
Fingerprinting: Bounding
Soft-Error Detection Latency and Bandwidth

Jared C. Smolens, Brian T. Gold, Jangwoo Kim,
Babak Falsafi, James C. Hoe, and Andreas G. Nowatzyk

Computer Architecture Laboratory
Carnegie Mellon University

http://www.ece.cmu.edu/˜truss

ABSTRACT
Recent studies have suggested that the soft-error rate in mi-
croprocessor logic will become a reliability concern by 2010.
This paper proposes an efficient error detection technique,
called fingerprinting, that detects differences in execution
across a dual modular redundant (DMR) processor pair.
Fingerprinting summarizes a processor’s execution history
in a hash-based signature; differences between two mirrored
processors are exposed by comparing their fingerprints. Fin-
gerprinting tightly bounds detection latency and greatly re-
duces the interprocessor communication bandwidth required
for checking. This paper presents a study that evaluates
fingerprinting against a range of current approaches to error
detection. The result of this study shows that fingerprinting
is the only error detection mechanism that simultaneously
allows high-error coverage, low error detection bandwidth,
and high I/O performance.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability,
and servicability; B.8.1 [Performance and Reliability]:
Reliability, testing, and fault-tolerance

General Terms
Performance, Design, Reliability

Keywords
Soft errors, error detection, dual modular redundancy (DMR),
backwards error recovery (BER)

1. INTRODUCTION
Technology trends will raise soft-error rates in micropro-

cessors to levels that require changes to the design and im-
plementation of future computer systems [12, 17, 23]. De-
tecting soft-errors in the processor’s core logic presents a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASPLOS’04, October 7–13, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-804-0/04/0010 ...$5.00.

more difficult challenge than errors in storage or intercon-
nect devices, which can be handled via error detecting and
correcting codes. Today, microprocessor systems requiring
reliable, available computation employ dual modular redun-
dancy (DMR) at various levels to enable detection—ranging
from replicating pipelines within the same die [25] to mirror-
ing complete processors [15, 21]. In this paper, we offer an
investigation of the general design space of error detection
in DMR processor configurations.

Our study of DMR error detection is motivated by a larger
effort to develop a cost-efficient reliable server architecture in
the TRUSS project.1 To exploit the economy of scale, mod-
ern servers are increasingly built from commodity modules.
In particular, rack-mounted server “blades” are emerging
as a cost-effective and scalable approach to building high-
performance servers. The TRUSS architecture aims to pro-
vide reliability in a commodity blade cluster environment
with minimal changes to commodity hardware and without
modifications to the application software. The TRUSS ar-
chitecture is designed to survive any single component fail-
ure (e.g., memory device, processor or system ASIC) by en-
forcing distributed redundancy at all levels of processing and
storage. For example, under TRUSS, redundant program
execution will be carried out by mirrored processors on dif-
ferent nodes interconnected by a system area network. This
distributed redundancy approach means DMR error detec-
tion must be implemented under the constraints of limited
communication bandwidth and non-negligible communica-
tion latency between the mirrored processors.

In this paper, we examine four design points for DMR
error detection. The designs are differentiated by the mon-
itoring points where the behavior of two mirrored proces-
sors is compared. The first three alternatives reflect previ-
ously proposed techniques. These three designs correspond
to comparing the mirrored processors at 1. chip-external
interface, 2. L1 cache interface and 3. full state of pro-
gram execution. We introduce a fourth option based on
the comparison of fingerprints. A fingerprint is a crypto-
graphic hash value computed on the sequence of updates to
a processor’s architectural state during program execution.
A simple fingerprint comparison between the mirrored pro-
cessors effectively verifies the correspondence of all executed
instructions covered by the fingerprint. Fingerprinting dras-
tically reduces the required data exchange bandwidth for
DMR error detection.

We evaluate the four DMR error detection design points

1Total Reliability Using Scalable Servers.CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147949994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in conjunction with a backward-error recovery (BER) frame-
work that restarts execution from a checkpoint in the pres-
ence of an error. The results of our evaluation offer the
following key insights. First, as the soft-error rate increases,
traditional chip-external error detection requires a minimal
checkpoint interval of tens of millions of instructions to main-
tain the reference mean-time-to-failure target (MTTF) of
114 FIT [4]. Second, DMR error detection at the L1 cache
interface or on the full state of two mirrored processors re-
quires an unacceptably high interprocessor bandwidth. Third,
the I/O traffic in commercial OLTP systems forces a check-
point interval that is too short to provide adequate error
coverage with chip-external and L1 cache interface error de-
tection. This combination of results argues that fingerprint-
ing is the only viable error detection mechanism that si-
multaneously allows high-error coverage, low error detection
bandwidth, and high I/O performance in a DMR processor
system.

Paper Outline. Section 2 continues with further details of
the DMR error detection design space and evaluation met-
rics for this study. Section 3 presents the concepts and prin-
ciples of fingerprinting. Section 4 describes our experimental
setup and data analysis. Sections 5-7 present and discuss the
results of our study. Section 8 describes related prior work.
Finally, Section 9 provides a summary and our conclusions.

2. DESIGN SPACE OVERVIEW
Recovering from soft-errors in program execution can be

accomplished in two general ways. With forward-error re-
covery (FER), enough redundancy exists in the system to
determine the correct operation, should a processor fail.
Triple modular redundancy (TMR) is the classic example of
FER: three processors execute the same program and when
one processor fails a majority vote determines the correct
state [24]. For cost-sensitive commercial systems, the added
overhead associated with a TMR system is prohibitive [18].

In this paper, we evaluate backwards-error recovery (BER)
mechanisms that create checkpoints of correct system state
and rollback processor execution when an error is detected.
Dual modular redundancy (DMR) is a BER technique where
two redundant processors are used to detect errors in ex-
ecution. We use DMR as the base design for evaluating
soft-error detection mechanisms and their implications for
system reliability and performance.

We assume a DMR processor system where two proces-
sors execute redundantly in lockstep. We assume the chosen
processor microarchitecture is fully deterministic such that
in an error-free scenario, the two processors behave identi-
cally. An error in the execution of one processor manifests
as a deviation in the behavior of the two processors.

In this section, we first give an overview of the checkpoint-
ing process that we assume. We then introduce the error
detection design space for DMR processor systems and fi-
nally present the three key criteria we use to evaluate and
compare the DMR error detection design points.

