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Abstract

Transactional memories are typically speculative and rely on contention managers to cure
conflicts. This paper explores a complementary approach that prevents conflicts by scheduling
transactions according to predictions on their access sets.

We first explore the theoretical boundaries of this approach and prove that (1) a TM
scheduler with an accurate prediction can be 2-competitive with an optimal TM scheduler, but
(2) even a slight inaccuracy in prediction makes the competitive ratio of the TM scheduler of
the order of the number of transactions.

We then show that, in practice, there is room for a pragmatic approach with good average
case performance. We present Shrink, a scheduler that (a) bases its prediction on the access
patterns of the past transactions from the same threads, and (b) uses a novel heuristic, which we
call serialization affinity, to schedule transactions with a probability proportional to the current
amount of contention. Shrink obtains roughly 70% accurate predictions on STMBench7 and
STAMP. For SwissTM, Shrink improves the performance by up to 55% on STMBench?7, and
up to 120% on STAMP. For TinySTM, Shrink improves the performance by up to 30 times on
STMBench7 and 100 times on STAMP.
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1 Introduction

Transactional memory (TM) is an appealing abstraction for simplifying the task of writing parallel
programs. A TM enables a programmer to think in terms of coarse-grained code blocks that appear
to execute atomically. Transactions in a TM execute speculatively: they typically commit if they
do not encounter any conflicts and abort otherwise. Generally, due to the speculative execution,
TMs exhibit better performance than lock based programming in low contention scenarios [?, 11].
But, in high contention, TMs can suffer from repetitive aborts and result in poor performance [20].

Various strategies have been developed to boost the performance of TMs in high contention
scenarios. These strategies are ususally encapsulated in a dedicated module called a contention
manager (CM) [11, 17], which resolves a conflict between two transactions, sometimes based on
the past history of the transactions. The practical impact and the theoretical significance of CMs
have been widely explored [9, 10, 17]. Polite, Karma, and Greedy are examples of CMs used to
boost TM performance. On the theoretical front, it has been proved that Greedy has a competitive
ratio of O(s) with respect to an optimal offline scheduler [4], where s is the number of objects
accessed in the TM. Another recent proposal is Serializer [6], a CM which resolves a conflict by
removing a conflicting transaction 7T from the core where it was running, and scheduling 7" on the
core of the other transaction involved in the conflict. Serializer ensures that two transactions never
conflict more than once. Although CMs boost the performance of a TM, they play their role only
after conflicts have been detected. CMs do not avoid wasted work performed by threads which are
doomed to abort, neither do they speculate conflicts and yield a processor to another non-conflicting
thread. Generally, the performance of TMs (with or without contention managers) does not scale
well in overloaded cases! [6, 20].

TM schedulers [6, 20] offer an appealing complementary approach to boost the performance of
TMs in overloaded scenarios. Basically, a TM scheduler is a software component encapsulating a
policy that decides when a particular transaction executes. So far, TM schedulers that have been
proposed in the literature relied on coarse measures to activate scheduling. These might not always
be beneficial. To illustrate this, consider a simple serialization strategy applied to the scenario of
Figure 1(a). Both transactions 77 and T35 read variable z. Transaction T writes variables x and
y, after the reads of x by 77 and T5. Then transaction T commits. Transactions 77 and T3 each
read y next, and hence are bound to abort due to an inconsistency in the values read. Serializing
T and T3, which are not conflicting, hinders parallelism. As another example, consider the ATS
strategy? [20] applied to the example of Figure 1(b). Transactions 7} and T conflict, as they both
write . Only one of them can commit. Assume that the TM aborts T3 and commits 77. Similarly,
the TM may abort T, and allow T3 to commit, as they conflict on variable y. ATS would serialize
T> and T}, though the accesses of Tb and T, are completely independent and they could run in
parallel after restarting. In short, the decision to serialize a thread is justified only when the reason
to abort is likely to repeat. If the cause of the conflict ceases to exist in the future, the thread can
very well exploit more parallelism than in the case of serial execution. It is intriguing to investigate
prediction techniques that help distinguish such scenarios and dynamically serialize transactions.

More generally, the motivation of this paper is to explore the power of prediction-based TM
schedulers. We present theoretical bounds for traditional serialization techniques: namely, we

IWe define a system as overloaded if the number of threads exceeds the number of cores. Further, we define a
system which is not overloaded as underloaded.

