grey colour.

During its lifetime, the bee performs a number of flights starting from

a random height between 8 and 9 metres. The bee flies downwards in a

random direction at a speed of 0.5m/s. A single cyclopean eye (10-degree

cone view centred on the flying direction) captures the image seen by the

bee. The image is pre-processed to obtain the percentages of blue, yellow

and grey colours that are fed into the neural controller.

At each time step (1 sec sampling time) the bee decides whether to

continue the flight in the current direction or to change it to a new ran-

dom heading, effectively choosing the colour of the flower for landing. The
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activation value of an output neuron determined whether to change flying

direction. In (Niv et al., 2002), the probability of changing direction to a

new random heading was given by

P(t) = [1 + exp(p1 · a(t) + p2)]−1 , (4.1)

where p1 and p2 were evolvable parameters, and a(t) the activation of the

output neuron. Equation 4.1 was adopted in (Soltoggio et al., 2007) to

reproduce accurately the experiment in (Niv et al., 2002). However, the

experiments in Section 6.3 showed that such complexity is not required as

the decision can be taken with the simpler rule

Flying direction =

{
unchanged if a(t) ≥ 0
new random if a(t) < 0

Figure 4.4 illustrates the inputs and output for the bee as used in Section

6.3. The bee in Section 6.4 had additional differential colour inputs3 and

performed flying control according to Equation 4.1.

4.3.2 Scenarios

The two flowers, characterised by blue and yellow colours, yield a certain

amount of nectar. The nectar is a measure of reward given to the bee

upon landing. Here four scenarios were characterised by different stochastic

nature of rewards. Table 4.1 shows the numerical values of rewards in each

of the four scenarios.

Ideally, an optimal strategy samples the flowers to determine the high

rewarding flower and repeatedly exploit that flower. However, scenarios

3The differential colour inputs signalled the increment of decrement in percentages

of colours under the cone view during the flight. They were introduced to reproduce

accurately the settings in (Niv et al., 2002) as it will be explained later in Section 6.4.
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Figure 4.4: Inputs and output the neural network that controlled the bee.

Both inputs and internal neural transmission were affected by 2% noise.

The action of changing flying direction was taken according to Equation

4.3.1 for the experiments in section 6.3 and according to Equation 4.1 in

Section 6.5.

2, 3 and 4, given the stochastic nature of the rewards, require repeated

sampling to determine which colour yields the higher reward on average.

As a consequence, scenario 1 is an easier problem to solve than scenario 2,

and scenarios 3 and 4 are the most difficult. The evolved controllers in (Niv

et al., 2002) solved only scenarios 1 and 2 although the evolutionary search

was attempted also on the more difficult scenarios4.

Initially, the blue and yellow colours are assigned to the high and low

rewarding flowers respectively, or vice versa on a random basis. During

each scenario, the colours are inverted, thus changing the association be-

tween colour and high/low reward. The random initial assignment and the

4The values in Table 4.1 are taken from (Niv et al., 2002) for scenarios 1 and 2. The

values for scenarios 3 and 4, used in (Soltoggio et al., 2007) where carefully chosen to

exclude trivial strategies: the high rewarding flower provides reward values in the range

0.0-1.6, whereas the low rewarding flower in the range 0.0-1.0. The reward value 0.8 can

be given either by a high or by a low rewarding flower.
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Table 4.1: Reward policies for the foraging bee. P indicates the probability

of the reward.

Scenario High rewarding flower Low rewarding flower

Reward Avg Reward Avg
1 0.8 0.8 0.3 0.3

2 0.7 0.7
1.0 with P=0.2
0.0 with P=0.8

0.2

3
1.6 with P=0.75
0.0 with P=0.25

1.2
0.8 with P=0.75
0.0 with P=0.25

0.6

4
0.8 with P=0.75
0.0 with P=0.25

0.6
0.8 with P=0.25
0.0 with P=0.75

0.2

following switch of colours introduce uncertainty in the environment.

4.3.3 Correspondence Between Fitness and Behaviour

According to the scenarios and reward values provided in Table 4.1, certain

behaviours map into certain fitness values. This correspondence is described

hereafter.

In scenario 1, random flying directions, which typically occur in ran-

domly initialised controllers during the first generation of an evolutionary

algorithm, result in the bee landing either on blue flowers, yellow flowers,

or outside the flower field. If the bee acquires through evolution the skill

of landing consistently on the flower field, but chooses random flowers, the

expected reward corresponds to the average reward on the field given by

0.8 · 0.5 + 0.3 · 0.5 = 0.55, where 0.5 is the probability of a flower being blue

or yellow, 0.3 and 0.8 the reward values. Over 100 flights, a bee collects

on average 55 reward if it lands consistently but randomly on the field. If

a bee collects on average less than 0.55 reward per landing, it means that

the bee does not land always on the flower field, but lands sometimes out-

side. If a bee collects consistently more that 0.55 reward per landing, it is
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capable of associating flower-colour to reward. An optimal control strategy

allows the bee to collect 79.25 reward per lifetime, and not 80, because of

exploratory landing at the beginning of the lifetime (minimal reward loss

on average: (0.8− 0.3) · 0.5 = 0.25) and half way during the lifetime when

the reward changes (minimal reward loss in average 0.8 − 0.3 = 0.5). Any

bee that reaches constantly over many tests a fitness value between 55 and

79.25 is capable of some level of operant reward learning. However, if a bee

does not reaches optimal values, it is difficult to infer the causes of fitness

loss exclusively from its value. A possibly cause of fitness loss could be a

slow change in flower-preference when the flowers switch their reward. An-

other cause is a high level of exploration which drives the bee to visit the

low-rewarding flower with a certain frequency. A third cause could be the

tendency of the bee to land outside the field in certain conditions or with a

certain probability.

Similar considerations can be done for all scenarios, considering the val-

ues and probabilities of high and low reward provided in Table 4.1. It is

important to note that the minimal reward loss on average increases when

high frequency noise affects the reward as in scenario 3 and 4.

4.4 T-mazes

T-mazes are often used to observe operant conditioning (Britannica, 2007a)

in animals requiring to learn for instance whether a reward in the form of

food is located either on the right or on the left of a T-maze.

Two T-mazes represented in Figures 4.5 and 4.6 were devised. In the

first case (Figure 4.5), an agent is located at the bottom of a T-maze. At

the end of two arms (left and right) there is either a high or a low reward.

The task of the agent is to navigate the corridors, turn when it is required,
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H

Figure 4.5: T-maze with homing. The agent explores the maze and returns

home (H) after collecting the reward. The amount of reward is proportional

to the size of the token. During navigation the agent can be located at

different points in the maze. The bottom grey square identifies the home

location (H), the grey square at the extreme left and right are the maze-

ends where the reward is located. The central square (T) is the turning

point. The grey areas are connected by corridors that can be adjusted to

have different or variable lengths.

collect the reward and return home. This is repeated many times during a

lifetime: each trip to a maze-end is a trial.

A measure of quality in the agent’s strategy is based on the total amount

of reward collected. To maximise this measure, the agent needs to learn

where the high reward is located. The difficulty of the problem lies in

the fact that the position of the reward changes across trials. When this

happens, the agent has to forget the position of the reward that was learnt

previously and explore the maze again. The position of the high reward

is changed at least once during lifetime, resulting in an uncertain foraging

environment where the pairing of actions and reward is not fixed: turning

left might result in a high reward at a certain time but in a lower reward

later on.
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The complexity of the problem can be increased, as shown in Figure

4.6, by enlarging the maze to include two sequential turning points and

four possible endings. In this problem an optimal strategy is achieved when

the agent explores sequentially the four possible maze-ends until the high

reward is found. At this point, the sequence of turning actions that leads

there should be learnt and memorised together with the return sequence to

the home location.

R

R

RA

R

H

T T

0

1 2

3

T

Figure 4.6: Double T-maze with homing.

4.4.1 Inputs and Outputs

The T-maze as implemented in this thesis had minimal sensory-motor in-

formation. Inputs and output are illustrated in Figure 4.7. Given such

minimal sensory-motor information, the T-mazes can be seen as a one di-

mensional environment. No distance from the wall is defined: the only

navigation stimulus is the turn-input that remains low along corridors and

goes high at turning points. Similarly, the output information is a single

value indicating left/straight/right direction. The position of the agent is
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Figure 4.7: Inputs and output of the neural network that controlled the

agent. The Turn input was 1 when a turning point was encountered. M-E

is Maze-End: it was 1 at the end of the maze. Home became 1 at the

home location. The Reward input returned the amount of reward collected

at the maze-end, it remained 0 during navigation. One output determined

the actions of turning left (if less than -1/3), right (if greater than 1/3) or

straight navigation otherwise. Turning while in a corridor, or going straight

at a turning point resulted in the agent to crash, the trial being cancelled

and the agent being repositioned at the home location with a fitness penalty.

Both inputs and internal neural transmission were affected by 2% noise.

defined only by the distance to the next turning point or maze end, or being

at one of these locations. It is important to note that this minimal configu-

ration was not devised to reduce the problem complexity. On the contrary,

the input-output signals were constructed to cancel apparent memory be-

haviour emerging from spatial interaction with the environment. In memory

and learning experiments with robots in physical mazes, it has been shown

that robots might display memory-like behaviour by means of subtle inter-

actions with the environments. Consider a T-maze where a light-source is

positioned along a corridor either on the left or on the right. A memory task

can be devised in a T-maze by requiring the robot to turn at a turning point

in the direction previously indicated by the light that was encountered dur-
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ing the navigation in the corridor. Evolutionary experiments (executed also

as preliminary investigation for this thesis) showed that a common evolved

strategy is to approach the wall where the light is, and proceed by wall-

following. At the turning point, the robot remains anchored to the wall and

performs the correct turn as indicated by the light encountered previously.

The robot appears to display short term memory. However, the memory

behaviour is an emergent property of the interaction with the environment,

and the robot is capable of performing such task with a feed-forward fixed

weight network, therefore without a memory of its own.

Given the focus of this work on testing adaptation, learning and memory

in neural controllers, it was of fundamental importance to exclude the pos-

sibility of memory information being stored in the interaction between the

robot and the environment. With the sensory-motor information described

above and illustrated in Figure 4.7, it was assured that the learning be-

haviour and memory shown later in Sections 6.5-6.7 was achieved by means

of information stored in the neural controller.

4.4.2 Correspondence Between Fitness and Behaviour

Similarly as in Section 4.3.3, it is possible to identify different levels of fitness

for each behaviour. We assume here that the high reward has a value of

1.0 and it is placed in only one location of the maze; the low reward has

a value of 0.2 and is located in all the other locations (maze ends). In

the single T-maze, a random navigation will result in an average reward

of 1.0 · 50 + 0.2 · 50 = 60 reward over 100 trials. Accordingly, an agent

that collects on average less than 60 has not reached good navigation and

incurs into crashes. An agent that collects on average 60 over a lifetime

of 100 trials might be an agent capable of good navigation, but unable of

performing operant reward learning, i.e. it cannot associate actions with
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consequent rewards. However, a reward of 60 can also be collected by an

agent capable of operant reward learning that incurs into occasional crashes.

Considering now an optimal strategy, a controller will need on average 0.5

trials to identify the high rewarding arm at the beginning of a lifetime (i.e.

to find whether the reward is on the left or on the right, being this a random

initial condition), and 1 trial when the reward switches location. In total,

the minimal reward loss is 0.5 · (1.0− 0.2) + 1 · (1.0− 0.2) = 1.2, resulting

in a maximum reward of 100 − 1.2 = 98.8 reward that can be consistently

collected over many lifetimes.

For the double T-maze, a random navigation strategies without crashes

over 200 trials results in the collection of 80, given by the collection of the

high reward for a quarter of a lifetime and a low reward for three quarters

of a lifetime (50 · 1 + 150 · 0.2). An agent that collects less than 80 is

an agent that crashes occasionally. An agent that collects on average a

reward of 80 might be an agent that does not crash but it cannot associated

actions and reward. Alternatively, an agent might collect a reward of 80 on

average even if it is capable of operant reward learning, but it incurs into

occasional crashes. Considering now an optimal strategy, an agent collects

high rewards with a minimal reward loss of 4.8 each lifetime. This is given

by the reward loss of 0.8 (resulting from visiting a low rewarding maze end)

times the number of trials that ends on average in a low rewarding maze

ends. An agent that explores all the maze ends sequentially will lose no

reward if the high reward is found at the first attempt. It will lose 0.8 if the

high reward is found on the second attempt, 1.6 on the third and so on. On

average (0 + 0.8 + 1.6 + 2.4)/4 is 1.2 reward loss each time the location of

the high reward must be identified. In the double T-maze, and according to

the experimental settings, the are 4 occasions when the high reward must

be identified: at the beginning of a lifetime, and 3 more times each 50±15
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trials when the reward changes location. Therefore, the maximum fitness

that can be consistently achieved over many lifetimes is 195.2.

Any fitness value between 80 and 195.2 proves that the agent is capable

of some level of operant reward learning. Fitness values that do not reach

the optimal value of 195.2 indicate that some flaw is present in the behaviour

of the agent. It is not always possible to identify which precise behaviour

correspond to a level of fitness because different behaviours can map to

the same fitness value. For example, an agent might evolve to be able to

perform either always left turns, or always right turns in a trial. This agent

that is not capable of visiting the maze end 1 and 2 (see Figure 4.6) will

lose 0.8 reward for each trial when the high reward is either at the maze

end 1 or 2. i.e. 100 trials. Consequently, this agent will at best collect a

fitness 200 − 80 − 0.8 = 119.2, where 0.8 is the average reward loss5. If

an agent is capable of visiting 3 maze ends out of 4, will at best collect

200−40−2.4 = 157.6. However, it is important to note that a fitness value

of approximately 157 can be reached by a great number of behaviours. For

instance an agent can apply an optimal control strategy but can visit only

three maze ends; another case is that the agent can visit all four maze

ends, but it experiences a higher reward loss each time the reward changes

location, for example because it requires more trials to switch its behaviour.

Another possibility is that the agent incurs into a number of crashes, despite

being able to visit all four maze ends and correctly identify the reward. At

a final analysis, it is generally not possible to identify the type of behaviour

from the fitness value when this does not reach optimal values.

5This is 0.8 times 0.5 trials for each time the reward location is unknown but reachable,

in this case twice.
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4.5 Temporal Dynamics

The problems described in Sections 4.2, 4.3 and 4.4 are all instances of

problems where lifetime adaptation to reward conditions is required. A

different complexity in temporal dynamics can be discerned among them.

In the symbolic n-armed bandit problem, the reward information is given

immediately after a choice is made. With the bee foraging problem, a

3D navigation with a variable time-to-land enriches the simulation of the

problem. In the T-maze problems, additional delays between actions and

reward collection are represented by the corridors. In this respect, a network

that solves the double T-maze requires a more complex temporal dynamics

than one that solves the single T-maze. Although the increased number of

decisions in the double T-maze and the additional temporal dynamics are

not a precise definition of problem complexity, the problems are ordered

so that the control networks to solve them require an increasingly complex

temporal dynamics.
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Chapter 5

Model and Design for
Neuromodulation

This chapter introduces the model of modulatory neuron, and modulated

plasticity, being investigated in this thesis, followed by the illustration of

a general plasticity rule on which modulation is applied. The design pro-

cedure by means of an evolutionary algorithm is also described here. The

presentation of the hypotheses concludes this chapter.

5.1 A Model for Modulatory Neurons

A large variety of biological aspects, and limitations of current computa-

tional models (see Chapter 2), concurred to the formulation of the mod-

ulatory model presented here. The main biological inspiring facts were

heterosynaptic plasticity as described in (Bailey et al., 2000), the different

types of neurotransmitters and their interaction, and Dale’s principle (Dale,

1935) as described in (Strata and Harvey, 1999; Bear et al., 2005). In the

field of ANNs, background studies for this thesis (see Sections 2.1.3 and

2.2.3.3) outlined a possible deficiency of computational models in handling

learning cues and stimuli of diverse nature. The hierarchical structure of

environmental stimuli, their variety, classes, time-specificity and circum-
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Mod 0

 Std 4

Std 1

Std 2

Std 3

w1,4

w0,4

w2,4

w3,4

Figure 5.1: Ovals represent standard and modulatory neurons labelled with

Std and Mod. A modulatory neuron transmits a modulatory signal – rep-

resented as a coloured shade – that diffuses around the incoming synapses

of the target neuron. Modulation affects the rate of synaptic update on the

weights w1,4, w2,4 and w3,4 that connect to the neuron being modulated.

scribed function appeared to call for a higher level of diversity of signals in

networks. In (Cohen et al., 2002) it is reported that

[..] the only way for an attractor-based network to perform im-

portant classes of active memory tasks is if it regulates the entry

of information into the network through the use of a gating mech-

anism, phasically triggered by task-relevant inputs. (Hochreiter

and Jürgen, 1997).

