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ABSTRACT
There is a rapid rise of multi-cores in recent kanck

architectures. To exploit computational power of Itirtore

architectures, software should shift to be as coeroti as
possible; and therefore should have concurrency traon
mechanisms. There are different concurrency prograg

paradigms such as locking and conditions, non-limack
algorithms, actors and software transactional mgm@&TM).

There is a need to compare these approaches is tErease of
use and performance. This work implements thre@dorental
cases of credit transfer, producer-consumer andntelng with

different paradigms in Scala and the quantitativd gualitative
results of the experiments are presented. BesidesSEM

implementation in Scala is presented.

Keywords

Concurrent Programming, Actors, STM.

1. INTRODUCTION

As modern hardware architectures require concurseftivare,
the need for a concurrent programming model isestn®ore than
ever before. There are four known concurrency Eaogning
models: locking and conditions, non-blocking altfuris, actors
and software transactional memory. Locks and cmnditis the
primitive concurrency programming model that is ypded by
most languages. Non-blocking algorithms are ad-fgorithms
that are lockless and hence provide progress. A@pis an
abstraction over thread with high level messagsipgdeatures.
A transaction[2][3][4][7][8] is a code block that its reads and
writes to the shared memory occur logically anaetinstant. This
study is to compare these paradigms and identdysttengths of
each.

To compare these paradigms three fundamental esseglected:
bank account credit transfer, producer-consumertaken ring.

Each case is implemented with each of the paradighhe

comparison is based on ease of use and performesicks.

The report starts by giving an introduction for leacf the
paradigms. Then the cases and their implementatitheach of
the paradigms are explained. Results are preseamddfinally
conclusions and future works follow.

2. Paradigms

Fundamentally, the two mechanisms that are expefttad a

Permission to make digital or hard copies of alpart of this work for

personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa flist page. To copy
otherwise, or republish, to post on servers oreistribute to lists,

requires prior specific permission and/or a fee.

Martin Odersky

Rachid Guerraoui
EPFL, IC

concurrency programming model are isolation anchaigg.
Isolation mechanism prevents concurrent operatidrem
accessing shared data in an intermediate (and Ipisoba
inconsistent) state. Signaling is the mechanism tharocess
employs to inform another process about an event.

Signaling can be implemented using the isolatioctraaism and
a shared memory variable. The signaling threadewritn the
variable in isolation and the waiting thread comtinsly reads
from the variable in isolation. The problem with isth
implementation of signaling is that it is pollinige( busy waiting).
To have an efficient implementation of signalinige tscheduler
should also be engaged. It should not scheduledliteng process
until the variable is written by the signaling thde In fact, this is
why intrinsic condition is supported in Java Objelatss besides
the intrinsic lock.

2.1 Locksand Conditions

2.1.1 Isolation

The pessimistic approach to preserve isolation oisptevent
executions that may violate it. To isolate some ragens, a
pessimistic approach is to allow them to be exetotdy one at a
time. This approach is called mutual exclusion. K.ds an

abstraction to provide mutual exclusion. When aess acquires
a lock, any later process that ties to acquirddbk is suspended
until the first process releases the lock. Theeefarblock can be
mutually exclusive by acquiring and releasing &loespectively
before and after the block. Hence, blocks withghme lock can
execute operations in isolation.

Using one lock for all operations is too restrietiyt can serialize
processes that could potentially execute in pdradled hence
may sacrifice concurrency. Using few locks (and onethe

extreme) is called coarse-grained locking. In fagch process
needs to prevent others from accessing only tha thett it is

going to access. This observation, leads to tha @fedefining

separate locks for separate parts of shared daitzhvid called

fine-grained locking. To be more precise, a lock ba defined
for each largest part of shared data that has #imeesset of
concurrently accessing operations. Each operasoto iacquire
and release the set of locks that correspond ts padata that it
is going to access. The problem with acquiring ipldtlocks is

that if they are not acquired in the same orderdifferent

processes deadlock may happen. There is a trathediieen

deadlock safety of coarse-grained locking and perémce of
fine-grained locking.

