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Abstract
Background: Given three signed permutations, an inversion median is a fourth permutation that
minimizes the sum of the pairwise inversion distances between it and the three others. This
problem is NP-hard as well as hard to approximate. Yet median-based approaches to phylogenetic
reconstruction have been shown to be among the most accurate, especially in the presence of long
branches. Most existing approaches have used heuristics that attempt to find a longest sequence of
inversions from one of the three permutations that, at each step in the sequence, moves closer to
the other two permutations; yet very little is known about the quality of solutions returned by such
approaches.

Results: Recently, Arndt and Tang took a step towards finding longer such sequences by using sets
of commuting inversions. In this paper, we formalize the problem of finding such sequences of
inversions with what we call signatures and provide algorithms to find maximum cardinality sets of
commuting and noninterfering inversions.

Conclusion: Our results offer a framework in which to study the inversion median problem, faster
algorithms to obtain good medians, and an approach to study characteristic events along an
evolutionary path.

Background
The ordering and strandedness of genes on each chromo-
some of many organisms are now available, with many
more to be added in the near future. Using this informa-
tion, one can represent a genome as a collection of chro-
mosomes, each of which is a linear or circular sequence of

gene identifiers. Variations in the placement of the same
genes, as well as variation in gene content and multiplic-
ity, among organisms can then be analyzed. This data is of
great interest to evolutionary biologists (and has been for
quite some time: see [1]), but also to comparative gen-
omicists (see, e.g., [2,3]) and to any researcher interested
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in understanding evolutionary changes in pathogens.
Even when the data are restricted to singleton gene fami-
lies (that is, when duplication and loss mechanisms are
ignored), the resulting gene-order data have proved very
useful in the analysis of small genomes (such as
organelles) and in comparative genomics. In the past ten
years, there has been a large increase in work done on ana-
lyzing such data, gene-order data in particular (see, e.g.,
[4]). Evolutionary biologists have sought to exploit the
advantages of gene-order data (no need for reconciliation
of gene trees, very little saturation, existence of rare events
that uniquely characterize some very old divergences,
etc.), but have had to contend with the high computa-
tional complexity of working with such data.

Of particular interest in a phylogenetic context is the prob-
lem of finding the median of three genomes, that is, find-
ing a fourth genome that minimizes the sum of the
pairwise distances between it and the three given genomes
[5]. This problem, while being fairly easy for aligned
sequence data, is NP-hard for gene-order data [6,7]. Since
phylogenetic reconstruction based on reconstructing
ancestral states may need to compute such medians
repeatedly, fast approximations or heuristics are usually
needed, although exact methods have done well for small
genomes (from organelles, for instance) [8,9]. One such
heuristic, implemented in the popular software MGR
[10], attempts to find a longest sequence of inversions
from one of the three given genomes that, at each step in
the sequence, moves closer to the other two genomes.
However, nothing is known about the theoretical behav-
ior of this heuristic and no systematic experimental inves-
tigation of its usefulness has been conducted.
Experimental evidence indicates that it leads to worse
trees than an optimal median-solver [11], at least on small
genomes, perhaps because the MGR search is limited to a
small subset of possible paths. Recently, Arndt and Tang
[12] provided significant improvement on this heuristic
by considering sets of commuting inversions, that is, inver-
sions that can be arbitrarily reordered among themselves
without affecting the end result; using a somewhat differ-
ent framework, Bernt et al. [13] proposed an approach
that is also based on such inversions.

In this paper, we show that finding maximum cardinality
sets of commuting inversions is equivalent to finding
maximum independent sets on circle graphs and so can be
done in low polynomial time–we give a simple algorithm
for this purpose. We also shed light on the relationship
between maximal sets of noninterfering inversions and
independent sets on circle graphs. We further classify sets
of commuting inversions into interfering and noninterfer-
ing inversions, where noninterfering inversions are com-
muting inversions that also make maximal progress (e.g.,
towards a median), and introduce the notion of an inver-

sion signature, which captures the unique rearrangements
common to all sorting paths. Finally, we characterize the
relationship of sets of noninterfering inversions to signa-
tures and that of signatures to inversion medians.

