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ABSTRACT We present a combined experimental and theor-
etical study of the magnetization of one-dimensional atomic
cobalt chains deposited on a platinum surface. We discuss
the intrinsic magnetization parameters derived by X-ray mag-
netic circular dichroism measurements and the observation of
ferromagnetic order in one dimension in connection with the
presence of strong, dimensionality-dependent anisotropy en-
ergy barriers of magnetocrystalline origin. An explicit transfer
matrix formalism is developed to treat atomic chains of finite
length within the anisotropic Heisenberg model. This model al-
lows us to fit the experimental magnetization curves of cobalt
monatomic chains, measured parallel to the easy and hard axes,
and provides values of the exchange coupling parameter and the
magnetic anisotropy energy consistent with those reported in the
literature. The analysis of the spin–spin correlation as a func-
tion of temperature provides further insight into the tendency to
magnetic order in finite-sized one-dimensional systems.

PACS 57.10.Pq; 75.30.-m; 75.30.Gw; 78.70.Dm

1 Introduction

The dimensionality of a magnetic lattice is known
to affect its thermodynamic properties and in particular order–
disorder magnetic phenomena. In the well-known cases of
the Heisenberg and Ising models, the thermodynamic behav-
ior of a one-dimensional (1D) spin chain of infinite length
is characterized by the absence of long-range magnetic order
at any non-zero temperature [1–3]. In the past, quasi-1D in-
organic crystals have been traditionally investigated as 1D
Heisenberg model systems [4, 5]; typical examples include
tetramethylammonium copper and manganese chloride com-
pounds, where Cu2+ and Mn2+ ions couple ferromagnetically
or antiferromagnetically, respectively, along weakly interact-
ing linear chains separated by intervening non-magnetic com-
plexes [6–8]. More recently, the synthesis of molecular ferri-
and ferromagnetic chain-like compounds containing magnet-
ically anisotropic ions has allowed to realize 1D Ising model
systems where the known absence of permanent magnetic
order is accompanied by a slow relaxation of the magneti-
zation [9–12], as predicted by Glauber more than 40 years
ago [13].
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In all these studies the investigation of 1D magnetic be-
havior has been concerned with insulating or molecular mag-
netic compounds, where the use of the Heisenberg and Ising
models to reproduce the experimental behavior can be jus-
tified under the assumption of well-localized magnetic mo-
ments. On the other hand, 1D-like metallic systems, char-
acterized by a larger degree of electron delocalization, are
attracting increasing interest to explore both the fundamental
limits and the practical magnetization properties of nanosized
magnetic layers. Progress in heteroepitaxial growth methods
allows us today to fabricate arrays of continuous, 1D mono- or
bilayer stripes of a magnetic metal on top of a non-magnetic
substrate [14–21], where the control of the system size can
be pushed down to the monatomic limit [22–25]. Recently,
1D Co atomic chains deposited on Pt have been shown to
sustain long-range ferromagnetic order of metastable charac-
ter thanks to strong magnetic anisotropy energy barriers that
effectively block the relaxation of the magnetization at suf-
ficiently low temperature [23]. Owing to the partial delocal-
ization of the d-electron states responsible for magnetism in
these systems, however, it is not clear to what extent spin lat-
tice models can be used to interpret their magnetic behavior.
In this paper, we present a combined experimental–theoretical
study aimed at understanding the properties of metal spin
chains of finite size. The experimental results obtained for
arrays of 1D Co chains grown on a vicinal Pt surface are
reported in Sect. 2 where the magnitude of the local mag-
netic moments, the magnetic anisotropy, and the appearance
of ferromagnetic order are discussed. In Sect. 3 we develop
a transfer matrix formalism to analyze finite-sized 1D mag-
netic systems in the framework of the anisotropic Heisenberg
model. We obtain very good agreement between the experi-
ment and the Heisenberg model calculations for both the easy
and hard axes magnetization curves, fitted with a single set of
values of the exchange coupling constant J and the magnetic
anisotropy energy D. Moreover, we discuss the spin–spin cor-
relation function and the tendency to magnetic order as a func-
tion of temperature.

2 Magnetism of Co atomic chains deposited on Pt

2.1 Experimental

Co chains were grown by ultra-high-vacuum depo-
sition of Co on a Pt(997) surface at T = 260 K [22]. At this
temperature, surface diffusion causes the Co atoms to self-
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assemble in an array of parallel 1D chains by decorating the
steps of the Pt(997) substrate, situated 20.2 ±1.5 Å apart. In
the row-by-row growth regime, the thickness of the chains is
proportional to the Co coverage, with monatomic chains cor-
responding to 0.13 ML (monolayers). The Co coverage was
calibrated on Pt(111) against the onset of perpendicular re-
manence and the magnitude of the coercive field measured
by X-ray magnetic circular dichroism (XMCD) compared
with combined Kerr effect–scanning tunneling microscopy
experiments, both quantities depending critically on the cov-
erage [26]. Despite the accuracy of the coverage calibration,
however, we note that the self-assembly process produces
chains with a finite width distribution that reaches a max-
imum (±0.6 atomic rows) for 0.5 ML Co, owing to the asyn-
chronism of row-by-row growth on unequally spaced Pt ter-
races [27]. The magnetic characterization was performed by
XMCD at beamline ID12B of the European synchrotron radi-
ation facility (ESRF) in Grenoble on arrays of chains grown
in situ. XMCD spectra (Fig. 1) were recorded at the Co L2,3