2 ATS measures the contention intensity of a thread, and when this increases beyond a threshold, ATS forces the
serialization of the thread.
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Figure 1: Examples where coarse serialization hinders parallelism

prove that Serializer and ATS are O(n)-competitive with the optimal offline scheduler, where n is
the number of transactions. Then, we study the benefit of prediction from a theoretical perspective.
As defined by Motwani et al. [14], an online clairvoyant TM scheduler® is a scheduler which has
complete information about already released transactions. We present an online clairvoyant TM
scheduler, Restart, and show that Restart is 2-competitive with respect to the optimal offline sched-
uler, which has complete information about all transactions. Restart is of independent interest as
it closes the open problem of finding the optimal competitive ratio for an online clairvoyant sched-
uler [14]. The previous best scheduling algorithm [14] known for the online clairvoyant scheduling
problem was 3-competitive, and Motwani et al. [14] have shown that an optimal online clairvoyant
scheduler cannot have a competitive ratio less than 2.

At first glance, identifying an online clairvoyant scheduler that is 2-competitive opens a new
way to improve TM performance. But, this has to be taken with a big grain of salt. Indeed, we
show that the performance in the worst case is very sensitive to the accuracy of the prediction.
Namely, we prove that an inaccurate prediction by the online clairvoyant TM scheduler, Restart,
makes the competitive ratio O(n).

Nevertheless, we show that scheduling transactions based on dynamic prediction can provide
excellent average case performance. We introduce a new scheduler, called Shrink, which predicts
the future accesses of a thread based on the past accesses, and dynamically serializes transactions
based on the prediction to prevent conflicts. Shrink is based on two ideas: (1) locality of reference
and (2) serialization affinity.

1. We use locality in two forms. To predict transactional read sets, we use the notion of temporal
locality [2, 18] which, in the context of TMs, stipulates that addresses? which are frequently accessed
in the past few transactions of a thread are more likely to be accessed in future transactions of that
thread. Shrink maintains the read set of past few committed transactions of each thread in a set
of Bloom filters. Then, Shrink checks membership of an address in these Bloom filters and uses a
confidence measure to predict whether the address shall be read in future transactions. To predict
transactional write sets, Shrink uses the locality across repeated transactions. We empirically
observe that locality gives an average accuracy of around 70% in predicting the read and write
accesses of a thread in the biggest benchmarks we know of, STMBench7 [8] and STAMP [5].
Shrink uses the predicted access sets, in conjunction with the information of the currently executing
transactions, to prevent conflicts. Specifically, Shrink checks whether any address in the predicted
read and write sets of the starting transaction is being written by any other currently executing
transaction. If this is the case, Shrink serializes the starting transaction. Otherwise, the transaction
executes normally.

3This was referred to as a non-clairvoyant scheduler by Motwani et al.
4In this paper, we use the term address for words in word-based TMs, and for objects in object-based TMs.



2. To be competitive in low contention scenarios and underloaded cases, Shrink serializes threads
only if contention is high. To detect when a thread faces high contention, Shrink maintains a pa-
rameter, success rate, for every thread, and activates the prediction and serialization techniques for
a thread only if its success rate falls below a certain threshold. We observe that serializing a trans-
action with a probability proportional to the contention in the TM provides better performance.
This heuristic, which we call serialization affinity, is based on our observation that serializing a
transaction is more helpful when a large number of threads access similar addresses and compete
for a small number of cores. This is not surprising, as the lack of proper scheduling causes many
conflicts in these cases.

Shrink can be integrated with any TM that uses visible writes® Most of the TMs we know
of [?, 7, 11, 15] use visible writes. To evaluate its performance, we integrated Shrink with two
state-of-the-art STMs, SwissTM [7] and TinySTM [15]. Besides their availability, these STMs
are among the most performant according to latest published results. Shrink proves successful in
increasing the throughput of these STMs in overloaded cases, while not degrading performance in
underloaded cases. For SwissTM, Shrink obtains performance gains of up to 55% on STMBench?7,
and up to 120% on STAMP in overloaded cases. For TinySTM, Shrink increases the performance
by up to 30 times on STMBench?7, and up to 100 times on STAMP. Generally, Shrink has no
noticeable overhead with STMBench7 and STAMP in underloaded cases. To identify the overhead
in such cases, we considered the red-black tree microbenchmark. We observe that in SwissTM,
Shrink incurs a performance drop of about 13% with 1 thread, and about 3% with 24 threads. In
TinySTM, we get a similar performance drop with 1 thread, but Shrink drastically outperforms
base TinySTM with more than 8 threads.

