
 1

PROTOFLEX: Co-Simulation for Component-wise FPGA Emulator Development

Eric S. Chung, James C. Hoe, Babak Falsafi

Computer Architecture Laboratory at Carnegie Mellon (CALCM)
{echung, jhoe, babak}@ece.cmu.edu

1. Introduction
This paper presents PROTOFLEX, a hardware/software co-
simulation methodology to facilitate the systematic
development of RTL components for an FPGA-based
multiprocessor emulator. PROTOFLEX relies on FLEXUS
[1], a full-system, cycle-accurate software simulator, to
provide the reference behavior of a distributed shared-
memory multiprocessor system and its components. The
simulated C++ components in FLEXUS can be mapped
into RTL descriptions piece-wise, and individual RTL
components can be co-simulated with FLEXUS for
debugging and testing. The PROTOFLEX methodology
enables a steady refinement path toward completing an
FPGA-based full-system emulator.

Paper Outline. Section 2 further argues the
advantages of a co-simulation framework in developing a
FPGA-based large-scale, full-system emulator. Section 3
provides details of the PROTOFLEX methodology. Sections
4 and 5 describe our experience in applying PROTOFLEX
to develop the RTL model of a microprogrammable
protocol engine for directory-based cache-coherence.

2. Motivations
A major challenge in building an FPGA-based full-system
emulator is the verification and composition of multiple,
potentially broken RTL components. Below, we argue for
the use of co-simulation in component development to
address the above challenge.

In-system component testing. Co-simulating
individual RTL components with a complete reference
software simulator enables early and efficient testing by
operating the target RTL component in a reliable
environment—regardless of the progress of RTL
development for the rest of the system. Equally
important, the target RTL component can be tested under
realistic operating conditions that are difficult to create
using conventional testbenching. (In our case, FLEXUS
simulates in detail a complete distributed shared memory
system that can boot unmodified Solaris and execute
commercial applications.) The RTL component under
test can even be mirrored simultaneously by its original
C++ counterpart during co-simulation to detect any
divergence from the reference behavior.

Advanced test and debug support. Co-simulation
can leverage the capabilities of modern software
simulators to achieve more sophisticated and thorough
component testing than possible by direct, isolated
component testing. Modern simulators are highly
configurable (number of processors, device latency, etc)

and support a large variety of execution modes (ranging
from functional-only to cycle-accurate, support for
sampling, checkpointing, etc). Simulation scripts can
automatically test an RTL component against a large
variety of workloads and system configurations. This can
help to “sweep” entire classes of errors that would
otherwise be arduous to identify using conventional
testbenching. Software simulators also offer much more
user-friendly and powerful execution tracing, assertion
checking and state inspection—throughout the system—
to help error detection and replication.
 Concurrent component development. The ability to
test isolated RTL components in a complete, simulated
environment allows for independent and concurrent
development of different components. Components pre-
validated using PROTOFLEX are much more likely to work
correctly together during the bring-up of the final FPGA-
emulated system. This is particularly important in a
distributed collaborative development effort.
 Component-specific studies. In a separate vein from
full-system emulation, co-simulation is also useful for
studying a subset of the complete system. The architect
can concentrate his RTL development effort on only the
subsystem of interest to characterize implementation
metrics such as cycle time, area, and power. The architect
can nevertheless validate the functional correctness of the
subsystem against the complete system behavior.

3. PROTOFLEX
In this section we present PROTOFLEX, a HW/SW co-
simulation methodology for piece-wise derivation of RTL
components for an FPGA-based emulator from a
reference software simulator. We begin with a brief
overview of the FLEXUS infrastructure which serves as
our reference software simulator. We then discuss the
component development flow in PROTOFLEX.

3.1 FLEXUS: A full-system simulation framework
FLEXUS is a component-based C++ framework for
creating simulation models of uni- and multi-processor
systems. At the heart of FLEXUS is the Simics simulator
[5], an application which enables functional execution of
unmodified, commercial OS and applications. User-
developed C++ component models supply timing and
structure details for timing- and bit-accurate simulations.