edges (770–820 eV) by measuring the total yield of the pho-
toemitted electrons for parallel (solid lines) and antiparallel
(dotted lines) alignment of the applied magnetic field B with
the light helicity. The sample was rotated about its polar and
azimuthal axes with respect to the incident light direction in
order to record the magnitude of the XMCD (i.e. the projec-

FIGURE 1 Top: Co X-ray absorption spectra at the L2,3 edges for parallel (I+) and antiparallel (I−) directions of the light helicity and field-induced mag-
netization recorded at T = 10 K and B = 7 T applied parallel to the easy magnetization direction. (a) Monatomic chains, (b) two-atom chains, (c) four-atom
chains, (d) 1 ML, (e) bulk-like Co film (30 ML). Due to the low Co coverage, the Co absorption edges in (a)–(d) are superimposed to a strong background
originating from the Pt N2,3 thresholds. Middle: the dichroism signal (I+ − I−) is shown normalized to the L2 peak to evidence changes in the relative spectral
weight between the L3 and L2 XMCD. These changes indicate that the orbital moment increases substantially going from bulk Co to a 2D Co monolayer, and
to 1D chains. Bottom: integrated XMCD normalized to unity at peak value

tion of the Co magnetization) along different crystal orienta-
tions as a function of B.

2.2 Local magnetic moments

The 1D character of the chains has a striking influ-
ence on their overall magnetic behavior, on the local Co mag-
netic moment, and on the magnetocrystalline anisotropy. The
reduced atomic coordination of the monatomic chains causes
a remarkable increase of the magnitude of both the orbital and
the spin magnetic moments compared to bulk Co and two-
dimensional (2D) films. The orbital XMCD sum rule [28, 29]
applied to the spectra in Fig. 1 shows that the orbital magnetic
moment increases from 0.15 ± 0.01µB/atom in a bulk-like
Co film to 0.37 ±0.04µB/atom in the two-atom chains and
0.68 ±0.05µB/atom in the monatomic chains [23]. The mag-
nitude of the XMCD effect relative to the total absorption
signal also shows that the spin magnetic moment is increased
with respect to the bulk value, but its precise determination
is made difficult by the uncertainty in the dipolar spin mo-
ment that enters in the XMCD spin sum rule [30–33]. Local
spin density calculations using a variety of approximation
schemes, however, consistently indicate a Co spin moment
between 2.1 and 2.3µB/atom [32–38]. These findings and
their interpretation in terms of (de)localization of the Co 3d
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states are discussed in more detail in Refs. [23, 25, 39] and
in tight-binding [40–42] as well as ab initio electronic cal-
culations [32–38, 43, 44] relative to 1D metal systems. In the
following, we intend to focus on the coupling between Co
atoms in the chains and on the consequences of the strong
magnetic anisotropy on the stabilization of magnetic order.

2.3 Magnetic anisotropy and ferromagnetic order

Figure 2 shows the magnetization of Co chains
with different atomic thicknesses measured along the easy
(filled symbols) and hard (open symbols) directions. Remark-
ably, the easy-axis direction (see the diagrams and Ref. [25])
and the magnetic anisotropy energy per Co atom present
oscillations as a function of the chain thickness. This be-
havior appears to be specific for 1D metal systems and had
been predicted by tight-binding calculations for both free-
standing [40] and 1D Co chains deposited on Pd [42]. The
easy axis, however, lies always in the plane perpendicular to
the chains and is canted with respect to the surface normal
owing to symmetry breaking at the Pt step edges [37, 38].
Dipolar interactions in the present case have a negligible
strength compared to the magnetocrystalline anisotropy en-
ergy, as shown by Fig. 3 and by the out-of-plane magnetiza-
tion found for a monolayer-thick Co film on Pt(997).