Locks are known to have some inherent shortcomimps.
first shortcoming of locks is their lack of comptimnality. For
instance, suppose that objects of two or more efasbould be
composed to define a new class. If there is anatioer of the new
class that should perform some operations of theposed
objects in isolation, fine-grained locking is pdssi only when



composed classes expose their internal locks. HExpdscks out
of classes has an intense effect on modularity.

The second problem of locks is that they preveagmass. A
process trying to acquire a lock that is previousbguired by
another process is blocked. If the current lock emis delayed,
every process that is blocked for the lock is alstayed. Cache
misses, page faults and preemption by the operagisigm delay
processes. Such long delays are undesirable ktinealand event
driven systems. When a low priority task holds ekldhat is
required by a high priority task, the latter hasbtock until the
former releases the lock. In such situations, #iative priorities
of the two tasks are inverted. This is called ptyomversion.
Besides, if an interrupt handler needs to acquilech that is
previously acquired by a preempted process, thelbarcannot
proceed. This is while separate event handling geses
maintaining GUI, real-time audio rendering, andckdiad network
1/0 need to proceed timely. This is especially tfoeinteractive
and rich multimedia applications like electronicrgss.

2.1.2 Sgnaling

Condition is the signaling mechanism that is usdith vocks. A
process that calls wait on a condition object ispsmded until
another process calls signal on the same condition.

2.2 Non-blocking Algorithms
To circumvent blocking problems of locks that arentoned
before, ad hoc non-blocking algorithms are devieedome data
structures. Non-blocking algorithms are lockless #imeir basic
idea is redundant data and rechecking.

An operation is wait-free if every concurrent exsmo of it

finishes in a finite number of steps. Hence, watfoperations do
not produce priority inversion and not hinder evéwindlers.
Wait-freedom is the strongest progress propertythcigh

stronger progress properties are more attracthey, are usually
harder to devise and sometimes inefficient. Henseaker

properties are sometimes settled for. An operasidock-free if at

least one concurrent execution of it finishes iimdée number of
steps. An operation is obstruction-free if whenisitexecuted
alone, it finishes in a finite number of steps. Bvevait-free

algorithm is lock-free and every lock-free algomith is

obstruction-free. So the properties are orderestrength as wait-
freedom, lock-freedom and obstruction-freedom.

2.3 Actors

Processes with a unique memory space can commenizathe
shared memory. In contrast, processes on diffenembory spaces
communicate by message passing. Communication essage
passing can be applied to shared memory processes\dttor is
an abstraction on threads with message passingrdésatAlthough
actors can share data, it is a design recommemdatioto have
shared objects in actors and to do communicatioly dny
message passing.

2.3.1 Isolation

Actors provide isolation by the fact that for eadtor instance,
there is one (virtual) thread that executes theracbde. This
means that operations executed in the actor cedsesialized and
hence are done in isolation. Accesses to the actssage boxes
by send and receive operations are also alreadshsynized by
the supporting library or language. This mechaniemisolation
is coarse-grained. For example, handling messafjebfferent

types may need to access different data insidadter and hence
can be done concurrently but are done in sequentieetactor.

2.3.2 Sgnaling

On the other hand actors provide a rich mechangmsi§naling.
Primitive condition objects can only send plainnsity. To pass
informative messages, they should be used togetfiershared
objects. This is while actor message passing mésmanare self
contained and easy to use.

2.4 Software Transactional Memory

2.4.1 Isolation

The optimistic approach to maintain isolation ideb operations
execute without any prevention at the beginning ndollback
and retry an operation if it is invalidated. An ogt®on is
invalidated when it is found that its execution has been or will
not be in isolation. The following paragraphs preskeow this
work has implemented transactional memory.

The atomic method creates a transaction descripigect for
every transaction. The transaction descriptor v@das a thread
local variable to be accessed later by read antkwmethods of
transactional objects.

