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1. Introduction 
This paper presents PROTOFLEX, a hardware/software co-
simulation methodology to facilitate the systematic 
development of RTL components for an FPGA-based 
multiprocessor emulator. PROTOFLEX relies on FLEXUS 
[1], a full-system, cycle-accurate software simulator, to 
provide the reference behavior of a distributed shared-
memory multiprocessor system and its components.  The 
simulated C++ components in FLEXUS can be mapped 
into RTL descriptions piece-wise, and individual RTL 
components can be co-simulated with FLEXUS for 
debugging and testing.  The PROTOFLEX methodology 
enables a steady refinement path toward completing an 
FPGA-based full-system emulator. 

Paper Outline. Section 2 further argues the 
advantages of a co-simulation framework in developing a 
FPGA-based large-scale, full-system emulator.  Section 3 
provides details of the PROTOFLEX methodology. Sections 
4 and 5 describe our experience in applying PROTOFLEX 
to develop the RTL model of a microprogrammable 
protocol engine for directory-based cache-coherence.   

 
2. Motivations 
A major challenge in building an FPGA-based full-system 
emulator is the verification and composition of multiple, 
potentially broken RTL components. Below, we argue for 
the use of co-simulation in component development to 
address the above challenge.  

In-system component testing. Co-simulating 
individual RTL components with a complete reference 
software simulator enables early and efficient testing by 
operating the target RTL component in a reliable 
environment—regardless of the progress of RTL 
development for the rest of the system.  Equally 
important, the target RTL component can be tested under 
realistic operating conditions that are difficult to create 
using conventional testbenching.  (In our case, FLEXUS 
simulates in detail a complete distributed shared memory 
system that can boot unmodified Solaris and execute 
commercial applications.)  The RTL component under 
test can even be mirrored simultaneously by its original 
C++ counterpart during co-simulation to detect any 
divergence from the reference behavior. 

Advanced test and debug support. Co-simulation 
can leverage the capabilities of modern software 
simulators to achieve more sophisticated and thorough 
component testing than possible by direct, isolated 
component testing.  Modern simulators are highly 
configurable (number of processors, device latency, etc) 

and support a large variety of execution modes (ranging 
from functional-only to cycle-accurate, support for 
sampling, checkpointing, etc). Simulation scripts can 
automatically test an RTL component against a large 
variety of workloads and system configurations.  This can 
help to “sweep” entire classes of errors that would 
otherwise be arduous to identify using conventional 
testbenching.   Software simulators also offer much more 
user-friendly and powerful execution tracing, assertion 
checking and state inspection—throughout the system—
to help error detection and replication.  
 Concurrent component development. The ability to 
test isolated RTL components in a complete, simulated 
environment allows for independent and concurrent 
development of different components.  Components pre-
validated using PROTOFLEX are much more likely to work 
correctly together during the bring-up of the final FPGA-
emulated system.  This is particularly important in a 
distributed collaborative development effort. 
 Component-specific studies. In a separate vein from 
full-system emulation, co-simulation is also useful for 
studying a subset of the complete system. The architect 
can concentrate his RTL development effort on only the 
subsystem of interest to characterize implementation 
metrics such as cycle time, area, and power. The architect 
can nevertheless validate the functional correctness of the 
subsystem against the complete system behavior. 
 
3. PROTOFLEX 
In this section we present PROTOFLEX, a HW/SW co-
simulation methodology for piece-wise derivation of RTL 
components for an FPGA-based emulator from a 
reference software simulator.  We begin with a brief 
overview of the FLEXUS infrastructure which serves as 
our reference software simulator.  We then discuss the 
component development flow in PROTOFLEX. 
 
3.1 FLEXUS: A full-system simulation framework 
FLEXUS is a component-based C++ framework for 
creating simulation models of uni- and multi-processor 
systems. At the heart of FLEXUS is the Simics simulator 
[5], an application which enables functional execution of 
unmodified, commercial OS and applications. User-
developed C++ component models supply timing and 
structure details for timing- and bit-accurate simulations.  