The paper is organized as follows. In Section 2, we investigate prediction in TM schedulers from
a theoretical perspective. Section 3 describes our dynamic prediction based TM scheduler, Shrink.
In Section 4, we present experimental results obtained with Shrink on different benchmarks with
different STMs. Section 5 discusses the related work and Section 6 concludes the paper. Due to
space limitations, we postpone some of the experimental results in the appendix.

2 Theoretical Power and Limitations of Prediction

We study the theoretical bounds of different TM schedulers. We first show that traditional se-
rialization techniques, like Serializer and ATS are O(n)-competitive, where n is the number of
transactions. We show that with an online prediction of the information of transactions, we can
get a 2-competitive scheduler. But, with a slight inaccuracy in prediction, the scheduler becomes
O(n)-competitive.

Framework. We consider a model similar to that of the non-clairvoyant scheduling problem with
dependent jobs pioneered by Motwani et al. [14]. Let T;...T, be a set of n transactions (called
jobs). Let the release time of transaction T; be R;, and the execution time of transaction T; be E;.
Let R,, = max; R; be the latest time when a transaction is released. Let F,, = max; F; be the
execution time of the longest transaction. Motwani et al. model the general distributed scheduling
problem as a graph where the vertices represent transactions, and two vertices are adjacent if the
corresponding transactions are in conflict. The processing environment has an infinite number of
processors, and a centralized scheduler assigns transactions to processors. A transaction may be
preempted and restarted from the point of preemption. Also, a transaction may be aborted and

5A TM uses visible writes if all threads know whenever a particular thread writes to an address.
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Figure 2: Lower bound cases

restarted from the beginning®. A preemption and an abort require zero time. The constraint on
scheduling is that two conflicting transactions cannot be executed simultaneously, that is, either (i)
one transaction preempts if a conflicting transactions starts, or (ii) if two conflicting transactions
have executed in parallel, then one of them aborts. We consider the makespan of all transactions as
the performance measure. An offline optimal scheduler has complete information (conflict relations,
execution times, and release times) of all transactions, including those which will appear in the
future. Given OPT, the makespan of the offline optimal scheduler, we obviously have OPT > R,,
and OPT > E,,.

Bounds on existing CM and TM schedulers. Guerraoui et al. [10] showed that Greedy has
a competitive ratio of O(s?), where s is the number of addresses shared by transactions. Attiya et
al. [4] improved the result and showed that Greedy has a competitive ratio of O(s). Further, they
showed that the competitive ratio of Greedy is lower bounded by O(s). On similar lines, we prove
how Serializer and ATS are O(n)-competitive.

Serializer [6]: A transaction is executed as soon as it is available. Upon a conflict between two
transactions 77 and T3, one of the transactions is scheduled after another.

ATS [20]: A transaction is executed as soon as it is available. ATS maintains a sequence @ of
transactions. The transactions in @) are scheduled one after another. When a transaction T aborts
k times (where k is a constant) and T is not in @, then T is added to Q.

Theorem 1. Serializer and ATS are both O(n)-competitive.

Proof. (i) Upper bound for Serializer. We observe that for a set of n transactions, Serializer can
face at most n — 1 aborts. Then, the makespan of Serializer is upper bounded by R,, +2-n - E,,.
As OPT > R,, and OPT > E,,, we obtain that Serializer is O(n)-competitive.

Lower bound for Serializer. Consider a set {T7...T,} of transactions as shown in Figure 2(a). All
transactions have execution time 1. Let 77 and T5 be released at time 0, and all other transactions
be released at time 1. Transaction 73 runs in parallel with transaction 7T5. As they conflict, Serializer
schedules Ty after T7. Then, the TM attempts to run transactions {T5...T,} in parallel with T5.
Let all transaction {75 ...T,} conflict with T5, and no pair of transactions in {T5...T,} conflict.
Serializer schedules all transactions T3 to T, after T5. Thus, Serializer has a makespan of n. An
optimal offline scheduler could execute T5 first, and then all remaining transactions at the same
time, giving OPT = 2. In this instance, Serializer has a makespan of O(n) - OPT.