In order to rollback, transactional objects shobt& backed up
before being written. As only one of concurrenng@ctions that
write on a transactional object can finally communly one
transaction at a time is allowed to write on aneobjAs there is
only one writing transaction at a time, transaaioobjects have
only a single backup of their fields.

Every transactional object stores a reference ¢odscriptor of
its last writing transaction. When the last writimgnsaction of an
object is still active and the current transacticants to write on
the object i.e. on a write-write conflict, the cemt transaction
should select to abort the last writing transactioritself. It can

abort itself by throwing an abort exception. Thenait method

catches the exception and retries executing timsaion code. It
can abort the last writing transaction by settihg status in its
descriptor to aborted. As a transaction status Ingaset to aborted
by other transactions, any transaction checks nohdve an

aborted status before any read, write and also ¢dbmm

Multiple transactions are allowed to read from ajeot.

The read-write conflict is when a transactiorrdads an object O
and then another transactiog Writes on O. The problem is that
then T, can commit and update some objectsn8luding O and
T, can then read some committed objecisfBm S. T, can
experience reading inconsistency between the dlgevaf O and
S,. There are two approaches to the read-write pnobigsible
and invisible reads.

With invisible reads, the DSTM2 approach, transactiescriptor

has a read list. Every transaction that reads gecoladds the

object to the read list in its descriptor. On anpsequent read or
write, transactions check at the beginning whetiérthe read

objects are still current; if not, the transactgam abort itself.

With visible reads, this implementation’s approatrhnsactional
objects have read lists. Every transaction thatgeen object adds
its own descriptor to the read list of the objedh read-write
conflict, T, should select to abort itself or to abort all the
previously reading transactiongsTof O. To abort B, T,, changes
the status of all the transaction descriptors erémd list of O to



aborted. This is because not only these transactian observe
inconsistency but also they can propagate it teewrand finally
commit.

The write-read conflict is when the last writingutsaction J; of
an object O is active and another transactiowants to read from
O. T, can get the current stable value of O or its targavalue
from T,,. For the latter, the current transaction will lEpendent
on the writing transaction and following this degency is hard.
Hence, T usually reads the current stable state of thecbbjée

problem is that then,Jcan commit and update a set of objegts S

in addition to O. Then Tcan read some objects ffom S and
experience inconsistency between the old value dn@ new

values of $ objects. There are two approaches to this problem

based on the strategy chosen for read-write canflic

With invisible reads, validation is done on theddst of the
transaction on any read. Hence the fact that Opdated is
detected in the validation that is done whemwants to read any

object from $. Hence the transaction can abort itself not to

observe any inconsistent data.

It is notable that in visible reads, on the wriéad conflict, one of
the transactions should be aborted. Otherwiseis Tunable to
detect inconsistencies later and reading inconsigtean lead to
written inconsistency by, That can finally commit.

Committing of a transaction i.e. updating writteljexts to new
values should be done at once; otherwise someattioss may
experience inconsistencies by accessing some néwldrobjects
together. This is usually done by atomically settine transaction
status as committed in its descriptor and alsofdlee that if the
last writing transaction of an object is committaedy first read or
write on the object updates the current fields whth new values
from the last writing transaction.

2.4.2 Sgnaling

There is no signaling mechanism in the fundame®Ta model.
Waiting for a condition can be throwing an aborteption and
retrying the atomic block. In other words, signglinis
implemented by isolation. This is busy waiting drehce affects
performance. An optimization to STM conditions @sretry the
transaction only when at least one of the previousdad
transactional objects is written by another tratisac [5].
Although many useless retries are eliminated by dipitimization,
some are still present. This is because updateanyoof the
previously read objects that are irrelevant towlaéted condition
cause the transaction to be retried.

The following paragraphs explain how STM conditioase
implemented in Scala. When a transaction calls itiondVait, a
wait exception is thrown that is caught in the sastion retry
loop. On catching a wait exception from a try, therent thread
sets the status of the transaction to waiting amitswon the
intrinsic condition of the transaction descriptor.