FLEXUS simulates a system by connecting components
through well-defined timing-independent interfaces called
ports. Components correspond to portions of the system
being modeled (e.g., a processor core or the cache-
coherence engine). Source code for different components

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147950015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

I2: Verilator
HDL to C++

V2: Synthesis

V3: Place & Route I3: Flexus component
wrapper

Timing, Area,
Power

Verify functionality with co-simulation of
RTL and C++ components

V1: Port component
into Verilog Component LibraryI1. Select a

component

Figure 1 PROTOFLEX methodology

(and their internal hardware algorithms) are clearly
separated and timing-independent. Ports provide the basic
point-to-point channel abstraction between the connected
components. Developers can specify the direction of the
port and select from a collection of pre-defined
handshakes (e.g., asynchronous push, pull, etc.). A port
communicates data across components in packets of
arbitrarily-complex user-defined data structures called
transports. In each simulated cycle, FLEXUS’S cycle-based
simulation kernel invokes each component’s drive
function, which performs a cycle’s worth of logic and
communication activities. Timing effects (e.g., cache miss
or network delay) are introduced in a component by
postponing the processing of transports by an
appropriated number of drive function invocations.

The FLEXUS component and port abstractions are the
key enablers for integrating an RTL model with the full-
system simulator for co-simulation. The port interface
abstraction in FLEXUS lends itself naturally to a hardware
timing-independent interface used by the RTL modules.
Therefore, an RTL model can be directly mapped into a
FLEXUS component by translation between transports and
RTL signals. Liberty [3] and ASIM [4] are other
examples of component-based simulators with well-
engineered modularization and component interfaces.

3.2 PROTOFLEX methodology
The key steps in the PROTOFLEX component development
flow are given in Figure 1. A developer begins by
choosing a hardware component of interest from the
FLEXUS component library (Step I1) and manually ports
the cycle-based C++ FLEXUS component model to its
corresponding Verilog RTL model (Step V1). In Step
V1, the C++ component model conveniently serves as an
unambiguous design specification. The current release of
FLEXUS (http://www.ece.cmu.edu/~simflex/) contains
over 20 base library components ranging from processors
(e.g., x86, SPARC) to memory controllers and
interconnects.
 The completed RTL model is then converted back
into a C++ object using the Verilator tool [6] (Step I2).
This RTL-derived C++ object is instantiated within a
FLEXUS component wrapper (Step I3). In Step I3, the
developer is only responsible for writing a wrapper that

converts between exposed RTL signals and software
transports that move over ports. This usually involves
copying between transport data and RTL signal fields. In
some cases, transports contain simulation-specific
metadata (e.g., statistics and counters) that must be
preserved in the wrapper.

Lastly, the RTL-derived C++ model is co-simulated
within the full-system model for testing and debugging.
Verifying the functionality of the RTL component by co-
simulation involves a combination of tracing and
assertion-checking. The developer can easily place checks
and debug statements in the components surrounding the
ported component. The FLEXUS framework provides a
rich debugging infrastructure that allows printing of
debug statements in selectable components. In parallel
with functional testing, the Verilog RTL model also can
be synthesized to assess implementation metrics such as
timing, area, and power characterizations (Steps V2, V3).

Because each component is validated against the
presumed-to-be-correct reference simulator, the porting of
different components can be achieved concurrently by
multiple independent developers. By pre-validating
individual components against a full-range of behaviors in
a complete system, one greatly increases the likelihood of
successfully combining the RTL components in the final
FPGA-emulated multiprocessor system.

4. Design Study: Cache-Coherence Engine
We next present an application of the PROTOFLEX
discipline to develop the synthesizable RTL model of the
cache coherence protocol engine modeled in FLEXUS. In
this section, we briefly introduce the design specification
of the cache coherence protocol and the protocol engine.
The next section reports the development experience and
the lessons learned during the design, verification, and
characterization process.

Cache Coherence Protocol. The distributed shared-
memory multiprocessor system simulated by FLEXUS
employs an aggressive, directory-based MSI protocol.
Beyond basic distributed MSI protocol designs, the
FLEXUS protocol has been aggressively optimized to
minimize transaction occupancy at the home nodes and to
minimize the number of network hops per transaction.
For example, a read transaction to a remote, dirty cache
line is satisfied in three hops where 1. the request reaches
the home node 2. the home node forwards the request to
the current owner of the dirty cache line (and does not
wait for further acknowledgement) 3. the owner of the
dirty cache line responds directly to the requestor. The
protocol requires three virtual channel priorities but does
not require point-to-point ordering. Key properties of the
protocol specification have been formally verified using
Murphi [2].

Protocol Engine. FLEXUS simulates, at a cycle- and
bit-accurate level, a protocol engine on each processing
node to implement the aforementioned cache-coherence
protocol. The protocol engine on each node actually

 3

Directory Locks

Directory Locks
Home

Engine
Home

Engine

Local Engine

Cache Request Channel Snoop Request &
Cache Reply Channel

Eviction & Snoop Reply
Channel

Directory Locks

Home Engine Remote Engine

NIC

Interconnect

Memory &
Directory

Core

L1

L2

Figure 2 Components that maintain cache coherency in a

distributed shared memory architecture

consists of three independently operating submodules: the
local engine (LE), the home engine (HE) and the remote
engine (RE). The HE and RE are microprogrammable to
allow late binding of protocol features.