(ii) Upper bound for ATS. We observe that after time R,,, any (k + 1)** abort of a transaction T
overlaps with a commit of a transaction 7" or with the m!* abort of T’ such that m < k. Thus,
the total makespan of ATS is at most R,, + k-n-E,, + n- E,,. As OPT > R,, and OPT > E,,

60ur model differs from the job scheduling model of Motwani et al. in the respect that the latter does not allow
aborts



and k is a constant, ATS is O(n)-competitive.

Lower bound for ATS. Consider a set {T4...T,} of transactions as shown in Figure 2(b). Let all
transactions be released at time 0. Let F7 = k and for ¢ > 2, let E; = 1. All transactions Ts ... T,
conflict with 77, and no pair of transactions in {T%...T,} conflict. As T, ... T, face k aborts, all of
them are added to ). Thus, ATS has a makespan of k+mn — 1, whereas the optimal offline scheduler
would require k£ + 1 time. As k is a constant, ATS requires O(n) - OPT time in this case.

Online clairvoyant scheduler. We define an online clairvoyant scheduler as a scheduler which
has the complete information (execution time, release time, and conflict relation) about the trans-
actions which have already been released. We now introduce an online clairvoyant scheduler, which
we call Restart, and we prove that it has a competitive ratio of 2. Restart is a slight variation of
the Greedy scheduler described by Motwani et al. [14].

Restart: Let T' be the set of transactions executing at time ¢, and let IV be the set of released
transactions unfinished at time ¢. When a new transaction T is released at time ¢, Restart aborts
the set T' of currently executing transactions, and executes the transactions IV U {T'} according to
the optimal schedule.

Theorem 2. Restart is 2-competitive.

Proof. As Restart aborts and restarts the remaining transactions according to the optimal
schedule at the release of every job, the makespan of Restart is at most R,,,+ OPT. As OPT > R,,,
the competitive ratio of Restart is 2.

Note that our result of 2-competitiveness holds even for the original problem described by
Motwani et al. [14] where transactions cannot abort, but are allowed to preempt and continue
from the point of preemption. In that model, whenever a new job is released (say, at time t), the
unfinished transactions at time ¢ shall be scheduled according to the new optimal schedule. Restart
indeed solves an open problem described by Motwani et al. [14]. The authors established that no
deterministic online clairvoyant” scheduler is c-competitive for any constant ¢ < 2. The authors
gave a scheduler, Greedy, which is 3-competitive, and left the problem of determining the optimal
competitive ratio open. As the competitive ratio of Restart matches the lower bound, we know that
no online clairvoyant scheduler can have a better performance ratio than Restart. That is, Restart
gives the optimal competitive ratio.

So, online clairvoyance can make a TM scheduler 2-competitive with the optimal offline sched-
uler. Nevertheless, the competitive ratio of 2 relies on an optimal scheduling with an accurate
prediction of the access sets. Consider a scheduler Inaccurate which works like Restart, but has an
inaccurate prediction of the conflict relation. Also, assume that after time R,,, Inaccurate satisfies
the pending commit property [4], which states that of all transactions running at a given time,
atleast one of the transactions commits. We show that Inaccurate is O(n)-competitive.

Theorem 3. Inaccurate is O(n)-competitive.

Proof. Upper bound. Inaccurate takes time at most R,, +n - E,, time units (due to the fact that
Inaccurate satisfies the pending commit property after R,,). Thus, we get that Inaccurate is O(n)
competitive.

Lower bound. Consider a set {T ...T,} of transactions, which are all released at time 0, and have
execution time 1. The transaction 7; accesses only resource R; for all ¢« < n. Clearly, the optimal
offline scheduler requires 1 time unit. On the other hand, consider an inaccurate prediction, where

"referred to as non-clairvoyant by Motwani et al.



Inaccurate believes that the transaction T; accesses resources R; and R; for all i. As Inaccurate
schedules released transactions like an optimal scheduler, Inaccurate requires time n.

In retrospect. Although the worst case of Inaccurate is O(n), the competitiveness of Restart
opens hope that prediction in TMs can provide performance benefits in the average case. The first
question is how to predict access sets in TMs. Static analysis or compiler assisted methods have
limited use in TMs because the accesses are made on dynamic data structures, which change over
time. We propose a TM scheduler, Shrink, which uses novel techniques to predict the access sets
of future transactions. Further, Shrink dynamically serializes transactions based on the predicted
access sets and the information of the currently executing transactions.