2.1 Checkpointing
A checkpoint of program state consists of a snapshot of ar-

chitectural registers and memory values. Although a check-
point logically represents a single point in time, our model
consists of copying the register file at checkpoint creation
and using a copy-on-write mechanism to maintain a change

Irreversible
operation
requested

Error
Detection

Irreversible
operation
released

Checkpoint n Checkpoint n+1

time

Figure 1: The error detection and checkpoint com-
parison timeline for a single processor. The redun-
dant processor (not shown) precisely replicates the
above timeline.

log for caches and memory (similar to that proposed in Safe-
tyNet [27]). Rollback consists of restoring register and mem-
ory values from the log.

The time between checkpoints is referred to as the check-
point interval. For short intervals (hundreds to tens of thou-
sands of instructions), checkpoints are small enough to fit
in on-chip structures [7, 27]. With periodic checkpoints, the
storage can be guaranteed to fit on-chip. If longer intervals
are required, checkpoints must be stored off-chip.

To recover from errors, the checkpoint and error detection
mechanisms must be synchronized. Figure 1 illustrates the
sequence of actions for the checkpoint and error detection
mechanisms assumed in this paper. Immediately before an
operation with irreversible effects (an operation that cannot
be re-executed, such as uncached loads and stores), any la-
tent errors should be detected and corrected by recovering to
the last checkpoint. If no error is detected, the irreversible
operation can then be released and a new checkpoint must
be taken. If the detection mechanism does not find all la-
tent errors before discarding the previous checkpoint, the
new checkpoint may contain erroneous state and successful
recovery will no longer be possible.

2.2 Error Detection
We consider four DMR error detection options differenti-

ated by the monitoring points where the behavior of the two
processors are compared (illustrated in Figure 2).

Chip-External Detection. The least intrusive approach
is to monitor and compare the two processors’ external be-
havior at the chip pins. For this paper, we conceptualize
observable chip-external behavior as all address and data
traffic exiting the lowest level of on-chip cache. There is
an inherent error detection latency associated with this ap-
proach: the effect of an error originating in the execution
core may not appear at the output pins for some time due
to buffering in registers and the cache hierarchy. The ex-
act error detection latency is a program- and architecture-
dependent property. Nevertheless, detecting and containing
an error at the pins is still effective in preventing the error
from propagating to the rest of the system (e.g., memory,
disks, network controller) with irreversible effects.

L1 Cache Interface Comparison. An alternative to chip-
external detection is to monitor and compare the address
and data traffic entering the interface of the L1 cache. This

Execution
Engine

On-Chip
Caches

Register
File

Execution
Engine

On-Chip
Caches

Register
File

Execution
Engine

On-Chip
Caches

Register
File

Execution
Engine

On-Chip
Caches

Register
File

Execution
Engine

On-Chip
Caches

Register
File

Execution
Engine

On-Chip
Caches

Register
File

(a) (b) (c)

Figure 2: Error detection mechanisms: (a) chip-external, (b) L1 cache interface, (c) full state. Fingerprinting
(not shown) provides detection capabilities equivalent to full state comparison, (c).

is similar to the approach taken in SRT [19] and CRT [16].
To support this comparison, we assume our DMR processor
system has a dedicated channel connecting the two proces-
sors’ internal cache interfaces. One of the issues we address
in Section 6 is the data exchange bandwidth required by
this approach. At the cost of higher DMR data bandwidth,
this internal monitoring point significantly reduces the er-
ror detection latency because no errors can be buffered in
the cache hierarchy. The detection latency remains nonzero,
however, because an erroneous value can still be buffered in
the register file until a store instruction eventually propa-
gates the value into the cache.

Full-State Comparison at Checkpoint Creation. At
the time a checkpoint is created, the complete set of changes
to architectural state can be compared between mirrored
processors. Naturally, this mechanism uses more pin band-
width than the passive chip-external, but the checkpoint can
be guaranteed error free. The number of unique cache lines
or memory pages changed since the previous checkpoint de-
termines the amount of work necessary for full-state com-
parison. As the checkpoint interval increases, we expect
spatial locality to amortize the comparison cost over the in-
terval. However, if available bandwidth is insufficient, full-
state comparison may require the processors to stall until
the error detection completes.

Fingerprint Comparison. A fingerprint is a hash value
(computed using a linear block code such as CRC-16) that
summarizes several instructions’ state updates into a sin-
gle value. The mirrored processor pairs can corroborate the
effects of multiple instructions through a single fingerprint
comparison. When used with checkpointing, all instructions
between two checkpoints will be summarized by a single 16-
bit fingerprint (assuming CRC-16). Starting at the earlier
checkpoint, a fingerprint is accumulated for all instruction
updates until the next checkpoint is created. If the finger-
prints computed by the mirrored processors agree at this
point, all of the fingerprinted instructions since the last
checkpoint are known to be correct. If the fingerprints of
the mirrored processors disagree, the computation must be
restarted from the earlier checkpoint. Fingerprinting offers
two important advantages. First, fingerprinting addresses
the prohibitive bandwidth requirement of comparing all ar-
chitectural state updates before they are committed. At the
same time, fingerprinting provides a summary of all state
changes, including any possible soft-errors.

2.3 Evaluation Metrics
In this paper, we evaluate and compare the different DMR

error detection mechanisms under three key criteria, namely
error coverage, DMR error detection bandwidth, and I/O
performance.

Error Coverage. The error coverage of a particular fault-
tolerant system is the fraction of errors that can be success-
fully detected and corrected. In a rollback-recovery system,
a checkpoint taken after a soft-error has occurred, but before
detection, leads to an unrecoverable failure. Hence, error
coverage is determined by the probability that a checkpoint
contains an undetected error. As the checkpoint interval in-
creases, an error has a greater chance of being detected be-
fore the next checkpoint, since the average instruction is now
further from the checkpoint time. Conversely, with smaller
checkpoint intervals there is less time to detect an error be-
fore the next checkpoint is taken.

If all architectural state updates are compared before a
checkpoint is taken, the error coverage is independent of
the checkpoint interval because errors in the current inter-
val will be exposed by the detection mechanism. The error
detection latencies of chip-external and L1 cache interface
comparisons, however, place a restrictive lower bound on
acceptable checkpoint interval. In this paper, we show that
the lower bound for checkpoint interval with chip-external
detection is 10 to 25 million instructions; for L1 cache inter-
face detection the minimum interval is 10 to 100 thousand
instructions.