For most of the paper, we show how to analyze single per-
mutations in terms of commuting and noninterfering
inversions; in later sections, we show how to extend the
analysis to multiple permutations.

Commuting and noninterfering inversions

An inversion ρ(i, j) transforms permutation π = π1 � πi-

1πi�πj-1πjπj+1�πn into permutation π' = π1�πi-1πjπj-1�πn.

Thus, the inversion distance problem between π and τ refers

to finding a minimum series of inversions ρ1, ρ2,�, ρt so

that π·ρ1·ρ2�ρt = τ. Because any series of inversions that

sorts permutation τ1 to some permutation τ2 will also sort

 to the identity 1 2 3 4 � n, we often only consider

one permutation π =  and call d(π) = t the inversion

distance. Hannenhalli and Pevzner [14] showed how to
use a graph representation of the two permutations,

henceforth referred to as the HP-graph. An element πi is

represented by vertices  and , where  is to the

left of  if and only if πi is positive, and the permutation

is bracketed by L+ on the left and R- on the right. Reality
edges represent current adjacencies and so connect verti-
ces from adjacent elements, while desire edges represent
adjacencies for the sorted permutation (the identity) and

so connect  to . Every vertex has degree two so that

every vertex is part of a cycle; cycles that overlap when
embedding on a line, with all desire edges on the same
side of the line, are part of a component. Each reality edge
on a cycle has a relative direction imposed by a tour of the
cycle, carried out by noting in which direction the edges
are traversed relative to the embedding. In Figure 1, edges
(L+, 6+) and (2-, 1-) share a direction while all the others
are of the opposite direction.

We say that inversion ρ(i, j) acts upon a reality edge e if e is
either the ith or (j + 1)st reality edge from the left; simi-
larly, we say that inversion ρ(i, j) acts upon a desire edge e
if e is incident on the rightmost vertex of the ith reality
edge or on the leftmost vertex of the (j + 1)st reality edge.
In our example, the inversion over substring "-6 -4 -2 1 -
3" (also known as ρ(1, 5)) acts upon reality edges (L+, 6+)
and (3-, 5+). It acts upon desire edges (6+, R-) and (3-, 2+)
and so affects vertices 6+ and 3-. An oriented inversion acts
upon reality edges from the same cycle of opposite direc-
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tion. A component is oriented iff it has an oriented inver-
sion that acts upon it, otherwise it is unoriented. A
permutation that has at least one unoriented cycle has at
least one hurdle, indicating that at least one additional
inversion will be needed. See [14,15] for a more complete
description.

Oriented inversions are of particular interest because, in
the absence of hurdles, they are the only inversions that
move π one inversion closer to the identity. A set of ori-
ented inversions on a permutation π commutes iff the
application of its inversions, in any order, yields the same
final permutation.

Definition 1. A set of m inversions on π (with respect to τ) is
noninterfering if and only if

1. the set is commuting; and

2. applying these inversions in any order moves π closer to τ by
m inversions.

Example 1. For π = -6 -4 -2 1 -3 -5 a maximum cardinality
set of commuting inversions is {ρ(1, 1), ρ(1, 4), ρ(1, 5), ρ(1,
6), ρ(2, 3), ρ(3, 3), ρ(4, 4)} while a maximum cardinality set
of noninterfering inversions is {ρ(1, 1), ρ(1, 2), ρ(1, 4), ρ(4,
4)}.

Inversion graphs and inversion signatures
A sorting path is a shortest sequence of oriented inversions
on π with respect to some τ. The inversion graph is the
graph of all sorting paths between π and τ; the permuta-
tions are vertices and edges link permutations that are one
inversion away from each other.

Definition 2. The intersection of all inversion graphs from a
set of permutations P to permutation τ is the inversion signa-
ture subgraph and any vertex (permutation) in this subgraph
is an inversion signature.

A signature is maximal if there exists no neighbor to it in
the signature subgraph that is farther from τ; a maximal
signature that is as far from τ as any other is called a max-
imum signature.