3 The Shrink

The prediction techniques in Shrink are based on locality of reference across transactions. We
describe these techniques, followed by how Shrink uses these predictions. Then, we present the
serialization affinity heuristic in Shrink.

Read set prediction. Our empirical observations on several TM benchmarks, like STMBench?7
and STAMP, show that multiple consecutive committed transactions of a thread access similar
addresses. We refer to this phenomenon as the temporal locality of access sets in threads. We
believe that temporal locality in TM is a result of fixed traversals of data structures, which makes
some memory addresses frequently accessed across transactions. Although data structures change
over time due to new additions and deletions, temporal locality can indeed be observed across
a significant window of adjacent transactions. Thus, based on the read accesses of the last few
transactions, we can predict the read accesses of future transactions.
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Figure 3: Accuracy of access set predictions by SwissTM

Write set prediction. Temporal locality works with significant accuracy for predicting the read
sets, but does not help predict the write sets. This is due to the fact that transactions typically
have large read sets, but small write sets. The chance that a thread writes to the same addresses
across multiple consecutive transactions is low. So, we adopt a different prediction strategy for
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the write set: we use the fact that when a transaction repeats, its write set mimics the write
set of the immediately previous aborted transaction. As the underlying benchmark is unlikely to
undergo drastic changes before the aborting transaction restarts execution, the writes of an aborting
transaction form a good prediction for the write accesses of the next restarting transaction. Note
that the idea of temporal locality allows read set prediction to work across committed and aborted
transactions. On the other hand, write set prediction works solely across aborted transactions.

We validate the idea of locality by evaluating the accuracy of our predicted read and write
sets. We run our experiments on STMBench?7 [8] and STAMP [5] with SwissTM [7], and present
our results in Figure 3. For STMBench7, we observe that the accuracy of read prediction is fairly
high for read-dominated workloads, and decreases as the workload contains a higher proportion
of writes. This is because, as the number of writes increase, the data structure is more likely to
change across transactions, which decreases the temporal locality. For STAMP, the read prediction
is, on an average, 70% accurate. The write set predictions are fairly high across STMBench7 and
STAMP benchmarks.

Shrink uses the above prediction techniques to predict the transactional read and write sets.
For a starting transaction, Shrink checks whether some address in the transaction’s predicted read
or write set is being written by some other thread. In that case, Shrink may decide to serialize the
starting transaction.

Serialization affinity. So far, TM schedulers serialized transactions even in low contention sce-
narios [6] and underloaded cases [20]. To understand the performance tradeoff associated with
serialization, we built a simple TM scheduler that serializes all threads that face contention. We
call this the Pool scheduler. Our experiments show that serialization helps when the number of
threads facing contention is high. This points us to a heuristic called serialization affinity, which
stipulates that the probability of serializing a transaction should be proportional to the amount of
contention.

Algorithm. The flowchart for Shrink is shown in Figure 4. Shrink maintains for every thread,
the success rate as a measure of the ratio of the number of committing to the number of aborting
transactions of the thread. The success rate of a thread is modified on commit and abort of a
transaction. When the success rate of a thread falls below a certain threshold, the serialization
policy of Shrink gets activated.

The modifications needed to integrate Shrink into an STM are shown in Algorithm 1. Shrink
uses a set of Bloom filters per thread to represent the thread’s read set of last few transactions in



Algorithm 1 The Shrink Algorithm

Variables: global_lock is a lock variable shared between threads. success, succ_threshold and confidence_threshold
are constants, succ_rate is an integer variable per thread. read_pred and write_pred are addresses, pred_read_set and
pred_write_set are the predicted read and write sets per thread, wait_count and confidence are integers (initially 0),
bf; is the bloom filter of the last it® transaction, ¢; is a constant representing the confidence value of the last ith
transaction, locality_window is the size of the set of bloom filters per thread, and addr is an address.

