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Phase function encoding of diffractive structures

Andreas Schilling and Hans Peter Herzig

We analyzed the direct sampling ~DS! method for diffractive lens encoding, using exact electromagnetic
diffraction theory. In addition to previously published research @Pure Appl. Opt. 7, 565 ~1998!# we
present what we believe to be new results for TM polarization. We found that the validity of the
scalar-based DS method is even more extended for TM than for TE polarization. Additionally, we
fabricated and characterized DS-encoded blazed gratings and found good agreement between the exper-
imental and theoretical diffraction efficiencies. We analyzed quantitatively the influence of the encoding
schemes DS and analytic quantization ~AQ! on the quality of the focal spot. We also investigated the
focal spot sizes ~FWHM! and the Strehl ratios of the DS- and the AQ-encoded cylindrical lenses. © 2000
Optical Society of America

OCIS codes: 050.0050, 050.1380, 050.1970.
1. Introduction

Diffractive optical elements can be found in many
applications,1–3 and they bring additional degrees of
reedom to the application design compared with con-
entional refractive optics. For the design of optical
ystems, ray-tracing programs offer the possibility to
nclude arbitrary phase functions, which can be real-
zed by diffractive optical elements, to take advan-
age of these additional freedoms. The designed
hase functions are in the general case continuous
nd have to be quantized into a multilevel staircase-
ike profile for a fabrication by the multilevel ap-
roach.4 Direct sampling ~DS!5 is a straightforward

method to obtain directly the encoded phase profile
from a continuous phase function, in contrast to en-
coding methods such as radially symmetric iterative
discrete on-axis encoding, introduced by Welch et al.,6
in which the quantized phase function is obtained by
means of optimizing the energy in a signal window for
a given optical setup. Since the fabrication technol-
ogies are constantly improving, the possible feature
sizes that can be reliably fabricated are shrinking.
When typical feature sizes are comparable with the
wavelength of the incident light, a purely scalar ap-
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proach becomes insufficient or at least questionable.
Reference 7 describes a previous study in which we
applied exact electromagnetic theory to the encoding
problem to determine the limits of validity for the
scalar-based encoding method DS. In this paper we
present new results for TM polarization and compare
the two polarization cases. Since arbitrary phase
functions can be treated locally as linear blazed grat-
ings, we did the rigorous analysis of the quantization
for ideally blazed surface-relief phase gratings. In
addition, we fabricated and characterized test struc-
tures that were encoded with the DS method. We
found good agreement between the measured effi-
ciencies and the theoretical efficiencies obtained by
exact electromagnetic diffraction theory.

The research performed so far on the encoding
problem has focused mainly on the diffraction effi-
ciencies of the encoded phase functions. The influ-
ence of the encoding method on the quality of the
wave front and therefore on the focal spot size or the
Strehl ratio has not yet been investigated. We in-
vestigated quantitatively the influence of the encod-
ing scheme on the quality of the wave front for an
incident plane wave that is focused by a cylindrical
lens encoded by DS or analytic quantization ~AQ!.
Hereto we compared the FWHM of the focal spot and
the Strehl ratio of the DS- and the AQ-encoded cylin-
drical lenses with the ideal case. Whereas for AQ
the periodicity of the phase function to be encoded is
maintained, DS shows a principally different behav-
ior. In the general case DS enlarges the periodicity
of the underlying phase function, thus generating
additional diffraction orders in between the main or-
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ders. We discuss the consequences of this difference
between the two encoding schemes.

2. Theoretical Background

In this section we introduce the theoretical back-
ground used in Section 3. First, we introduce the
encoding methods DS and AQ and explain how the
rigorous and the scalar diffraction efficiencies were
calculated. Afterward, we show how the fields were
propagated for the focal spot analysis in Subsection
3.C.

The great advantage of the encoding method DS is
its simplicity and general applicability. For DS cod-
ing the complete lens function is sampled with the
minimum feature size ~MFS!, and the phase values
are clipped between 0 and 2p. These phase values
are then rounded to the closest available phase level.5
The DS encoding method is illustrated in Fig. 1. In
AQ8 the phase function is clipped to values between 0
nd 2p; then the transition points for 2p phase jumps
re determined, and the regions between these tran-
itions are encoded. We determine the number of
hase values between two transitions by dividing the
istance between the transitions by the MFS and
ounding this value to the integer closest to zero. In
his paper we address especially high-aperture
enses, since there the influence of the encoding

ethod is most evident. Since nonuniformly dis-
ributed phase levels are of advantage only for weak
enses,9 we used equally separated phase levels for
he encoding.