Example 2. In Figure 2 we have P = {2 -1 -3, -2 3 1 } and τ
= 1 2 3 (the identity permutation of length 3). The inversion
signature subgraph is outlined in bold. The signatures in this
case are -2 -1 -3, -2 -1 3, 1 2 -3, and the trivial signature τ =
1 2 3. The only maximum signature is also the only maximal
signature -2 -1 -3.

A set of noninterfering inversions of size m constitutes a
subgraph of the signature subgraph of size

. Siepel et al. [9] showed that a median for

any signature between τ and P is also a median for τ and P.

Circle graphs and permutation graphs
Consider drawing a set of chords with each endpoint of
the chord on the same circle. The circle graph represents
the intersection of these chords where each vertex corre-
sponds to a chord and each edge corresponds to intersect-
ing chords [16]. For a permutation we can define a
permutation graph as follows. Each vertex is an element of
the permutation and an edge (u, v) exists iff v > u and v
appears to the left of u in the permutation [17]. Clearly,
any permutation graph is a circle graph.

Methods
Maximum sets of commuting inversions
We now show how to find a maximum cardinality set of
commuting inversions efficiently–omitting most proofs
due to space limitations. We can interpret the indices of
an inversion to be indices of an interval on a line. Two
intervals are said to overlap if they share more than one
point and neither is contained within the other.

Lemma 1. A set C of inversions commutes if and only if no two
inversions from C overlap.

Proof. Assume the pair a, b ∈ C overlaps. Fix an ordering of
all inversions from C so that b is the last inversion and it
immediately follows a. For this ordering the rightmost ele-
ment of a will end up to the left of the leftmost element of
a. Now take an ordering identical to the previous one but
with a following b; this yields a contradiction because the
rightmost element of a is right of the leftmost element of
a. The other direction is trivial. �

We have a set of intervals that, when projected onto a cir-
cle, yields a chord model of a circle graph [18];

m
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An example of breakpoint graphFigure 1
An example of breakpoint graph. G(π = -6 -4 -2 1 -3 -5). 
Black edges are reality edges and gray edges are desire edges.
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Figure 3(a) illustrates the concept. Call this circle graph
GC; a maximum independent set of GC corresponds to a
maximum independent set of commuting inversions. The
HP-graph can be built in linear time [19] and a maximum
independent set of GC can be computed in O(n2) time
with the algorithm of Valiente [20]; we thus have the fol-
lowing theorem.

Theorem 1. A maximum cardinality set of commuting inver-
sions can be found in O(n2) steps.

Maximum sets of noninterfering inversions
Finding a set of noninterfering inversions is more
demanding than finding a set of commuting inversions,
but we can also use maximum independent sets in the cir-
cle graph–except that now we need to use the union of
two circle graphs.

A set of noninterfering inversions is also a set of commut-
ing inversions; but additional constraints must be intro-
duced to ensure that the selected set of commuting
inversions also sort the permutation. We now proceed to
develop the theoretical background to represent these
additional constraints by another circle graph, beginning
with single-cycle components of the HP-graph and then
extending the characterization to general components.

Single cycle components
One important property of commuting inversions is that
the application of one inversion cannot alter the orienta-
tion of an inversion with which it commutes.

Lemma 2. Given commuting oriented inversions ρ(i, j) and σ
(k, l), the application of ρ will either make σ span two different
cycles or leave σ oriented.

Proof. Call r and s the reality edges acted upon by σ. At
least one of r or s remains intact after the application of ρ,
say r. At least one of the vertices incident to s must remain
intact, say v. There is a path P from v to some u incident to
r that does not include r. The adjacencies of v and u are not
affected by ρ; moreover, because σ is oriented, if v is on
some side of s then u is on the same side of r. But ρ can
only remove a subpath of the cycle when creating another
cycle. Because ρ and σ commute, u and v will remain on
the same sides of their respective reality edges, thus leav-
ing the inversion σ oriented. �

Each oriented inversion will split the cycle by swapping
the affected vertices of the desire edges acted upon. Thus,
when we embed the cycle on a circle, we can represent the
action of an inversion as a chord with its endpoints on
those desire edges. For two inversions that intersect and
act upon a disjoint set of desire edges, we know that apply-
ing one of them will put the reality edges acted upon by
the other on different cycles; so in this case intersecting
chords represent inversions that interfere.