On transactional start
if succ_rate < succ_threshold
generate a random number 7 between 1 and 32
if r < wait_count then
for each address read_pred in pred_read_set
if read_pred is being written by some other thread then
lock global_lock
atomically increment wait_count
break
if not owner of global_lock then
for each address write_pred in pred_write_set
if write_pred is being written by some other thread then
lock global_lock
atomically increment wait_count
break
if last transaction was committed then remove all addresses from pred_read_set
remove all addresses from pred_write_set
On transactional read of addr
if (addr ¢ bfp) then
add addr to bfg
for (i = 1;¢ < locality_window; i := i+ 1) do
if (addr € bf;) then confidence = confidence + ¢;
if confidence > confidence_threshold, then add addr into pred_read_set
On transactional commit
succ_rate := (succ_rate + success)/2
if own global_lock then
unlock global_lock
atomically decrement wait_count
On transactional abort
copy write set of transaction into pred_write_set
succ_rate := succ_rate/2
if own global_lock then
unlock global_lock
atomically decrement wait_count

a conservative manner. Bloom filters provide a fast means to insert addresses, and to check the
membership of an address. When a transaction reads an address, Shrink checks the membership
of the address in the Bloom filters corresponding to the past few transactions of the thread. If the
address has been frequently accessed in the past, then the address is added to the predicted read
set of the next transaction by the thread. A locality window parameter locality_window specifies
the number of previous transactions that are used for prediction.

For the write set prediction, Shrink uses the write set of an aborting transaction. Thus, if a
transaction aborts, its write set becomes the predicted write set of the next transaction of the
thread. Note that Shrink is active only when the success rate has been below a certain threshold.
Thus, the fact that the first attempt of a particular transaction has no predicted write set is not a
major concern.



We now describe how Shrink acts for a thread with a low success rate. First, Shrink applies the
serialization affinity heuristic by observing the number of threads wait_count waiting for serialization,
and using the prediction scheme with a probability proportional to wait_count. If Shrink decides
not to use the prediction scheme, then the thread starts the transaction normally, as the base STM
would. In case Shrink decides to use the prediction scheme, the thread first checks whether some
address in the predicted read set or the predicted write set is being written by any other thread. If
there is indeed such an address, then Shrink serializes the starting transaction. In such a case, the
thread waits to lock the global mutex global_lock before starting the transaction.

4 Experimental evaluation

We experimented Shrink with two STMs: SwissTM [7] and TinySTM [15].% For our experiments
we choose the following values for the Shrink parameters: success = 1, succ_threshold = 0.5,
locality_window = 4, confidence_threshold = 3, ¢; = 3, ¢ = 2, and ¢3 = 1. Shrink was imple-
mented in C/C++ (the same as STMs it was integrated with). We have implemented the lock
variable global_lock using the pthread mutex variable.

All experiments were performed on a 4 processor dual-core AMD Opteron 8216 2.4 GHz with
1024 KB cache, which gives us 8 cores for our experiments. We worked with several benchmarks
(STMBench?7 [8], STAMP [5] as well as the red-black tree microbenchmark) to illustrate that
coupling a TM with Shrink generally boosts performance. All the results are averaged over 20 runs
to reduce variation in collected data. Some of the experimental results, namely STMBench7 results
with SwissTM using busy waiting, and STAMP and red-black tree with TinySTM in the appendix.

4.1 Shrink with SwissTM

We now provide experimental results of the different scheduler techniques applied to SwissTM,
and compare them against the base SwissTM. Pool-SwissTM serializes all transactions that face
contention. ATS-SwissTM uses the ATS serialization scheme [20]. We consider ATS to be the
representative for the various coarse serialization schemes in the literature, like CAR-STM [6] and
Steal-on-abort [3]. We set the preemptive waiting flag in SwissTM to true, as it shows to perform
better than busy waiting when a system is overloaded.

STMBench7. We compare the performance in all three STMBench7 workloads with long traver-
sals turned off. We compare all scheduler variants of SwissTM: Pool-SwissTM, ATS-SwissTM, and
Shrink-SwissTM, as well as base SwissTM with preemptive waiting. We also analyze the perfor-
mance of Shrink-SwissTM with busy waiting in the appendix.

In Figure 5, we show the throughput results for the different workloads of STMBench7. Shrink-
SwissTM and base SwissTM variants have comparable throughput in underloaded cases, i.e., up to
8 threads, but Shrink-SwissTM gradually outperforms base SwissTM as the system becomes more
heavily overloaded. For example, in read-dominated workloads, Shrink-SwissTM performs 55%
better than SwissTM when 24 threads are spawned. ATS-SwissTM incurs high overheads when
system is underloaded, while still not matching Shrink-SwissTM throughput for overloaded cases.
We note that in general, serialization helps as a TM becomes overloaded.