In the visible reads strategy, a read list is naimgd by each
transactional object. A new list called waiting s added to each
transactional object. A transaction that writes e object

traverses the read list of the object. Active teations of the list
are aborted and waiting transactions are enqueuduetwaiting

list.

A new list named write list is added to each tratiea descriptor.
When a transaction writes on a transactional opjeadds the

object to the write list of its descriptor. When t@ansaction
succeeds in committing, it traverses the objecthiénwrite list of
its descriptor. From each of these objects, it getswaiting list
and natifies the transactions in the waiting lists.

3. Cases

The three cases that are selected for comparisenclaosen
according to expected fundamental
previously mentioned i.e. isolation and signalifigansfer of
credit in bank accounts should be done in isolabiothe integrity
of the bank account balances is violated. In aaldito isolation,
producer-consumer case needs signaling to infornitinga
consumers of a new production. The token ring as@loys
signaling to pass the token to the next stations.

3.1 Bank Account Credit Transfer

Transferring of credits between bank accounts & dlassical
example of concurrent access to shared data. Aminad credit
should be debited from an account and credited rtothar
account.

3.1.1 Locks and Conditions

3.1.1.1 Coarse-grained
In the coarse-grained locking all the transfersne¥¢hey are not
conflicting are serialized by the bank intrinsicko

t hi s. synchronized {
account 1. wi t hdr aw( amount )
account 2. deposi t (anount)

}

3.1.1.2 Fine-grained

In the fine-grained locking rather than having ekléor the whole
bank, each account has a lock. It is notable thaksl are always
acquired in the same order.

if (accNol <= accNo2) {
account 1.1 ock. | ock
account 2. | ock. | ock

} else {
account 2. | ock. | ock
account 1.1 ock. | ock

}

account 1. wi t hdr aw( anount)
account 2. deposi t (amunt)

account 1. | ock. unl ock
account 2. | ock. unl ock

3.1.2 Actors
The bank account case is implemented twice with different
designs.

3.1.2.1 Firstimplementation
For each bank account, a transferer actor is aedte transferer
of an account is responsible for credit transfdrthe account to
and from other accounts with larger account numb@&igent
transfer requests are forwarded by the bank clasthé right
transferer.
if (accNol < accNo2)
transferers(accNol) !
el se
transferers(accNo2)

TransferRequest (/*...*/)

TransferRequest (/*...*/)

mechanisms that a



The code of transferer actor is presented in tileviilng code
shippet. Assume two bank accountsd@d B respectively with
transferer actors TBand TB where without loss of generality,
account number of Bis less than that of BA transfer between
accounts Band B is forwarded to TR It is the owner of Band
can readily access it. But for accessingiBshould communicate
with TB, to preserve isolation of transfer operations. €oniore
precise, before performing a transfer,; #8nds a message to,JB
to ask him to wait. When a transferer (i.e.,JBeceives a wait
request, it sends an acknowledge message to thesteq (i.e.
TB;) and waits until the requester (i.e. JBsends a “go on”

As messages are handled one at a time by actotisgdrauv,
deposit and balance requests are done is isolation.

The transfer operation of the bank sends withdrad deposit
requests to account actors and wait for their ackemgments
before returning.

account s(accNol) !
account s(accNo2) !
recei ve {
case Wt hdrawbone =>
receive {
case DepositDone =>

W t hdr aw( anount )
Deposi t (anmount)

def act() {
react {
case itr @I TransferRequest(/*...*/ accountNo2, amount, forward) =>
/...
transferers(account No2) ! Wit Request
react {
case WitoK =>
if (forward)
transfer(account Nol, accountNo2, anpunt)
el se
transfer (account No2, account Nol, anmpunt)
sender | GoOnRequest
/1
act
case Wit Request =>
sender | WaitOK
react {
case GoOnRequest =>
act
case Bal anceRequest =>
sender ! accounts(accountNol). bal ance
case Term nat eRequest =>
}
}
message. When the wait request is acknowledgedByy B, }
performs the transfer operation and then a messagent to the }
TB, to go on. When a transfer is being done, only toaesferer . . . . . . .
The first implementation provides isolation but sthi

actor is accessing the two accounts; and hencetizol is
preserved.