The magnetic response of a set of monatomic wires at
T = 45 K (Fig. 2a) reveals zero remanent magnetization and
the consequent absence of long-range ferromagnetic order.
The shape of the magnetization curves, however, indicates
the presence of short-range order, i.e. of significant inter-

FIGURE 2 Magnetization of (a) monatomic, (b) biatomic, (c) triatomic chains, and (d) 1.3 ML Co on Pt(997) along the easy and hard directions (filled and
open symbols, respectively), measured above and below the blocking temperature. The easy axis is indicated by the arrows in the top diagrams. The data
points represent the XMCD at the L3 Co edge (779 eV) normalized by the L3 absorption edge jump. Solid lines are fits to the data according to Eq. (2)

FIGURE 3 Dipolar field produced by an array of homogeneously magne-
tized Co chains of thickness w = 1, 2, 3 atoms and length N on both sides
of a chain in the middle of the array. The dashed lines refer to chains of in-
finite length calculated according to Eq. (7) in Ref. [45], while the points
are for discrete chains containing a finite number of atoms. The demagne-
tizing energy per Co atom can be calculated by multiplying the dipolar field
by the Co magnetic moment (e.g. for the monatomic chains we obtain about
0.004 meV/Co atom)

atomic exchange coupling in the chains. The observed behav-
ior is that of a 1D superparamagnetic system, i.e. a system
composed by segments, or spin blocks, each containing Nc

exchange-coupled Co atoms, whose resultant magnetization
orientation is not stable due to thermal fluctuations. Further,
the significant dependence of the magnetization on the di-
rection of the applied field indicates a very strong magnetic
anisotropy. These two observations can be taken into account
in a classical picture, where the magnetic energy of the system
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is given by the sum of Zeeman and uniaxial anisotropy energy
terms:

E = −NcmB− Nc D(m̂ · ê)2 , (1)

where m is the magnetic moment per Co atom (varying be-
tween 3.8 and 3.1µB/atom depending on the chain thickness
and including the spin and orbital contributions as well as
the induced magnetization on the first and second nearest Pt
neighbors [46]), D the magnetic anisotropy energy per Co
atom, and ê the unit vector representing the easy-axis direc-
tion. According to Boltzmann statistics, the magnetization of
an assembly of aligned chains with the easy axis oriented at an
angle θ0 with respect to B is given by

M = Ms

∫ 2π

0 dϕ
∫ π

0 dθ sin θ cos θ exp[−E(θ0, θ, ϕ)/kT ]
∫ 2π

0 dϕ
∫ π

0 dθ sin θ exp[−E(θ0, θ, ϕ)/kT ] ,

(2)

where θ and ϕ are the polar and azimuthal spherical coor-
dinates of m in the reference system defined by B, and Ms

the saturation magnetization. The simultaneous numerical fit
of the easy- and hard-axes magnetization according to Eq.
(2) (solid lines in Fig. 2) allows us to obtain both Nc and
D [23, 25]. For the monatomic chains we find Nc = 15 atoms,
giving an average estimate of the extent of short-range ferro-
magnetic order at 45 K, and D = 2.0 ±0.2 meV/Co atom. Nc

turns out to be considerably smaller than the average length N
of the Co chains, which is estimated to be about 80 atoms from
the extension of the atomically straight sections of the Pt steps
that serve as deposition template.

The fit shows that the magnetic anisotropy energy of the
1D chains is one to two orders of magnitude larger compared
to typical values in 2D films [47, 48], a consequence of the
reduced coordination and unquenched orbital magnetization
of the Co atoms in the chains [49]. Such strong magnetic
anisotropy plays a major role in stabilizing ferromagnetism
in 1D, in particular to inhibit the fluctuations that lead to the
zero-remanence thermodynamic limit expected for 1D sys-
tems. As in bulk ferromagnets, in fact, anisotropy energy bar-
riers tend to maintain the magnetization along a fixed direc-
tion in space; by lowering the sample temperature below 15 K,
we observe a transition to a ferromagnetically ordered state
with finite remanence (Fig. 2a, bottom panel). The threshold
temperature is the so-called blocking temperature, where the
magnetization of each spin chain aligns along the common
easy-axis direction and the system becomes ferromagnetic on
a macroscopic scale. Long-range order in 1D metal chains
therefore appears as a metastable state thanks to slow mag-
netic relaxation. As the system evolves towards a 2D film and
the number of exchange-coupled Co atoms increases (Fig. 2b
to d), we expect a stronger tendency towards magnetic order.
Contrary to expectations, however, in the two-atom chains
we observe vanishing long-range magnetic order even at low
temperature (Fig. 2b bottom panel). In this case, the tendency
towards order is counteracted by the drastic reduction of
the magnetic anisotropy energy per Co atom. Paradoxically,
therefore, the 1D character of the monatomic chains favors
rather than disrupts ferromagnetic order owing to the minimal
coordination of the Co atoms and related enhanced magnetic
anisotropy energy.

We note further that, although generally much lower com-
pared to the monatomic case, D changes in a non-monotonic
way with the chain thickness (Fig. 2). This effect, which is
accompanied also by oscillations of the easy magnetization
axis [25], is related to the specific electronic configuration of
Co chains formed by one or more adjacent atomic rows [40].

In the following sections, we will compare the results
of the above analysis for the monatomic chains with those
expected for finite 1D spin chains in the framework of the
anisotropic Heisenberg model. A consistent picture of 1D
metal systems can be obtained while gaining more insight into
the spin arrangement at the microscopic level.