FLEXUS simulates a system by connecting components 
through well-defined timing-independent interfaces called 
ports. Components correspond to portions of the system 
being modeled (e.g., a processor core or the cache-
coherence engine). Source code for different components 
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Figure 1   PROTOFLEX methodology 

(and their internal hardware algorithms) are clearly 
separated and timing-independent. Ports provide the basic 
point-to-point channel abstraction between the connected 
components.  Developers can specify the direction of the 
port and select from a collection of pre-defined 
handshakes (e.g., asynchronous push, pull, etc.).  A port 
communicates data across components in packets of 
arbitrarily-complex user-defined data structures called 
transports. In each simulated cycle, FLEXUS’S cycle-based 
simulation kernel invokes each component’s drive 
function, which performs a cycle’s worth of logic and 
communication activities. Timing effects (e.g., cache miss 
or network delay) are introduced in a component by 
postponing the processing of transports by an 
appropriated number of drive function invocations.  

The FLEXUS component and port abstractions are the 
key enablers for integrating an RTL model with the full-
system simulator for co-simulation. The port interface 
abstraction in FLEXUS lends itself naturally to a hardware 
timing-independent interface used by the RTL modules. 
Therefore, an RTL model can be directly mapped into a 
FLEXUS component by translation between transports and 
RTL signals. Liberty [3] and ASIM [4] are other 
examples of component-based simulators with well-
engineered modularization and component interfaces. 

 
3.2 PROTOFLEX methodology 
The key steps in the PROTOFLEX component development 
flow are given in Figure 1. A developer begins by 
choosing a hardware component of interest from the 
FLEXUS component library (Step I1) and manually ports 
the cycle-based C++ FLEXUS component model to its 
corresponding Verilog RTL model (Step V1).  In Step 
V1, the C++ component model conveniently serves as an 
unambiguous design specification. The current release of 
FLEXUS (http://www.ece.cmu.edu/~simflex/) contains 
over 20 base library components ranging from processors 
(e.g., x86, SPARC) to memory controllers and 
interconnects.  
 The completed RTL model is then converted back 
into a C++ object using the Verilator tool [6] (Step I2). 
This RTL-derived C++ object is instantiated within a 
FLEXUS component wrapper (Step I3). In Step I3, the 
developer is only responsible for writing a wrapper that 

converts between exposed RTL signals and software 
transports that move over ports. This usually involves 
copying between transport data and RTL signal fields. In 
some cases, transports contain simulation-specific 
metadata (e.g., statistics and counters) that must be 
preserved in the wrapper.   

Lastly, the RTL-derived C++ model is co-simulated 
within the full-system model for testing and debugging. 
Verifying the functionality of the RTL component by co-
simulation involves a combination of tracing and 
assertion-checking. The developer can easily place checks 
and debug statements in the components surrounding the 
ported component.  The FLEXUS framework provides a 
rich debugging infrastructure that allows printing of 
debug statements in selectable components. In parallel 
with functional testing, the Verilog RTL model also can 
be synthesized to assess implementation metrics such as 
timing, area, and power characterizations (Steps V2, V3).  

Because each component is validated against the 
presumed-to-be-correct reference simulator, the porting of 
different components can be achieved concurrently by 
multiple independent developers.  By pre-validating 
individual components against a full-range of behaviors in 
a complete system, one greatly increases the likelihood of 
successfully combining the RTL components in the final 
FPGA-emulated multiprocessor system. 
 
4. Design Study: Cache-Coherence Engine 
We next present an application of the PROTOFLEX 
discipline to develop the synthesizable RTL model of the 
cache coherence protocol engine modeled in FLEXUS.  In 
this section, we briefly introduce the design specification 
of the cache coherence protocol and the protocol engine.  
The next section reports the development experience and 
the lessons learned during the design, verification, and 
characterization process. 

Cache Coherence Protocol.  The distributed shared-
memory multiprocessor system simulated by FLEXUS 
employs an aggressive, directory-based MSI protocol. 
Beyond basic distributed MSI protocol designs, the 
FLEXUS protocol has been aggressively optimized to 
minimize transaction occupancy at the home nodes and to 
minimize the number of network hops per transaction.  
For example, a read transaction to a remote, dirty cache 
line is satisfied in three hops where 1. the request reaches 
the home node  2. the home node forwards the request to 
the current owner of the dirty cache line (and does not 
wait for further acknowledgement)  3. the owner of the 
dirty cache line responds directly to the requestor.  The 
protocol requires three virtual channel priorities but does 
not require point-to-point ordering.  Key properties of the 
protocol specification have been formally verified using 
Murphi [2]. 