The transferer of an account only waits for trareste of accounts
with smaller account numbers. Hence there carobeydle in the
waiting chains and there is no deadlock in waitiagsferers.

3.1.2.2 Second implementation
Each account is modeled as an actor that handiksinaiv and
deposit requests.

def act() {
react {
case Wthdraw anount) =>
b -= anount
sender ! Wt hdrawDone
act

case Deposit(amount) =>

b += anount

sender ! DepositDone
act

case Bal anceRequest =>
sender ! Bal ance(b)
act

case Term nat eRequest =>

implementation turns out to be very inefficient. eTlsecond
implementation provides an eventual guarantee.llffitlze sum
of all the account balances is the same as bdfergansfers. The
second implementation is more efficient and hends used in
performance comparisons.

3.1.3 STM
Credit transfer is simply an atomic block in STM.
atom c {
account s(accNol).w t hdr awm anount)
account s(accNol). deposi t (anount)

}

3.2 Producer-Consumer

Producer-consumer is a pattern that reoccurs iiguesf various
software systems. Several producers concurrentlgdyme
productions that are concurrently consumed by ooessL.
Addition to and elimination from the entity that ltde the
productions should be done in isolation to presawesistency
and prevent production loss. When there is no prioi
available, consumers should wait until one is poedu



3.2.1 Locksand Conditions

3.2.1.1 Coarse-grained
In the coarse-grained locking, the implicit lock thfe Queue

synchronizes the whole bodies of enqueue and dequeu

operations.

3.2.1.2 Fine-grained
The code is presented in the following code snippeto locks
are defined for the rear and front cursors of theug. For each of
the enqueue and dequeue operations, acquiring lboks is
required only in the worst case. To maximize patiaiin of
enqueue and dequeue, the most often needed lockhwhki
rearLock for enqueue and frontLock for dequeuecuaed first.
The other lock can be acquired later, if needed.
def enqueue(v: Int) = {

val newNode = new Node(O,

newNode. val ue = v

rear Lock. | ock

val rear = rearCursor.node

nul 1)

if (rear '=null) {
rear.next = newNode
rear Cur sor. node = newNode
} else {

front Lock. | ock
front Cursor. node = newNode
rear Cur sor. node = newNode
/1 To awaken the threads that
/lare waiting to dequeue.
not Enpt yFor Front . si gnal Al |
not Enpt yFor Rear . si gnal Al |
front Lock. unl ock

}

rear Lock. unl ock

enqueueCount += 1

}

def dequeue(): Int = {
front Lock. | ock
whil e (frontCursor.node == null)
not Enpt yFor Front . awnai t ()

var front = frontCursor. node
var value = front.val ue
front = front. next

if (front !'=null) {

front Cursor.node = front

front Lock. unl ock
} else {

front Lock. unl ock

val ue = conservati veDequeue
}
dequeueCount
val ue

}

def conservati veDequeue()
rear Lock. | ock
whi l e (rearCursor.node == null)

not Enpt yFor Rear . awai t ()

front Lock. | ock
var front = frontCursor. node
var value = front. val ue
front = front. next

+= 1

Int = {

front Cursor.node = front
if (front == null)

rear Cursor. node = null
front Lock. unl ock
r ear Lock. unl ock

val ue

If the current state of the object necessitatesiiaitipn of the

second lock to perform the operation, the previpesgkcuted part
of the operation may have not been run in isolatiéence, all or
some lines of the executed part may be needed tepeaited after
the second lock acquisition. In the dequeue operait is after

the "else" that it is known that rearLock shouldoabe acquired.
If the rearLock had been acquired after the "etsed then the
rearCursor had been made null, that could generatece. An

enqueue could be done just after the "else" and tie

rearCursor would be made null. That is lost of jtre enqueued
value! The fact that the next field is null canmet relied on just
after the "else". Null inequality should be checleggin after the
second lock acquisition. Such a non-isolation cahappen in the
enqueue operation. This is because in the “els&ravht is known

that the second lock should be acquired, rear ik and that

means the queue is empty. When the queue is emptyeue
operation cannot change this state. The curreeathis already in
enqueue operation and has acquired the first loekce no other
thread can enter enqueue and change the stateefdilgemo

operation can change the current state and engqpration can
safely rely on its current information about thgegh state and go
on its execution.