Finding the interactions between inversions that share a
reality edge is harder. Consider the set of inversions that
share a reality edge as an endpoint and share the same
desire edge; for example, the set of inversions that share
reality edge (2-, 1-) is {ρ(2, 3), ρ(3, 3), ρ(4, 4), ρ(4, 5),
ρ(4, 6)}, which can be partitioned into inversions that
share (2-, 1+) {ρ(2, 3), ρ(3, 3)} and those that share (1-,
L+) {ρ(4, 4), ρ(4, 5), ρ(4, 6)}. Let us order such a set I in
two ways. The ordering α: I &rarrowbar; &doubstrN; num-
bers inversions from shortest to longest. There exists a ver-
tex v that is affected by every inversion in the set (because
of the sharing of edges); our second ordering β: I &rarrow-
bar; &doubstrN; numbers inversions by the order in
which we visit the other ("non-v") endpoint, starting at the
common reality edge and proceeding through v.

Lemma 3. Given inversions i, j ∈ I, i interferes with j iff we
have α(i) > α (j) and β (i) <β (j).

In other words, an inversion interferes with all shorter
inversions that appear after it on the cycle.

Proof. v is the shared vertex that is affected by all inversions
in I. For an inversion i ∈ I and any j ∈ {k||k ∈ I\{i } and
α (i) > α (k)} with endpoints v and u respectively, i inter-
feres with j iff u ends up on a different cycle than v after
applying i. If we follow the cycle in the same order used to
build β, the reality edges we visit before encountering u
are those that remain on the cycle with v when it is
attached by the new reality edge. So those inversions that
act upon such reality edges remain oriented and they are
exactly those j that have β (j) <β (i). The others will respect
β (i) <β (j). �

The union of the inversion graphs for P = {-2 3 1, 2 -1 -3} and τ = 1 2 3Figure 2
The union of the inversion graphs for P = {-2 3 1, 2 -1 
-3} and τ = 1 2 3. The inversion signature subgraph for P is 
highlighted in bold.
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Example 3. Figure 4(a) shows the graph from Figure 1 embed-
ded on a circle. α imposes the ordering on all inversions that
share desire edge (6+, R-) so that α (ρ(1, 1)) <α (ρ(1, 2)) <α
(ρ(1, 4)) <α (ρ(1, 5)) <α (ρ(1, 6)). We also have β (ρ(1,
6)) <β (ρ(1, 1)) <β (ρ(1, 5)) <β (ρ(1, 2)) <β (ρ(1, 4)). So
for (1, 5) we have α (ρ(1, 5)) > α (ρ(1, 4)) > α (ρ(1, 2)), as
well as β (ρ(1, 5)) <β (ρ(1, 2)) <β (ρ(1, 4)), which tells us
that ρ(1, 5) interferes with ρ(1, 2) and ρ(1, 4). Further, α
(ρ(1, 5)) <α (ρ(1, 6)) and β (ρ(1, 5)) > β (ρ(1, 6)) shows
that ρ(1, 5) interferes with ρ(1, 6). Figure 4(b) shows the
result of applying inversion ρ(1, 5) on the graph.

Corollary 1. The interference relationship between all inver-
sions that act on the same desire edge can be represented by a
permutation graph.

Theorem 2. GS can be represented by a circle graph.

Proof. If two inversions both act on a reality edge, then
apply Corollary 1. Otherwise, embed the cycle on a circle
and notice that the effect of an inversion is to split the cir-
cle (see Figure 4). A chord model representing the interfer-
ence between two inversions that do not share a reality
edge is obtained by drawing a chord for each inversion
between the reality edges it acts upon. �

Figure 3 shows the two circle graphs that represent the
constraints of the HP-graph from Figure 1. In this case, GC
is a subgraph of GS so GC ∪ GS is a circle graph. A maxi-
mum cardinality set of noninterfering inversions would

be represented by the set of chords {AB, AC, AE, DE}
(matching that from Example 1).