3 Finite-sized spin chains in the anisotropic
Heisenberg model

3.1 The finite-size transfer matrix

To study the static properties of the Co chains
described in Sect. 2, we employ the transfer matrix ap-
proach [50, 51] for the anisotropic Heisenberg model that we
adapt to the case of a 1D system of finite length. We describe
first the derivation of the transfer kernel and of the free en-
ergy of the system, then the average spin magnetization and
the two-spin correlation function. We consider a spin chain
of length N with free boundary conditions (no translational
invariance). A general spin Hamiltonian with only nearest-
neighbor interaction takes the form

H = −
N−1∑

i=1

V0(Si , Si+1)−
N∑

i=1

Vss(Si) , (3)

where we separate the single-spin contribution Vss(Si) (single-
spin anisotropy, Zeeman term, etc.) from the exchange term
V0(Si, Si+1) [52–54]. The transfer kernel can be defined as
follows:

K(Si, Si+1)

= exp
[

βV0(Si , Si+1)+ 1

2
β
(
Vss(Si)+ Vss(Si+1)

)
]

, (4)

with β the inverse temperature in Boltzmann units. K is re-
lated to the partition function through

ZN =
∫

dΩ1

∫
dΩ2 . . .

∫
K(S1, S2) . . .K(SN−1, SN )

× exp
[

1

2
β
(
Vss(S1)+ Vss(SN )

)
]

dΩN . (5)

For the simplest systems the kernel (4) is symmetric in the ex-
change Si ↔ Si+1. The static properties of the model defined
by the Hamiltonian (3), as well as the partition function it-
self, can be better handled by solving the integral eigenvalue
problem
∫

dΩi+1K(Si, Si+1)ψm(Si+1) = λmψm(Si) , (6)

where λm are the eigenvalues corresponding to the (right-
hand) eigenfunctions ψm . If the kernel was not symmetric
with respect to Si and Si+1, as in the case of heterogeneous
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magnetic neighbors, an additional integral equation would be
necessary to obtain the left-hand eigenfunctions. The infinite-
dimensional space defined by the eigenfunctions of Eq. (6),
under very general hypotheses, fulfills the completeness and
orthonormality relationships
∑

m

ψm(Si)ψm(Sj) = δ(Si − Sj) , (7)

∫
ψn(S)ψm(S)dΩ = δn,m , (8)

respectively, where δ(Si − Sj) is the Dirac δ-function and δn,m

the Kronecker symbol. Using the completeness property (7),
the kernel can be rewritten as

K(Si, Si+1) =
∑

m

λmψm(Si)ψm(Si+1) . (9)

The eigenvalues λm are all real and positive, as the kernel
operator (4) is a positive function of Si and Si+1. In the sym-
metric case, i.e. K(Si , Si+1) = K(Si+1, Si), the reality of the
eigenvalues follows from the analogue of the spectral theo-
rem for real symmetric matrices; furthermore, it is possible
to show that the spectrum of the eigenproblem (6) is upper
bounded: thus, the eigenvalues λm can be ordered from the
largest to the smallest one:

λ0 > λ1 > λ2 > . . .

Putting the kernel in the form (9) and exploiting the orthonor-
mality (8), we obtain

ZN =
∑

m

λN−1
m a2

m with (10)

am =
∫

exp
[

1

2
β(Vss(Si))

]

ψm(Si)dΩi .

If the reader is familiar with the infinite chain transfer matrix
formalism [55], he will appreciate that in the present study
the knowledge of the whole spectrum is required even for the
computation of the partition function ZN , while in the thermo-
dynamic limit the latter is simply given by

Z∞ ∼
N→∞

λN
0 . (11)

The dependence on the am integral also represents a remark-
able difference. The free energy, given by the fundamental
relation

FN = −kBT ln ZN , (12)

can be usefully written as

FN = −β−1

×
⎧
⎨

⎩
N ln λ0 + ln

(
a2

0

λ0

)

+ ln

⎡

⎣1 +
∑

m �=0

(
am

a0

)2 (
λm

λ0

)N−1
⎤

⎦

⎫
⎬

⎭
.

(13)

In the first term, proportional to the length of the chain, one
recognizes the ‘bulk’ contribution, identical to the free en-
ergy of the infinite chain; the second, independent of N, is

the ‘surface’ term, responsible just for the end-point behavior;
the third is the finite-size contribution which decays exponen-
tially with increasing length of the segment. In the thermody-
namic limit, of course, only the ‘bulk’ contribution survives.
From the derivatives of the free energy (13) several thermody-
namic observables may be obtained, which will also be char-
acterized by bulk, surface, and finite-size contributions. In
particular, the average of the spin components and the size de-
pendence of the magnetization will be discussed in Sects. 3.3
and 3.5.