Figure 2 illustrates the high-level organization of the
three protocol engines relative to other modules in a
processing node. The L2 cache controller services cache
misses by sending requests to the LE. The LE is a
hardwired controller optimized to handle and respond to
accesses to the directory and local data in the main
memory. The LE forwards requests requiring inter-node
communication to the HE or the RE as appropriate. The
HE handles 1. cache requests to local memory blocks
unserviceable by the LE (e.g., request to a local memory
location being modified remotely) and 2. requests for
local memory locations from a remote node. The RE
handles cache coherence for memory blocks mapped to a
remote node. All communication to external agents is
achieved through links between the HE/RE and the
network interface (NIC).

The HE and RE are implemented as micro-
programmable controllers. The HE and RE hardware is
nearly identical, except for minor differences in state
registers. The HE and RE support overlapping threaded
execution of multiple outstanding transactions. Each new
transaction starts a new thread and is allocated a private
transaction state register. A thread executes until it
encounters a blocking operation (e.g., executing a
RECEIVE microinstruction to wait for a coherence
message). A thread can also be suspended when acquiring
a directory lock or waiting for directory state to return
from memory. A thread scheduler dynamically monitors
the state of each outstanding transaction to select a ready
thread to execute on the protocol engine.

Protocol Firmware. The protocol firmware is coded
in a high-level language with symbolic arguments and C-
style code blocks. An assembler compiles the high-level
protocol description to microcode for the HE and RE,
respectively. The microinstruction set comprises only 14
instruction types, sufficient to describe the complete set of
actions by the HE and the RE in 471 and 928 instructions.
Most transactions require only a handful of instructions.
Examples of typical instruction types are SEND,
RECEIVE, TEST, and SET. RECEIVE and TEST support
conditional control flow to multiple destinations.

The RTL model of the coherence engines in this case
study is binary-compatible with the original C++ model in
FLEXUS. In other words, the protocol engine in RTL can
directly inherit the fully-debugged microcode and thus
cache-coherence protocol from FLEXUS.

5. Implementation Experience
We conclude with a discussion of our experience in
implementing the protocol engines using PROTOFLEX.
Although not central to the PROTOFLEX methodology, we
opted to develop synthesizable hardware models using the

Bluespec System Verilog (BSV) language and compiler.
We begin with a brief overview of BSV.

5.1 Bluespec: High-Level Description and Synthesis
BSV is a high-level, strongly-typed operation-centric
hardware description language. A valid BSV description
can be compiled to a cycle-accurate C simulator or to a
synthesizable Verilog RTL for further backend synthesis.

Hardware structures in BSV are represented by
modules—recursive encapsulation of states, rules, and
interfaces. In a module, states (e.g., FIFOs and registers)
are explicitly declared and operated on by rules and
interface methods.

Hardware behaviors in BSV are specified in terms
of guarded atomic actions (or rules) that transform the
states. Transformations on state are applied only when a
rule can fire (i.e., when its guarding condition is
satisfied). Recasting hardware concurrency as atomic
rules greatly simplifies the treatment of race conditions
when a shared state can be modified from multiple
sources. While the programmer perceives simplifying
serial execution semantics during development, the BSV
compiler synthesizes highly concurrent hardware
implementations by allowing as many possible rules to
fire in parallel without violating the sequential
semantics—that is, the concurrent firing of multiple rules
must obey atomic execution semantics.
 Generally, we found that BSV helped to capture a
complex design with fewer bugs—due to its strong type
system and atomic rule semantics. The LE took
approximately three weeks to design and test, and the HE
and RE together took six weeks (including multiple
iterations of simulation and debugging). The ability to
parameterize a design (e.g., FIFO sizes, or even the
number of threads in the HE/RE) in BSV was very useful
in evaluating how the overall system performance was
impacted when replacing a software component with its
RTL counterpart in multiple configurations. Furthermore,

 4

the ability to vary the number of threads supported by the
HE and RE gives further validation of the safety of the
protocol design.

5.2 Hardware model development
We applied PROTOFLEX to independently develop the LE,
HE, and RE as three separate components.