The union of two circle graphs, however, need not yield a
circle graph. To handle this issue, we decompose the
instance into computationally easy and hard subinstances
by using the first of two phases from the polynomial-time
circle graph recognition algorithm of Bouchet [21,22].
This first phase repeatedly decomposes the graph by join
decomposition; it finds a complete bipartite decomposition,
call it V1c ⊆ V1 and V2c ⊆ V2, then replaces it by the two
graphs induced by taking only vertices in V1 and V2, and
adding a marker vertex to each graph connected to only
V1c and V2c respectively. If such a decomposition does not
exist, the subgraph at hand is said to be prime. In the sec-
ond phase, a chord model is found for each prime sub-
graph. If every prime subgraph yields a chord model, then
we can apply the quadratic-time algorithm of Valiente
[20] to find the maximum independent set of the circle
graph and we are done. If only some subgraphs yield a
chord model, we can handle those independently with
the same algorithm. Thus the computationally hard sub-
graphs are those prime subgraphs that do not yield a
chord model; it is on these subgraphs that we are forced to
run a general algorithm for maximum independent set.

Figure 5 shows how a set of vertices is partitioned into
connected components V1 = V1a ∪ V1b ∪ V1c and V2 = V2a ∪
V2b ∪ V2c, where V1a, V2a, V1b, and V2b are possibly empty
sets.

The chord models for circle graphs representing the constraints on G(π = -6 -4 -2 1 -3 -5)Figure 3
The chord models for circle graphs representing the constraints on G(π = -6 -4 -2 1 -3 -5).
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In our setting, the sets V1a, V1b, and V1c (resp. V2a, V2b, and
V2c) may not actually yield chord models, but the repre-
sentation of Figure 5 shows how the independent sets of
such a decomposition interact with each other.

When composing solutions of independent sets on hard
subgraphs, solutions we denote by MIS(·), we must con-
sider two possibilities: (i) vertices from V1c and V2c are
used for MIS(V1) and MIS(V2) respectively; or (ii) vertices
from neither or only one of the two are used. In the later
case vertices from both independent sets will be in the
independent set for GS ∩ GC. In the former case we can use
the vertices from V1c or from V2c but not both, so we recur-
sively test MIS(V1a ∪ V1b) + MIS(V2) and MIS(V2a ∪ V2b) +
MIS(V1) and use the larger of the two as the score for the
subproblem.

Multiple cycle instances
We now show how to transform a multiple cycle compo-
nent into a single cycle while appropriately ignoring
inversions that are created by the process.

Hannenhalli and Pevzner [14] introduced the notion of a
(g, b)-split where a cycle of length six or larger is split by
adding two vertices so as to preserve at least one mini-
mum sorting path. Such a change in the graph can be rep-
resented in the corresponding permutation by a
remapping of some vertex labels, a process called a (g, b)-

padding. Here we introduce the inverse operation to the
split, the (d, r)-join, which takes two cycles and joins them
so as to preserve all sorting paths, along with an inverse
analog to the padding, the (d, r)-shrink. A (d, r)-join
removes the vertices x- and x+ (from two different cycles)
for some permutation element x along with reality edges
(x-, r1) and (x+, r2) and desire edges (x-, d1) and (x+, d2).

The edges r = (r1, r2) and d = (d1, d2) are then added to

form a valid HP-graph (π). It is easy to verify that a (d, r)-
join operation is equivalent to a (d, r)-shrink which acts
by removing the element x and renaming all other ele-
ments with magnitude i > x to have magnitude i - 1 with

the same sign. Hence we have G( ) = (π).

Lemma 4. Apply to permutation π a (d, r)-shrink by removing
an element x (corresponding to vertices x-and x+ from two dif-

ferent cycles) to obtain . The inversion graph for π is a sub-

graph of the inversion graph for and d (π) equals d( ).