For the diffraction efficiency calculations for which
exact electromagnetic theory was applied ~Subsection
3.A! we used a rigorous eigenmode method as de-
scribed by Turunen10 with modifications as published
by Moharam et al.11 To determine whether the quan-
tized phase profiles obtained with DS are also the
optimum solutions, meaning with the highest diffrac-
tion efficiencies, we used the same rigorous steepest-
gradient optimization ~RSGO! method as in Ref. 7
The sampling of the lens function was hereby kept
constant, 1 MFS. The starting point for the optimi-

Fig. 1. Dashed line, ideal phase function of a blazed grating ~Lby
FS 5 2.75!; solid line, multilevel profile obtained by DS.
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zation procedure was the phase-level distribution ob-
tained by DS. This phase-level distribution was
then optimized with the steepest-gradient algorithm
until the optimum solution with the highest diffrac-
tion efficiency was found. The scalar diffraction ef-
ficiencies, hm, for the DS- and the AQ-encoded
gratings were calculated by a Fourier transform and
given by

hm 5 uTmu2 5 U 1
d *

0

d

t~x!exp~2i2pmx/d!dxU2

, (1)

where Tm are the Fourier amplitudes of order m, t~x!
he complex amplitude transmission function, x the
ateral coordinate, and d the grating period.

For the scalar calculations of the focal plane inten-
sities of the cylindrical lenses in Subsection 3.B we
evaluated the Rayleigh–Sommerfeld diffraction inte-
gral12

u2~x, z2! 5 *
2`

1`

u1~x9, z1!t~x9, z1!

3 S 1
kr12

2 iD z12

lr12
2 exp ~ikr12!dx9, (2)

where u1~x9, z1! is the incident wave field, t~x9, z1! is
the aperture function, k 5 2pyl, z12 is the distance
between the two planes located at z1 and z2, r 5
=z12

2 1 ~x2x9!2, and l is the wavelength.
For all calculations in this study we assumed a

inearly polarized plane wave under normal inci-
ence. For the rigorous optimization calculations
e assumed a substrate with a refractive index of n 5
.5. The calculations were made for a propagation
irection substrate to air, which is the standard case
or a diffractive microlens. For the inversed propa-
ation direction no significantly different behavior is
xpected, as was shown in Ref. 7 We analyzed DS-
ncoded blazed gratings, since any arbitrary lens
unction can locally be treated as a blazed grating.
he local period of a blazed grating, Lb, and therefore

the Lbyl ratios are smallest in the outermost part of
a diffractive high-aperture lens with design wave-
length l. There are only two or three phase levels
possible per 2p phase difference, because of the lim-
itations imposed by the MFS. We will call this part
of the lens the binary region. Differences between
scalar and exact electromagnetic theory are most
likely to appear there. We therefore concentrated
our rigorous analysis on the binary region.

3. Results and Discussion

A. Rigorous Analysis of Diffractive Lens Encoding

We applied exact electromagnetic diffraction theory
to the DS method to determine the limits of validity
of the scalar-based method. In addition to the re-
sults for TE polarization, which are shown for the
sake of completeness and comparison, we show new
results for TM polarization and compare the two po-
larization cases. The rigorous analysis of the DS
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blazed grating was made for eight different LbyMFS
ratios in the binary region, namely, 2, 2.2, 2.25, 2.4,
2.5, 2.6, 2.75, and 2.8, for both polarizations. In Fig.
1 the case LbyMFS 5 2.75 is illustrated where the
deal phase function and the corresponding multi-
evel profile obtained by DS are shown. The results
or LbyMFS values of 2.25 and 2.75 are shown in
ig. 2 for TE polarization and in Fig. 3 for TM
olarization. Each graph contains three diffraction
fficiency curves: the DS-encoded phase-level dis-
ribution, calculated with exact electromagnetic
heory ~solid curves! and simple scalar theory

~dotted–dashed curves!, and the RSGO optimized
phase-level distribution, calculated with exact elec-
tromagnetic theory ~dashed curves!. The important
criterion for the performance of the encoding method
is the Lbyl ratio at which the scalar-based encoding
method DS produces phase-level distributions that
cannot significantly be improved when optimized
with exact electromagnetic theory ~RSGO!. This ra-

Fig. 2. Calculated diffraction efficiencies ~TE polarization! as a
unction of Lbyl with constant Lb for blazed gratings with ~a!