Porting the Local Engine. The LE is a hardwired-
controller and was implemented using only five rules to
handle interactions (through channels) with other
components, namely the directory, main memory, HE,
RE, and the L2 cache controller. In all, the LE was
implemented in approximately 2000 lines of BSV code
(compared to 1000 lines in the FLEXUS C++ component).

Porting the Home and Remote Engines. The HE
and RE (nearly identical) were each implemented using
ten rules. Most of the rules dealt with managing
concurrent accesses to the transaction state register file.
Using BSV’s composable interface abstraction, both the
HE and RE reused much of the same descriptions (e.g.,
thread scheduling, microcode storage) except where it
was necessary to maintain separate interfaces for engine-
specific operations (e.g., only the HE accesses the
directory). The HE and RE were altogether implemented
in approximately 4000 lines of BSV code (not including
the embedded microcode). As a reference, the original
FLEXUS C++ models for the HE and RE were altogether
implemented in approximately 7000 lines of code.

The LE, HE, and RE were all synthesized for timing
and area estimates for the Xilinx Virtex II Pro 70. An LE
capable of supporting 16 threads occupies 14199 slices
and operates at 84 MHz. (The LE required a large number
of slices due to a large number of fully-associative
lookups. This will be substantially reduced in future
iterations by replacing several unnecessary fully-
associative structures by more compact indexed arrays.)
An HE capable of supporting 16 threads requires 7862
slices and operates at 46 MHz while the RE occupies
8510 slices and operates at 47 MHz.

5.3 Co-simulation and debugging
The LE, HE, and RE were each independently tested by
compiling their BSV description to a synthesizable
Verilog RTL description and then by the Verilator to a
simulatable C++ object. Each component was tested
against FLEXUS in both functional- and timing-accurate
full system simulation of multiple system configurations
and a variety of scientific and commercial workloads.

Running different workloads exercised a wide variety
of test cases. For example, OLTP on IBM’s DB2 and
Oracle DB exercised a variety of race conditions due to
migratory sharing of critical sections. Ocean, a memory-
bandwidth bound benchmark, tended to maximize the
number of concurrent threads. Checkpointing support in
FLEXUS allowed rapid execution of selected pre-
determined program phases to acquire additional coverage

for long running applications with exceptionally large-
scale program phases.

Varying system configuration parameters also helped
to exercise a variety of test cases. For example, the L2
cache size was reduced to generate significant writeback
traffic and to exercise complex writeback races.
Recreating representative test cases for such programs
and configuration-specific scenarios involving multiple
nodes in standalone component testing would have been
extremely difficult.

For all of the components, it was easy to create a
debugging package in BSV, which allowed insertion of
high-level print statements, which could be inserted into
any point in action methods or rules. This provided the
power of C-like debugging in an RTL environment. These
statements remained in the synthesized Verilog
surrounded by synthesis pragmas, which are pruned
during synthesis. As a result, the Verilator-generated C++
object still printed the high-level debug statements during
FLEXUS execution, which aided with viewing internal
signals in the RTL components.

The debug package helped especially with
documenting protocol test cases. One approach used to
increase coverage was to identify entry points into the
microcode and to maintain a running list of protocol
transitions as well as rare race conditions being exercised.
The FLEXUS environment helped to identify several rare
race conditions and also exercised all state transitions in
the protocol diagram.

6. References
[1] N. Hardavellas, S. Somogyi, T. F. Wenisch, R. E. Wunderlich, S.

Chen, J. Kim, B. Falsafi, J. C. Hoe, and A. G. Nowatzyk. Simflex: A
fast, accurate, flexible full-system simulation framework for
performance evaluation of server architecture. SIGMETRICS
Performance Evaluation Review, May 2004.

[2] D. Dill. The Murphi Verification system. In 8th International
Conference on Computer Aided Verification, pages 390-393, 1996.

[3] M. Vachharajani, N. Vachharajani, D. A. Penry, J. Blome, and D. I.
August, 2004. The liberty simulation environment, version 1.0.
Performance Evaluation Review: Special Issue on Tools for
Architecture Research 31, 4 (Mar.).

[4] J. Emer, P. Ahuja, E. Borch, A. Klauser, C. K. Luk, S. Manne, S. S.
Mukherjee, H. Patil, S. Wallace, N. Binkert, R. Espasa, T. Juan.
"Asim: A Performance Model Framework," Computer, vol. 35, no.
2, pp. 68-76, February, 2002.

[5] M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,
F. Larsson, P. S. Magnusson, A. Moestedt, and B. Werner. Simics: A
full system simulation platform. Computer, 35(2):50-58, February
2002.

[6] Verilator tool suite. http://www.veripool.com.