Error Detection Bandwidth. The detection bandwidth
required to compare the behavior between a mirrored pro-
cessor pair is critical to the overall system’s feasibility and
implementation cost. While the chip-external comparison
approach places no additional data on the chip’s pins, the
other three techniques we consider create additional traffic
exiting the chip. Our bandwidth requirement study in Sec-
tion 6 will show L1 cache interface detection and full-state
comparison both require bandwidth exceeding the capability
of current packaging technologies.

I/O Performance. Conventional rollback-recovery mech-
anisms log all input from external devices and delay all out-
put until it is guaranteed that the system will not be rolled
back across a committed I/O operation [6, 29]. In software-
assisted checkpointing of I/O-intensive applications, buffer-
ing can hide the performance impact of delaying I/O to the

Table 1: Evaluating rollback-recovery mechanisms.
L

ar
g

e
S

m
al

l
Checkpoint

Interval
Detection

Mechanism

Chip-External

Full Comparison
at Checkpoint

L1 Cache Interface

Chip-External

Full Comparison
at Checkpoint

L1 Cache Interface

Error
Coverage

ü

ü

ü

ü

ü
Full Comparison
w/ Fingerprinting

B/W

ü

ü

ü

ü

I/O

ü

ü

ü

ü

end of a coarse-grained checkpoint (millions of instructions).
However, a hardware solution must create checkpoints im-
mediately after an I/O operation to prevent rollback that
might reissue past I/O operations. When saving architec-
tural state immediately after accessing a device, we require
an error detection mechanism with high detection coverage
to ensure that rollback is not necessary. In Section 7, we
show that I/O intervals in commercial OLTP systems are
often in the range of 100s to 1000s of instructions and fine-
grained checkpointing is necessary.

From the above discussion, there are contradicting de-
mands on the checkpoint interval by I/O performance and
error coverage requirements. Table 1 summarizes the oppos-
ing factors when trying to balance I/O performance, error
coverage, and comparison bandwidth in choosing a DMR de-
tection mechanisms. Only fingerprinting, presented in detail
in the next section, can simultaneously satisfy all require-
ments of high error coverage, low detection bandwidth, and
high I/O throughput.

3. FINGERPRINTING
In this section, we first discuss the properties of a finger-

print in detail. We then explore the options available in an
implementation of fingerprinting.

3.1 Fingerprinting Overview
Fingerprints provide a concise view of past and present

program state in order to detect differences in execution
across two redundant processor dies, without the overhead
normally associated with full state comparison. A finger-
print must provide high coverage of errors for all instruc-
tions in the checkpoint interval, require little comparison
bandwidth, and work with a variety of checkpoint intervals.

The fingerprint contains a summary of the outputs of any
new register values created by each executing instruction,
new memory values (for stores), and effective addresses (for
both loads and stores). This set of updates is both necessary
and sufficient to capture errors in architectural state; errors

in other architectural and microarchitectural structures will
quickly propagate to those being fingerprinted. Examples
of structures outside the scope of fingerprinting include de-
coded instruction bits, condition code values, the current
program counter, and internal microarchitectural state.

Fingerprint comparisons are forced at the end of every
checkpoint interval. A matching fingerprint indicates that
the computation in both processors, from the beginning of
the checkpoint to the current instruction, is identical. At
this point, the old checkpoint will be replaced with a new
one and the process starts again.

The hash used to compute fingerprint values should be
a well-constructed, linear-block code. There are two key
requirements for the code. First, the code must have a low
probability of undetected errors. Second, the code should be
small for both easy computation and low bandwidth com-
parison. Hamming codes are a class of well-known codes
with an understood lower bound on the probability of an
undetected error and a low storage overhead. For a p-bit
hamming code, the probability of an undetected error is at
most 2−p [35]. This lower bound is independent of the num-
ber of updates to the code and represents the probability
of detecting an error given an infinitely long sequence of
uniformly random bits.

Given this statistical bound, we choose a 16-bit cyclic re-
dundancy check (CRC) for our evaluation that has a 0.999985
probability of detecting an error. In Section 5, we show that
this CRC is sufficient to achieve acceptable system reliability
when using fingerprinting as an error detection mechanism
over the useful range of checkpoint intervals.

3.2 Fingerprint Implementation
Hardware implementations of hash mechanisms are well

known and readily found in the literature [24]. In this sec-
tion, we study the implications of fingerprinting on the pro-
cessor pipeline.

Microarchitecture alternatives. Two major alternatives
exist when implementing fingerprinting in a speculative su-
perscalar out-of-order processor pipeline, as illustrated in
Figure 3. First, we can capture all committed state by tak-
ing the values from instructions retiring from the reorder
buffer (ROB) and load-store queue (LSQ). Conventionally,
the ROB does not contain instruction results. Rather than
trying to read the instruction results from the register file,
we believe it would be more cost-effective to add the instruc-
tion results to the ROB.

Alternatively, if the cost of adding instruction results to
the ROB is too high, another approach would be to finger-
print microarchitectural state by hashing instruction results
as they complete. Figure 3(b) shows this design. In this
case, the fingerprint will contain a hash of committed state
plus additional, potentially speculative state.

Precise Replication. Implicit in our description of finger-
printing is that redundant processors must now have pre-
cisely replicated behavior. For example, suppose a redun-
dant pair of nodes are in a spin-lock, waiting for another
processor pair to release ownership of a shared variable. The
two nodes must receive ownership at exactly the same (log-
ical) time, such that they terminate waiting after the same
number of loop iterations.

Fetch
Decode/
Rename

ROB + Result Values

LD/ST Queue

Issue Queue

RegFile

Exec.
Units

Fpnt

Fetch
Decode/
Rename

ROB

LD/ST Queue

Issue Queue

RegFile

Exec.
Units

Fpnt

(a)

(b)

Figure 3: Microarchitectural implementation op-
tions: (a) committed state (b) committed + specu-
lative state.

Most systems operate the processors in lockstep with a
(small) fixed delay between them [15, 21]. Additionally, we
require that all microarchitectural structures be determinis-
tic so that, given identical input streams, replicated proces-
sors execute the same instruction sequence. This require-
ment exists for chip-external detection as well; otherwise,
correlating replicated processor results would be impossible.