In the majority of traditional ANNs there is only one type of neuron, and

one type of ‘neurotransmitter’ with excitatory/inhibitory function. Each

node exerts the same type of action on all the other nodes to which it

is connected. This generally refers to the propagation of activation values

throughout the network. Why the brain instead makes use of a large variety

of neurotransmitters and a complex modulated dynamics is not known.

However, it is reasonable to assume that the complexity of brain functions

requires a richness of neurotransmitters and receptors similar to what is
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observed in animal nervous systems. To bridge this gap, it is conceivable to

extend ANNs by devising different types of neurons.

A special type of neuron defined modulatory neuron is introduced here.

Accordingly, nodes in the network can be either modulatory or standard. In

doing so, the rules of interactions among neurons of different kinds need to

be devised. Assuming that each neuron can receive inputs from neurons of

both types, each node in the network will be sensitive to the intensity of

inputs deriving from each subsystem, i.e. from the sets of neurons belonging

to different kinds. Because two types of neurons are considered, standard

and modulatory, each neuron i regardless of its type has an internal value

for a standard activation ai and a value for a modulatory activation mi. The

two activations are computed by summing the inputs from the two subsets

of neurons in the network

ai =
∑
j∈Std

(
wji · oj

)
+ ab

i , (5.1)

mi =
∑

j∈Mod

(
wji · oj

)
+mb

i , (5.2)

where wji is the connection strength from neuron j to i, ab and mb are bias

values of the standard and modulatory activations, and oj is the output of

a presynaptic neuron j computed as function of the standard activation

oj(aj) = tanh(aj) . (5.3)

The novel aspect in the model is the modulatory activation that determines

the level of plasticity for the incoming connections from standard neurons.

Given a neuron i, the incoming connections wji, with j ∈ Std, undergo

synaptic plasticity according to the equation

∆wji = tanh(mi) · δji (5.4)
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Figure 5.2: The modulatory activation of each neuron passed through a

hyperbolic tangent function, resulting in a continuous gating action on plas-

ticity in the range (-1,1).

where δji is a plasticity term. A graphical interpretation is shown in Figure

5.1. The idea in Equation 5.4 is to model neuromodulation with a multi-

plication factor on the plasticity δ of individual neurons being targeted by

modulatory neurons. A modulation of zero will result in no weight update,

maintaining the weights to the current state; higher levels of modulation

will result in a weight change proportional to the modulatory activity times

the plasticity term (see Figure 5.2).

The modulatory operation of Equation 5.4 can be applied to any kind of

plasticity rule δ and neural model, e.g. Hebbian correlation rules with dis-

crete time dynamics, spiking neural networks, or other. From this view, the

idea of modulating, or gating, plasticity is independent of the specific neu-

ral model chosen for implementation. The dynamics introduced with this

model seek to implement a time-specific and spatially-targeted activation of

plasticity. The transmission of modulatory signals to specific neurons is the

triggering event that enables changes. The type of plasticity that results

from the overall model is therefore an event-triggered and locally-targeted

synaptic update that depends on the network topology, sensory-motor sig-
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nals and internal states.

5.1.1 Target of Modulation

The modulatory neurotransmitter, here represented by signals of modula-

tory neurons, could be modelled to diffuse at different spatial scales. One

modulatory signal could possibly act at the single synapse level, on groups of

synapses or neuron level, and finally on group of neurons. Notions on mod-

ulatory chemicals in biology suggest that their diffusion can be on different

scales involving large areas in some cases (Hasselmo, 1995; Bear et al., 2005),

or be also specific to dendrites branches (Clark and Kandel, 1984). Models

of neuromodulation reviewed in Section 2.2.3.3 consider meanly global mod-

ulatory signals. In this thesis, the choice of introducing a modulatory acti-

vation m for the neuron-model implies that modulation is neuron-specific.

This results in the synapses of each single neuron of being separately mod-

ulated from synapses of other neurons. An even finer scale could have been

devised by implementing synaptic-specific modulation. However, the search

space for a synaptic-specific neuromodulation would increase considerably.

A neuron-specific modulation as implemented here can exert a fine modu-

lation if different neurons in the network encode different functions, and at

the same time, a modulatory signal can innervate more neurons, resulting in

diffuse modulation. In conclusion, a neuron-specific modulation offers the

possibility of targeting neuromodulation to specific neural areas when this

is required. It is not excluded that modulation targeted at finer or larger

scales could be beneficial in certain conditions.

5.1.2 Default Plasticity

The bias mb
i in Equation 5.2 is a particularly important setting. If mb

i is set

to zero, no connection is plastic unless targeted by a modulatory neuron. A
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neuron that is not reached by modulatory axons has fixed weight incoming

synapses. A neuron that is reached by modulatory axons has plastic weights

only when modulatory signals are received. On the contrary, when mb
i has

a default value different from zero, neurons exhibit a background default

plasticity even when they are not targeted by modulatory signals. The

first approach (no background plasticity) has the advantage that weights

are plastic only if targeted by modulation, resulting in a more stable net-

work. This setting was used in (Soltoggio et al., 2007; Dürr et al., 2008).

A drawback is that in this case modulatory neurons are required to enable

any form of plasticity, including non-modulated plasticity. Hence, when

plasticity is required, modulatory neurons need to be enrolled even with-

out a modulatory function, for example transmitting a fixed modulatory

value. On the contrary, a default plasticity (e.g. mb
i = 1 ∀i) in the net-

work implies that the function of modulatory neurons is strictly and only

concerned with modulation, being standard neurons capable of plasticity on

their own. In this second case, modulatory neurons implement exclusively

a modulatory function. This setting, used in (Soltoggio, 2007; Soltoggio

et al., 2008; Soltoggio, 2008b), is more suitable for the assessment of the

specific advantages of neuromodulation.

5.2 A General Plasticity Rule

The gating model presented above is capable of modulating any plasticity

rule. To undertake a general and comprehensive study, the choice fell on a

rule capable of expressing a large variety of plasticity mechanisms:

δji = η · [Aojoi +Boj + Coi +D] (5.5)

where oj and oi are the pre- and postsynaptic neuron outputs, and η, A,B,C,

and D are tuneable parameters. The generality is given by the combina-

92



5. MODEL AND DESIGN FOR NEUROMODULATION

tion of four terms: a correlation term (A) updates the synaptic strength

on an associative Hebbian basis as modelled in classic studies on Hebbian

plasticity (see Equations 2.9 or 2.10); a presynaptic term (B) increases the

strength of the synapse on the basis on the sole presynaptic activity (from

Equation 2.13), and similarly, a postsynaptic term (C) updates all incom-

ing connections according to the activity of the postsynaptic neuron (from

Equation 2.14). Finally, a constant (D) allows for strict heterosynaptic up-

date (Equation 2.15), i.e. synaptic update in absence of pre- or postsynaptic

activity. The use and tuning of one or more of these terms allow for the im-

plementation of a large variety of plasticity rules. Equation 5.5 can lead to

unstable weights due to a positive feedback between synaptic strength and

activities. Alternative models like the Oja rule (Oja, 1982) and the BCM

rule (Bienenstock et al., 1982; Dayan and Abbott, 2001) can be used to

implement synaptic normalisation and competitive growth, although those

models consider Hebbian associative rules only. Here, to keep the model

simple, a saturation value was used to limit synaptic growth to ±10. The

rule was applied to all nodes in the network. Equation 5.5 has been used

in previous studies of neuromodulation (Montague et al., 1995; Niv et al.,

2002).

5.2.1 Types of Plasticity

When the four-term plasticity rule of Equation 5.5 is used in combination

with the gating operation of Equation 5.4, a variety of plasticity mechanisms

can be obtained. The use of each of the four terms in Equation 5.5 gives

rise to four main mechanisms.
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5.2.1.1 Term A: Activation of Input Specific,
Associative Hebbian Plasticity

When considering term A only, Equation 5.4 becomes

∆wji

η
= M · oj · oi , (5.6)

where M is tanh(mi). Plasticity is regulated by the multiplication of three

variables: a presynaptic activity (oj), a postsynaptic activity (oi) and a

modulatory activity (M). Given that the multiplication of pre- and post-

synaptic activities is the traditional Hebbian correlation rule, modulation

becomes a third factor that switches on and off plasticity. So far, this has

been the most popular interpretation of neuromodulated plasticity (Abbott,

1990; Reynolds and Wickens, 2002; Porr and Wörgötter, 2007a). Figure

5.3(a) provides a graphical representation.

5.2.1.2 Term B: Input-specific Cross-correlation

When considering term B only, Equation 5.4 becomes

∆wji

η
= M · oj . (5.7)

This is a correlation rule resembling plain Hebbian. However, plain Hebbian

increases a connection both on the cross-correlation of pre- and postsynap-

tic activities and on the auto-correlation of the two. The auto-correlation

term is what leads to the instability of the connection weight that when

increases also causes increased postsynaptic activity in a positive feedback

(Porr and Wörgötter, 2007a). In the case here, instead, the connection wji

increase exclusively on the cross-correlation of the signals from neurons j

and modulatory. See Figure 5.3(b).
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Figure 5.3: See caption in the next page.
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Figure 5.3: Figure placed in the previous page: graphical representation of

plasticity rules. (a) A three-factor update occurs when associative, input-

specific Hebbian correlation is gated by modulation. (b) A two-factor up-

date occurs when a input-specific cross-correlation term between the presy-

naptic and modulatory neurons is present. (c) A two-factor update occurs

when a cross-correlation term between the postsynaptic and modulatory

neuron updates all incoming connections. (d) One-factor update, or pure

heterosynaptic plasticity occurs when the modulatory neuron alone is ac-

tive.

5.2.1.3 Term C: Cross-correlation

When considering term C only, Equation 5.4 becomes

∆wji

η
= M · oi . (5.8)

This situation is similar to the previous case (B). Synaptic update occurs

according to the cross-correlation term between modulatory activity and

postsynaptic activity. As opposite to Equation 5.7 (case B), the synaptic

update is not input-specific as it involves all the incoming synapses: rule

5.8 is partly heterosynaptic. See Figure 5.3(c).

5.2.1.4 Term D: Pure Heterosynaptic Plasticity

When considering term D only, Equation 5.4 becomes

∆wji

η
= M . (5.9)

Synaptic update is a function of the sole modulatory activity. This situation

recalls experimental measurements on facilitation by means of 5-HT (see

Figure 2.6(b)). A graphical representation is provided in Figure 5.3(d).
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It is important to note that the gating effect of neuromodulation, and

the four components of plasticity illustrated above, do not claim any cor-

rectness with respect to other models, nor pretend to reproduce biological

phenomena beyond the level of loose inspiring principles.
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5.3 The Search Algorithm

The neural model above defines the local properties of homo- and heterosy-

naptic plasticity in a group of at least three neurons: a presynaptic, a post-

synaptic and a modulatory neuron. However, the functional contribution

of this structure at the system and behavioural level is not easily inferred.

It is not known what computational or design advantages this model brings

about when embedded in a closed-loop control system. To answer to this,

the system level computation was sought here by means of evolutionary

search.

The synthesis of closed-loop control systems for the environments of

Chapter 4 was carried out on the unconstrained topological search space of

recurrent networks, including all possible graphs that connect any number

of nodes either standard or modulatory with some or all the inputs and

outputs provided. The search algorithm was modelled after an Evolution

Strategy (ES) (Bäck et al., 1997). The algorithm was enhanced with the

following three features to allow for an efficient topology search:

1. Addition of the genetic operations for neuron insertion/deletion and

duplication to perform the topology search.

2. Use of a spatially distributed population for local tournament selec-

tion. This reduces selection pressure and helps preserving innovative

topologies.

3. Nonlinear function and lower weight threshold for genotype-phenotype

weight mapping. This resulted in sparsely connected networks, an

important feature when evolving networks with plastic weights.

It is important to note that features 1 and 2 recall1 the two most relevant

1The term recall is used here to indicate that these two features of the algorithm in
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features (Stanley, 2008) of a successful algorithm (NEAT) for searching neu-

ral topologies (Stanley and Miikkulainen, 2002), whereas the third feature

was introduced to improve the evolution of plasticity. Therefore, the basic

characteristics of an Evolution Strategy were expanded with the necessary

tools for topology search, nevertheless maintaining a minimal complexity.

The aspects of the algorithm are described in the following sections.

5.3.1 Genotypical Representation

A solution was encoded as a collection of objects describing the various

elements of a network. Real-valued genotypical weights in the range [-1,1]

were encoded in a matrix of size (n+s, n) where n was the number of nodes

in the network and s the number of sensors (input). A bit-vector of size n

specified the type of each node, standard or modulatory. Five real values

encoded the parameters A, B, C, D and η of Equation 5.5.

5.3.2 Evolution and Genetic Operators

5.3.2.1 Selection Mechanism

The selection mechanism was based on a spatially distributed population.

All individuals were placed on a 1-dimensional array. At selection time, the

array was divided into consecutive segments (a random offset from position

zero was used at each generation). The best individual of each segment was

cloned over that segment. Typical sizes of segments were between 3 and 8 as

suggested in the literature (Michalewicz, 1996). A graphical representation

of this selection mechanism is given in Figure 5.4.

This selection mechanism of very simple implementation, although not

popular in the evolutionary computation community, has interesting proper-

ties particularly suitable for artificial life experiments. Firstly, it has more

this thesis are similar but do not reproduce precisely those in NEAT.
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Figure 5.4: Implementation of a spatial tournament selection. In this ex-

ample, a tournament (segment) of size of 3 was used. Segmentation started

with a random offset of 2.

similarity to natural selection than other selection mechanisms. In fact,

each individual competes only with neighbours, allowing for the presence of

individuals with very different fitness in the population, so long as they are

in different areas. The fact that individuals that are distant do not compete

might result in the differentiation of solutions without an explicit specia-

tion mechanism. Another important feature is that successful individuals

spread their genes linearly throughout the generation cycles, whereas most

selection mechanisms in EAs result in exponential diffusion of successful in-

dividuals. This characteristic allows for a better diversity in the population

as individuals with low fitness are not so quickly taken over by better ones.

The size of the segments and the probability distribution of the random
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Figure 5.5: Effect of a spatially arranged tournament selection on the fitness

progress of a population of a thousand individuals.

offset determine the selection pressure and the rate of gene diffusion in the

population. The segmentation offset can be a random number between 0

and seg−1 where seg is the size of segments. However, a smaller range can

be employed, for instance with offset values from the set {0,1}.

A drawback of this selection mechanism is the slow convergence since

successful individuals, growing linearly with the generations, take a con-

siderable time before reproducing to a sufficient number to exploit specific

areas of the fitness landscape. Figure 5.5 shows the fitness of individu-

als during an evolutionary run. It is possible to note that high picks in

the graph (indicating successful individuals) tend to grow in width linearly

throughout the generations.
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5.3.2.2 Mutation

Mutation is applied to all individuals at each generation by adding to each

gene a positive or negative perturbation

d = e(−Pu) , (5.10)

where u is a random number drawn from a uniform distribution [0,1] and

P is a precision parameter. Experimental results suggested good mutation

rates when P ranges between 150 and 200. This probability distribution

favours local search with occasional large jumps as described in (Rowe and

Hidovic, 2004). A probability distribution that acts similarly can be gen-

erated with two Gaussian, one with a small variance applied with a high

probability, and one with a large variance, applied with a small probability.

Figure 5.6 plots those density functions. It is important to note that despite

the different shapes of probability distributions for mutation, the general

concept of mutation as a step of an EA does not change. Other probability

distributions were suggested and showed effective on different fitness land-

scapes (Yao and Liu, 1999; Lee and Yao, 2004), while in (Soltoggio, 2005)

and (Soltoggio, 2006) it was shown how different mutation operators can

benefit specific problems. The choice of Equation 5.10 was done here after

preliminary experiments that showed it particularly suitable for evolving

neural topologies.

Recombination of genomes was implemented by allowing two individuals

to generate one offspring: one point crossover on the weight matrix was

applied with low probabilities in the range [0.1,0.2].