8 Although, we have chosen STMs to demonstrate benefits of Shrink, the scheme could be implemented in hardware
TMs as well.
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Figure 5: SwissTM throughput on STMBench7
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Figure 6: Speedup of Shrink-SwissTM over base SwissTM in STAMP

STAMP. We now present our analysis of Shrink-SwissTM on the workloads in the STAMP
benchmark suite. Experimental results are listed in Figure 6(a) for underloaded system (number of
threads at most 8), and Figure 6(b) for overloaded system (number of threads higher than 8). For
the case of 1 thread, Shrink-SwissTM and base SwissTM differ by less than 1% across all workloads,
and hence we do not show these results. Overall, we obtain speedup of up to 1.4 in underloaded
cases, and up to 2.2 in overloaded cases. We face a performance degradation (a speedup of up to
0.9) in one of the underloaded scenarios.

An interesting case is the intruder benchmark, where Shrink-SwissTM gains significantly (a
speedup of 1.1 to 1.15) in 8 threads and overloaded scenarios. In the intruder benchmark, a high
number of transactions dequeue elements from a single queue. Thus, the serializing nature of Shrink
helps Shrink-SwissTM outperform the base SwissTM. The maximum performance improvement for
overloaded system is obtained in the yada benchmark, where we obtain a speedup of up to 1.5 in
32 threads, and 2.2 in 64 threads, due to the ability of our prediction and serialization techniques
to reduce contention in the yada benchmark.

Red black tree. Figure 7 shows the performance of base SwissTM, Shrink-SwissTM, and ATS-

SwissTM on the red-black tree microbenchmark. Although microbenchmarks are not a represen-
tative of the realistic applications, they help evaluate any overheads introduced in our scheme due
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Figure 7: Throughput of SwissTM and Shrink-SwissTM red-black tree

to the time needed for prediction or serialization of transactions. We perform our experiments
on red-black tree benchmark, under 20% and 70% update operations and integer set range of
16384. The results are similar across the two cases. We observe that the prediction techniques of
Shrink-SwissTM incur a performance loss of around 13% in the case of 1 thread, and this perfor-
mance loss gradually decreases as the number of threads increases. For example, with 8 threads,
Shrink-SwissTM incurs a performance loss of 4% with 20% update operations (Figure 7(a)) and
a performance loss of 2% with 70% update operations (Figure 7(b)). On the other hand, ATS-
SwissTM exhibits significantly higher overheads. With 8 threads, ATS-SwissTM performs 20%
worse than base SwissTM when there are 20% update operations.

4.2 Shrink with TinySTM

We integrate our Shrink scheme in TinySTM version 0.9.5 with busy waiting. We compare the
performance of Shrink-TinySTM with the base TinySTM under different benchmarks. We present
the results on STMBench7 below, and the results on STAMP and the red-black tree microbenchmark
in the appendix.

STMBench7. As we did for SwissTM, we compare the results on three workload types, read-
dominated, read-write, and write-dominated. We also set long traversals off.
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Figure 8: TinySTM throughput on STMBench7
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We observe that in underloaded cases, Shrink-TinySTM shows performance comparable (£6%)
to the base TinySTM. As the TM becomes overloaded, Shrink-TinySTM outperforms base TinySTM
(by up to 32 times with 24 threads in write-dominated workloads). The steep fall of the perfor-
mance of TinySTM in overloaded systems can be attributed to its eager lock acquisition policy
and busy-waiting. The transactions abort very often due to the high contention caused by the
read-write conflicts. Moreover, due to the busy-waiting policy, a transaction waiting for a lock
does not yield the processor. Shrink-TinySTM mitigates this performance loss to some extent by
dynamically predicting such conflicts and avoiding them using serialization on the fly.

5 Related Work

Contention managers (CM) [9, 17] have been widely studied and used to boost the performance of
transactional memories (TM). As CMs work only to resolve conflicts, they cause wasted work of at
least one of the transactions. There has been recent work in the complementary direction of schedul-
ing transactions in a TM. Yoo and Lee proposed adaptive transactional scheduling (ATS) [20], which
detects threads that face high contention, and serializes them in a queue. The authors demonstrate
the performance gain obtained with ATS in RSTM [12] and LogTM [13] for overloaded systems.
In this paper, we argued that ATS serializes more than necessary, and showed that Shrink gives
better performance than ATS in most scenarios. Ansari et al. proposed Steal-on-abort [3], which
avoids wasted work by allowing transactions to steal conflicting transactions. The authors propose
various strategies for the release of stolen transactions. Rossbach et al. proposed TxLinux [16] as a
variant of the Linux operating system, which provides HTM functionality in the Linux OS. The OS
scheduler in TxLinux is transaction aware, and makes scheduling decisions such that transactions
waste minimal work. All these TM schedulers use serialization to avoid conflicts, but unlike Shrink,
none of them work to prevent conflicts.