4. ANALYSIS TECHNIQUES
In this section, we present the dynamic dependency anal-

ysis algorithms used to measure the error detection latency
in a processor with caches for detection mechanisms at the
chip-external and L1 cache interfaces. Then, we present a
method for estimating the bandwidth required to compare
full architectural state across redundant processors. Finally,
we summarize our simulation environment.

4.1 Dynamic Dependency Analysis
Soft-errors propagate from an initial, affected instruction

to a detection point through program dataflow. We mea-
sure error coverage by finding the minimum error detection
latency (counted in instructions) from execution to detec-
tion for each instruction. The minimum detection latency
of a particular instruction is obtained by generating dynamic
dependency graphs (DDGs) and finding the distance to the
first detection opportunity for the data value produced by
that instruction. A DDG is a directed, acyclic graph defining
a partial ordering of instructions as related through register
and cache dependencies [3].

For chip-external detection, we consider three classes
of detection opportunities: load/store addresses, register-
indirect jumps, and cache writebacks. If an address used
for a load or store is in error, we assume that it will cause
a cache miss and be detected outside the chip (i.e., a di-
rect comparison with a fault-free processor would not show
this address request). An erroneous register value used for a
register-indirect jump will likely cause an instruction cache
miss, a TLB miss, or an exception. Any of these will result

in near-immediate detection outside the chip. Finally, cache
writeback values and addresses are explicitly compared in
the external detection schemes.

For L1 cache interface detection, we consider three classes
of detection opportunities: load/store addresses, register-
indirect jumps, and store values. Each of these classes re-
quires communication between the processor and L1 cache,
which will be directly compared using this detection method.

DDG Construction. The DDGs are constructed by an-
notating in-order program execution traces with register-
register dataflow, load/store addresses, cache miss, and write-
back information to track the lifetime of values in the reg-
ister file and cache. A post-simulation analysis tool then
traverses the traces and builds graphs from data dependen-
cies. The dependencies flow through the registers and cache
to capture the paths that an erroneous instruction result
may take, including being stored, read from the cache, and
reused in another instruction.

The analysis tool traverses backwards from the end of the
trace. When a detection opportunity occurs (e.g. cache
writeback or load/store), a new DDG is constructed to find
all instructions leading to the present detection. Each new
instruction is added to the most recently-constructed DDG
containing one or more dependent instructions. Each in-
struction belongs to one and only one DDG, indicating the
earliest point of detection.

Figure 4 shows a simple example of the trace analysis
graph construction. The trace contains instructions, a times-
tamp (instruction count), and cache access information. In
this simple example, two graphs are shown for the two de-
tection points (instructions 2 and 6). As an instruction i

is added to its graph, the instruction distance between the
detection opportunity and i is written to a log.

Analysis Limitations. This error analysis makes several
simplifying assumptions. First, we treat all transient faults
as equally likely to result in an architecturally-visible error.
As discussed by Mukherjee, et al. [17], this assumption ig-
nores the fact that certain structures are more likely to result
in architectural errors. An instruction queue, for example,
may cause many more architecturally-visible errors than the
functional units performing computation.

Second, by not injecting actual faults in the system, we ig-
nore the effects of logical masking on error detection latency.
However, logical masking only extends the error detection
latency if an erroneous instruction result is masked in one
chain of instructions, but used in another, longer chain.

Third, we assume all errors in address computation miss
in the on-chip cache and that the effects of control flow er-
rors are detected immediately. Because the size of the on-
chip cache is miniscule when compared to the entire address
space, we assume errors in address computation cause a miss
in the cache that is immediately detected. Similarly, errors
in control flow will most likely cause an immediate instruc-
tion cache miss that is visible outside the chip.

Finally, the instruction traces used in the analysis are of
a finite length, which artificially shortens cache block dead
times (time between the last cache line modification and
writeback). All of these limitations makes our analysis con-
servatively favor existing detection mechanisms; we estimate
a shorter detection latency than may actually exist.

0
1

2

3

4

5

6

N

time instruction

a
n
a
ly

s
is

6

4

3

2

1

0

detection

detection

trace

Figure 4: An instruction trace and the associated
Dynamic Dependency Graphs (DDGs), with detec-
tion points at instructions 2 and 6.

4.2 Comparison Bandwidth
To measure the comparison bandwidth needed by an error

detection mechanism, we use the same traces collected for
the dynamic dependency analysis. For chip-external detec-
tion, the bandwidth required includes all L2 load/store miss
addresses and addresses/data for writebacks. When detect-
ing errors at the L1 cache interface, the comparison band-
width includes all loads/stores addresses and stores. Both
chip-external and L1 cache interface detection bandwidth
are independent of the checkpoint interval.

Comparing the full processor state at the checkpoint re-
quires bandwidth proportional to the amount of memory
changed during the checkpoint interval and inversely pro-
portional to the checkpoint interval itself. For example, if
1MB of memory is changed during a checkpoint interval of
10 milliseconds, then we must be able to compare at a rate
of 100MB/s to avoid any performance loss, assuming com-
parisons can be overlapped with execution. We evaluate the
bandwidth requirements for this detection class by counting
the unique cache lines written during a checkpoint interval.

The bandwidth required for fingerprint comparison is de-
pendent only on the checkpoint interval and size of the fin-
gerprint register, which we assume is 16 bits. Because finger-
prints are compared before every checkpoint, the bandwidth
required is simply 2 bytes per checkpoint interval.

4.3 Methodology
We simulate 26 SPEC2K applications using SimpleScalar [5]

and two commercial workloads using Virtutech Simics [14].
In SimpleScalar, we use a functional cache simulator for the
Alpha ISA and simulate CPU-intensive workloads using the
host platform for system calls. Simics is a full system func-
tional simulator that allows functional simulation of unmod-
ified commercial applications and operating systems on the
SPARC v9 architecture.

In SimpleScalar, we simulate the first input set for all 26
SPEC2K benchmarks. For each benchmark, we simulate
up to eight pre-determined 100-million instruction regions
from the benchmark’s complete execution trace, using the
prescribed procedure from SimPoint [22]. In Simics, we boot
an unmodified Solaris 8 operating system to run two com-
mercial workloads: a 40 warehouse TPC-C like workload
with IBM’s DB2 and SPECWeb. The TPC-C like work-
load [30] consists of a 40 warehouse database striped across
five raw disks and one dedicated log disk with 100 clients.
The SPECWeb workload [28] services 100 connections with
Apache 2.0. Both commercial workloads are warmed un-

til the CPU utilization reaches 100% and, in the case of
the DB workload, until the transaction rate reaches steady
state. Once warmed, the commercial workloads execute for
500 million instructions. In both models, the processor is as-
sumed to run at 1GHz, with a constant IPC of 1.0. In this
study, the relevant architectural parameter is the level-two
cache. We simulate an inclusive 1MB 4-way set associative
cache with 64-byte lines.