A set of special genetic operators was devised to perform the topology

search: insertion, duplication and deletion of neurons were introduced re-

spectively to insert a new neuron in the network (a new line and row were

added to the weight matrix), to duplicate an existing neuron (a line and a
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Figure 5.6: (A) Density of the probability distribution f(x) = 1/(Px) with

P equal 50. (B) Density of two Gaussian distributions with standard de-

viation of 0.2 and 0.01. For a better visualisation, the y-axes show values

between 0 and 10 although the functions extend beyond this value.

row were duplicated in the weight matrix), and delete a neuron (a line and

a row were deleted from the weight matrix). These operators were applied

on individuals with probabilities in the range [0.01,0.05]. Inserted neurons

had the same probability (0.5) of being standard or modulatory.

5.3.3 Phenotypical Expression

The mapping from genotype to phenotype has proved to be crucial for the

successful evolution of topologies. Two main features were implemented

here: 1) a cubic function mapping of genotype-weights into phenotype-

weights and 2) a lower threshold on weights to reduce the network connec-

tivity. The reasons for adopting these features are explained below.

All real values in the genome (GeVi) are in the range [-1,1]. The pheno-

typical values PhVi are mapped as PhVi = R ·(GeVi)
3, where R is the range
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Figure 5.7: A null vector of 106 elements was mutated with Equation 5.10

and precision parameter P equal to 10. The result was scaled in a [0,10]

range and values below 0.1 were set to 0. This is the procedure that was

applied to initialise network weights for the evolutionary algorithm. As a

result, approximately 77% of weights were null, the remaining values were

distributed in range [0.1,10] as shown in the histogram.

of phenotype-values here set to 10. The mapping with a cubic function was

introduced to favour small weights and parameters, and allow for the evolu-

tionary growth of larger values by selection pressure when those are needed.

In addition, weights below 0.1 were set to 0, resulting in a network sparsely

connected. If weights were initialised by mutating null values with Equa-

tion 5.10, the phenotypical random network was sparsely connected with

few small weights, Figure 5.7 shows the histogram of a weight distribution.

From this starting network, evolution should be capable ideally of strength-

ening the necessary weights, introducing new weights and removing some

with simple mutations.

Generating sparsely connected networks is particularly important when

using plasticity rules. In fact, a reasonable approach is to allow only existing
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weights to change. A fully connected network, even if most of the initial

weights are very small, would likely saturate all weights after a certain

time. For this reason, the lower threshold that causes small genotypical

weights not to be expressed in the phenotype is an important feature. This

aspect plays a second important role during evolution by allowing neutral

paths in evolution where genotypical changes do not result in phenotypical

variations. In fact, neurons and connectivity pathways might develop in the

genotype without being expressed in the phenotype because the evolved sub-

structure is not connected to the output. Consequently, large unconnected

sub-structures might become suddenly active from one generation to the

next thanks to a small mutation that connects them to the functional part of

the network. Figure 5.8 shows a graphical illustration of genotype mapping

and the effect of a one-weight mutation. Preliminary experiments indicated

that the nonlinear mapping was essential for the topological search and

successful evolution of topologies of adaptive networks.

5.3.4 Alternative Algorithms

The search of network topologies can be undertaken by means of numerous

other algorithms for topology search (Yao, 1999; Stanley and Miikkulainen,

2002; Floreano et al., 2008). Alternatively to the search algorithm presented

above, the topology search was carried out in one instance of the experimen-

tal results (later in Section 6.4) with the Analog Genetic Encoding (AGE)

method for representing solutions.
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Figure 5.8: See caption in the next page.
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Figure 5.8: A fully connected genotype in the upper left corner is mapped

into a partially connected network in the upper right corner. Some connec-

tions (dotted lines) fall below the minimum weight threshold and are not

expressed in the phenotype. Other connections (dashed lines) fall above the

threshold, but connect parts of the network that do not reach the output,

and therefore do not have any functional role during simulation. Those inac-

tive parts can have a role during evolution when they are suddenly activated

by a mutation, as in the bottom graphs.

5.4 Hypotheses

The above discussion led to the following hypotheses to be explored in the

rest of this thesis.

5.4.1 Evolutionary Advantages

The first hypothesis was inspired and formulated concurrently with the

model of neuromodulation. The introduction of the computational model

and its mathematical properties were thought to address the capabilities of

adaptation and memory in neural networks. The hypothesis is that:

Modulatory neurons help the evolution of well performing adap-

tive networks in nonstationary reward-based environments. An

evolutionary algorithm capable of designing unconstrained topolo-

gies of plastic neural networks, using modulatory neurons in

combination with standard neurons, has a higher probability

of finding well performing solutions than a similar or equiva-

lent algorithm that cannot employ modulatory neurons. This

hypothesis holds assuming that similar or equal computational

effort is deployed in both cases with and without modulatory
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neurons.

The evolutionary algorithms described above were used to search for

control networks in the proposed environments. The fitness progress during

evolution and the quality of final solutions were used as main indices. The

advantages were assessed with a phylogenetic and performance analysis on

the solutions when modulatory neurons were available and when they were

not available.

5.4.2 Computational Advantages

Modulatory neurons exert an action that does not affect directly neural

transmission. Modulatory signals affect instead the input-output mapping

over time. The propagation of modulatory signals can be seen as a hierar-

chical signal that modifies synaptic connections, effectively encoding specific

information into weights. Thus, the weights are not merely the means for

producing a result, but are already themselves the product of a compu-

tation. In other words, a network with modulatory neurons can display

synaptic connections which are already themselves the indicator of some

particular neural state or the expression of a specific memory. This is true

for plasticity in general, however, neuromodulatory networks allow for the

separation of the sensory-motor signal transmission from the modulating

instructions represented by modulatory activations. Thanks to this, it is

possible to encode and preserve into weights certain information with more

stability. On the contrary, non-modulated plastic networks do not have hi-

erarchical signals, implying that the encoded information in weights and the

transmission of signals along these weights are interdependent, the second

affecting the first. The hypothesis is that

Modulated networks, by separating weight modification from
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signal propagation, have the possibility of evolving different topo-

logical structures with respect to non-modulated networks. A

different topology can result in different and at times advanta-

geous computational feature.

The inspection of networks in 6.6 will reveal that the same control prob-

lem was solved by different topologies according to the availability of mod-

ulatory neurons, resulting in a computational advantage for the modulated

networks. A test conducted in Section 6.7 consists in applying a modulated

effect on a purely heterosynaptic rule (parameter D in Equation 5.5) and

verifying that complex learning problems can be solved with a complete sep-

aration of signal transmission from updating mechanism, i.e. by generating

a substantially different topology and computation.
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Chapter 6

Empirical Results

The experimental results in this chapter were obtained combining three

fundamental elements: (1) the plasticity and neuromodulation models de-

scribed in Chapter 5, (2) the dynamic, reward-based scenarios described in

Chapter 4 and (3) the evolutionary search described in Chapter 5.

The evolutionary experiments, network simulations, testing and control

problems were coded in C++ language. The statistical analysis and fitness

graphs were obtained with Matlab by Mathworks. Graphical illustrations

were obtained with Omnigraffle, Inkscape and Graphviz.

6.1 Structure of the Experiments

In a first preliminary phase to the study of the evolutionary and compu-

tational advantages of neuromodulation, the problems of Chapter 4 were

tackled without the use of neuromodulation. This was done to assess the

limitation of plastic evolved control networks on the proposed problems.

Section 6.2 shows how n-armed bandit problems were used to investigate

the plasticity requirements to solve these most basic on-line learning prob-

lems. In Section 6.3, the single T-maze and the bee foraging problems were

also tackled without neuromodulation. The results of Sections 6.2 and 6.3
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indicated surprisingly that basic operant reward learning does not require

neuromodulation to be achieved as it was suggested in previous studies.

In a second phase, neuromodulation is introduced into evolutionary net-

works to solved the foraging bee problem. The problem in (Niv et al.,

2002) that was previously tackled with a fixed modulatory topology was now

solved by evolving unconstrained modulatory topologies in Section 6.4. The

results suggested that freely evolvable architectures – by achieving higher

performance – are a better basis for the study of neuromodulation. These

results (Sections 6.2, 6.3 and 6.4) indicated that reward-based uncertain

environments do not elicit necessarily the emergence of neuromodulation,

although when neuromodulation is included in the system (Section 6.4), it

can be used to solve the problem efficiently.

Following the preliminary first two phases—showing that neuromodu-

lated plasticity was not a strict requirement for the computation in the

proposed problems—the T-maze problems were used to assess any evolu-

tionary advantage and cast light on the hypothesis 1 in Section 5.4. In Sec-

tion 6.5, basic plasticity and neuromodulation were compared in the single

and double T-maze problems. The results indicated that while modulatory

neurons did not benefit significantly nor hindered the search in the single T-

maze, spontaneous emergence of modulatory dynamics was observed in the

double T-maze problem, providing in this case a considerable evolutionary

advantage.

Once the hypothesis 1 has been verified, the analysis of the evolved

networks allowed the verification of the second hypothesis in Section 5.4.

In Section 6.6, modulatory and standard networks that solved the double

T-maze were analysed to discover that neuromodulation allowed for faster

information processing. The computational advantage was shown to derive

from different topological features of the modulatory networks.
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The substantially different computation that takes place by means of

modulatory neurons was achieved also in Section 6.7 where pure heterosy-

naptic plasticity was the sole plasticity rule allowed in the experiment. An

evolutionary process with the double T-maze showed that pure heterosy-

naptic plasticity alone can evolve highly adaptive networks, suggesting that

heterosynaptic plasticity is a fundamental computational tool in the evolu-

tion of adaptation.

Finally, the role of reward information in the evolution of well perform-

ing networks with neuromodulation was investigated in Section 6.8. This

experiment was carried out to understand whether the neuromodulatory dy-

namics was responsible for high performance in relation to the presence of

reward information, or alternatively whether neuromodulation was respon-

sible for more fundamental neural dynamics whose evolutionary advantages

are related to the temporal dynamics rather than reward signals. Without

reward information, the evolutionary processes evolved solutions that did

not implement operant reward learning, but rather a dynamical networks

capable of behavioural changes according to sensory information. Neuro-

modulation was shown to accelerate the evolution of adaptive behaviour

even in this case, suggesting that neuromdulation is not used exclusively to

solve reward-based problems.

6.2 Solving n-armed Bandit Problems: A Min-

imal Model

6.2.1 Summary

When an animal repeats with increasing probability those actions that re-

sult in a positive outcome, and decreases the frequency of those that are

harmful, the behaviour is named operant reward learning or conditioning.
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Figure 6.1: (a) Inputs and output of the single neuron control structure.

(b) Example of input-output sequence.

Here, a synaptic plasticity rule based on pre- and postsynaptic activities is

shown to achieve similar dynamics with a single neuron while solving non-

stationary n-armed bandit problems. The plasticity rule was optimised by

an evolutionary algorithm, and its performance analysed. Surprisingly, the

reward-driven learning behaviour originated from all random connections

that, after a brief transitory period, assumed values that reflected reward

contingencies. Moreover, a correct behaviour was quickly restored when

weights were randomised during execution, or the number of arms changed

on the fly. Tests also showed that a learning rate1 can be adjusted to reach

a compromise between rapidity of response and robustness to noise. In con-

clusion, the model is shown to display highly adaptive and robust operant

reward learning in a single neuron.
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6.2.2 Plasticity Rule and Design Method

Figure 6.1(a) shows the model studied here. The neuron has a set of n+ 1

input-weights, where n is the number of arms of the problem, and one extra

input is the reward. The output y of the neuron is the summation of the

weighted inputs passed through the hyperbolic tangent function

y = tanh
( i=n+1∑

i=1

wi · xi

)
, (6.1)

where x are the input values and w are the weights connecting each input

to the neuron. The weight update was given by the rule of Equation 5.5

with weight saturation at ±10.

6.2.3 Inputs-Output Sequences

The inputs for each different arm were normally low and became sequentially

high one at a time, as shown in Figure 6.1(b). After each arm-input became

high, the output of the network (in the range [-1,1]) was sampled: an output

greater than 0 meant that the network chose the arm corresponding to the

currently active input. If the output was less than 0, no choice was made and

other arm-inputs were activated sequentially. When the output was high,

the current arm was selected, the input corresponding to that arm was

kept high while the corresponding reward was fed into the reward-input.

Afterwards, a new play started with the arm selection resuming from a

random arm. Therefore, the neuron had the possibility of selecting one of

the n arms by increasing the output when the ith input-signal was active.

At each moment during the execution, one of the n arms was associated

with the high reward, whereas all the others gave a low reward. At random

1In this experiment, the plasticity rule appeared to represent effectively a learning

rule.
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points during the agent’s lifetime, the high rewarding arm changed, resulting

in nonstationary reward conditions.

6.2.4 Design and Choice of the Model

The model introduced in the previous section had a set of parameters that

required tuning. Those were the initial weights for the arm-inputs, the

initial weight for the reward-input, a possible recurrent connection rc for

the output neuron, the parameters A,B,C,D and η.

Preliminary experiments were conducted employing a basic Evolution

Strategy (Bäck et al., 1997) as optimisation technique on the search space

described above. An Evolution Strategy is an optimisation technique in-

spired by natural selection and reproduction, and bases its search on a

population of initially random solutions. Its use is indicated when little or

no knowledge is available on the problem domain. In this case, the tuning

of the plasticity rule of Equation 5.5 for solving n-armed bandit problems

was not an intuitive procedure. In other words, it was not known what

combination of pre-, postsynaptic, correlation and decay terms would help

achieving the target learning behaviour. Therefore, a set of evolutionary

search processes with different numbers of arms, stochastic rewards, and

neural noise were carried out with population sizes and number of genera-

tions between 100 and 300. The purpose was to investigate the possibility of

achieving the proposed learning with the neural structure illustrated above.

The experimental data suggested that operant learning could be achieved,

and particularly, the three following features appeared to be common to all

evolutionary runs:

1. All search experiments found the same learning rule given by the vec-

tor A,B,C,D = [-1,1,-1,-1].
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2. Initial weights were randomly scattered and did not appear to have

influence on the performance or functioning of the model.

3. The learning rate appeared to be related to the noise in the system

(higher noise, lower learning rate and vice versa) and appeared efficient

in the range [2,6], while the recurrent connection appeared to settle

on a mid strength weight (range [4,6]).

The first feature implies that the same learning rule optimised all the

problems with different arms and noise levels. This rule updated the weights

combining four factors: a negative correlation (A), a positive presynaptic

term (B), a negative postsynaptic term (C) and a decay (D). The second

feature suggests unexpectedly that initial weights were not relevant. Conse-

quently, random weights could be used instead. The third feature indicates

that the learning rate and the recurrent connection were the only two rele-

vant parameters in the model. Thanks to these observations, a final model

was devised for testing. The model used the plasticity rule listed in feature

(1), had random weights and used a learning rate and recurrent connection

in the rages indicated in point (3). The rest of this section is devoted to the

description of the tests and the features of the model illustrated in Figure

6.2.

6.2.5 Analysis of the Model

6.2.5.1 Performance

The model of Figure 6.2 was tested on 3-, 10-, and 20-armed bandit problems

where only one arm gave a high reward, and all the others returned a

low reward. In all cases, 100000 plays were given. The high reward had

an average of 1, and each sample was subject to a Gaussian noise with

standard deviation 0.05; the low rewards were zero plus the absolute value
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Figure 6.2: The model used for test. All weights (except the fix-weight

recurrent connection rc) were initialised as random or small values, and

were constrained in the range [-10,10].

of a Gaussian with 0.05 standard deviation 2. In the 3-armed problem, the

high reward changed location each 100±50 plays. Table 6.1 summarises

the results. The network collected 97096 of total reward, with a loss of

2904. Given the 1000 reward-location changes, the neuron lost 2.904 for

each reward relocation that, considering the 3 possible reward-locations

(arms), was close to an optimal performance3. Similar considerations could

2A Gaussian noise was added to the reward by adding a random value from a Gaus-

sian distribution with σ equals to 0.05 and taking the absolute value of the reward to

avoid negative reward values. A neural noise was also introduced by adding a uniformly

distributed random value in the range [-0,01,0.01].
3An optimal performance can be defined by considering what is the minimal reward

loss that can be collected on average when the reward changes arm-location. This depends

on a number of factors such as mode of exploration, random or sequential, and the

amplitudes and frequencies of the disturbances affecting the reward. For example, if the

high frequency noise on the single sample is high, a good control policy requires more

samples to assess the correct average reward of each arm. In general, when the reward

information is subject to variability of various frequencies (see Figure 4.1), it is difficult
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Arms 3 10 20

Total plays 100000

Switch each 100±50 200±100 300±100
η 6
rc 4

Noise on re-
ward

Gaussian with σ 0.05

Neural noise Uniform ± 0.01

Initial
weights

0.01

Total reward 97096 95251 92657

Table 6.1: Performance of the one-neuron model on 3-, 10-, and 20-armed

bandit problems.
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Figure 6.3: Observed operant conditioning on a 10-armed bandit problem.