Protocol Engine. FLEXUS simulates, at a cycle- and 
bit-accurate level, a protocol engine on each processing 
node to implement the aforementioned cache-coherence 
protocol.  The protocol engine on each node actually 
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Figure 2   Components that maintain cache coherency in a 

distributed shared memory architecture  

consists of three independently operating submodules: the 
local engine (LE), the home engine (HE) and the remote 
engine (RE).  The HE and RE are microprogrammable to 
allow late binding of protocol features. 

Figure 2 illustrates the high-level organization of the 
three protocol engines relative to other modules in a 
processing node. The L2 cache controller services cache 
misses by sending requests to the LE. The LE is a 
hardwired controller optimized to handle and respond to 
accesses to the directory and local data in the main 
memory. The LE forwards requests requiring inter-node 
communication to the HE or the RE as appropriate. The 
HE handles 1. cache requests to local memory blocks 
unserviceable by the LE (e.g., request to a local memory 
location being modified remotely) and 2. requests for 
local memory locations from a remote node. The RE 
handles cache coherence for memory blocks mapped to a 
remote node. All communication to external agents is 
achieved through links between the HE/RE and the 
network interface (NIC).  

The HE and RE are implemented as micro-
programmable controllers.  The HE and RE hardware is 
nearly identical, except for minor differences in state 
registers.   The HE and RE support overlapping threaded 
execution of multiple outstanding transactions.  Each new 
transaction starts a new thread and is allocated a private 
transaction state register.  A thread executes until it 
encounters a blocking operation (e.g., executing a 
RECEIVE microinstruction to wait for a coherence 
message). A thread can also be suspended when acquiring 
a directory lock or waiting for directory state to return 
from memory.  A thread scheduler dynamically monitors 
the state of each outstanding transaction to select a ready 
thread to execute on the protocol engine. 

Protocol Firmware. The protocol firmware is coded 
in a high-level language with symbolic arguments and C-
style code blocks.  An assembler compiles the high-level 
protocol description to microcode for the HE and RE, 
respectively.  The microinstruction set comprises only 14 
instruction types, sufficient to describe the complete set of 
actions by the HE and the RE in 471 and 928 instructions.  
Most transactions require only a handful of instructions. 
Examples of typical instruction types are SEND, 
RECEIVE, TEST, and SET. RECEIVE and TEST support 
conditional control flow to multiple destinations.  

The RTL model of the coherence engines in this case 
study is binary-compatible with the original C++ model in 
FLEXUS. In other words, the protocol engine in RTL can 
directly inherit the fully-debugged microcode and thus 
cache-coherence protocol from FLEXUS. 
 
5. Implementation Experience 
We conclude with a discussion of our experience in 
implementing the protocol engines using PROTOFLEX.  
Although not central to the PROTOFLEX methodology, we 
opted to develop synthesizable hardware models using the 

Bluespec System Verilog (BSV) language and compiler. 
We begin with a brief overview of BSV. 
 
5.1 Bluespec: High-Level Description and Synthesis 
BSV is a high-level, strongly-typed operation-centric 
hardware description language. A valid BSV description 
can be compiled to a cycle-accurate C simulator or to a 
synthesizable Verilog RTL for further backend synthesis. 

Hardware structures in BSV are represented by 
modules—recursive encapsulation of states, rules, and 
interfaces. In a module, states (e.g., FIFOs and registers) 
are explicitly declared and operated on by rules and 
interface methods. 

Hardware behaviors in BSV are specified in terms 
of guarded atomic actions (or rules) that transform the 
states.   Transformations on state are applied only when a 
rule can fire (i.e., when its guarding condition is 
satisfied). Recasting hardware concurrency as atomic 
rules greatly simplifies the treatment of race conditions 
when a shared state can be modified from multiple 
sources. While the programmer perceives simplifying 
serial execution semantics during development, the BSV 
compiler synthesizes highly concurrent hardware 
implementations by allowing as many possible rules to 
fire in parallel without violating the sequential 
semantics—that is, the concurrent firing of multiple rules 
must obey atomic execution semantics. 
 Generally, we found that BSV helped to capture a 
complex design with fewer bugs—due to its strong type 
system and atomic rule semantics. The LE took 
approximately three weeks to design and test, and the HE 
and RE together took six weeks (including multiple 
iterations of simulation and debugging).  The ability to 
parameterize a design (e.g., FIFO sizes, or even the 
number of threads in the HE/RE) in BSV was very useful 
in evaluating how the overall system performance was 
impacted when replacing a software component with its 
RTL counterpart in multiple configurations. Furthermore, 
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the ability to vary the number of threads supported by the 
HE and RE gives further validation of the safety of the 
protocol design. 
 