5. ERROR COVERAGE
In this section, we present an evaluation of the soft-error

coverage for four error detection mechanisms. We then use
a simple DMR reliability model to relate the coverage to a
mean time to failure (MTTF).

As discussed in Section 2.3, rollback recovery fails when
the error detection latency extends past the checkpoint in-
terval. In this section, we use the dynamic dependency anal-
ysis from Section 4.1 to compute error detection latencies for
both chip-external and L1 cache interface detection points.
Then, we present a model of the MTTF calculated from
these detection latencies and, finally, we discuss the tradeoff
between checkpoint interval length and error coverage as it
applies to the four detection mechanisms.

5.1 Detection Latency
From the output of the dynamic dependency analysis, we

are interested in knowing the likelihood that an error has
been detected by the end of a checkpoint interval. The dy-
namic dependency analysis generates a listing of minimum
distances to detection for each instruction in the program
trace. We construct a histogram according to the instruc-
tion’s minimum distance to detection. We normalize by the
total instruction count to find the probability distribution
of detection distances for the overall program. This distri-
bution tells us the probability of instructions having a given
distance to detection.

When working with checkpoint intervals, it is more con-
venient to work with the corresponding cumulative distribu-
tion function (CDF). The CDF for a given detection distance
gives the probability that a random instruction has been de-
tected by a given distance (instead of at a fixed distance).
We calculate the CDF for each distance by summing the
probability distribution from zero to the detection distance.

In Figure 5, we show the detection latency CDFs for both
the chip-external and L1 cache interface detection meth-
ods. We compute the aggregate detection distances for three
classes of applications: SPEC integer, SPEC floating-point,
and the commercial workloads. The full state and finger-
printing detection methods are not shown here because they
have immediate detection at the end of the checkpoint in-
terval.

In the L1 cache interface CDF curves, the probability of
detecting all latent errors in the register file is almost unity,
but a small fraction of instructions are left undetected for
millions of cycles. Detection latencies longer than the simu-
lation period cannot be measured, so all CDFs reach 1.0 by
the end of the period, even though some errors may actually
hide within the cache hierarchy for longer periods of time.
While most general purpose registers are constantly over-
written, a few values such as return address pointers may
be left untouched for long periods of time before accesses
that eventually lead to detection.

For the chip-external detection case, a significant frac-

10
0

10
2

10
4

10
6

0.2

0.4

0.6

0.8

1

Detection distance (instructions)

C
D

F
 o

f e
rr

or
 d

et
ec

tio
n

10
0

10
2

10
4

10
6

0.2

0.4

0.6

0.8

1

Detection distance (instructions)

C
D

F
 o

f e
rr

or
 d

et
ec

tio
n

10
0

10
2

10
4

10
6

0.2

0.4

0.6

0.8

1

Detection distance (instructions)

C
D

F
 o

f e
rr

or
 d

et
ec

tio
n

L1 front−side interface
Chip−external

(a) (b) (c)

Figure 5: CDF of error detection computed over the average of (a) SPEC integer, (b) SPEC floating-point,
and (c) commercial workloads.

10
0

10
2

10
4

10
610

−6

10
−4

10
−2

10
0

1000 years

Checkpoint interval (instructions)

M
T

T
F

 (
bi

lli
on

s
of

 h
ou

rs
)

10
0

10
2

10
4

10
610

−6

10
−4

10
−2

10
0

1000 years

Checkpoint interval (instructions)

M
T

T
F

 (
bi

lli
on

s
of

 h
ou

rs
)

10
0

10
2

10
4

10
610

−6

10
−4

10
−2

10
0

1000 years

Checkpoint interval (instructions)

M
T

T
F

 (
bi

lli
on

s
of

 h
ou

rs
)

Fingerprinting CRC−16
L1 front−side interface
Chip−external

(a) (b) (c)

Figure 6: MTTF averaged over (a) SPEC integer, (b) SPEC floating-point, and (c) commercial workloads.

tion of values hide within the cache hierarchy for millions
of cycles before being written back to memory. Both SPEC
integer benchmarks and the commercial applications show
a clear tendency towards keeping some values buffered in
the cache extended periods of time. Floating-point bench-
marks, however, regularly displace the L2 cache contents
due to streaming data access patterns. The cache hierarchy
has roughly 131,000 double words and the probability of de-
tecting a fault increases drastically within a few multiples
of that many instructions (not every instruction is a load or
store).

5.2 Mean Time to Failure Model
Next, we calculate the MTTF of a system where unde-

tected errors may exist at the time a checkpoint is taken. We
define a system’s error coverage, C, as the probability of de-
tecting all possible errors within a checkpoint interval. For a
specific instruction, the CDF gives the probability of detect-
ing an error before the next checkpoint. In our model, each
instruction is equally likely to experience an error. There-
fore, the coverage is defined as the mean probability that an
error could be detected in each instruction before the next
checkpoint. For a checkpoint interval of length t, we sum
over all i instructions from the checkpoint to obtain:

Coverage =

� t

i=1
CDF (i)

t
.

Given the coverage and fault rate, the system MTTF with
dual modular redundancy is [31]:

MTTF =
1

2λ (1 − C)
,

where λ is the raw transient fault rate and C is the error
coverage. The transient fault rate, determined by process
and circuit characteristics, is considered constant and inde-
pendent from this work.

A raw fault rate of 104 FIT is a predicted fault rate in
logic circuits for high-performance processors early in the
next decade [17, 23]. Using the above formula for MTTF, we
obtain the failure data shown in Figure 6. For fingerprinting,
which has an instantaneous detection latency and detection
independent of the checkpoint interval, we define coverage
as the probability of detecting an error from Section 3.1,
C = 1 − 2−p, where we use p = 16 for the fingerprint code
(i.e., CRC-16).

In all of the benchmarks, we see that chip-external detec-
tion requires checkpoint intervals of at least 10 to 25 mil-
lion instructions to achieve the required reliability. This
indicates that in order to achieve acceptable error cover-
age, checkpoint intervals for chip-external detection must be
long: on the order of milliseconds. In Section 7, we will show
that the high frequency of I/O operations in OLTP work-
loads makes this size checkpoint interval infeasible without
sophisticated I/O delay mechanisms.