The black areas are the arms selected by the neuron at each play; the

coloured shades show the location of the high reward.

be done for the 10-armed problem where the loss of reward for each reward

relocation (500 reward relocation and 4749 reward loss) was less than 10,

and in the 20-armed problem (500 reward relocation and 7343 reward loss),

also displaying near-optimal performance.

to define a general optimal control policy.
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6.2.5.2 Operant Reward Learning

The behaviour of the neuron is illustrated in Figure 6.3 where the choices

triggered by the output are tracked during an execution. The ten options

are displayed on the vertical axis while the time runs on the horizontal

axis. The black areas show which arm was chosen at each play, while the

lighter shade shows where the high reward was located. It is possible to

see how the neuron required some plays to identify where the high reward

was, then that arm was repeatedly chosen until the reward-location changed

again. The behaviour was a combination of exploration (while searching for

the high rewarding arm) and exploitation (when continuously selecting the

high rewarding arm once that was found). As it appears from Figure 6.3,

during exploration the choices fell on seemingly random arms.

A further challenging test was carried out with a 50- and a 100-armed

problems. It was observed that in these cases the model required a finer

tuning of η and the recurrent connection rc, possibly due to the high level of

noise introduced by the high number of connections. Nevertheless, operant

learning was observed even with those high numbers of arms.

6.2.5.3 Noise and Learning Rates

Tests were carried out to assess the effect of higher levels of noise on rewards

and neural transmission. Gaussian noise on the rewards with standard de-

viation up to 0.2, and neural transmission noise between 5% and 20% were

applied to the system during execution. Initial results showed a certain

robustness due to a gradual decrease of performance with increasing noise.

However, the model with a learning rate η equal to 6 displayed an exces-

sive readiness in changing the arm when the high rewarding arm returned

an occasional low value due to noise. It was therefore hypothesised that a

119



6. EMPIRICAL RESULTS

0 
0.05

0.1
0.15

0.2 3
3.8

4.6
5.4

6.2

Low   <   Learning Rate   <   High	

Low   <   Noise Level on Reward   <    High  

Lo
w

 <
 P

er
fo

rm
an

ce
 <

 H
ig

h

Figure 6.4: Effect of varying noise on rewards (σ in the range [0,0.2]) and

learning rates (in the range [3-6]). The samples are from 20x20 tests on a

5-armed problem.

lower learning rate, although slower in adapting to changes in a noise-free

environment, could have better performance with high levels of noise. Fig-

ure 6.4 shows the performance of the model with varying reward noise and

learning rate. From the surface plot, it can be observed that a lower learn-

ing rate could indeed compensate for high level of noise. However, a lower

learning rate implied a slower reaction when the reward changed location.

Hence, the learning rate was a trade-off between speed of adaptation and

robustness to noise. Lower learning rates were less sensitive to noise and

displayed robust performance with little variation as the noise increased.

On the other hand, faster learning rates performed better with low noise,

but their performances deteriorated drastically with high noise (see right

corner of the surface plot). Figure 6.5 shows the behaviour of the model in

exploration/exploitation modes with a low and a high learning rates. The

snapshot captures the moment when the reward switched from arm-1 to
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Figure 6.5: Tests conducted with noise-free conditions. (a) With a low

learning rate (η = 4), the model took some time to identify the initial best

rewarding arm. Moreover, when the high rewarding choice became arm-3

(at play 51), the model showed a certain inertia to switch from arm 1 to arm

3. (b) With high learning rate (η = 8), the model switched more readily its

preference, resulting in the quick identification of the initial high rewarding

arm, and an equivalent fast switch at play 51 when the reward changed.

This fact resulted in high learning rates having better performance when the

system was affected by low levels of noise. However, when the system was

affected by high noise (not shown in this graph), the behaviour in (a) was

more robust while the reactivity displayed in (b) resulted in continuously

switching preference.

arm-3.

6.2.5.4 Neural Weights

Figures 6.3 and 6.5 indicated that the model has dynamics that recall op-

erant reward learning. To gain a better understanding of how this was

achieved, the weights were monitored during execution. To allow for a

readable graphical representation, a problem with 3 arms was chosen, and

a low learning rate of 2 was adopted. A total of 4000 plays were executed.

Figure 6.6 shows the reward values (top row) and the weight values of the

inputs 1, 2 and 3 (the three arms). From the figure it appears that the
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Figure 6.6: Rewards (top row, RoA is Reward of Arm) and weight values

(bottom 3 rows) for the connections from inputs 1 to 3 during a test of 4000

plays. Surprisingly, the weights adjusted to match the expected reward

from each arm. The weights can be seen as memory states representing

the expected reward for each arm. Upon contingencies change, the weights

reorganised themselves to match new expectations.

weights adjusted during execution to match the expected reward from each

arm. During exploitation, the connection weight from the currently re-

warding arm was positive while the others were negative. It is interesting

to note that during exploration (at the start and when the reward changed),

all weights oscillated around zero, but only the one connected to the high

rewarding arm eventually prevailed over the others and grew to establish

an exploitative behaviour. Hence, this rule implemented a form of synaptic

competition, increasing the weight that caused the choice of a high reward-

ing arm and decreasing the others. The weights effectively encoded a form

of memory, and predicted future rewards according to previous sampling.
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When the environmental conditions changed, a rearrangement of weights

took place.

6.2.5.5 Adaptation

From Figure 6.6 it appears that the weights organised themselves accord-

ing to reward contingency to maximise the reward intake. Moreover, in

all the experiments, the weights were initialised to small equal values of

0.01. Therefore, it was hypothesised that the model and learning rule were

capable of adjusting the incoming weights given any initial value, random

perturbation, or increase and decrease of their number. A set of tests was

carried out to test this hypothesis. In a first test, all neural weights were

randomised during execution to measure the time required by the learning

rule to readjust them and restore the exploitation of the high rewarding arm.

Figure 6.7 shows a brief interruption in the exploitation of arm 1 when the

randomisation occurred at play 50 during a 100-play execution. Only a few

plays passed before the correct arm was re-identified. The weights that were

displaced to random values returned rapidly to the correct configuration.

A measure of the time to readjust was obtained by performing 10000 plays

with randomisation of weights every 50 plays. The neuron collected 9582 of

reward, with a reward loss of 418 that over 200 random changes indicated

a loss of approximately 2 while readjusting the weights. It is important to

note that the time to restore the correct weight configuration depended on

the learning rate: slower learning rates required more time to rearrange the

correct weight configuration. However, even with slow learning rates, the

correct configuration was restored after a certain time.

An interesting feature in this test was that all weights were randomised,

including the weight that delivered the reward signal. Because learning

started up from all random weights that were tuned by the plasticity rule
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Figure 6.7: The exploitation of arm 1 was interrupted during the execution

when the weights in the network were randomised. The image shows that

the network restored quickly the correct behaviour.

at any point during execution, it could be inferred that the reward input was

not qualitatively different from the other arm-inputs. In fact, randomising

the weights was similar to shuffling them: accordingly, tests were carried

out by swapping the reward input with an arm input during the execution.

The results showed a quick re-adjusting of weights. Perhaps even more

remarkable was the fact that the model adjusted to the addition or removal

of arms during execution (i.e. when the number of arms changed during

runtime). A 3-armed bandit problem was increased during the execution to

5, 10 and 20 arms. The model was observed to adapt quickly to the new

dimension of the problem, adjusting the newly inserted weights to reflect

the expected rewards of the corresponding arms.

In front of the positive features illustrated so far, some limitations must

be outlined. With the increase of the number of arms, the model performed

exploration on a seemingly random basis, for example returning to sample

more times the same arm and neglecting others. A better algorithm would

perhaps sample sequentially all the available arms4. A second aspect is that

the dynamics of the model relied on a plasticity rule where the sharp sat-

uration threshold played an important role: different settings in saturation

4The best strategy depends on the modality and frequency of the changes in reward

contingencies.
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values would require re-tuning of other parameters of the model. Finally,

the learning rate in the various tests shown here was manually adjusted

to the requirements for speed of adaptation and robustness to noise. Al-

though this was an intended feature to show the role of a plasticity rate as a

mechanism for slow/fast adaptation and robustness to noise, a self-adaptive

plasticity rate could be a highly desirable feature. However, self-adaptive

plasticity rates are indeed the basis of more complex neuromodulated plas-

ticity rules, or heterosynaptic neuromodulation where synaptic plasticity is

gated by modulatory signals. It is conceivable that the simple model pro-

posed here can be further extended by additional dynamics when adjustable

or neuromodulated plasticity rates are implemented.

6.2.6 Conclusion

A synaptic plasticity rule has been introduced here and applied to a single

neuron. The learning tasks on which the model was tested were nonstation-

ary noisy n-armed bandit problems that captured basic features of reward

operant learning, and were considered a challenging task for basic neural

structures. The single neuron was able to perform well on 3-, 10- and 20-

armed bandit problems. Tests on the performance and inspections on the

neural dynamics confirmed that a simulated operant conditioning was dis-

played by the model: surprisingly, the simple neuron was capable of adapt-

ing its behaviour by selecting with higher probability the arm that resulted

in the maximisation of the reward intake. The behaviour could be adjusted

for noisy environments by lowering the learning rate. A lower learning rate

displayed a slower reaction time to reward variations, therefore resulting in

lower performances in absence of noise, but considerably increased robust-

ness when the system was affected by high level of noise. The model did

not require pre-setting of weights because a correct learning behaviour was
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achieved in a few steps starting from any random configuration of weights.

The model could adapt to any online weight perturbation, and supported

the increase or decrease of the number of arms in the described range (3-20

arms). Monitoring the weights during execution revealed that those con-

necting to the currently high rewarding option were strengthened, while

the others were weakened, effectively implementing synaptic competition,

encoding reward expectations and memory.

In conclusion, a plasticity rule on a single neuron solved problems that

were previously tackled with more complex neural structures and plastic-

ity. On those tasks, the simple computational unit proposed here has been

shown to achieve operant reward learning while displaying remarkable levels

of adaptation and flexibility.

126



6. EMPIRICAL RESULTS

6.3 Solving Control Problems without Neu-

romodulation: Experiments with an Agent

in a T-maze and Foraging Bee

6.3.1 Summary

The foraging bee problem and the single T-maze – as described in Sections

4.3 and 4.4 – are 2-armed bandit problems. As opposed to the symbolic n-

armed bandit problems of Section 4.2, here the rewards were collected after

a simulated flight for the bee, and a corridor navigation for the agent in the

maze, introducing a slightly more complex temporal dynamics. Preliminary

runs did not see the emergence of modulatory dynamics. However, contrary

to the experiment in the previous section, it was not possible to identify a

unique plasticity rule. Therefore, it was decided to analyse the performance

of pre-, postsynaptic and correlation rules independently: the purpose was

to observe the degree to which different rules contributed to the solution

of the problems. In contrast to previous studies (Montague et al., 1995;

Niv et al., 2002), the results indicate that reward-based learning could be

achieved with only parts of the general rule of Equation 5.5 and without

neuromodulation.

6.3.2 Plasticity Rules

From Equation 5.5, the terms A, B and C were considered to form 7 par-

ticular rules. These seven rules represent particular instances of the general

rule of Equation 5.5 when some of the parameters are clamped to 0. The

purpose was to test the minimal sufficient dynamics for solving the proposed
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problems. The rules are:

∆wji = η · Aojoi (6.2)

∆wji = η ·Boj (6.3)

∆wji = η · Coi (6.4)

∆wji = η · [Aojoi +Boj] (6.5)

∆wji = η · [Aojoi + Coi] (6.6)

∆wji = η · [Boj + Coi] (6.7)

∆wji = η · [Aojoi +Boj + Coi] . (6.8)

The first three rules use correlation, pre- and postsynaptic mechanisms sep-

arately and independently. The next three rules are linear combinations of

two of the previous ones. The last rule is a combination of all terms. Pa-

rameter D was not considered here because its effect saturates all synapses,

unless it is combined with other parameters (A,B or C) or neuromodulation.

Therefore, Equations 6.5-6.8 can be expanded with term D to form a set

of four additional plasticity rules. However, the experimental results indi-

cated that the set presented here allowed for the solution of the proposed

problems without the use of the term D.

6.3.3 Experimental Settings

The single T-maze in Figure 4.5 and the foraging bee in Figure 4.3 were

used. The inputs and output of the neural controllers were as in Figures 4.7

and 4.4. Four experiments were executed: two experiments with the agent

in the T-maze, with and without homing behaviour, and two experiments

with the foraging bee in scenario 1, and in all scenarios 1-4.

Insertion, duplication and deletion of neurons were applied with proba-

bility 0.01, 0.01 and 0.02 respectively.
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A Gaussian mutation with standard deviation 0.02 was applied to all

genes, and an additional Gaussian mutation (with a larger standard devia-

tion of 0.2) was applied with a small probability of 0.02. One point crossover

on the weight matrix was applied with probability 0.1. A spatial tourna-

ment selection mechanism was used with segmentation size 5, see Section

5.3.2. A population of a 150 individuals was employed with 2000 gener-

ations as termination criterion. To foster the synthesis of minimal neural

architectures, after generation 1000, the algorithm continued the evolution-

ary process with no insertion and duplication of neurons, but maintaining

deletion.

6.3.4 Results

Experiments were executed for each learning rule of Equations 6.2-6.8 and

each problem. To provide statistically significant data, each set included 30

independent evolutionary runs.

Figure 6.8(top) shows the median5 fitness progress over the 30 indepen-

dent runs for the controllers in the T-maze without homing. Four rules out

of 7 (C, AC, BC and ABC) solved the problem maximising the performance

in the majority of runs. Rules A, B and AB alone did not allow for the so-

lution of the problem, suggesting that the rule C was fundamental. Figure

6.8(bottom) shows the fitness progress in the T-maze with homing. In this

case, the problem was more difficult because the agent needed to remember

the way back home after collecting the reward, and failure to do so resulted

in a penalty of 0.3. However, even in this problem, three rules AC, BC

5The median value was used here as a better descriptor than the average of the quality

of the solutions from a set of evolutionary runs. This derives from the fact that solutions

tend to cluster around certain values of fitness, whose average does not describe the

fitness of any solution.
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Figure 6.8: Fitness for each plastic rule with the agent in the maze (a) and

maze with homing (b).

and ABC solved the problem. One rule (C) reached good performance with

some difficulty, while rules A, B, and AB failed as in the previous problem.

Figure 6.9(top) shows the median of fitness values over the 30 inde-

pendent runs for the bee controllers in scenario 1. Three rules (B,C and

BC) failed to solve the problem, two rules (A and AB) achieved good per-

formance. ABC and AC gave the best performance. Figure 6.9(bottom)

shows the fitness progress when the bee performed continuously over the

all 4 scenarios. In this case, only the rule ABC appeared to maximise the

performance.
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Figure 6.9: Fitness for each plastic rule with the foraging bee experiment

in the first scenario (a) and in the 4-scenario case (b).

Although different rules performed differently according to the problem,

optimal solutions were discovered in the majority of runs. Not surpris-

ingly, the general rule ABC allowed good performances, but interestingly

the graphs show that other simpler rules (Equations 2-7) also solved some

of the problems. The bee problems appeared to benefit particularly from

the correlation Hebbian term (A). The T-maze problems instead seemed to

benefit mainly from the postsynaptic rule C, but not from the correlation

term A. Specific features of the environments and the type and timing of

stimuli can suggest possible reasons for this difference.
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Different problems seemed to benefit differently from the proposed rules,

and evolution led to the use of different plasticity rules for different prob-

lems, nevertheless achieving optimal performance in a number of cases. This

fact suggests that these kinds of reward-based learning problems do not ne-

cessitate more complex learning rules as it was instead suggested in previous

studies (Montague et al., 1995; Niv et al., 2002). The hand designed neural

architecture proposed in (Niv et al., 2002) employed the four-parameter rule

of Equation 5.5 with the addition of neuromodulatory plasticity, and solved

scenarios 1 and 2; on the other hand, the solutions that were discovered

here achieve optimal performances in all 4 deterministic and stochastic sce-

narios with less complex rules and without neuromodulatory dynamics. A

possible explanation for the different results is that allowing the evolution-

ary search to exploit minimal rules and topologies resulted in the discovery

of better solutions6 than the hand-crafted modulatory architecture in (Niv

et al., 2002).