LbyMFS 5 2.25 and ~b! LbyMFS 5 2.75. For the phase depth of
2p, eight equally spaced phase levels were available. Dotted–
dashed curves, scalar diffraction efficiencies; solid curves, rigor-
ously calculated diffraction efficiencies; dashed curves, rigorous
diffraction efficiencies for the phase-level distributions that were
obtained by rigorous optimization ~RSGO!.
io will be designated ~Lbyl!0. We determined ~Lby
l!0 for the eight different LbyMFS ratios in the binary
region for both polarizations. ~Lbyl!0 were deter-
mined by the condition that for all Lbyl ratios larger
han ~Lbyl!0 the rigorously optimized solutions show

an improvement in diffraction efficiency of less than
3% over the solutions obtained with DS. The ~Lbyl!0
ratios are shown in Table 1 for TE polarization and in
Table 2 for TM polarization. The values that were
obtained for ~Lbyl!0, between 2 and 3.3 for TE polar-
ization, and between 2 and 2.8 for TM polarization,
are very small compared with the normal validity
range of scalar diffraction theory for grating struc-
tures @~Lbyl! * 10#.13 The values for TM polariza-
tion are hereby even smaller than the values
obtained for TE polarization. The results show that
simple DS encoding ensures optimum performance in
the above sense over a wide Lbyl range for both po-
larizations, from the scalar regime to deep into the
rigorous regime ~Lbyl ' 2–3!, whereas the optimum

Fig. 3. Calculated diffraction efficiencies ~TM polarization! as a
function of Lbyl with constant Lb for blazed gratings with ~a!
LbyMFS 5 2.25 and ~b! LbyMFS 5 2.75. For the phase depth of
p, eight equally spaced phase levels were available. Dotted–
ashed curves, scalar diffraction efficiencies; solid curves, rigor-
usly calculated diffraction efficiencies; dashed curves, rigorous
iffraction efficiencies for the phase-level distributions that were
btained by rigorous optimization ~RSGO!.
10 October 2000 y Vol. 39, No. 29 y APPLIED OPTICS 5275
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Table 1. ~L yl! Values for Different L yMFS Ratios of the DS Blazed

5

performance is extended even more for TM polariza-
tion than for TE polarization. In the regime Lbyl ,
~Lbyl!0, where the DS-quantized phase profiles have

iffraction efficiencies as low as 11%, the rigorously
ptimized solutions ~RSGO! show large improve-

ments of as much as 25% for TE polarization and as
much as 22% for TM polarization. Therefore the
optimization potential is comparable for TE and TM
polarization, whereas the validity of DS is more ex-
tended for TM polarization than for TE polarization.

B. Fabrication and Characterization of
Direct-Sampling-Encoded Blazed Gratings

We fabricated DS-encoded linear blazed gratings
with eight phase levels in fused silica with Lb 5 2.25
MFS and 2.75 MFS for MFS of 1, 1.5, and 2 mm and
characterized the first-order diffraction efficiencies
for both polarizations. The gratings were fabricated
by a three-step photolithographic process in which
each lithographic step is followed by a reactive ion-
etching step to produce the eight-level surface profile.
The fabrication process was carried out at the Centre
Suisse d’Electronique et de Microtechnique in Neu-
châtel. Figure 4 shows SEM pictures of the fabri-
cated structures with Lb 5 2.25 MFS and Lb 5 2.75

FS for a MFS of 2 mm. Numbers 0–7 indicate the
orresponding eight phase levels. Subsequently we
ompared the measured diffraction efficiencies with
he values obtained by exact electromagnetic diffrac-
ion theory. The results are shown in Figs. 5~a! ~TE
olarization! and 5~b! ~TM polarization! for Lb 5 2.25

MFS and in Figs. 6~a! ~TE polarization! and 6~b! ~TM
polarization! for Lb 5 2.75 MFS. We found good

b 0 b

Grating in the Binary Region: TE Polarizationa

LbyMFS ~Lbyl!0

2.0 2.0
2.2 2.2
2.25 2.3
2.4 2.8
2.5 2.3
2.6 2.9
2.75 3.3
2.8 3.3

aEight equally spaced levels were available for 2p phase.

Table 2. ~Lbyl!0 Values for Different LbyMFS Ratios of the DS Blazed
Grating in the Binary Region: TE Polarizationa

LbyMFS ~Lbyl!0

2.0 1.85
2.2 2.05
2.25 2.12
2.4 2.08
2.5 2.05
2.6 2.24
2.75 2.54
2.8 2.27

aEight equally spaced levels were available for 2p phase.
276 APPLIED OPTICS y Vol. 39, No. 29 y 10 October 2000
agreement between the experimental and the theo-
retical values for both polarizations, whereas the
measured efficiencies were slightly lower than the
theoretical values, which is a result of the alignment
errors between the subsequent photolithographic
steps during the fabrication process.