By comparing at the L1 cache interface, the checkpoint
interval necessary to achieve an acceptable reliability is re-
duced to 10 to 100 thousand instructions. This interval is
sufficient to support OLTP I/O requirements; however, we

Table 2: Bandwidth requirements for the passive
detection mechanisms, in bytes/instruction.

SPEC Int SPEC FP Commercial
Chip-external 0.0038 0.0456 0.1210

L1 cache interface 6.13 5.39 5.92

show in Section 6 that inordinate bandwidth is required to
support detection across chips.

In our model, full state comparison covers all errors, lead-
ing to an infinite MTTF. Finally, fingerprinting with a 16-bit
CRC, whose coverage is independent of the checkpoint in-
terval, has an MTTF that is superior to the chip-external
and L1 cache interface detection methods. The checkpoint
interval can be reduced to support a high I/O rate, while
imposing a minimal bandwidth requirement.

6. COMPARISON BANDWIDTH
In this section, we evaluate error detection mechanisms

based on their requirements for state comparison bandwidth
between mirrored processors.

Chip-external detection is used in existing systems by
placing the mirrored processors in close proximity and com-
paring data values as they exit the chips [15, 21]. This
approach to detection requires no extra pin bandwidth over
that already required to run applications, since it passively
monitors traffic going to memory or the rest of the system.
In Table 2, we report the average bandwidth generated by
the three application classes (calculated as the sum of ad-
dress and data traffic required to complete the memory re-
quests). The passive nature of this approach makes it an
attractive option for detecting errors in redundant proces-
sors across physical chips. However, the error coverage with
this technique only makes it viable at large checkpoint in-
tervals.

Alternatively, error detection can be implemented at the
L1 cache interface. As with chip-external detection, this
method involves passive comparison of addresses and data,
but now the comparison includes all loads and stores. As ex-
pected, the average comparison bandwidth reported in Ta-
ble 2 is orders of magnitude higher than with chip-external.
The bandwidth reported here is well above the external pin
bandwidth sustainable by a modern processor; therefore,
this technique is only applicable when the redundant cores
are located on the same die

Full-state comparison at checkpoint creation compares the
data changed since the last checkpoint and is therefore de-
pendent on the checkpoint interval. We show the average
comparison bandwidth required for a range of checkpoint
intervals in Figure 7(a). Notice that the bandwidth for this
form of comparison is greater than or comparable to the
chip-external bandwidth already demanded by the appli-
cations. The average bandwidth requirement decreases as
the checkpoint interval increases. Intuitively, this trend is
expected because programs have spatial locality within a
limited working set. As the checkpoint interval grows, the
working set size generally grows at a slower rate. Because of
the bandwidth overhead, full-state comparison is only viable
for very large checkpoint intervals.

Another view of the full-state comparison is to consider
the amount of data that must be transfered in each check-
point interval. We show this graphically in Figure 7(b). If

this bandwidth cannot be sustained during the checkpoint
interval, execution must stall until the comparison has com-
pleted. The following equation estimates the checkpoint
bandwidth for a checkpoint interval, given the checkpoint
size, the estimated instructions per cycle, and processor
clock frequency:

Bandwidth =
Checkpoint Size · IPC · Frequency

Checkpoint Interval
.

The bandwidth required for fingerprinting is the size of the
fingerprint (two bytes) over the checkpoint interval. We also
plot the fingerprinting bandwidth requirement as a function
of the checkpoint in Figure 7(a). For checkpoint intervals
larger than 1000 instructions, the bandwidth required for
fingerprinting is at least an order of magnitude less than the
chip-external comparison bandwidth.

Finally, as a reference point on a current state-of-the-
art system with a 2.8GHz Pentium 4 Xeon, the theoretical
bandwidth from the 533MHz bus is 4.2GB/s. A memory
streaming test intended to maximize utilized external bus
bandwidth achieves a maximum throughput of 2.5GB/s. Of
this usable bandwidth, we measure a TPC-C like database
on the system to generate a load of 980MB/s on the bus,
which corresponds to the chip-external bandwidth. Assum-
ing the system executes one instruction per cycle and the
checkpoint interval is 32K instructions, the estimated band-
width required for full-state detection is 440MB/s—50% of
the existing bandwidth from the TPC-C like database appli-
cation. In comparison, fingerprinting requires 64KB/s under
the same assumptions.

7. I/O PERFORMANCE
The preceding results for error coverage and bandwidth

requirements would suggest that, without fingerprinting, a
larger checkpoint interval is necessary. In I/O-intensive work-
loads, however, performance suffers with the conventional
approach of logging input and delaying output to avoid roll-
back across the I/O [6, 29].

Sophisticated software solutions can be developed, which
delay writes to disk or a network interface and log results
of reads from external devices. If enough concurrency is
present in the application, and buffering space is not a con-
cern, a software approach may be possible. However, oper-
ating systems and commercial applications are too complex
to support major changes to the I/O subsystem.

A hardware solution to avoid rollback across I/O would
create a checkpoint immediately following every read or write
at the device level (uncached loads and stores). Using our
full-system TPC-C like simulation (see Section 4.3), we col-
lect traces of reads and writes to the SCSI controller dur-
ing 100 billion instructions (50,000 DB transactions). Fig-
ure 8 shows the cumulative interarrival distribution of device
reads and writes.

We observe a clustering of accesses in several places. There
is a fine-grained clustering corresponding to the reads and
writes required to initiate every disk access (up to 5000 in-
structions). At 50,000 instructions, we observe a clustering
due to the time between physical I/Os sent to the SCSI con-
troller. This point is corroborated with Amdahl’s I/O rule of
thumb [11] and Gray’s updated version [9]: for random I/O
access, approximately 50,000 instructions separate physical
I/O operations.

10
2

10
4

10
6

10
−6

10
−4

10
−2

10
0

Checkpoint interval (instructions)

C
he

ck
po

in
t b

an
dw

id
th

 (
by

te
s/

in
st

ru
ct

io
n)

SPEC Int
SPEC FP
Commercial
Fingerprinting

10
2

10
4

10
6

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Checkpoint interval (instructions)

B
yt

es
 c

om
pa

re
d

pe
r

in
te

rv
al

SPEC Int
SPEC FP
Commercial

(a) (b)

Figure 7: In (a) we show the bandwidth requirements for full-state error detection over a range of checkpoint
intervals, and (b) bytes compared per checkpoint interval.