6.3.4.1 Neural Architectures

The topologies of networks that solved the problems were analysed to dis-

cover common features and minimal structures. The networks in the popu-

lation after the first 1000 generations displayed a wide variety of topologies

and varying number of neurons. Further 1000 generations without neuron

insertion and duplication resulted in a considerable reduction of the number

of neurons without decrement in performance as confirmed by the fitness

graphs of Figures 6.8 and 6.9.

Surprisingly, the inspection of neural controllers revealed that all four

problems could be solved with remarkably small neural networks of one

6Here, better solutions are intended with respect to the fitness values achieved at the

end of evolution.
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Nr of neurons Nr of connections
Problem Mean Std Mean Std

1) 1.04 0.19 2.59 0.8
2) 1.22 0.41 2.97 1.2
3) 1.43 0.67 5.74 1.4
4) 1.54 0.88 5.93 1.3

Table 6.2: Mean and standard deviation of the number of neurons and

connections in the evolved networks that solved the proposed problems.

Output

Neuron

RewardTurn
Maze

End

Maze

Start

-0.269
3.55

Rule: A = -0.533, C = 0.493, eta = -52.7

Figure 6.10: Example of a network that controls the agent in the T-maze.

This network is capable of identifying the higher rewarding maze-end and

adapt its preference when its location changes. Although the inputs ‘maze

start’ and ‘maze end’ were available to the network, the algorithm performed

feature selection by evolving null weights.

output neuron and no inner neurons. Table 6.2 shows the mean and aver-

age number of neurons in the resulting networks over the 30 runs for each

problem. Figures 6.10 and 6.11 show examples of minimal architectures

for learning networks in the T-maze with homing navigation and in the 4-

scenario foraging bee problem. As indicated in Table 6.2, these surprisingly

simple structures emerged constantly from evolutionary runs and solved the

problems with optimal performance. The small architectures suggest that

essential reward-based learning based on few sensory-motors signals can be

implemented in very compact structures.
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Output

Neuron

RewardYellowBlueGrey Landing

0.546

2.03
-4.43 1.24

-0.133

Rule: A = -0.897, B = 0.408, C = 0.598, eta = 0.379

Figure 6.11: Example of a network that controlled the bee. This network

was capable of identifying the higher rewarding flower and adapting its

preference according to the reward given in 4 different deterministic and

stochastic scenarios.

6.3.5 Conclusion

This work indicated that basic types of reward-based learning in dynamic

scenarios can be achieved with remarkably small neural architectures and

simple plasticity rules.

The methodology of testing different rules on freely evolvable neural ar-

chitectures while operating in the required environment appeared to provide

surprisingly simple solutions to apparently complex problems. The valida-

tion of learning rules and architectures was implicitly guaranteed by the

coupled simulation of networks and uncertain environments. The methodol-

ogy offers a valid tool to discover dependencies between a variety of learning

problems and minimal plasticity rules and topologies.
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6.4 Introducing Evolving Modulatory Topolo-

gies to Solve the Foraging Bee Problem

6.4.1 Summary

The bee foraging problem illustrated in Section 4.3 was initially introduced

and simulated in (Montague et al., 1995) and later used in (Niv et al., 2002)

to show the beneficial effect of neuromodulation for learning in uncertain

foraging environments. In contrast to those studies, the work presented

in the previous section and published in (Soltoggio, 2008a) showed that

modulated plasticity is not required for that particular foraging problem.

Nevertheless, the use of neuromodulation in the bee foraging problem can

be imposed even in freely evolving networks when modulatory neurons are

the only means of achieving plasticity. The work in this section focuses on

topology search and compares the controllers performance with that of the

fixed topology in (Niv et al., 2002). The results indicates that the search of

modulatory topologies led to considerably better solutions with respect to

those with fixed topology in (Niv et al., 2002). In this study, Analog Genetic

Encoding (AGE) was used as an alternative coding method for representing

neural topologies.

6.4.2 Implementation

6.4.2.1 The Simulated Bee

The flying bee and the environment were implemented as described in Sec-

tion 4.3. Inputs and outputs were as follows. Three input neurons provided

the percentage of grey, blue and yellow colours seen at each time step. An

input provided a measure of the nectar collected upon landing. The reward

input was 0 during the flight and assumed the value of the nectar content

at the landing step only. Additionally, a landing signal that assumed value
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Figure 6.12: Example of fragment of AGE genome mapped into one mod-

ulatory neuron and two standard neurons.

1 upon landing and remained 0 during the flight was provided. The landing

signal was considered important to indicate when the expected reward was

due. In (Niv et al., 2002), differential colour-inputs were provided to the

neurocontroller. Differential inputs were made available also here to assess

their utility. The action of changing flying direction was taken according to

Equation 4.1.

6.4.2.2 Analog Genetic Encoding and Networks

Two different devices were defined to encode standard and modulatory neu-

rons with the AGE method. Figure 6.12 shows an example of a part of a

phenotype where two standard neurons and one modulatory neuron were de-

coded from the genome, assuming the nucleotide sequences ‘NE’ and ‘MO’

as device tokens. A constant input set to 1 served as bias. Connection

weights were in the range [0.3, 30] obtained with logarithmic quantisation

from alignment scores in the interval [16,36]. Alignment scores were com-

puted according to the scoring matrix described in (Mattiussi, 2005, page

89). Seven parameters were evolved with the neurocontroller: parameters
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p1 and p2 for the probability of direction change (Equation 4.1); parameters

A, B, C, D and η from equation 5.5. These parameters were represented

as real values in the following range: [5,45] for p1, [0,5] for p2 (Niv et al.,

2002), [-1,1] for A, B, C, D and [0.05,50] for η.

The output oi(t) of a neuron was equal to 2/[1+ exp (−ai(t− 1))]−1 for

standard neurons and 1/[1+ exp (−ai(t− 1)− 1)] for modulatory neurons,

with ai(t) = 3 ·
∑

[wji · oj(t)], where wji is the connection weight from the

standard neuron j to the neuron i. According to these definitions, standard

neurons have a sigmoid output, scaled in the interval [-1,1], whereas modu-

latory neurons produce an output in the interval [0,1] and have an implicit

bias of -1. This setting was introduced to have modulatory neurons sending

low modulation unless excited by positive signals. A preliminary form of

Equation 5.4 was used for modulated plasticity

∆wji =
∑

j∈Mod

(
wji · oj

)
· δji . (6.9)

This equation, as well as output transfer functions illustrated above were

preliminary versions used only in (Soltoggio et al., 2007) and in this section

of this thesis. Equation 5.4 was introduced later in (Soltoggio et al., 2008)

as a refined version and it is used in the rest of the thesis7.

7Certain academic protocols prescribe that a Ph.D thesis should constitute a basis

from which following publications are derived. Nevertheless it cannot be ignored that

the work presented in (Soltoggio et al., 2007), despite being part of the work of this

thesis, was drafted and published long before the writing and publication of this thesis.

Similarly, Equation 5.4 appeared for first in time in (Soltoggio et al., 2008) as a refinement

of the similar model in the previous study (Soltoggio et al., 2007). These temporal

sequence should not be disguised by the misleading assumption that this thesis was the

original source document. The mentioned references—despite they might be considered
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6.4.3 Genetic Algorithm

The search on the AGE genome was performed by a standard, configurable

evolutionary algorithm (Bäck et al., 1997). The population size was 100.

The fitness was the amount of nectar collected by each individual during

the evaluation. A truncation selection mechanism was applied to select

the 50 best individuals from the population. The best individual was kept

unchanged in the population. Recombination probability was 0.1. Mutation

on the AGE genome was performed by nucleotide substitution and insertion

that operate on a single nucleotide, fragment duplication and transportation

that operated on sequences of more nucleotides (fragments) with probability

4.0·10−4. A slightly higher probability of 4.5·10−4 was applied to nucleotide

and fragment deletion. Genomes of generation zero were initialised with

two neurons for each type and random terminal sequences of length 25, i.e.

random connection weights.

6.4.3.1 Scenarios

Scenarios 1, 2 and 3 were used sequentially for the bee’s lifetime during the

evolutionary process. Scenario 4 was used for testing only. The values of

rewards were as those in Table 4.1. Three hundred flights were performed

with scenario switching-points at flights 101±15 and 201±15. The colours

of flowers were inverted about half way through each scenario at flights

51 ± 15, 151 ± 15 and 251 ± 15. Colours were also inverted at scenario

switching-points with probability 0.5: this was done to avoid a predictable

pattern of the high rewarding flower.

self-references—were cited here to clarify the reasons for the difference in the plasticity

models that must be attributed to the chronological order in which they were formulated.
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Figure 6.13: Best and average fitness in one run. When the association

between reward and flower colour is discovered, allowing the bee to switch

flower-preference, an evolutionary jump in terms of performance could be

noticed in all fitness graphs like this.

6.4.4 Performance

Fifty independent runs were executed. The runs terminated after 4000 gen-

erations. Forty-five out of the 50 runs discovered an online learning strategy.

Figure 6.13 shows a typical example of fitness graph. The discovery of a

strategy is indicated by a jump in the fitness values. Jumps in different

runs occurred at various times during evolution, some at an early stage,

some later. Once a strategy was found, the fitness values increase relatively

quickly. The average reward in the field (190 per lifetime) was the threshold

that indicated when an association between reward and flower-colour was

discovered. The maximum fitness was not well defined given the stochastic

nature of rewards in scenario 3. A reference value was given by 270 that was

the sum of average rewards provided by optimal choices during a lifetime.
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6.4.5 Levels of Adaptivity

At the end of the evolutionary search, the controllers were tested on the

3-scenario life used for evolution. Figure 6.14(a) shows the behaviour of

one bee. At contingencies and scenario switching-points8, the bee required

a certain number of flights to change its preference. However, the correct

association between colour and high rewarding flower was always achieved.

Figure 6.14 suggests that the bee had remarkable learning capabilities

allowing for the determination of a better rewarding flower on the basis of

long term historical information from sampling. To support further this

conclusion, the flights that ended with a null-reward are shown in Figure

6.14(b). The zoom on scenario 3 shows that when a flower was chosen, the

bee insisted visiting the same flower in spite of null rewards that were occa-

sionally collected. However, the deceiving experience of more null rewards

in a row caused the bee to switch flower at flight 262, after collecting three

times a null reward from the good flower.

Scenario 1, 2 and 3 constituted the simulated lifetime of the bee during

evolution. A more challenging test was carried out on the unseen scenario

4: the two flowers yield the same reward but have different probabilities of

being empty (see Table 4.1). Surprisingly, Figure 6.16 shows that the bee

was able to learn which flower returned a high mean in the long run. The

test was tried twice with different numerical values of reward (0.3 and 0.8).

6.4.6 Analysis of Networks

The components and connections of the best 5 networks of each successful

run, in total 225 networks, were analysed. Each independent run was free

8The variability of switching-points during evolution was removed during testing to

have equally long scenarios.
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to evolve any topology, plasticity rule and modulatory structure. It was

noticed that successful controllers presented some common features. Fig-

ure 6.15 shows an example of an evolved network. Differential inputs were

connected to the network in approximately 10% of cases only, suggesting

that these inputs proposed in (Niv et al., 2002) were not necessary. The

reward signal (R) was used in 100% of controllers: this is because only by

listening to the reward signal the network could discover the high rewarding

flower and detect changing contingencies. The landing signal (L) was used

in 220 networks, indicating that evolution found this signal beneficial. In

approximately 75% of solutions, the landing signal projected excitatory con-

nections to modulatory and standard neurons, while the reward input sent

inhibitory signals. Thus, the modulatory signal was activated by landing,

and enabled the network to learn new input/output correlations. Simul-

taneously, the reward signal corrected the synapse update according to a

measure of good/bad surprise. All the networks had at least one modulatory

neuron and one standard neuron for the output.

Figure 6.17 gives an insight into the neural dynamics. The modulatory

signal saturated at landing, instructing the network to update synaptic

weights. A low modulatory signal was present during the flight as well, al-

lowing for a slow decay of synaptic weights. At times, modulation dropped

to zero: this happened when the bee saw grey colour outside the field (see

graph in Figure 6.15). A possible interpretation is that the outside of the

field, providing null reward in all scenarios, was not subject to contingency

change, and therefore synaptic plasticity was switched off when the grey

colour was seen. This suggests the appealing perspective that neuromodu-

lation activated learning 1) when the environmental contingencies required

adaptation and 2) when important reward information was retrieved (at

landing).
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6.4.7 Conclusion

The results showed that neuromodulation could be used to maximise the

reward intake in uncertain foraging environments. The solutions proved to

acquire a general learning strategy capable of coping with more scenarios.

These results outperformed the neural controllers with fixed architecture

described in (Niv et al., 2002) that solved only a subset of the proposed

scenarios.

One controller did not only solve equally well all scenarios used during

evolutions, but also coped successfully with a qualitatively different unseen

scenario, regardless of numerical reward values.

A key feature of neuromodulation consisted in activating plasticity only

at critical times, e.g. at landing when the reward stimulus is due, modulat-

ing synaptic update during flight and deactivating learning when that was

not required.

These experiments showed that the evolution of neuromodulatory struc-

tures brings about well performing controllers when those are encoded with

an implicit representation like AGE.
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Figure 6.14: See caption in the next page.
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Figure 6.14: Figure placed in the previous page: behaviour of an evolved

bee during a 300-flight lifetime. (a) The choice of flower for each of the 300

flight is reported on the horizontal time-scale. The top bar indicates the

colour of the high-rewarding flower, i.e. the optimal choice. The second

bar shows the choice made by the evolved bee. (b) Zoom in of scenario 3

(last hundred flights): an additional horizontal bar at the bottom shows the

flight in which the bee collected a null reward.
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Figure 6.15: Network topology of a well-performing bee. The square boxes

on top represent the input neurons where G, B and Y are the percentages

of grey, blue and yellow colours seen by the bee; dG, dB, dY represent dif-

ferential colour values at each step. R and L are the reward and landing

signals. The square labelled ”1” is a constant input of 1 that provides a

bias to the neurons. Continuous lines with black triangles indicate pos-

itive connections, dashed lines with white triangles negative connections.

Dashed circles around a neuron indicate that the neuron is reached by a

neuromodulatory connection and the synapses that connect to that neuron

undergo synaptic plasticity according to equation 5.4. The initial weights

are: G-Out: -0.37; G-Mod: -0.37; B-Out: 0.175; Y-Out: 0.30; B-Mod:

0.60; Y-Mod: 0.60; R-Mod: -0.3; R-Out: -14.66; L-Mod: 1.95; L-Out: 9.56.

Evolvable parameters are: A: -0.79; B: 0.0; C: 0.0; D: -0.038; η : 0.79; m:

42.47; b: 4.75.
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Figure 6.16: The bee is tested twice on the unseen scenario 4 with rewards

0.8 and 0.3.
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Figure 6.17: Figure placed in the previous page: analysis of neural activity

and weights. A snapshot of the neural states of the network in Figure 6.15 is

shown while simulating the bee’s lifetime reported in Figure 6.14. The top

graph reports the intensity of the signal from the sole modulatory neuron.

The middle graph shows the amount of reward at the time of landing.

The bottom graph shows the synaptic weights of colour-inputs from the

yellow-input to output (continuous line) and from the blue-input to output

(dashed line). The modulatory signal remained low during the flight and

increased at landing, resulting in a faster synaptic update at landing and

stable connections during the flight.
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6.5 Advantages of Neuromodulation: Exper-

iments in the T-maze Problems

The studies presented so far indicated that certain types of reward-based

learning environments did not require neuromodulation. At the same time,

the experiments in Section 6.4 showed that neuromodulation could imple-

ment useful, although not essential, dynamics for reward-based learning.

Therefore, despite the insights provided so far, the role and use of neuro-

modulation remain uncertain. To provide further insight, in the experiments

presented here and summarised in (Soltoggio et al., 2008), single and dou-

ble T-mazes were used to test the emergence of modulatory dynamics, and

observe the evolving performance of controllers. The results indicated an

evolutionary advantage of networks with modulatory neurons with respect

to networks without them.

6.5.1 Evolutionary Search

The algorithm in Section 5.3 was used with the parameters listed in Table

6.3. Table 6.4 lists the parameters for the environments. Table 6.5 lists the

parameters for the neural networks. These parameters were used in this

and the following sections unless otherwise specified.