C. Encoding Influence on the Focal Spot

To investigate the influence of the encoding method
on the quality of the focal spot, we calculated the focal
spot size ~FWHM! and the Strehl ratio as a function
of MFS for DS- and AQ-encoded cylindrical lenses as
well as for the ideal continuous case. The Strehl
ratio for the DS- and the AQ-encoded lenses is defined
as the peak intensity in the focal plane divided by the
peak intensity of the ideal lens. The focal plane in-
tensities were calculated by evaluation of the
Rayleigh–Sommerfeld diffraction integral as given in
Eq. ~1!, which is a standard way of calculating the
ocal plane intensities of diffractive lenses.5,6 The

focal plane was defined by the on-axis point with
maximum intensity. In Figs. 7~a! and 7~b! the focal
pot size and the Strehl ratio, respectively, are shown
or cylindrical microlenses with a radius of r 5 200
m, eight phase levels, a wavelength of 0.5 mm, and
Fig. 4. SEM pictures of the fabricated eight-level DS-encoded
blazed gratings in fused silica: ~a! for a grating period of 2.25
MFS, ~b! for a grating period of 2.75 MFS. Numbers 0–7 indi-
cate the eight different phase levels.
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the minimum focal length. The minimum focal
length depends on the MFS, which is determined by
the smallest possible grating period of 2 MFS at the
edge of the lens. The phase function f of the ideal
lens is hereby given through

f~r! 5 (2pyl![f 2 ~ f2 1 r2!1y2], (3)

where f is the focal length, r the radial coordinate,
nd l the wavelength. The focal spot sizes for DS,
Q, and the ideal case all show a nearly linear de-
endence from MFS. The three curves seem to orig-
nate from one common point with different slopes.
he difference in focal spot size between DS and AQ

s quite small compared with the difference between
S and the ideal case. As expected, DS produces

maller focal spots than AQ for all MFS, and the
ifference between DS, AQ, and the ideal case van-
shes when the MFS approaches the wavelength, 0.5
m. In our investigation we characterized the focal
pot by the FWHM. For other definitions, such the
ull width at 1ye2 intensity level or the width between

the first two minima, we expect no significantly dif-
ferent results. The Strehl ratios are practically in-
dependent of the MFS for the maximum numerical
aperture lenses studied here. The average value for
DS is 0.71 and 0.64 for AQ. The formula of Mare-
chal14

Ds 5 1 2 4p2~Wrmsyl!2, (4)

relates the Strehl ratio Ds with the rms wave-front
aberrations, Wrms, for a wavelength l. Using this
formula, we find Wrms 5 0.086 l for the DS-encoded
lens and Wrms 5 0.095 l for the AQ-encoded lens.
Therefore the wave-front aberrations caused by the
encoding are ;10% smaller for DS than for AQ in the
case of the investigated high-aperture lenses.

Because of the enlarged period of the DS-encoded
blazed gratings, compared with that for the nonen-
coded blazed phase function, there are additional dif-
fraction orders created in between the main
diffraction orders. This principal difference be-
tween the two encoding schemes is shown in Figs.
8~a! and 8~b! for DS- and AQ-encoded blazed gratings
with Lb 5 2.25 MFS and Lb 5 2.75 MFS, respectively.
It can be observed that there are additional diffrac-
tion orders generated in between the main diffraction
orders but that the absolute magnitude of the inten-
sity level is very small, approximately 1–2 orders of
Fig. 5. Experimental and theoretical diffraction efficiencies for ~a!
E and ~b! TM polarization. The gratings are eight-level DS-
ncoded fused-silica gratings with Lb 5 2.25 MFS.
Fig. 6. Experimental and theoretical diffraction efficiencies for ~a!
TE and ~b! TM polarization. The gratings are eight-level DS-
encoded fused-silica gratings with Lb 5 2.75 MFS.
10 October 2000 y Vol. 39, No. 29 y APPLIED OPTICS 5277



i
m

2

5

magnitude smaller than in the main orders. This is
consistent with the results for the focal spot sizes and
the Strehl ratios. The difference between the focal
spot sizes is quite small for DS and AQ, since the
intermediate diffraction orders have a small influ-
ence, owing to the small magnitude, whereas the
Strehl ratio differs significantly for DS and AQ, be-
cause the first-order efficiencies for DS are signifi-
cantly higher than for AQ.

4. Conclusions

DS-encoded blazed gratings have been analyzed with
exact electromagnetic diffraction theory. The limits
of the scalar-based encoding method DS were deter-
mined for both polarizations where we found that the
validity of the method clearly exceeds the scalar re-
gime. The DS method produces, under given fabri-
cation constraints, optimum solutions for Lbyl ratios
as small as ;3. The optimum performance of the
method is even more extended for TM polarization
than for TE polarization. We fabricated and char-
acterized eight-level DS-encoded blazed gratings in
fused silica and found good agreement between the
experimental and the theoretical diffraction efficien-
cies. We compared the influence of the encoding
278 APPLIED OPTICS y Vol. 39, No. 29 y 10 October 2000
schemes DS and AQ on the quality of the focal spot.
Hereto we compared the size ~FWHM! of the focal
spot and the Strehl ratio of the DS- and the AQ-
encoded cylindrical lenses with the case of the ideal
lens.

This research was supported by the Swiss Priority
Program Optique II. The authors thank the Centre
Suisse d’Electronique et de Microtechnique ~CSEM!
n Neuchâtel, Switzerland, for the fabrication of the
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