3.2 Sampling of the solid angle

Equation (6), yielding the eigenvalues λm and the
eigenfunctions ψm as a preliminary step to the evaluation of
any physical quantity within the transfer matrix scheme, en-
compasses an integration over the unitary sphere. Other inte-
grations of the same kind are required to compute the average
of the spin components (18) and the spin–spin correlation
function (22) that will be introduced later. Given a generic
function of two angles θ and ϕ, say f(θ, ϕ), the integral over
the whole solid angle 4π may be approximated as

∫
f(ϕ, θ)dΩ �

P∑

h=1

wh f(uh) with dΩ = dϕ sin θ dθ ,

where uh represent the P special points that sample the unitary
sphere and wh their relative weights [56]. Several samplings
of the unitary sphere are reported in the literature, which
are characterized by a total number of points P and relative
weights that fulfill certain optimization criteria. In terms of
such a discretization the transfer kernel eigenvalue problem
(6) becomes

P∑

h=1

whK(ul, uh) ψm(uh) = λmψm(ul) , (14)

which, after the symmetrization
{

Kl,h = √
wlwh K(ul, uh) ,

Ψ n
h = √

wh ψn(uh)

is usually rewritten as

P∑

h=1

Kl,hΨ
n
h = λnΨ

n
l . (15)

As one can see, sampling the solid angle transforms the in-
tegral equations (6) into a linear algebra symmetric prob-
lem, which can be solved using one of the existing routines
(DSPEV of the LAPACK package [57], for example). This
also implies that the number of eigenvalues is reduced to the
actual number of special points P (with respect to the continu-
ous variable formulation in which the number of λ is infinite).
In the following calculations we employ the Gauss spheri-
cal product formula of 16th degree [58] (P = 200). With this
choice, the numerical results agree with the analytical estima-
tion of the largest eigenvalue λ0 given by Fisher [59] for the
Heisenberg isotropic model in zero field up to the most signifi-
cant digit for βJ < 10 (see Eq. (24) in the following).
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3.3 Average of the spin components

The average of the α component of spin i is given
by

〈
Sα

i

〉 = 1

ZN

∫
dΩ1

∫
dΩ2 . . .

∫
K(S1, S2) . . .K(Si−1, Si)

× Sα
i K(Si, Si+1) . . .K(SN−1, SN )

× exp

[
1

2
β
(
Vss(S1)+ Vss(SN )

)
]

dΩN . (16)

As translational invariance does not hold, we expect this quan-
tity to vary from site to site, while the index i represents only
a dummy variable for the infinite chain. Exploiting the iden-
tity (9) for the kernel and the orthonormality relations (8), we
have

〈
Sα

i

〉 = 1

ZN

×
∑

m1,m2... ,mN−1

λm1λm2 . . . λmN−1δm1,m2δm2,m3 . . . δmi−2 ,mi−1

×
∫

ψmi−1 (Si)Sα
i ψmi (Si)dΩiδmi ,mi+1 . . . δmN−2,mN−1

×
∫

ψm1(S1) exp

[
1

2
βVss(S1)

]

dΩ1

∫
exp

[
1

2
βVss(SN )

]

×ψmN−1 (SN )dΩN , (17)

from which, accounting for all the Kronecker symbols,

〈
Sα

i

〉 = 1

ZN

∑

m1mN−1

λi−1
m1

am1 Bα
m1mN−1

amN−1λ
N−i
mN−1

for 2 ≤ i ≤ N −1

with Bα
mn =

∫
ψm(Si)Sα

i ψn(Si)dΩi . (18)

The chosen site i index appears in the exponent of the eigen-
values (λm1 and λmN−1 ) and weights the contribution of each
term in the sum (18) in a different way [60]. Equation (18), as
usual, furnishes an alternative route to compute the magneti-
zation rather than using the logarithmic derivative of ZN ; in
fact, the α component of the total magnetization corresponds
to

Mα
N = g

N

N∑

i=1

hα
γ

〈
Sγ

i

〉
, (19)

where g is the gyromagnetic factor and hα
γ gives the directors

of the external field with respect to the spin frame, taking the
sum over the repeated γ index.

3.4 The spin–spin correlation matrix

α and γ being the considered components of the ith
and the (i + r)th spins, respectively, the two-spin correlation

function is given by

〈
Sα

i Sγ

i+r

〉 = 1

ZN

∫
dΩ1

∫
dΩ2 . . .

∫
K(S1, S2) . . .

K(Si−1, Si)Sα
i K(Si, Si+1) . . .K(Si+r−1, Si+r)Sγ

i+r

×K(Si+r, Si+r+1) . . .K(SN−1, SN )

× exp
[

1

2
β
(
Vss(S1)+ Vss(SN )

)
]

dΩN . (20)

Exploiting the kernel definition (9) and the orthonormality re-
lations (8), we obtain

〈
Sα

i Sγ

i+r

〉 = 1

ZN

×
∑

m1,m2... ,mN−1

λm1λm2 . . . λmN−1δm1,m2δm2,m3 . . . δmi−2 ,mi−1

×
∫

ψmi−1 (Si)Sα
i ψmi (Si)dΩiδmi ,mi+1 . . . δmi+r−2 ,mi+r−1

×
∫

ψmi+r−1 (Si+r)Sγ

i+rψmi+r (Si+r)dΩi+rδmi+r ,mi+r+1 . . .