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

I/O command interarrival time (instructions)

C
D

F
 o

f I
/O

 c
om

m
an

ds

Figure 8: CDF of interarrival of SCSI controller ac-
cesses running a TPC-C like workload.

Based on these measurements, we conclude that check-
points must be created at least as frequently as physical I/O
operations (50,000 instructions). Fine-grained checkpoints
require a high-coverage, low-bandwidth detection method
to guarantee fault-free operation with checkpoint intervals
of thousands of cycles. Fingerprinting is precisely this mech-
anism which when combined with low-cost checkpoint cre-
ation, can be used to construct rollback-recovery systems
with excellent performance in I/O-intensive workloads.

8. RELATED WORK

Fault Detection. Sogomonyan, et al. [26] propose a mech-
anism similar in spirit to fingerprinting. Their technique re-
lies on a modified flip-flop design that permits a scan chain
to operate without interfering with normal computation.
A sequence of single-bit outputs of the scan chain consti-
tute a signature of the internal state. The signature can be

compared to detect differences in the operation of two mir-
rored systems on a chip (SoC) designs. This proposal differs
from the fingerprinting approach in that all flip-flops on the
chip must be changed to scannable Multi-Mode Elements
(MMEs), and the state is continuously monitored through a
1-bit signature stream. Unlike fingerprinting, the signature
stream cannot be tied to a specific instruction; rather, errors
may take some time to propagate out the scan chain. This
error detection latency may lead to low error coverage and
unacceptable poor system MTTF. Additionally, fingerprint-
ing consumes less bandwidth by sending a single 16-bit word
for error detection rather than a continuous bit stream.

Other proposed techniques instrument binaries with self-
checking mechanisms or use compiler-inserted instructions
to check for errors in control flow [34]. Unlike fingerprint-
ing, these techniques cannot detect a large class of errors
in dataflow and require difficult analysis to determine error
coverage.

Existing commercial fault-tolerant systems use replication
in conjunction with lockstepped execution. Two identical
copies of a program run on the redundant hardware. The
IBM G5 uses replicated, lockstepped pipelines in a single
core [25]. The Tandem Himalaya [15] and Stratus [21] use
replicated, lockstepped processors and compare execution
using the chip-external detection mechanism.

There are several proposals for simultaneous multithreaded
processors (SMT) and chip multiprocessors (CMP) with re-
dundant execution on the same die. The DIVA architec-
ture [2] uses a simple in-order checker to detect soft and
permanent errors in a closely-coupled out-of-order core us-
ing full state comparison. Rotenberg proposed using two
staggered, redundant threads in an SMT processor [20] to
detect soft errors with full state comparison at commit. Vi-
jaykumar, et al. suggested full-state comparison for detec-
tion and recovery in SMT [32] and CMP [8] architectures.
Alternatively, Reinhardt and Mukherjee proposed the SRT
processor [19] and later the CMP-based CRT processor [16],
which compares only stores across threads (equivalent to the
L1 cache interface detection mechanism).

Architectural Checkpointing. A prerequisite of all back-
ward error recovery schemes is the checkpoint mechanism.
Microarchitectural techniques work for short checkpoint in-
tervals (thousands of instructions). The Checkpoint Pro-
cessing and Recovery proposal [1] scales the out-of-order
execution window by building a large, hierarchical store
buffer and aggressively reclaiming physical registers. The
SC++lite [7] mechanism speculatively allows values into the
processor’s local memory hierarchy, while maintaining a his-
tory of the previous values.

On a larger scale, global checkpoints can take a consistent
checkpoint of the architectural state across a multiprocessor,
but at intervals of hundreds of thousands to millions of in-
structions. SafetyNet [27] provides a way to build a global
checkpoint in a multiprocessor system. Processor caches are
augmented with checkpoint buffers that contain old cache
line values on the first write to a cache block in each inter-
val. ReVive [18] takes global checkpoints in main memory
by flushing all caches and enforcing a copy-on-write policy
for changed cache lines after the checkpoint time.

Fault Analysis. Our technique for measuring error detec-
tion latency differs substantially from the traditional fault-
injection approach, which inserts single errors at the gate,
register, or pin level and observes the corresponding detec-
tion latency [10, 13, 33]. The injection approach suffers
from a number of limitations. Modern microprocessors are
sufficiently complex that fault injection cannot cover a rea-
sonable subset of potential transient faults in an acceptable
time. Other fault injection techniques include bombarding
an actual chip in heavy ion testing [36].

Austin [3] used dynamic dependency analysis very similar
to our dependency analysis to analyze the dataflow paral-
lelism in SPEC benchmarks. The goal of this work was to
find available parallelism in real programs using register re-
naming. Austin did not incorporate cache dependencies and
there is no sense of detection or appearance of values at the
chip pins.

9. CONCLUSIONS
Increasing soft-error rates in microprocessor logic will reach

unacceptable levels in the near future. We identify three
metrics for evaluating DMR error detection mechanisms: er-
ror coverage, comparison bandwidth, and I/O performance.
No existing error detection mechanism satisfies all three
metrics. We propose fingerprinting, a hash of updates to
architectural state, as an approach that offers excellent er-
ror coverage, low bandwidth requirements, and inexpensive
on-demand comparison. We evaluate existing mechanisms
for error detection in DMR systems, and quantify the ben-
efits fingerprinting provides.

10. ACKNOWLEDGEMENTS
We would like to thank Konrad Lai, T.M. Mak, Shubu

Mukherjee, and the anonymous reviewers for their valuable
feedback on early drafts of this paper. We thank the Sim-
Flex team at Carnegie Mellon for providing the simulation
infrastructure used in this research. Funding for this re-
search was supported in part by NSF award ACI-0325802
and by Intel Corporation. Computer systems used in the
research were provided by an equipment grant from Intel
Corporation. Brian Gold is supported by graduate fellow-

ships from NSF, Northrop Grumman, and the US DoD (ND-
SEG/HPCMO).

11. REFERENCES
[1] H. Akkary, R. Rajwar, and S. T. Srinivasan.

Checkpoint processing and recovery: Towards scalable
large instruction window processors. In Proceedings of
the 36th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 36), Dec 2003.