6.5.2 Experimental Results

Three types of evolutionary experiments were conducted, each characterised

by different constraints on the properties of the neural networks: 1) fixed

weight, 2) plastic, and 3) plastic with neuromodulation (also called modu-

latory networks). The fixed weight networks were implemented imposing a

value of zero on the modulatory activity, which resulted in a null update of

weights (Equation 5.4). Plastic networks had a fixed modulatory activity
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Population (T-maze ) 300
Population (double T-maze) 1000
Generations (T-maze) 600
Generations (double T-maze) 1000
Neuron Insertion probability 0.04
Neuron Duplication probability 0.02
Neuron Deletion probability 0.06
Mutation rate (parameter P in Eq. 5.10) 180
Crossover probability 0.1
Tournament size 5

Table 6.3: Parameters for the evolutionary runs for the experiments in
Section 6.5.

Number of lives per fitness evaluation 4
Number of trials per life (T-maze) 100
Number of trials per life (double T-maze) 200
Value of high reward 1.0
Value of low rewards 0.2
Duration of stationary conditions (in trials) 50±15
Penalty for crush (summed on total fitness) -0.3
Penalty for wrong homing direction
(summed on total fitness)

-0.3

Noise range 1%
Range of A,B,C,D (in Eq. 5.5) [-1,1]
Range of η (in Eq. 5.5) [-100,100]
Variable corridor length 1-3 IO steps

Table 6.4: Parameters for the T-mazes.

of 1 so that all synapses were continuously updated (Equation 5.4 becomes

∆w = 0.462 · δ). Finally, neuromodulatory plastic networks could take

advantage of the full model described in Equations 5.1-5.5.

Fifty independent runs were executed for each of the three conditions.

For each run, the individual that performed best at the last generation was

tested 100 lifetimes with different initial conditions. The average reward

collected over the 100 tests was the numerical value of the performance. The

procedure was repeated for all the 50 independent runs. The distribution
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Maximum number of nodes 16
Values for weights [-10,10]
Minimum initial values for weights 0.1
Neural steps per IO refresh 3

Table 6.5: Parameters for the neural networks in Section 6.5.

of performance is summarised by box plots in Figure 6.18 for the single

T-maze, and in Figure 6.19 for the double T-maze.

For the single T-maze, the theoretical and measured maximum amount

of reward that could be collected on average was 98.8, and not 100 due to

the minimum amount of exploration that the agent needed to perform at

the beginning of its lifetime and when the reward changed position. For the

double T-maze, the theoretical and measured maximum amount of reward

that could be collected was 195.2 when averaged on many experiments.

The experimental results indicated that plastic networks achieved far

better performance than the fixed weight networks. Fixed weight networks

displayed some levels of adaptive behaviour by exploiting recurrent connec-

tions, and storing state-values in the activation of neurons as in (Blynel

and Floreano, 2002; Stanley and Miikkulainen, 2003a). However, the ex-

periments here showed that such solutions were more difficult to evolve.

Among plastic networks, those that could exploit modulation displayed

a small advantage in the single T-maze. However, when memory and learn-

ing requirements increased in the double T-maze, modulated plasticity dis-

played a considerable advantage. Figure 6.19 shows that modulatory net-

works achieved nearly optimal performance in the double T-maze experi-

ment.

It is important to note that the exact performance reported in Figures

6.18 and 6.19 depend on the specific design and settings of the evolutionary

search. Higher or lower population numbers, available generations, different
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Figure 6.18: Box plots with performances of 50 runs on the single T-maze

with homing. The boxes are delimited by the first and third quartile, the

line inside the boxes is the median value while the whiskers are the most

extreme data samples from the box not exceeding 1.5 times the interquartile

interval. Values outside this range are outliers and are marked with a cross.

Boxes with non overlapping notches have significantly different median (95%

confidence) (Matlab, 2007)

selection mechanisms and mutation rates affect the final fitness achieved in

all cases of fix-weight, plastic and modulatory networks. However, a set of

preliminary runs performed by varying the above settings confirmed that

the differential in performance between modulatory networks and plastic

or fix-weight networks was consistent, although not always the same in

magnitude.
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Figure 6.19: Box plots with performances of runs on the double T-maze

with homing.

6.5.3 Analysis and Discussion

The agents achieving optimal fitness in the tests displayed an optimal con-

trol policy of actions. This consisted in adopting an exploratory behaviour

initially – until the location of the high reward was identified – followed by

an exploitative behaviour of returning continuously to the location of the

high reward. Figure 6.21 shows an evolved behaviour, analogous to operant

conditioning in animal learning. This policy involved the exploration of the

4 maze-ends. When the high reward was discovered, the sequence of turning

actions that led there, and the correspondent homing turning actions, were

retained. That sequence was repeated as long as the reward remained in the

same location, but was abandoned when the position of the reward changed.

At this point the exploratory behaviour was resumed. The alternation of
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ST 1

MOD 2

MOD 1

Out

Reward

Turn

Home

-9.93-1.57

2.01

-2.12

M-Einputs

Bias

-2.85
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Figure 6.20: Example of an evolved network that solved the double T-maze

with homing. This network has two modulatory neurons, and inner stan-

dard neuron and the output neuron (also standard). Arcs represent synaptic

connections. The inputs (Bias, Turn, Home, M-E, Reward) and standard

neurons (ST 1 and OUT) send standard excitatory/inhibitory signals to

other neurons. Modulatory neurons (MOD 1 and MOD 2) send modula-

tory signals which affects only plasticity of postsynaptic neurons, but not

their activation level. The evolved plasticity rule was A = 0, B = 0,

C = −0.38, D = 0, η = −94.6. This network has only feed-forward con-

nections, however, a number of other well performing networks displayed

recurrent connections as well.

exploration and exploitation driven by search and discovery of the reward

continued indefinitely across trials.

Although this strategy was a mandatory choice to maximise the to-

tal reward, the performance indices (Figures 6.18 and 6.19) indicate that

this behaviour could be more easily evolved when modulatory neurons were

available to evolution.
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Figure 6.21: See caption in the next page.
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Figure 6.21: Figure in the previous page: behaviour of an agent in the

double T-maze of Figure 4.6. A test of 80 trials was performed. The four

horizontal lines track the events at each of the four maze-ends. The position

of the reward was changed every 20 trials. The coloured area indicates where

the high reward was located. The black dots show the maze-end explored by

the agent at each trial. The agent adopted an explorative behaviour when

it did not find the high reward, and settled on an exploitative behaviour

after the high reward was found.

6.5.4 Functional Role of Neuromodulation

The experimental data on performance showed a clear advantage for net-

works with modulatory neurons. Yet, the link between performance and

characteristics of the networks was not easy to find due to the large vari-

ety of topologies and plasticity rules that evolved from independent runs.

Figure 6.20 shows an example of a network that solved the double T-maze.

The neural topology, number of neurons and plasticity rule may vary con-

siderably across evolved networks that performed equally well.

Nonetheless, it was possible to check if the better performance in the

double T-maze agents evolved with neuromodulated plasticity was corre-

lated with a differential expression of modulatory and standard neurons.

The architecture and composition of the network are modified by genetic

operators that insert, duplicate and delete neurons. The average number of

the two types of neurons was measured in evolving networks for the condi-

tion where plasticity was not affected by modulation (Figure 6.22, top left

graph) and for the condition where plasticity was affected by modulatory

inputs (Figure 6.22, bottom left graph). In both conditions, the number

of modulatory neurons was higher than the number of standard neurons.
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Figure 6.22: Fitness (continuous line) and number of inner neurons (dashed

lines for standard and dotted lines for modulatory) in networks during evo-

lution (average values of 50 independent runs).

However, the presence of modulatory neurons when those were not active

(top left graph) depended only on insertion, duplication and deletion rates,

whereas in the case when they were enabled (bottom left graph) their pres-

ence might be linked to a functional role. This fact was suggested by the

higher value of the mean fitness.

In a second phase, the evolutionary experiments were run for additional

thousand generations, but the probability of inserting and duplicating neu-

rons was set to zero, while the probability of deleting neurons was left

unchanged. In both conditions all types of neurons slightly decreased in

number. However, modulatory neurons completely disappeared in the con-

dition where they had no effect on plasticity (Figure 6.22, top right graph)
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Figure 6.23: Differential measurements of fitness. Each line represents the

difference in fitness between runs with modulatory neurons and runs with-

out (each set is represented by the median fitness from 50 independent

runs). The evolutionary advantage of modulatory neurons is described by

the tendency of values of being positive. The evolution in the single T-maze

was stopped at generation 600 as it reached stationary conditions.

while on average two modulatory neurons were observed in the condition

where modulation could affect plasticity. This represents a further indi-

cation that neuromodulation of synaptic plasticity is responsible for the

higher performance of the agents in the double T-maze and that they play

a functional role in guiding reward-based learning.

Comparing the box plots in Figures 6.18 and 6.19, it appears that mod-

ulatory neurons provided a considerable advantage in the double T-maze
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with homing, but not so in the single T-maze. This finding led to the

hypothesis that modulatory neurons are advantageous when the problems

increase in difficulty. To verify this statement, the evolutionary progress of

three experiments with increasing complexity were compared: 1) a single

T-maze with homing, 2) a double T-maze without homing and 3) a double

T-maze with homing. In the first problem, a 2-armed bandit problem, there

are two actions to be repeated each trial: an outgoing direction and a re-

turn direction. The return direction is always the opposite of the outgoing

direction. In the second problem, a 4-armed bandit problem, two outgoing

directions (two consecutive turns) must be learnt. In the third problem, two

outgoing and two return directions must be learnt. It was therefore assumed

that the three problems were ordered by increasing difficulty9. The median

fitness values from two sets (one with modulatory neurons and one without

modulatory neurons) of 50 independent runs were compared. Figure 6.23

shows the difference between the fitness with modulatory neurons and the

fitness without modulatory neurons. A positive line indicates an advantage

with modulatory neurons, a negative line indicates a disadvantage. The dif-

ferential fitness at the beginning of evolution is negligible, meaning that the

initial random networks performed similarly whether they had or had not

modulatory neurons. However, while evolution progressed, networks that

could receive modulatory neurons by random mutations increased rapidly

their performance manifesting a significant gap with networks that could

not employ modulatory neurons. It is possible to note that the evolution-

9It is important to note that the finding that neuromodulation gives an evolutionary

advantage in increasingly complex problems derived from the experiments. The compar-

ison of fitness progress among experiments with different complexity proposed hereafter

was conceived as part of the analysis, and it cannot be considered part of the methodol-

ogy.

159



6. EMPIRICAL RESULTS

ary advantage appeared related to the problem complexity: whereas in the

single T-maze there is only a minimal difference in fitness, and a slight

disadvantage of modulatory neurons initially, the double T-maze and the

double T-maze with homing benefit considerably by the presence of mod-

ulatory neurons. Ideally, if the advantage manifests itself only in speed of

evolution, after a period in the positive area, the lines would approach null

values towards the end of evolution, implying that the advantage is evolu-

tionary only, and not computational. On the contrary, when lines stabilise

at values different from zero, two cases are possible: either the limitations

of the evolutionary algorithm did not allow for the successful evolution of

one of the two sets, or the networks of one of the two sets have a computa-

tional advantage over the others. Figure 6.23 supports the hypothesis that

modulated plasticity evolves to benefit networks in increasingly complex

problems.

A further test was conducted on the evolved modulatory networks when

the evolutionary process was completed. Networks with high fitness that

evolved modulatory neurons were tested with modulation disabled. The

test revealed that modulatory networks, once deprived of modulatory neu-

rons, were still capable of navigation by turning at the required points and

maintaining straight navigation along corridors. The low level navigation

was preserved and the number of crashes did not increase. However, most

networks seemed capable of turning only in one direction (i.e. always right,

or always left), therefore failing to perform homing behaviour. None of the

networks appeared to be capable of reward-seeking behaviour, curiously

evoking anhedonic behaviour (Berridge and Robinson, 1998). Generally,

networks that were evolved with modulation and that were downgraded to

plastic networks (by disabling modulatory neurons) performed worse than

those evolved without modulatory neurons. Hence, it can be assumed that
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modulatory neurons are employed to design a different neural dynamics

that, according to the experiments, were easier to evolve, and on average

empowered solutions with an important advantage.

6.5.5 Conclusion

The model of neuromodulation described here applies a multiplicative effect

on synaptic plasticity at target neurons, effectively enabling, disabling or

modulating plasticity at specific locations and times in the network. The

evolution of network architectures and the comparison with networks un-

able to exploit modulatory effects showed the advantages brought in by

neuromodulation in environments characterised by distant rewards and un-

certainties. The increased complexity of the problems appeared to outline

distinctly the advantages of neuromodulated plasticity that was more evi-

dent in the most difficult problems. The random insertion of modulatory

neurons appeared not to affect significantly the search on the single T-

maze where neuromodulation was not necessary. A correspondence between

performance and architectural motifs was not observed, however it can be

assumed that the unconstrained topology search combined with different

evolved plasticity rules allowed for a large variety of well performing struc-

tures. In this respect, the search space was explicitly unconstrained in order

to assess modulatory advantages independently of specific or hand-designed

neural structures. In this condition, the phylogenetic analysis of evolving

networks supports the hypothesis that modulated plasticity is employed to

increase performance in environments where sparse learning events demand

memorisation of selected and timed signals.
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6.6 Increasing the Decision Speed in a Con-

trol Problem with Neuromodulation

6.6.1 Summary

The experiments of the previous section were reproduced here to perform

further analysis on the networks. The analysis shows that neuromodula-

tion does not only allow for better learning, but accelerates part of the

computation in decision processes. This appears to derive from topologi-

cal features in modulatory networks displaying more direct sensory-motor

connections, whereas non-modulatory networks require longer pathways for

signal processing. This computational advantage in increased decision speed

could contribute to unveil the fundamental role of neuromodulation in neu-

ral computation.

6.6.2 Network Topologies

New tests indicated that 47 out of 50 runs with modulatory neurons and 4

out of 50 runs with standard plasticity solved the double T-maze with hom-

ing. The problem was considered solved when an agent scored on average

at least 180 of total reward collected, out of 200 available 10.

To compare network features, two fundamental points have to be con-

sidered: 1) different runs evolved considerably different topologies, number

of neurons and plasticity rules; 2) plastic networks, achieving inferior per-

formance, had a more limited functionality than modulatory networks. In

light of this, comparing modulatory networks that solved the problem with

plastic networks that failed on average was not considered significant. As a

10Because the location of the reward is hidden to the agent, until it comes across it,

the maximum fitness is 195.2 due to the exploratory trials that occur initially and when

the reward changes location.
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result of this last observation, it was decided to consider for analysis only

the networks that achieved full functionality: in all, 47 modulatory net-

works, and 4 plastic networks. Unfortunately, the small number of plastic

networks did not allow for a sufficient statistical analysis. Consequently,

an additional 100 runs were launched, resulting in 7 new successful stan-

dard plastic networks. In conclusion, the statistical analysis was carried out

considering 11 plastic networks and 20 modulatory networks.

Even considering networks with similar performance, the evolutionary

process designed a large variety of neural topologies, number of neurons and

plasticity rules across different independent runs. However, this was true

particularly for modulatory networks: a closer inspection revealed that stan-

dard plastic networks evolved less diverse topologies, although a measure

of diversity in topology was not attempted here. An example is reported

in Figure 6.24. Modulatory networks had an average of 3.7 neurons and

17.4 connections with standard deviations of 0.9 and 9.2 respectively, re-

sulting in high diversity of networks, all of them however achieving optimal

behaviour. This finding might contribute to explain the considerable differ-

ence in successful rate of the evolutionary runs: while standard networks

achieve full functionality with only one specific architecture, modulatory

networks display a variety of topologies with optimal performance. This

suggests that the search space – when modulatory neurons are introduced –

becomes richer of multiple global optimal solutions. It is also possible that

modulatory neurons create neutral paths in the search space, allowing for

a higher evolvability (Smith et al., 2002a).

6.6.3 Decision Speed

Despite the number of neurons varied across different modulatory networks,

the input and output, imposed by the environmental settings, were the same
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Figure 6.24: Example of a plastic network achieving near-optimal perfor-

mance (plasticity rule A:-0.261,B:0,C:-1,D:0,η:-31.8). All plastic networks

that were analysed had one inner neuron between the turning signal and

the output.

for all networks. On this basis, it was appropriate to compare input-output

signal propagation considering the networks as a black box.