To prevent dead-lock, the order of acquiring thekéoshould be
the same in all operations. To have the same oofielock
acquisition, as enqueue and dequeue operations &@wgred
different locks at the beginning, one of the ogers should
release its current lock and restart the operdp@acquiring the
other lock first and then its current lock againonCerning
performance, it seems better not to restart theatipe that does
not need to repeat some previously done partseobpleration and
leave it as is; but to restart the operation thaeds some
repetitions anyway. This is why dequeue is repeatedhe
conservative dequeue method.

Before waiting on a condition, the lock relatedittehould have
been acquired. Non-emptiness condition should bigedvan at
the beginning of both dequeue and conservativealegmethods.
As the frontLock and rearLock are respectively aaglat the
beginning of these methods, a non-empty conditsodeifined on
each of these locks. Both of these conditions &se signaled
when an enqueue is done on an empty queue.

3.2.2 Non-blocking algorithms
The performance evaluations employ the wait-fregordhm
proposed irf1].

3.2.3 Actors

The mediator actor is the single reference poinpfoducers and
consumers. When it receives a request from theuseryd (or
consumers) and there is no previously stored reqéresn
consumers (or producers), the mediator storesdfaest in an
internal queue for producers (or consumers). Ifehe a stored
request from the other party, it simply services ¢lrrent and the
stored requests.

def act() {
if (count
react {
case p: Production =>
if (! consunerQueue.isEmpty) {
consumer Queue. dequeue ! p

I = TOTAL_PRODUCTI ON_COUNT)



count = count + 1

} else
prodcut i onQueue. enqueue( p)

act

case ConsuneRequest =>

if (! prodcutionQueue.isEnpty) {
sender ! prodcutionQueue. dequeue
count = count + 1

} else
consuner Queue. enqueue( sender)
act
}
}
3.24 STM

The STM implementation of a queue is straightfoodvtom the
sequential implementation. The enqueue and deqopesations
are put inside atomic blocks. When the queue istg@p abort or
wait exception should be thrown to retry the tratisa. Cursor
and Node classes with the same definition as thaesdial ones
are annotated as atomic.

3.3 Token Ring

Token ring is basically a local area network (LANdtocol at the
data link layer (DLL). Stations on a token ring LAle logically
organized in a ring topology with data being traitsd

sequentially from one ring station to the next. @ntcol token
circulates around the ring controlling access.

As passing of the token to the next station isregséy signaling,
the simulation of token ring protocol can compariéfecent
paradigms according to their signaling mechanisms.

3.3.1 Locksand Conditions

The station waits on the intrinsic condition of tineoming port
while the token is not inside the port yet. Whee sitation finds
the token inside the incoming port (maybe aftengeiotified by
the neighbor station), it takes the token from ith@ming port
and puts it inside the outgoing port. The nextigtamay have
been suspended after a wait on the outgoing portawake the
next station, the station notifies on the outggdogt after putting
the token in it.

i nPort.synchroni zed {
while (inPort.value == null)
inPort.wait
out Port. synchroni zed {
out Port.value = inPort.val ue
out Port.notify
inPort.value = null
}
}

3.3.2 Actors

The token ring is very straightforward with ActorShe actor
reacts to receiving of the token by sending iti®ext station.

def act {
if (currentRound != roundCount)
react {
case Token =>
next Station ! Token
current Round += 1
act

3.3.3 SIM

Port is defined as a transactional object. Insidextamic block,
the station reads the value of the incoming pdrthére is no
value inside it, conditionWait is called. As expled in section
2.4.2, by calling conditionWait, the transaction @ssentially
aborted and not retried until only after the incognport object is
updated. When a (retrying) transaction succeedsading the
token from the incoming port, it updates valuedaoth incoming
and outgoing ports to null and the token respelgtive

atom c {
if (inPort.value == null) {
//throw new Abort Exception
condi ti onWi t

}
el se {
out Port.value = inPort.val ue
inPort.value = null
}
}
4. Results

The paradigms are compared in ease of use andrerioe in
the following subsections.