× δmN−1,mN

∫
ψm1(S1) exp

[
1

2
βVss(S1)

]

dΩ1

×
∫

exp
[

1

2
βVss(SN )

]

ψmN−1 (SN )dΩN . (21)

Considering all the repeated indices in the Kronecker sym-
bols, we finally obtain

〈
Sα

i Sγ

i+r

〉 = 1

ZN

×
∑

m1mi mN−1

λi−1
m1

a†m1
Bα

m1mi
λr

mi
Bγ

mi mN−1
amN−1λ

N−i−r
mN−1

for 2 ≤ i ≤ N −1 . (22)

As the average of the spin components computed above, the
spin–spin correlation function (22) depends on both the cho-
sen sites i and i + r in chains of finite length [60]. This func-
tion can be conveniently represented by means of a matrix:

Cαγ

i,i+r = 〈
Sα

i Sγ

i+r

〉
, (23)

real and symmetric in the exchange i ↔ i + r and i ↔ N − i,
for obvious physical reasons. Further, the diagonal terms
(with r = 0) give the static autocorrelation function and cor-
respond to the maxima line of the matrix elements Cαγ

i,i+r .
In general, the off-diagonal terms as well as the diagonal
ones depend on the temperature, and the farther a term lies
from the diagonal the smaller its value is. In this sense the
three-dimensional (3D) plot of the matrix (23) can be pic-
torially imagined as a square ‘cloth’ hanging on a diagonal
string (the maxima line) with a temperature-dependent slope.
In the infinite-temperature limit the off-diagonal terms van-
ish, leaving just the diagonal string contribution. In the zero-
temperature limit the matrix degenerates into a flat surface.
In Fig. 4 one of the matrices Cαα

i, j is reported for the isotropic
Heisenberg model in zero field:

H = −
N−1∑

i=1

J Si Si+1, |Si |2 = 1 , (24)



VINDIGNI et al. Finite-sized Heisenberg chains and magnetism of one-dimensional metal systems 391

FIGURE 4 Correlation matrix of
the isotropic Heisenberg model with
open boundary conditions and N = 80
spins: the basal plane represents the
considered couples of spin (i, j); the
corresponding correlation function
Cαα

i, j is reported on the vertical axis

with N = 80 for different inverse reduced temperatures βJ;
in this particular case the three matrices (α = x, y, z) Cαα

i, j are
equal, thanks to the rotational symmetry of the Heisenberg
Hamiltonian (24), while the other six matrices are zero, as
the mixed spin components (α �= γ ) are not correlated. The
diagonal values are equal to 1

3 at any temperature (unitary
spins are considered). In the zero-temperature limit, the off-
diagonal terms also reach the same value, as Cαα

i, j degenerates
into a flat surface: the system becomes essentially a rigid
block of N spins (classical Heisenberg model ground state).
In the sequence a, b, c of Fig. 4 the Cαα

i, j matrix is reported
for decreasing values of the variable βJ . For βJ = 20 the
Cαα

i, j extremes are appreciably ‘detached’ from the zero plane,
revealing a correlation even between the farthest spins. Rais-
ing the temperature (reducing βJ) reduces the correlation
between the farthest spins as the correlation matrix tends to-
wards a family of Dirac δ-functions centered on the diagonal
terms (Fig. 4c).

3.5 Fit of the experimental Co chain magnetization

The magnetization of the monatomic chains pre-
sented in Sect. 2.3 can now be fitted using the finite-size
transfer matrix algorithm implemented with the sampling of
the solid angle by means of Eqs. (18) and (19). This the-

oretical approach cannot account for dynamic effects, but
only allows us to calculate the thermodynamic and static be-
havior of a classical spin lattice. Therefore, we fit only the
reversible magnetization curves obtained at T = 45 K. The
model Hamiltonian in the present case is

H = −
N−1∑

i=1

J Si Si+1 −
N∑

i=1

[
D

(
Sz

i

)2 + gCo−PtµB BSi

]
, (25)

where J is the exchange coupling constant and |Si |2 = 1. The
gyromagnetic factor gCo−Pt has been set equal to 3.8 to take
into account the Co spin and orbital atomic moment as well
as the induced moment on Pt (see Sect. 2.2). We have chosen
N = 80 as suggested by the structural analysis of the Pt(997)
surface. This value of N is shown in the following to give con-
sistent results with both the experiment and first-principles
calculations of the magnetic anisotropy energy. We point out,
however, that the actual ‘magnetic’ length of the chains can
also be influenced by dislocations, substitutional impurities,
and contaminants that can never be completely eliminated in
the experiment [22, 61]. The free parameters in the fit are thus
the J and D constants and a rescaling factor for the magneti-
zation, since the XMCD curves in Fig. 2 are given in arbitrary
units. Figure 5 shows the fit performed on the magnetiza-
tion data measured along both the easy and hard directions at
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FIGURE 5 Heisenberg model fit (solid lines) of the experimental magneti-
zation measured at T = 45 K parallel to the easy axis (solid squares) and 80◦
off the easy axis (empty circles), assuming N = 80