Another proposal, CAR-STM [6] proposes Serializer, which ensures that two transactions never
conflict more than once. As for any other CM, Serializer is reactive, and does not prevent conflicts.
CAR-STM proposes yet another feature, called proactive collision avoidance, which uses a prob-
abilistic measure of conflict between transactions, and tries to avoid executing those transactions
concurrently, which are more likely to conflict. However, CAR-STM expects the application to
provide the probability measure. This is generally hard to determine a priori because of the dy-
namic nature of the access sets of transactions. Most of the evaluation of CAR-STM has not used
the proactive collision avoidance feature. Our prediction based scheduler essentially discovers the
probability of conflict on the fly, and uses this probability to postpone the execution of transactions
which are likely to conflict with currently executing transactions.

Prediction in TM has also been studied for different purposes. For example, Waliullah and
Stenstrom [19] use a prediction technique to insert a checkpoint before the first predicted conflicting
access executes. This saves execution time up to the occurrence of the first conflicting access, from
the start of the atomic block. As this scheme preserves wasted work before the checkpoint, it gains
performance due to reduced aborts.

6 Conclusion

We explored the theoretical power and limitations of prediction-based TM schedulers. We intro-
duced a novel pragmatic scheduler, Shrink, that uses locality to predict access sets in TMs. Shrink’s

12



underlying heuristic of serialization affinity encourages serialization of transactions only when the
number of threads is high. Using the prediction techniques and the serialization affinity, Shrink
dynamically serializes transactions based on the current contention and the likelihood of conflict
with currently executing transactions. We illustrate the performance improvement obtained with
Shrink with SwissTM and TinySTM. Our experiments on realistic benchmarks, like STMBench7
and STAMP, show that Shrink boosts the performance in such cases in SwissTM and TinySTM.

Our work on integrating prediction techniques with a TM opens several problems. On the theory
front, a formalism to reason about the average case performance of TM schedulers shall help to
theoretically justify the good performance of Shrink across various benchmarks and thread counts.
On the practical front, integrating prediction techniques within the OS could provide better TM
schedulers.
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A Further experimental results

Shrink-SwissTM with busy waiting on STMBench?7. Figure 9 compares the throughput
of Shrink-SwissTM with the base SwissTM, with busy waiting, that is, threads that wait for a
lock do not yield the processor. As in the case of TinySTM, we observe that Shrink improves the
performance of SwissTM drastically in overloaded cases. This is because, as the number of threads
increases, the performance of base SwissTM drops steeply due to busy waiting. On the other hand,
Shrink-SwissTM maintains a good throughput in overloaded cases.
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Figure 9: SwissTM (live waiting) throughput on STMBench?7

Shrink-TinySTM on STAMP. Figure 10 shows speedup obtained by Shrink-TinySTM over
the base TinySTM. Shrink-TinySTM improves the performance of most of the benchmarks in
overloaded cases. For some benchmarks like intruder, vacation, and yada, we observed that as the
number of threads increase, the performance of base TinySTM drastically suffers. In such cases,
the serialization of Shrink-TinySTM helps to maintain good performance, giving up to about 100
times speedup. As with SwissTM, Shrink also improves the performance of intruder in 8 threads.
Shrink-TinySTM suffers a performance degradation (a speedup of 0.9) in some underloaded cases.

Shrink-TinySTM on red black tree. Figure 11 shows the performance of base TinySTM and
Shrink-TinySTM on the red-black tree microbenchmark. We perform our experiments under 20%
and 70% update operations and integer set range of 16384. We observe that the overheads of Shrink
incur a performance loss of up to 10% in the case of 1 thread. But, as the TM becomes overloaded,
the performance of base TinySTM drops sharply. The performance of Shrink-TinySTM also drops,
but remains an order of magnitude higher than that of the base TinySTM. For example, with 12
threads and 20% update operations, base TinySTM has a throughput of 0.4 million transactions
per second, whereas Shrink-TinySTM has a throughput of 24.4 million transactions per second.
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