Surprisingly, the analysis revealed that the outputs of modulatory net-

works on average appeared to react faster at turning points than the output

of plastic networks. Figure 6.25 shows the absolute values of the output

neurons (one for each network) when the network under test encountered a

turning point. The number of computational steps required by modulatory

networks to indicate a turning direction was 1.43 (average on 20 networks).

Plastic networks, on the other hand, took 2.21 steps (average on 11 net-

works) to indicate the turning preference. Moreover, Figure 6.25 shows

that whereas a substantial number of modulatory networks reacted in one

step, none of the plastic networks had such a short reaction time.

The turning action expressed by the output is a required reaction at

turning points: failure to turn resulted in the agent crashing. Therefore, it
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Figure 6.25: Absolute values of output signals at a turning point of modula-

tory and plastic networks with similar performance. Modulatory networks

(upper graph) appeared to react faster to the turning point and provided a

quicker decision. Plastic networks show a longer reaction time. The thick

vertical lines indicate the constraints at Sampling points (S): the first line

from left indicates that the output is required to be less than 0.33 (to main-

tain a straight direction in the corridor). The second line shows that the

output is required to be higher in absolute value than 0.33 (to perform a

turning action).

was assumed here that the relevant part of the computation involved in the

decision of which direction to take had to lie in the pathway between in the

turn-input signal and the output. Accordingly, the network topologies were

analysed to discover relevant features in pathways from turn-input to output

neuron. The networks resulted in having, on average, a distance of 1.1 con-

nections between input and output in the modulated case. Plastic networks

had always 2 connections between turn-input and output, i.e. there was
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Figure 6.26: Example of a modulatory network achieving near-optimal per-

formance (plasticity rule A:0, B:0, C: -0.38, D:0, η: 94.6). Some of these

networks, like in this case, show a direct connection between turning input

and output. None of the plastic networks showed such a feature.

never a direct connection between turn-input and output. The number of

connections through which the turn-input propagates corresponded approx-

imately to the time required to complete the computation at the turning

point and provide a direction of navigation at the output neuron. For mod-

ulated networks, a direct connection between turn-input and output was

frequently present; in plastic networks, the turn-input required to be pro-

cessed by one inner neuron. Examples of two representative networks are

shown in Figure 6.24 for a plastic network and Figure 6.26 for a modulated

network.

According to the experimental settings, the networks were given three

computational steps for each sensory-motor (input-output) update. The

output of the network was sampled each three network steps, implying that

no difference in behaviour or fitness could be detected if the output changed

in 1, 2 or 3 computational steps. so long as the output reached the required
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level before being sampled (see Figure 6.25). Therefore plastic networks

derived no disadvantage on performance11 by having a path of two serial

connections between turn-input and output. Such configuration might have

originated from implementation aspects of the evolutionary process.

Similarly, although modulatory networks display frequently a direct turn-

input to output connection, it is not excluded that other parts of the network

required longer processing time. In fact, the inspection of modulatory net-

works showed other longer pathways departing from input signals like the

reward or home and innervating other neurons. Hence, although the anal-

ysis so far seems to indicate a faster computation for the decision process

in modulatory networks, a further test presented in the next section was

necessary.

6.6.4 Enforcing Speed

Reducing the available computational time at decision points (turning points)

was a way of compelling networks to react quickly. Accordingly, a new evo-

lutionary process was devised with identical settings as previously, but with

only one computational step available at critical points in the maze. All

the grey areas in the maze of Figure 4.6 were presented to the network for

one computational step only. The new constraint required networks to take

decision at turning points in one computational step. In this condition,

networks could achieve high performance only if capable of evolving direct

input-output paths.

The results of 50 independent evolutionary runs are illustrated in Figure

6.27, and in the box plots of Figures 6.28. The data show that plastic net-

works did not evolve to solve the learning task, implying that the constraint

on the decision speed was determinant. This result suggests that the inner

11Modulatory and plastic networks with identical performance are compared here.
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Figure 6.27: Median of the fitness values for 50 independent evolutionary

runs with plastic and modulatory networks when the decision time at the

turning points was reduced to 1.

neuron that plastic networks evolved in the 3-step case was indeed neces-

sary to implement the functionality required to solve the problem. On the

other hand, modulatory networks achieved similar (though slightly inferior)

performance compared to the previous experiment. Interestingly, this sug-

gests that other longer pathways in modulated networks, if they exist as

in Figure 6.26, were not employed during the turning decision process, but

were devoted to other functions. The precise nature of those other func-

tions was not investigated. However, it is evident that the direct connection

between turning point and output pre-encoded the next turning direction:

a negative input-output connection resulted in a left turn, whilst a positive

input-output connection resulted in a right turn: such topology and com-
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Figure 6.28: Box plots with performances of 50 runs with the additional

constraint of one computational step at turning points. Note that, although

these boxes were computed for the solutions at the end of the runs plotted

in Figure 6.27, median values displayed here are lower than the median

values in Figure 6.27. This is due to the fact that the values in Figure

6.27 are the medians of best fitness from the runs, whereas the median

in this figure are computed after the evolutionary by performing a test on

100 agent-lives. Note that although modulatory networks registered slightly

decreased performance, plastic networks were unable to evolve any optimal

solution.

putation were observed only in modulatory networks where a change in the

sign of the connection between turn-input and output resulted in the alter-

nation of left and right turns. Given that the plastic networks were unable
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to achieve this, neuromodulation was responsible for a pre-computation that

resulted in the hard-wiring of the next turning direction. Subsequently, the

pre-computed information resulted in a faster decision process at turning

points.

6.6.5 Conclusion

This study considered performance and computational aspects of plastic and

modulated networks evolved in a dynamic, reward-based scenarios where

learning events (reward intake) and decision processes (turning points) de-

termined the fitness of an agent. The learning capabilities of modulatory

networks were evolved here in order to analyse computational and topo-

logical aspects of networks with and without modulatory neurons. A fun-

damental difference between plastic and modulatory networks was shown

in an increased sensory-motor propagation speed and quicker responses in

decision making for modulatory networks with respect to standard plastic

networks. At a further inspection, this property appeared to derive from

more direct sensory-motor connections in modulatory networks. The mag-

nitude and signs of those direct connections stored a value that indicated

the direction for the next turning point. This fact suggests that the decision

at turning points was pre-computed and hierarchically stored by neuromod-

ulation onto the sensory-motor direct connection. This resulted in a faster

signal processing during decision processes.

Modulated networks displayed a faster input-output response than plas-

tic networks even without strict speed constraints. However, when the speed

constraint was imposed in the second evolutionary experiment, forcing con-

trol networks to take quick turning decisions at turning points, modulatory

networks exhibited an even more considerable advantage in performance by

evolving successful solutions where plastic networks failed.
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The evolved modulatory networks have features that depend strongly on

the environment in which the networks are evolved. This study on a single

learning problem, although complex, does not allow one to generalise the

results to other learning problems. However, the interesting computational

features displayed in this particular instance could possibly emerge in a

variety of similar or more complex learning problems. The results suggest

the possible application of the model to a variety of learning and decision

making problems.
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6.7 A Reduced Plasticity Model: Evolving

Learning with Pure Heterosynaptic Plas-

ticity

6.7.1 Summary

Is it possible to solve learning problems with pure heterosynaptic plasticity?

If so, do networks with heterosynaptic plasticity evolve within comparable

time to networks with homosynaptic plasticity? Given the plasticity model

in this thesis, pure heterosynaptic plasticity occurs when D only is enabled

in Equation 5.5. In such case, an adaptive network can be divided in two

parts: 1) a network that performs a low level computation (similar to the

actor in actor-critic structures) and 2) a higher level network that computes

the weight updates (similar to the critic in actor-critic structures). However,

the notion of actor and critic applies to reinforcement learning or supervised

learning where the weight update is done in order to change a strategy, or

minimise an error. Here, the weight update is seen as a general mechanism

to achieve a larger set of dynamics, e.g. continuous adaptation, temporal

dynamics or oscillatory patterns. The evolution of unconstrained topolo-

gies that combine a dual structure of 1) processing signal and 2) updating

connections is not trivial, and to the best of my knowledge has not been

attempted yet. The model presented in this thesis can be easily devolved to

such attempt by clamping A,B, and C of Equation 5.5 to zero. The plastic-

ity rule in this experiment was that of Equation 5.9. Given the modulation

at the neuron-scale, all the incoming synapses of a certain neurons are up-

dated simultaneously and with the same update by incoming modulatory

signals.
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Figure 6.29: Graph of the best fitness functions from the 30 independent

runs that evolved solutions with pure heterosynaptic plasticity for the dou-

ble T-maze without homing. Three runs out of 30 did not achieve opti-

mal behaviour within the limited number of generations. Twenty seven

runs evolved the correct behaviour employing only heterosynaptic non-

associative plasticity.

6.7.2 Results

Thirty independent evolutionary runs were launched with the double T-

maze. The plasticity rule of Equation 5.5 was D = 1, and A,B,C = 0. A

thousand generations were performed with a population of 1000 individuals.

Figure 6.29 shows the best fitness from the 30 runs. The graph indicates that

adaptive learning behaviour was evolved to achieve optimal performance.

Three runs out of 30 did not achieve optimal performance.
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The inspection of the networks that solved the problem optimally re-

vealed completely different topological features, generally showing a higher

number of neurons and connections. Nevertheless, an identical evolutionary

algorithm with the same settings of Section 6.5 was able to design easily

optimal solutions.

6.7.3 Conclusion

Pure heterosynaptic plasticity can achieve remarkable levels12 of learning

and adaptation when networks are designed by artificial evolution in the

framework of the experiments in this thesis. The results suggest that the

availability of a pure heterosynaptic mechanism is not negligible and could

help achieving specific computational requirements. Modulatory neurons,

when those were the only vehicle of plasticity, appeared to be a powerful

element in the evolution of adaptation. An important conclusion is that

heterosynaptic plasticity in the absence of associative Hebbian plasticity

evolved solutions comparable in performance to those that used the com-

plete set of associative Hebbian and non-associative rules of Equation 5.5

without neuromodulation. In other words, the availability of sole heterosy-

naptic plasticity allowed for the evolution of solutions to the same tasks

that in the previous experiments was tackled with substantially different

computation. Heterosynaptic plasticity is shown here for the first time to

be a powerful and independent neural mechanism for adaptation, learning

and memory.

12Here, by remarkable, it is intended that the performances achieved by the evolved

networks with sole heterosynaptic plasticity surpass those of fixed-weight or plastic net-

works as presented in Section 6.5. Hence, although remarkable does not express an

absolute or precise measure, the term must be intended with respect to the experimental

results illustrated in this thesis.
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6.8 Adaptation without Rewards: An Evo-

lutionary Advantage of Neuromodulation

6.8.1 Summary

All the environments introduced so far can be classified as hidden semi-

Markov processes because the location of the reward is hidden to the agent.

The location of the reward, and consequently the best course of actions,

must be discovered by the agent by means of exploratory trials, which – de-

spite being a cost – are essential to identify the correct actions and maximise

the overall reward intake.

A different class of problems was introduced here by making visible the

location of the reward, i.e. allowing the agent to ‘see’ where the high reward

was located by adding sensory information. To implement this, the agent

was given an extra set of inputs that disclosed the location of the reward

before hand. These inputs can be seen as static conditioned stimuli. Because

of that, conditioning can take place on the evolutionary scale, and lifetime

learning is not required. In these conditions, a well performing controller did

not necessitate exploratory trials because it could exploit immediately the

high rewarding maze-end. When the reward location was changed, the agent

was informed by an update of the input that disclosed the reward location.

In a way, these environments might not be considered reward-based because

the reward information is redundant. In other words, although an optimal

controller is required to perform the same output actions as in the hidden-

reward T-maze, the current set of input is sufficient to determine the optimal

future course of action without temporal learning. The reward information

becomes redundant once a correct input-output mapping has been acquired

on the evolutionary scale. On the time scale of more trials (lifetime), the

network can be seen as purely reactive. Because of this, it can be said
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that the agent does not require learning. However, particular care must be

taken in using the last proposition, once again for the imprecise meaning of

learning in this context. When looking at a shorter time scale, for instance

inside one trial, temporal dynamics and memory (to distinguish the first

turning point from the second) are required. The experiments in this section

were performed to assess the evolutionary advantages of modulated neurons

in the condition described above.

6.8.2 Results

In a double T-maze, an agent was given four extra bit-inputs that disclosed

the location of the reward. Each extra input represented one maze-end,

and the bit-input associated with the high-rewarding maze-end was high,

whereas the other inputs were low. All other parameters and settings were

identical to those specified in Section 6.5. Fifty independent evolutionary

runs were launched to evolve networks with and without modulatory neu-

rons. The fitness progress of all the 50 runs is shown in Figures 6.30 and

6.31. It is possible to note the faster evolution of networks with modulatory

neurons. In this problem where rewards are not hidden, an agent can collect

all the 200 available rewards because there is no need for exploration.

6.8.3 Conclusion

A considerable advantage was observed in evolutionary runs that could in-

sert modulatory neurons. This fact indicates that modulatory neurons help

achieving higher levels of adaptation even when environments are not char-

acterised by hidden, uncertain rewards. Such a finding implies that the role

of neuromodulated plasticity is not exclusively related to the processing and

interpretation of reward signals or prediction error signals. On the contrary,

neuromodulated plasticity appears to play a fundamental role in the basic
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Figure 6.30: Fitness progress during evolution in a double T-maze with

non-hidden rewards for the runs with modulatory neurons.
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Figure 6.31: Fitness progress during evolution in a double T-maze with

non-hidden rewards for the runs without modulatory neurons.
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input-output mapping processes, enabling the network to achieve complex

and varying temporal dynamics. Therefore, such dynamics do not necessary

represent a learning process, but more generally an adaptation process. In

a broad sense, this result invites one to consider neuromodulated plasticity

as a computational tool affecting very basic and general neural functions

such as adaptive input-output mapping and temporal dynamics.
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Chapter 7

Conclusion

7.1 Summary of Main Findings

This thesis proposed the evolution of neural networks of arbitrary size and

topology where the neurons were instances of two different types, standard

and modulatory. Such a distinction was inspired partly by the variety of

neuron types with modulatory dynamics in biology, and partly by the neces-

sity of addressing limitations in learning and adaptation of current neural

models. The intent was the investigation of the use and advantages of

neuromodulated plasticity where sparse learning events demand localised

updates in a neural network, and the memorisation of selected and timed

signals. The model of a modulatory neuron, and the effect of such a neuron

type on the network, were introduced resulting in the implementation of a

set of homo- and heterosynaptic plasticity mechanisms. The model of mod-

ulatory neurons applies a multiplicative effect on the synaptic plasticity at

target neurons, enabling, disabling or modulating plasticity at specific lo-

cations and times in a network. The evolution of arbitrary topologies with

two types of neurons was conceived to produce networks with rich dynamics

that enabled the enhancement of learning and memory function.

Dynamic, reward-based scenarios were introduced and described here
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with the two-fold purpose of creating learning environments on which to

run evolution, and to assess and compare adaptation skills and memory

function of evolved neural controllers.

Evolutionary processes sought the emergence of adaptive behaviour in

uncertain environments by using a performance-based selection mechanism

applied during the automatic design procedure for neural controllers. The

evolutionary processes were devised to search arbitrary topologies of plastic

and modulated networks without topological constraints. This feature was

important to assess the effect of modulatory dynamics with a minimal set

of assumptions on the networks.

Thus, the experimental work in this thesis was based on three mainstays.

First and most important, the introduction of a new class of modulatory

neurons; second, the search of neural topologies by means of simulated

evolution; and third, the testing in closed-loop of learning and memory

skills in dynamic, reward-based scenarios.

The combination of these three mainstays unfolded in a series of ex-

perimental findings whose main messages confirmed the two general hy-

potheses of Section 5.4. (1) The introduction of modulatory neurons and

modulated plasticity in evolving neural networks produced an evolutionary

advantage by enhancing learning and adaptation. That evolutionary ad-

vantage emerged more strongly as the problem complexity was increased,

suggesting the fundamental role of neuromodulated plasticity in favouring

the evolution of learning and adaptation in complex problems. (2) The

introduction of modulatory neurons brought forth the synthesis of differ-

ent topological structures. In turn, such structures were observed to lead

to a computational advantage by implementing feed-forward anticipatory

control structures.

Besides the assessment of the main hypotheses, the set of experiments
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presented in this thesis led to a series of important contributions to knowl-

edge in the field of ANNs, as explained in the following sub-section.