T = 45 K. For the two parameters of the spin Hamiltonian we
obtain J = 228.7 K (20 meV) and D = 38.3 K (3.3 meV). The
value of J is in agreement with first-principles calculations
of the interatomic exchange interaction in bulk and mono-
layer Co structures ranging from 15 to 40 meV [62–64] and
slightly larger than the Fe exchange coupling (14 meV) esti-
mated for a Fe monolayer on a W(110) surface on the basis
of a micromagnetic analysis [21, 65]. Notably, despite the in-

FIGURE 6 Correlation matrix of the
Hamiltonian (25) computed using the
fit parameters for the two experimental
temperatures T = 45, 10 K. The basal
plane represents the considered cou-
ples of spin (i, j); the correlation func-
tions Czz

i, j (a) and (c) and Cxx
i, j (b) and

(d) are reported on the vertical axis

herent differences between the model used to fit the Co chain
magnetization in Sect. 2.3 and the present calculation, we find
consistent results for the uniaxial magnetic anisotropy en-
ergy term. Electronic structure calculations for Co monatomic
chains deposited on Pt [33, 35–38] also agree with our results.
The larger D found for the Heisenberg fit with respect to Eq.
(2) can be explained by the assumption of rigid spin blocks
in the latter model. Using the fit parameters derived above,
we can now investigate magnetic correlation effects along our
model Co chains at different temperatures. Figure 6a and b
show the correlation matrices Czz

i, j and Cxx
i, j for the Hamilto-

nian (25) in zero field at T = 45 K. The zz correlation at this
temperature is already quite strong between all the spins of the
chain, as the matrix values are rather detached from the zero
plane away from the diagonal terms. One can notice also that
the FWHM of the correlation function cut across the diagonal
corresponds to the average size of the spin block estimated
in Sect. 2.3. Excluding the end spins, the spin–spin diagonal
correlation for the easy-axis matrix Czz

i, j is about three times
larger compared to Cxx

i, j , reflecting the anisotropy of the sys-
tem. Also, the hard-plane correlation (the results obtained for
Cxx

i, j and C
yy
i, j are identical thanks to the symmetry about the

z axis of the Hamiltonian (25)) vanishes faster compared to
the correlation between the easy-axis components. Typically
related to the finite size of the chains is the smoothing of the
diagonal maxima curve of the Czz

i, j matrix in the vicinity of the
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end points. The zz-autocorrelation function (Czz
i,i) is in fact ex-

pected to be smaller for the spins at the chain edges, as they
miss one magnetic neighbor and can fluctuate more freely.
Through the constraint given by the norm of each spin vector,
this effect reflects on the hard-plane autocorrelation functions
(Cxx

i,i and C
yy
i,i ) too: their values increase in the vicinity of the

edges (see spikes in Fig. 6b) in order to satisfy the relation-
ship

〈
Sx

i Sx
i

〉+ 〈
Sy

i Sy
i

〉+ 〈
Sz

i Sz
i

〉 = 1. The same effect does not
occur in the isotropic Heisenberg model (see Fig. 4) because
the symmetry of the Hamiltonian forces the spin–spin corre-
lation function to contribute to the same level to the unitary
norm |Si |2 and

〈
Sx

i Sx
i

〉 = 〈
Sy

i Sy
i

〉 = 〈
Sz

i Sz
i

〉 = 1
3 for any tempera-

ture and at any site. We can conclude that the localization of
disorder is enhanced by the anisotropy term D, while it com-
pletely disappears in the isotropic Heisenberg limit.

At T = 10 K the correlation between the spins along the
easy axis (Fig. 6c) is much stronger compared to 45 K. It is
interesting to observe that the correlation of the first (not ev-
ident from the picture) and the last spins with all the others
is significantly weaker than between the middle spins; this is
again consistent with the confinement of entropy close to the
end spins. The relationship between the autocorrelation func-
tion along the easy axis and those of the hard plane (Fig. 6d)
is similar to that described above for T = 45 K. The analysis
of the correlation matrix in terms of the plot of Fig. 6 reveals,
even at first sight, that the physics of the system at the two
considered temperatures may be very different, and supports
the experimental observation of ferromagnetic order in the
monatomic Co chains.