Proof. The length of the permutation decreases by one but

so does the number of cycles, therefore we have d(π) =

d( ). We now show that the (d, r)-join of cycles C1 and

C2 turning G(π) to (π) will preserve the relative direction

between edges. Fix a direction on the cycle with reality
edge (x-, r1) by visiting r1 before x- followed by d1. Simi-

π̇

π̇
π̇ π̇

π̇

G(π = -6 -4 -2 1 -3 -5) embedded on a circleFigure 4
G(π = -6 -4 -2 1 -3 -5) embedded on a circle. We see the affect that inversion ρ(1, 5) has on those inversions acting upon 
the same desire edge; ρ(1, 5) interferes with ρ(1, 2), ρ(1, 4), and ρ(1, 6), but not ρ(1, 1).
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larly, fix a direction on the cycle with edge (x+, r2) by vis-

iting d2 before x+ followed by r2. Thus, after the application

of the (d, r)-join the remaining reality edge r can be visited
from r1 to r2 in a tour continuing to d2 and d1 from desire

edge d. Since the direction for the new edges is consistent
with the direction of the removed edges, the direction of r
to reality edges in C1 and C2 is also consistent. So any

inversion that acts on edges (x-, r1) or (x+, r2) for a sorting

path on π will now act on r for a sorting path on . Since

(x-, r1) and (x+, r2) are on different cycles of G(π), there can

be no oriented inversions done that act on both at the
same time. �

An important corollary is that all oriented inversions on π
will be preserved. Thus, we can shrink a multiple cycle
component to an "equivalent" cycle and then run the
algorithm while ignoring oriented inversions introduced
by the shrinking process.

Handling multiple permutations
When improving the MGR heuristic for medians or imple-
menting a greedy heuristic for maximum signature com-
putation, one needs to consider sets of inversions that
occur in multiple permutations. This is done by simply
ignoring intervals that do not occur as oriented inversions
in all permutations, while merging the constraints on the
remainder of the permutations. That is, to find the maxi-
mum independent set of commuting or noninterfering
inversions on many permutations, take the intersection of
the sets of oriented inversions over all permutations and
run our algorithm on the union of the remaining con-
straints.

Two notes on hurdles
Hurdles complicate our analysis in two places. First, while
inversions that are unsafe on their own are easily identi-
fied and thus removed from consideration before running
our algorithm, it is possible that a set of noninterfering
inversions, each of which is safe by itself, can collude to
create a hurdle. We can check for this problem, but the
time requirements immediately increase as a result.

Second, a permutation that already contains many hur-
dles automatically yields a large (exponential in the
number of hurdles) number of sorting paths, since hur-
dles can be merged two by two in almost every possible

π̇

Table 1: Comparison of median scores for r ≤ 100

(1:1:1) (2:1:1) (3:1:1)

r = 80 r = 100 r = 80 r = 100 r = 80 r = 100

Score lower bound 86.2 104.2 89.4 105.8 85.7 101.3

Caprara's median score 87.9 107.6 91.4 109.8 88.0 105.2

Arndt's median score 88.2 109.5 91.8 111.4 89.1 106.7

MGR median score 90.3 113.7 94.3 116.8 89.8 110.0

New method's median score 89.1 111.8 92.6 114.1 90.0 108.1

What the chord model of a join decomposition looks like if such a chord model existsFigure 5
What the chord model of a join decomposition looks like if 
such a chord model exists.

V1a V1b

V1c

V2a

V2b

V2c
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way (it suffices that the merged hurdles be nonadjacent,
for instance). Each combination of hurdle merges yields a
new set of oriented inversions, but it is not clear whether
an exponential search of these combinations is necessary.
Fortunately, hurdles are very rare in practice (for genomes
subjected to rearrangements through inversions, at least)
[23,24].

A new median solver
We improved the MGR heuristic using maximum inde-
pendent sets of noninterfering inversions. Given three
genomes G1, G2 and G3, we define the median score of a
genome G to be d(G, G1) + d(G, G2) + d(G, G3), where d(G,
Gi) is the distance between genome G and Gi. To find the
genome that minimizes the median score, the new
median solver chooses the maximum independent set of
inversions which brings G1 closer to both G2 and G3. The
algorithm will then iteratively compute maximum inde-
pendent sets of inversions in the three genomes until the
maximum sets are empty. At the end of this procedure, the
three given genomes are transformed to three (poten-
tially) new genomes and we report the one with the lowest
median score as the resulting median.