5.2 Hardware model development 
We applied PROTOFLEX to independently develop the LE, 
HE, and RE as three separate components. 

Porting the Local Engine. The LE is a hardwired-
controller and was implemented using only five rules to 
handle interactions (through channels) with other 
components, namely the directory, main memory, HE, 
RE, and the L2 cache controller. In all, the LE was 
implemented in approximately 2000 lines of BSV code 
(compared to 1000 lines in the FLEXUS C++ component). 

Porting the Home and Remote Engines. The HE 
and RE (nearly identical) were each implemented using 
ten rules. Most of the rules dealt with managing 
concurrent accesses to the transaction state register file. 
Using BSV’s composable interface abstraction, both the 
HE and RE reused much of the same descriptions (e.g., 
thread scheduling, microcode storage) except where it 
was necessary to maintain separate interfaces for engine-
specific operations (e.g., only the HE accesses the 
directory). The HE and RE were altogether implemented 
in approximately 4000 lines of BSV code (not including 
the embedded microcode). As a reference, the original 
FLEXUS C++ models for the HE and RE were altogether 
implemented in approximately 7000 lines of code.   

The LE, HE, and RE were all synthesized for timing 
and area estimates for the Xilinx Virtex II Pro 70. An LE 
capable of supporting 16 threads occupies 14199 slices 
and operates at 84 MHz. (The LE required a large number 
of slices due to a large number of fully-associative 
lookups. This will be substantially reduced in future 
iterations by replacing several unnecessary fully-
associative structures by more compact indexed arrays.) 
An HE capable of supporting 16 threads requires 7862 
slices and operates at 46 MHz while the RE occupies 
8510 slices and operates at 47 MHz. 
 
5.3 Co-simulation and debugging 
The LE, HE, and RE were each independently tested by 
compiling their BSV description to a synthesizable 
Verilog RTL description and then by the Verilator to a 
simulatable C++ object. Each component was tested 
against FLEXUS in both functional- and timing-accurate 
full system simulation of multiple system configurations 
and a variety of scientific and commercial workloads.  

Running different workloads exercised a wide variety 
of test cases. For example, OLTP on IBM’s DB2 and 
Oracle DB exercised a variety of race conditions due to 
migratory sharing of critical sections. Ocean, a memory-
bandwidth bound benchmark, tended to maximize the 
number of concurrent threads. Checkpointing support in 
FLEXUS allowed rapid execution of selected pre-
determined program phases to acquire additional coverage 

for long running applications with exceptionally large-
scale program phases.   

Varying system configuration parameters also helped 
to exercise a variety of test cases. For example, the L2 
cache size was reduced to generate significant writeback 
traffic and to exercise complex writeback races.  
Recreating representative test cases for such programs 
and configuration-specific scenarios involving multiple 
nodes in standalone component testing would have been 
extremely difficult.  

For all of the components, it was easy to create a 
debugging package in BSV, which allowed insertion of 
high-level print statements, which could be inserted into 
any point in action methods or rules. This provided the 
power of C-like debugging in an RTL environment. These 
statements remained in the synthesized Verilog 
surrounded by synthesis pragmas, which are pruned 
during synthesis. As a result, the Verilator-generated C++ 
object still printed the high-level debug statements during 
FLEXUS execution, which aided with viewing internal 
signals in the RTL components. 

The debug package helped especially with 
documenting protocol test cases. One approach used to 
increase coverage was to identify entry points into the 
microcode and to maintain a running list of protocol 
transitions as well as rare race conditions being exercised. 
The FLEXUS environment helped to identify several rare 
race conditions and also exercised all state transitions in 
the protocol diagram.  
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