As the diagonal terms of the correlation matrix are di-
rectly related to the susceptibility, the localization of disorder
at the end spins indicates that these will respond to an ap-
plied field differently from the ‘bulk’ spins. It is therefore
possible that, depending on the length of the chains [66],
thermally activated magnetization reversal will proceed in
a non-uniform way from the end points towards the center
of the chains [10, 67, 68]. In Fig. 7 we report the site depen-
dence of the average easy-axis spin projection

〈
Sz

i

〉
in the pres-

ence of an applied field Bz = 2 T at T = 45 K. The profiles
obtained for segments of different lengths N are compared
with the expectation value of the infinite chain [50]. Trans-
lational invariance is broken for any segment except for the

FIGURE 7 The site dependence of
〈
Sz

i

〉
is shown for different lengths of the

segments at T = 45 K. The site index is enumerated starting from the middle
of each segment (the convention of the correlation function is not followed).
The dashed line corresponds to the infinite-chain expectation value

infinite chain, and
〈
Sz

i

〉
decreases symmetrically with respect

to the middle of the segment while moving towards the end
spins. It is worthwhile to note that the asymptotic value for
the infinite chain is never reached for segments smaller than
N = 50. Also, for N < 100 we expect the total magnetiza-
tion (19) to be significantly lower compared to the infinite
chain at this field. From the above discussion, it is evident
that, depending on the temperature, finite-size effects play
a central role in determining the magnetization of 1D sys-
tems. The finite-size transfer matrix approach allows us to
take such effects into account and, by means of the cor-
relation matrix, provides powerful physical insight beyond
the information hidden in the experimental magnetization
curves.

4 Conclusions

In conclusion, we have analyzed the magnetic be-
havior of 1D Co metal chains deposited on a vicinal Pt surface.
The experimental analysis revealed a particularly rich sce-
nario: the magnitude of the local Co magnetic moment, in
particular the orbital component, is enhanced with respect to
the 2D and 3D cases and depends critically on the thickness of
the chains. The magnetic anisotropy energy as well as the easy
axis of magnetization oscillate with chain thickness. Depend-
ing on the substrate temperature, Co monatomic chains can
sustain short- or long-range ferromagnetic order of metastable
character. Owing to large magnetic anisotropy energy barri-
ers and related slow magnetic relaxation, ferromagnetism can
be observed in the monatomic chains without contradicting
thermodynamic restrictions to long-range magnetic order in
1D. These results have been interpreted on the basis of the 1D
anisotropic Heisenberg model, which has been implemented
using a finite-size transfer matrix approach to treat spin chains
of finite length. The model allowed us to fit the Co monatomic
chain magnetization data in the reversible limit and to extract
the values of the anisotropy energy and nearest-neighbor ex-
change constant in the chains. The spin–spin correlation ma-
trix calculated using these parameters provided deeper insight
into the localization of order/disorder effects in the chains at
different temperatures due to their finite size and the presence
of magnetic anisotropy.
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44 D. Spišák, J. Hafner, Phys. Rev. B 67, 134 434 (2003)
45 M. Pratzer, H.J. Elmers, Phys. Rev. B 67, 094 416 (2002)
46 S. Ferrer, J. Alvarez, F. Lundgren, X. Torrelles, P. Fajardo, F. Boscherini,

Phys. Rev. B 56, 9848 (1997)
47 U. Gradmann, Handbook of Magnetic Materials, vol. 7/1, ed. by

K.H.J. Buschow (Elsevier, Amsterdam, 1993), pp. 1–96
48 D. Sander, J. Phys.: Condens. Matter 16, R603 (2004)
49 P. Gambardella, S. Rusponi, M. Veronese, S.S. Dhesi, C. Grazioli,

A. Dallmeyer, I. Cabria, R. Zeller, P.H. Dederichs, K. Kern, C. Carbone,
H. Brune, Science 300, 1130 (2003)

50 M. Blume, P. Heller, N.A. Lurie, Phys. Rev. B 11, 4483 (1975)
51 R. Pandit, C. Tannous, Phys. Rev. B 28, 281 (1982)
52 M. Wortis, Phys. Rev. B 10, 4665 (1974)
53 M.G. Pini, A. Rettori, Phys. Lett. A 127, 70 (1988)
54 M.G. Pini, A. Rettori, in Fundamental and Applicative Aspects of Dis-

ordered Magnetism, ed. by P. Allia, D. Fiorani, L. Lanotte (World
Scientific, Singapore, 1989), pp. 1–29 and references therein

55 H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena
(Clarendon, Oxford, 1971)

56 A.H. Stroud, Approximate Calculation of Multiple Integrals (Prentice
Hall, Englewood Cliffs, NJ, 1971)

57 http://www.netlib.org/lapack/

58 M. Abramowitz, I.E. Stegun, Handbook of Mathematical Functions
(Dover, New York, 1970)

59 M.E. Fisher, Am. J. Phys. 32, 343 (1964)
60 Equations (18) and (22) are slightly different when surface spins

are involved: e.g. for the magnetization one has 〈Sα
1 〉 = 〈Sα

N 〉 =
(1/ZN )

∑
n λN−1

n an fn , where fn = ∫
Sα

i ψn(Si)dΩi .
61 S. Ruttinger, H. Magnan, H. Wende, P. Le Fevre, K. Baberschke,

D. Chandesris, Surf. Sci. 548, 138 (2004)
62 M. van Schilfgaarde, V.P. Antropov, J. Appl. Phys. 85, 4827 (1999)
63 S. Frôta-Pessoa, R.B. Munizand, J. Kudrnovský, Phys. Rev. B 62, 5293
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