Results and discussion
To assess the speed and accuracy of our new solver, we
tested it using the same datasets used by Arndt and Tang
[12]. These datasets were generated by assigning the iden-
tity permutation to the internal node and three leaves
were created by applying rearrangement events along each
edge. The number of events on each edge is a function of
the total number of evolutionary events and of the tree
shape. The total number of events used was in the range
of 80 to 140 and three tree shapes were used: trees with
edges of almost equal length; trees with one edge about
twice longer than the other two; and trees with one edge
about three times longer than the other two. We com-
pared the new method to Caprara's median solver (exact
but slow), to MGR, and to the solver of Arndt and Tang.
For each combination of parameters, ten trees were gener-
ated and the average results are reported.

Table 1 and Table 2 show the median scores found by
each method, and Table 3 and Table 4 show the time used
by each method. Our new method not only runs signifi-
cantly faster than MGR–when the datasets have many
inversions, our new method is about 20 ~30 times faster
than MGR–but it also returns more accurate medians. Our
new method also improves on that of Arndt and Tang: it

Table 3: Comparison of running time for r ≤ 100 (in seconds)

(1:1:1) (2:1:1) (3:1:1)

r = 80 r = 100 r = 80 r = 100 r = 80 r = 100

Caprara's time 3.6 12876 57.2 31387 4.3 6908

Arndt's time 324 551 123 409 1.6 9.3

MGR time 11.2 51.9 11.6 78.2 10.3 35

New method's time 3.3 5.3 4.1 8.4 4.6 9.1

Table 2: Comparison of median scores for r ≥ 120. N/A indicates a method cannot finish

(1:1:1) (2:1:1) (3:1:1)

r = 120 r = 140 r = 120 r = 140 r = 120 r = 140

Score lower bound 116.1 123.5 116.1 122.7 110.3 117.6

Caprara's median score N/A N/A N/A N/A N/A N/A

Arndt's median score 125.8 135.3 124.5 134.7 117.9 127.0

MGR median score 132.9 143.6 131.4 142.8 123.6 135.1

New method's median score 127.9 139.5 126.9 138.5 120.6 130.1
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is from 3 to 100 times faster while never losing more than
1 ~2% in accuracy. The search strategies of these two solv-
ers are different: our solver only searches maximum inde-
pendent sets and will halt when the set is empty, while
Arndt's solver uses a heuristic to decide the independent
sets and will keep searching even when there is no inde-
pendent set. Thus Arndt's solver is much slower but a bit
more accurate than our new median solver. The accuracy
of our new solver can be further improved with some
additional computation. The three new genomes
obtained when the search stops actually form a new
instance of the median problem. We applied Caprara's
solver to these new, smaller, median problems and found
that the scores were improved for small to medium num-
bers of inversions–often to the point of matching the opti-
mal solution. (For large numbers of inversions, however,
the new median instances remained very difficult to solve
exactly.)

Conclusion
We presented two new algorithms: a quadratic-time algo-
rithm to compute a maximum set of commuting inver-
sions and a more complex algorithm to compute a
maximum set of noninterfering inversions. The latter
algorithm can also run in quadratic time by using the cir-
cle graph recognition of Spinrad [25]–and the conditions
under which this algorithm can be used are detectable in
low polynomial time. When these conditions are not met,
our algorithm decomposes the instance so that only cer-
tain subinstances require exponential work. It is worth
noting that, due to the intersection step in our algorithm,
the more genomes that are compared, the sparser the
intersection will be and the faster the algorithm will run.

Arndt and Tang [12] showed that an MGR-style search for
medians can be improved through a better choice of
inversions; our new median solver, using the algorithm
for computing a maximum set of noninterfering inver-
sions, further improves on these results, both in terms of
accuracy and in terms of speed. We expect further research
into the relationship between inversion medians, signa-

tures, and noninterfering inversions will uncover much
more structure that can be used to design yet faster algo-
rithms, thereby providing a practical tool for the recon-
struction of ancestral genomes.
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