7.1.1 Contribution to Knowledge

The evolution of topologies for ANNs had been carried out so far without

enlarging the search space to unconstrained network topologies of a variable

number of nodes and node-types. Nevertheless, advances in neuroscience

indicate that the GABA-gated and NMDA-gated (inhibitory/excitatory)

neural transmission accounts only for a part of neural computation. It has

been clear now for many decades that modulatory chemicals and systems

are fundamental aspects of neural computation, with important contribu-

tions in memory function, adaptation and behavioural control. Despite

the numerous models of modulated plasticity, this thesis proposed for the

first time the evolution of artificial unconstrained network topologies with

two types of neurons in order to design and target neuromodulation. The

introduction of modulatory neurons in the evolutionary process led to a re-

markable improvement in the speed of evolution in the double T-maze test

problems.

The autonomous design of control networks with evolutionary algorithms

progressed by selecting and preserving networks with modulatory neurons

when those contributed to the improved performance. Thanks to this fea-

ture, it was not only possible to observe the phenotypical expression of

modulatory neurons when those brought about a fitness improvement, but

it was possible also to observe the absence of modulatory neurons in net-

works that did not benefit from modulated plasticity in certain problems.

This last observation led to the finding that neural networks for the solution

of basic reward-based learning problems do not require modulated plastic-

ity, questioning the validity of testing neuromodulation on such problems
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as in (Montague et al., 1995; Niv et al., 2002). The experimental findings

in Sections 6.2 and 6.3 indicated that basic n-armed bandit problems, the

foraging bee problem and the single T-maze problems in uncertain environ-

ments can be solved optimally without neuromodulated plasticity.

Neuromodulated plasticity was devised here as a local, cellular mech-

anism for plasticity. The evolutionary search adopted in this thesis led

to the synthesis of emergent system level dynamics. In Section 6.5, the

performance of networks were compared: the sets that could use modula-

tory neurons and the sets that could not use them. It was possible to link

the availability of modulatory neurons to the faster evolution and superior

performance in adaptivity and memory tasks. For the first time, neuromod-

ulated dynamics were observed to emerge autonomously where the problem

required them, indicating the fundamental role of neuromodulated plastic-

ity in the evolution of learning. Moreover, the methodology proposed here

indicate that it is possible to assess experimentally which problems requires

plasticity mechanisms such as neuromodulation. The capability of perform-

ing implicitly feature-selection, i.e. preserving or leading to extinction of

modulatory neurons, proved to be a discerning tool to establish experimen-

tally which conditions require neuromodulation.

The availability of modulatory neurons resulted in the evolution of sub-

stantially different neural dynamics that in Section 6.6 were observed not

only to evolve to better adaptation levels, but also to exhibit advantageous

computational features. In the double T-maze with homing, modulatory

neurons allowed for the synthesis of a direct input-output connection, re-

sulting in a fast decision process that was not observed in plastic networks.

This computational advantage, although plausible given the intrinsic hier-

archical nature of neuromodulated plasticity, was observed to emerge au-

tonomously for the first time in the experiments of this thesis. This fact
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suggests the suitability of heterosynaptic plasticity in the set of problems

that require hierarchical computing and the presence of low level short-cuts

in neural wiring.

The concept of reward-based learning in this thesis mainly referred to

the online learning skills of agents capable of exploring and exploiting an

uncertain environment and changing strategies according to changing re-

ward contingencies. In the experiment in Section 6.8, the introduction

of static conditioned stimuli was done to assess the evolutionary advan-

tages of modulatory neurons in environments where online learning was

not required, but a dynamic adaptive behaviour was still essential. This

experiment was performed to ascertain whether neuromodulated plasticity

addressed computational aspects required only in reward-based learning.

Modulated plasticity was observed to give a remarkable advantage even in

this problem without reward-based learning. The finding indicated for the

first time that modulatory neurons permeate the network with a powerful

mechanism that benefits the evolution of a rich temporal neural dynamics.

This in turn boosts the evolution of reward-based learning in uncertain en-

vironments, but possibly brings about advantages in a considerably larger

set of problems.

Finally, this thesis proposed and experimented in Section 6.7 the evolu-

tion of unconstrained topologies forming a two-layer interconnected network

of low level signal processing units (standard neurons) and hierarchical units

(modulatory neurons) for pure heterosynaptic weight update. In this case,

one sub-network processed signals, and a second sub-network was in charge

of synaptic updates. This combined network implemented a computational

paradigm that evolved remarkable levels of adaptation without homosynap-

tic or correlation-based plasticity mechanisms. This result suggested for

the first time that a fundamental basis of learning in networks might rely
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only partially on correlation-based Hebbian mechanisms, and heterosynap-

tic plasticity alone could cover an essential role in the synthesis of adaptive

learning behaviour.

7.2 Future Work

The results of this study originated from the combination of the three main-

stays mentioned above. A variety of alternative studies can be thought by

changing models and settings in each of the three mainstays: neural and

modulatory model (point 1), evolutionary search procedure (point 2) and

uncertain reward-based scenarios (point 3). At the level of the model (point

1), different choices can be made on the modulatory dynamics, introducing

different kinds of modulation (e.g. modulated synaptic efficacy or output

function instead of plasticity), different neural models (e.g. spiking neu-

rons) or plasticity (e.g. BCM rule, STDP, etc.). The type of neural model

depends on the precise questions to be addressed. A related topic to the

neural models is the type of sensory-motor setting to be given, which might

considerably alter the function and evolution of neural controllers. Different

evolutionary processes and encoding methods (point 2) can be considered.

Here too, a large variety of options can be taken, for example adopting

advanced algorithms for topology search (e.g. (Gauci and Stanley, 2007)),

or developmental algorithms to grow larger adaptive networks. Finally, the

application domain (point 3) can be modified by suggesting more complex

dynamic scenarios. These can be devised with longer sequences of decisions

and actions, wider spectrum of sensory information or robotic applications.

Other future directions focus on the analysis of networks and the neural

dynamics. For example, questions that can be addressed are a) what neu-

ral dynamics lead to learning behaviour, or b) are there fixed modulatory
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structures that allow certain types of learning?

The following describes in more detail four of the above research direc-

tions.

7.2.1 Modulation of Neuron Output
and Multi-neuron Type Networks

Equation 5.4 uses signals from modulatory neurons to change the rate of

plasticity on weights. For this reason, the kind of modulation described in

this thesis can be named neuromodulated plasticity. However, neuromodu-

lation can be applied as a gating signal to other processes as described in

Section 2.2.3.3. Consider a class of neurons whose outputs gate the transfer

function of neurons. Let gain be a modulatory activation driven by neurons

belonging to the class G. Then

gaini =
∑
j∈G

(
wji · oj

)
+ gainb

i , (7.1)

where i is any postsynaptic neuron, gainb
i is a bias value of gain for the

neuron i, and j is a presynaptic neuron belonging to the class G. Applying

a gating operation on the output transfer function of all neurons, Equation

5.3 becomes

oi(ai) = tanh(gaini · ai) . (7.2)

A gating operation on the output function could be beneficial in those sit-

uations where sensory information or internal signals need amplification or

suppression. Modulatory dynamics of this kind in biological networks was

suggested to increase sensory flexibility (Birmingham, 2001).

The gating operation performed by neurons of the class G applies to all

neurons in the networks, i.e. standard neurons, but also modulatory neurons

(if present), and gain neurons as well. An evolutionary algorithm can be set
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to build networks with three types of neurons. It is possible to hypothesise

that, similarly to modulatory neurons, gating neurons will be selected when

they bring about an advantage in performance. To test control networks

with gain neurons, either alone or in combination with modulatory neurons,

is it possible to specify a control tasks where gain neurons could be advanta-

geous, and test the hypothesis by running evolution with and without gain

neurons.

7.2.2 Neuromodulation with Continuous Time or Spik-
ing Neural Models

Modulated plasticity (Equation 5.4) can be applied to any neuron model,

including continuous time or spiking neural models. A research question is

whether the hypotheses that were validated in this thesis on a rate-based

model would hold with continuous time or spiking neural models.

To investigate such a possibility, the neural and plasticity models should

be modified. In the case of continuous time neurons, it is possible to in-

troduce time constants for each neuron. Equations 5.1 and 5.2 should be

modified to include the time dynamics,

ai(t+ ∆t) = ai(t) +
∆t

τ std
i

[ ∑
j∈Std

(
wji · oj(t)

)
− ai(t)

]
, (7.3)

and

mi(t+ ∆t) = mi(t) +
∆t

τmod
i

[ ∑
j∈Mod

(
wji · oj(t)

)
−mi(t)

]
, (7.4)

where the time constants for the standard activation ai(t) and for the mod-

ulatory activation mi(t), respectively τ std
i and τmod

i could be different.

For testing spiking neurons, more substantial changes are required. A

spiking neuron model should be used for both standard and modulatory

neurons. A plasticity rule, for example STDP, should be chosen to perform
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weight update. Finally, the weight update should be gated by the incoming

modulatory signals.

7.2.3 Neuromodulation for Robotic Applications

The problems presented in Chapter 4 were characterised by discrete dy-

namics and limited inputs and outputs. The reasons for such configuration

were explained Section 4.4.1, and can be summarised by the need of a pre-

cise definition of problem, its temporal dynamics and memory requirement.

Nevertheless, it is possible to extend the use of evolved modulatory net-

works to more complex scenarios with larger input and output sets as in

robotics. The application of neural control networks to real robots has been

considered recently as an important validation to assess the capability of a

neural model, especially in the field of evolutionary robotics. Tow robotic

mobile platforms used in the field of evolutionary robotics are the Khepera

wheeled robot and the more recent E-puck, see Figure 7.1. Those robots of

small dimension can be used to test navigation and reward based learning in

environments that represents a real implementation of the single and double

T-maze. Experiments in this direction would cast light on the scalability of

modulatory networks on larger controllers and the consistency with which

modulatory dynamics emerge from evolution to solve a range of robotic

problems.

7.2.4 Neural Dynamics and Structures for Learning

The work in this thesis showed the advantages of modulatory neurons in

certain learning and memory problems, but the precise topologies and neu-

ral dynamics where not analysed sufficiently to understand what are the

elementary mechanisms that implemented the higher learning skills. Nev-

ertheless, some analysis was performed in order to unveil the features of
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Figure 7.1: A Khepera robot (left) and an E-puck robot (right) developed

at EPFL, CH.

neural dynamics. Tracking the modulatory activities of some of the evolved

networks, it was possible to identify similar neural dynamics across different

networks solving different problems. Figure 7.2 shows the temporal dynam-

ics of the reward input, turn-input and one modulatory neuron during the

execution of a network in a double T-maze without homing. It is possi-

ble to observe that the modulatory activity was normally null (implying

no plasticity) and became high when the agent encountered the turning

points (points indicated with a and b in the graph). At the collection of

the reward, if that was high, no variation of the modulatory activity was

registered (point c in the graph). On the other hand, if a low reward was

collected, a negative value of modulatory activity was registered (point d).

In another example from a network solving the double T-maze with homing,

the activity plot in Figure 7.3 was observed. The topological structure of

this network was different from the previous one which solved the double

T-maze without homing. The double T-maze with homing presented four

turning points between rewards, rather than two turning points between re-

wards as in the double T-maze without homing. Nevertheless, the activity

of MOD 2 in Figure 7.3 is similar to the activity of the modulatory neuron
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Figure 7.2: Neural activity of a network while performing in the double
T-maze.
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Figure 7.3: Neural activity of a network, such as that shown in Figure 6.20,

while performing in the double T-maze with homing.

of the different network and problem of Figure 7.2 (it differs only in the

sign). In both cases, the modulatory activity encoded a surprise signal that

was activated by turning points, remained null when a high reward was

obtained, and assumed opposite values to those at the turn points when a

low reward was obtained.

From these preliminary observations, it is reasonable to hypothesise that

a common high level mechanism was autonomously discovered by evolution

to solve those two different problems. The simulated evolution appeared

to have generated in two different instances a surprise signal that presents
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analogies with system level prediction and error signals of dopaminergic

neurons (Schultz, 1998). Interesting questions are: what problems elicit the

autonomous emergence of surprise or prediction error signals? What neural

structures generate first and use later these signals to achieve general skills

of adaptation and learning (Schultz, 2008; Wörgötter, 2008)?

191



Glossary

5-HT: 5-hydroxytryptamine, or Serotonin, a neurotransmitter of the

group of monoamines

ACh: Acetylcholine: is a neurotransmitter of the group of amines

AE: Artificial Embryogeny

Amine: An organic compound that functions as a neurotransmitter

in neural substrates. Among amine neurotransmitters are DA and

ACh

ANNs: Artificial Neural Networks

Behavioural Neuroscience: The study of behaviour as an observ-

able and emergent feature of complex neural dynamics

Cellular Neuroscience: The study of neurons and their character-

istics, variety and computational role

Classical Conditioning: ‘A form of associative learning in which

a subject learns the relationship between two stimuli’ (Bailey et al.,

2000)

Cognitive Neuroscience: the study of neural mechanisms that re-

sult in self-awareness, rational thinking, imagination, language, etc.

CPG: Central Pattern Generator
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CREB: cAMP Response Element Binding proteins are transcription

factors that bind to the DNA and mediate the transcription of certain

genes.

CTRNNs: Continuous Time Recurrent Neural Networks

DA: Dopamine is an amine that acts as a neurotransmitter

EAs: Evolutionary Algorithms, including GAs, GP, ES, EP

Epigenesis (theory of): ‘the theory that the germ is brought into

existence (by successive accretions), and not merely developed, in the

process of reproduction’ (OED, 1989)

ES: Evolution Strategy

Fitness function: A measure of quality or performance of an indi-

vidual or a solution used in Evolutionary Algorithms

GABA: Gamma-aminobutryric acid, an amino acid synthesised from

glutamate, is the major inhibitory neurotransmitter in the central

nervous system (Bear et al., 2005)

GAs: Genetic Algorithms

GP: Genetic Programming

Habituation: ‘A decrease in the behavioural response to a repeated,

benign stimulus’ (Bailey et al., 2000).

Locus coeruleus: ‘Nucleus of the brain stem. The main supplier of

noradrenaline to the brain’ (Bailey et al., 2000)

LTD: Long-term depression, a long-lasting decrease in the effective-

ness of synaptic transmission that follows certain types of conditioning

stimulation
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LTP: Long-term potentiation, long-lasting enhancement of the effec-

tiveness of synaptic transmission that follows certain types of condi-

tioning stimulation

Molecular Neuroscience: the study of elementary molecules that

are found in nervous systems

Neuroethology: The study of animal behaviour in relation to the

nervous systems and the underlying neural mechanisms

NE: Norepinephrine, or Noradrenaline, is a neurotransmitter of the

group of catecholamine

NMDA: N -methyl-D-aspartate is a neurotransmitter generally asso-

ciated with excitatory synapses (Gerstner and Kistler, 2002)

Ontogenesis: ‘The development of the individual organism from the

earliest embryonic stage to maturity. Also: the development of a par-

ticular (anatomical, behavioural, etc.) feature of an organism’ (OED,

1989)

Operant Conditioning: Learning to obtain reward or to avoid pun-

ishment (Britannica, 2007a)

Phylogeny: refers to ‘the history of the evolution of a species or

group’ (Britannica, 2007b).

POE model: Phylogenetic, Ontogenetic and Epigenetic model

Sensitisation: ‘The strengthening of the response to a wide variety

of neural stimuli following an intense or noxious stimuli’ (Bailey et al.,

2000).

SNNs: Spiking Neural Networks

Synapse: ‘The region of contact where a neuron transfers information

to another cell’ (Bear et al., 2005)
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7. CONCLUSION

Synaptic Plasticity: ‘A change in the functional properties of a

synapse as a result of use’ (Bailey et al., 2000)

System Neuroscience: The study of neural dynamics that origi-

nates from the complex circuitry of connected neurons

Ventral Tegmental Area (VTA): ‘Nucleus of the midbrain. The

main supplier of dopamine to the cortex’ (Bailey et al., 2000)
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A. Soltoggio, P. Dürr, C. Mattiussi, and D. Floreano. Evolving Neuromod-

ulatory Topologies for Reinforcement Learning-like Problems. In Pro-

ceedings of the IEEE Congress on Evolutionary Computation, CEC 2007,

2007. 65, 76, 77, 92, 137

A. Soltoggio, J. A. Bullinaria, C. Mattiussi, P. Dürr, and D. Floreano. Evo-
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