4.1 Easeof use

According to the presented implementations, the pkast
paradigm to implement Credit Transfer case with 83asl; on
the other hand, Actor implementations were the most
straightforward implementation of Producer-Consuaret Token
Ring cases. A subjective order of simplicity of g@igms for
Credit Transfer case is STM, Coarse-grained logkiRme-
grained locking and Actors. For Producer-Consumasecthe
order would be Actors, STM, Coarse-grained lockirgne-
grained locking and the wait-free algorithm. Fok&o Ring case,
the order is Actors, STM, and locks.

4.2 Performance

For each case, separate experiments are done agmtlncase,
variation of definite parameters is studied. A ¢hsltows total
time spent by each paradigm against variation ef deefinite
parameter.

The experiments are done on two different machiieand M.
Machine M is a Dell Latitude E6400 Intel® Core™2 Duo CPU
P8600 @2.40GHz and maching M <Ipdquad spec> with eight
cores.

4.2.1 Bank Account Credit Transfer
Two experiments that are done on this case arellmsgariation
of two parameters: total transfer count and nurobeccounts.

Clients request equal number of transfers in brgeements.
4.2.1.1 Total Timevs. Total Transfer Count

Figure 1: Total time vs. total transfer count inMgure 1 depicts
the time spent by each paradigm for various nunolbéransfers
in machine M where constant parameters are client count that is
equal to 20 and account count that is equal to Cliént count is
the number of concurrently requesting threads taracTo have a
closer view of less time consuming paradigms, Fd2irdepicts
only these paradigms from Figure 1.
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As expected, there is a monotonic increase of tota against
transfer count in all the paradigms.

4.2.1.2 Total Timevs. Number of accounts

Figure 3 depicts the time spent by each paradigmvésious
number of accounts in machine, Mhere constant parameters are
client count that is equal to 100 and total transfeunt that is
equal to 10000000. A closer view of actors is dgpidn Figure 5.

A closer view for the other paradigms is depicteéigure 5.

16000
14000
12000 Client Count=100
Transfer Count= 10000000
10000
=
£
g 8000 —#—Fine-grained Locking
= . .
—— Coarse-grained Lockin,
6000 g 2
5TM
4000
2000 LQEE!—
o
a 10 20 30 40 50 60

Account Count

Figure5: Total timevs. account count in M, (without actors)

In coarse-grained locking, it is obvious that imgi@ag account
count has no effect on performance. This is becthere is only
one lock for all the accounts. In the other paradigincreasing
the number of accounts decreases the probabilitpetfention on
each account. In fine-grained locking, less comenton an
account means less blocking for clients that traaquire its lock
and hence faster lock acquisition and faster teamsflt is



interesting that with small number of accounts, reeayrained
locking is more efficient than fine-grained locking@his is
because contention is high and very few transfeaa be
performed concurrently anyway. This is while oneklshould be
acquired for coarse-grained locking while fine-geal locking
needs two. In STM, less contention means less iabhodnd
invalidation and hence less retries. Less retrezd Ito faster
execution. In Actors, less contention means shomessage
queues for the account actors and hence less wditime for
service. That leads to faster withdraw and depasit therefore,
faster transfers.

4.2.2 Producer-Consumer
The parameters that their variation for producerscmner case is
studied are production count and producer/conseoent.

In the experiments, the number of producers is letpahe
number of consumers and all the producers/consupenferm
equal number of productions/consumptions.