[2] T. M. Austin. DIVA: A reliable substrate for deep
submicron microarchitecture design. In Proceedings of
the 32nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 32), Nov.
1999.

[3] T. M. Austin and G. S. Sohi. Dynamic dependency
analysis of ordinary programs. In Proceedings of the
19th Annual International Symposium on Computer
Architecture, 1992.

[4] D. Bossen, J. Tendler, and K. Reick. Power4 system
design for high reliability. In Hot Chips - 13, August
2001.

[5] D. Burger and T. M. Austin. The SimpleScalar tool
set, version 2.0. Technical Report 1342, Computer
Sciences Department, University of
Wisconsin–Madison, June 1997.

[6] E. N. Elnozahy, D. B. Johnson, and Y. M. Wang. A
survey of rollback-recovery protocols in
message-passing systems. Technical report,
CMU-CS-96-181, Department of Computer Science,
Carnegie Mellon University, Sept 1996.

[7] C. Gniady and B. Falsafi. Speculative sequential
consistency with little custom storage. In Proceedings
of the Tenth International Conference on Parallel
Architectures and Compilation Techniques, Sept. 2002.

[8] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and
I. Pomeranz. Transient-fault recovery for chip
multiprocessors. In Proceedings of the 30h Annual
International Symposium on Computer Architecture,
June 2003.

[9] J. Gray and P. Shenoy. Rules of thumb in data
engineering. In Proceedings of the IEEE International
Conference on Data Engineering, Feb 2000.

[10] M. Hall, J. Mellor-Crummey, A. Carle, and
R. Rodriguez. Fiat: a framework for interprocedural
analysis and transformation. In Proceedings of the
Sixth Annual Workshop on Compilers for Parallel
Processing, Aug 1993.

[11] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann, 3rd edition, 2002.

[12] T. Juhnke and H. Klar. Calculation of the soft error
rate of submicron cmos logic circuits. IEEE Journal of
Solid State Circuits, 30(7):830–834, July 1995.

[13] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham.
FERRARI: a tool for the valiadation of system
dependability properties. In Proceedings of the 22nd
International Symposium on Fault Tolerant
Computing, 1992.

[14] P. S. Magnusson, M. Christensson, J. Eskilson,
D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A full system
simulation platform. IEEE Computer, 35(2):50–58,
Feb. 2002.

[15] D. McEvoy. The architecture of tandem’s nonstop
system. In ACM/CSC-ER, 1981.

[16] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt.
Detailed design and evaluation of redundant
multi-threading alternatives. In Proceedings of the
29th Annual International Symposium on Computer
Architecture, May 2002.

[17] S. S. Mukherjee, C. T. Weaver, J. Emer, S. K.
Reinhardt, and T. Austin. A systematic methodology
to compute the architectural vulnerability factors for a
high-performance microprocessor. In Proceedings of
the 36th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 36), Dec 2003.

[18] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive:
cost-effective architectural support for rollback
recovery in shared-memory multiprocessors. In
Proceedings of the 29th Annual International
Symposium on Computer Architecture, June 2002.

[19] S. K. Reinhardt and S. S. Mukherjee. Transient fault
detection via simultaneous multithreading. In
Proceedings of the 17th Annual International
Symposium on Computer Architecture, June 2000.

[20] E. Rotenberg. AR-SMT: A microarchitectural
approach to fault tolerance in microprocessors. In
Proceedings of the 29th International Symposium on
Fault-Tolerant Computing Systems, June 1999.

[21] L. Sherman. Stratus continuous processing technology
– the smarter approach to uptime. Technical report,
Stratus Technologies, 2003.

[22] T. Sherwood, E. Perelman, G. Hamerly, and
B. Calder. Automatically characterizing large scale
program behavior. In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems, Oct. 2002.

[23] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger,
and L. Alvisi. Modeling the effect of technology trends
on soft error rate of combinational logic. In
International Conference on Depdendable Systems and
Networks, June 2002.

[24] D. P. Sieworek and R. S. S. (Eds.). Reliable Computer
Systems: Design and Evaluation. A K Peters, 3rd
edition, 1998.

[25] T. J. Slegal and et al. IBM’s S/390 G5 microprocessor
design. IEEE Micro, 19(2):12 – 23, March - April
1999.

[26] E. Sogomonyan, A. Morosov, M. Gossel, A. Singh, and
J. Rzeha. Early error detection in systems-on-chip for
fault-tolerance and at-speed debugging. In Proceedings
of the 19th VLSI Test Symposium, May 2001.

[27] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A.
Wood. SafetyNet: improving the availability of shared
memory multiprocessors with global
checkpoint/recovery. In Proceedings of the 29th
Annual International Symposium on Computer
Architecture, June 2002.

[28] Standard Performance Evaluation Corporation.
SPECweb99 benchmark.
http://www.specbench.org/osg/web99/.

[29] R. Strom and S. Yemini. Optimistic recovery in
distributed systems. ACM Transactions on Computer
Systems, 3(3):204–226, August 1985.

[30] The Transaction Processing Performance Council.
TPC Benchmark C: Standard specification.
http://www.tpc.org/tpcc/spec/tpcc current.pdf, Dec
2003.

[31] K. S. Trivedi. Probability and Statistics with
Reliability, Queuing, and Computer Science
Applications. John Wiley and Sons, 2nd edition, 2001.

[32] T. N. Vijaykumar, I. Pomeranz, and K. Cheng.
Transient fault recovery using simultaneous
multithreading. In Proceedings of the 29th Annual
International Symposium on Computer Architecture,
May 2002.

[33] N. Wang and S. Patel. Modeling the effect of transient
errors on high performance microprocessors. In Center
for Circuits, Systems, and Software (C2S2), 2nd
Annual Review, March 2003.

[34] K. Wilken and J. P. Shen. Continuous signature
monitoring: Low-cost concurrent dectection of
processor control errors. IEEE Transactions on
Computer-Aided Design, 9(6):629–641, June 1990.

[35] J. K. Wolf, A. M. Michelson, and A. H. Levesque. On
the probability of undetected error for linear block
codes. IEEE Transactions on Communications, 30(2),
Feb 1982.

[36] J. F. Zeigler, H. P. Muhlfeld, C. J. Montrose, H. W.
Curtis, T. J. O’Gorman, and J. M. Ross. Accelerated
testing for cosmic soft-error rate. IBM Journal of
Research and Development, 40(1), 1996.