4.2.2.1 Total Timevs. Total Production Count

Figure 6 and Figure 7 depict the total time forieas production
counts respectively in machines, ldnd M, where the number of
producers/consumers is equal to 20.
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Figure 6. Total time vs. production count in My
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Figure 7: Total timevs. production count in M,

4.2.2.2 Total Time vs. Producer/Consumer Count
In this experiment, the total number of productiooasumptions
is constant (equal to 9,000,000). The varying patamis the

number of producers/consumers (and hence the nurober
productions per producer/consumer). Figure 8 shtbershart for

machine M. This experiment shows how paradigms behave in
different number of context switches.
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Figure 8: Total timevs. producer/consumer count in M,

There is not much performance change in the coansefine-
grained locking. In coarse-grained locking, all thygerations are
serialized by the intrinsic lock of the queue. Tdmerations are
always executed in sequence regardless of the numbe
concurrent operations on the queue. This argunisatagplied to
fine-grained locking. The only difference is thectfahat all
enqueue and dequeue operations are respectivaiizet on the
rear and front locks. There is a noticeable peréorce decrease in
STM. When there are more threads, there is moreegbawitch.
In STM, the more context switch, the more the phbiliig of
contention and abortion. All the messages sentntacor are
handled in sequence regardless of the number ofucamnt
requests; hence little change in performance iseaxrp by
increase in the producer/consumer count. The stahe actor’s
performance curve is because of thread creationsh&yactor
scheduler. This happens when there are many blaakeslimers.

Locks show the least sensitivity to context swittlthis case.

4.2.3 Token Ring

4.2.3.1 Total timevs. total token passings

This experiment shows the total time spent forawsinumber of
total token passings in a ring with forty statiof$gure 9 and
Figure 10 are respectively from machinesdnd M.
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Figure 10: Total timevs. total token passingin M,

Interestingly actors are even more efficient thaxtk$ and
conditions in this case. This is because of efficecheduling of
actors. When an actor sends a message, the cdbe mdceiving
actor can be executed by the current thread. Hemgzh of the
context switches are eliminated this way.

In this case, the transactions are never retriedus®e of update to
irrelevant objects. Transactional signaling is etpé to have
even less efficiency for transactions that readessvobjects
before waiting on a condition.

4.2.3.2 Total Time vs. Sation Count

In this experiment, the total number of token pagsiis constant
(equal to 450000) and the number of station couatg. Varying
the number of active entities shows how each pgradiehaves
against context switch. Figure 11 shows resultsifexecution on
M.
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Figure 11: Total timevs. station count in M ;

Increase of context switch increases the abortiabability in
STM. Hence, STM has the most performance sengititdt
context switch.

5. Conclusionsand Future Work

Although locking is very efficient, it is hard torggram fine-
grained locking and more importantly it has soméenent
shortcomings such as lack of compositionality, fmkty of
priority inversion and blocking event handlers. Nuacking
algorithms are also well at performance but devalppsuch
algorithms are hard enough to expect them only fexperts.
Non-blocking algorithms seem to be the best paradiy thread
safe libraries as they don’t block and are alsaciefit. Hence
STM or Actors are the choices for a general comeurr
programming paradigm.

Based on the performed experiments, from the prograr point
of view, some applications are suited to be prognach with
STM while others are more easily programmed wittiofg The
choice of STM vs. Actors is a question of applicatand design.

The simulations show STM to be more efficient iroypding
isolation. This is while the operations that ar@armented are
short or medium-sized transactions and longer aetiens should
also be experimented. In addition, experiments shensitivity of
STM performance to context switch. The simulatishew that
Actors are very efficient in providing signalingitérestingly they
are even more efficient than primitive conditions.

Actor and STM have strength in different aspecistofs support
high level message passing while transactions stippalation
well. If the problem is a data consistency probtéen it is better
to take advantage of efficiency of STM isolatiomn @e other
hand, if it is a coordination problem then it cam implemented
efficiently with Actors.

A future work is how to integrate the two approacha a
semantically well-defined and efficient way. It sifth be
investigated how the isolation ideas from transadiand the
message passing ideas from actors can be integiated
semantically well defined and efficient way.
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