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Abstract

The tracking precision required by modern industrial applications
is continuously increasing. Feedback control alone is often no longer
capable of giving the necessary tracking accuracy and so the use of
two-degree-of-freedom controllers, which include a feedforward term,
has become commonplace. Traditionally the feedforward term is a
filter based on the inverse of an identified model of the system. It is,
however, not possible to obtain very high precision tracking with this
approach because the identified model will always suffer from model
uncertainty.

In this thesis, data-driven methods are investigated. These meth-
ods derive the feedforward control directly from measured data and
thus avoid the system identification step, which is where the model
uncertainty is introduced. They are, therefore, capable of producing
higher precision tracking than the traditional methods.

For the general tracking problem, a precompensator controller is
considered as the feedforward term. This controller filters the de-
sired output signal before it is applied as an input to the system.
The precompensator’s parameters are tuned directly using measured
data. These data are affected by stochastic disturbances, such as
measurement noise. The effect of these disturbances on the calcu-
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lated parameters is studied and the correlation approach is used to
reduce it.

For the specific problem where the tracking task is repetitive,
a situation frequently encountered in industrial applications, Itera-
tive Learning Control is proposed. Iterative Learning Control uses
measurements from previous repetitions to adjust the system’s input
for the current repetition in a manner that improves the tracking.
As measurements are used, the calculated input is sensitive to the
stochastic disturbances. The effect of these disturbances on the learn-
ing procedure is examined and algorithms, which are less sensitive
to their presence, are developed.

Extensions of the methods are also made for linear parameter
varying systems in which the system’s dynamics change as a function
of a scheduling parameter.

The developed methods are successfully applied to an industrial
linear motor positioning system.

Keywords: tracking, data-driven controller tuning, feedforward,
Iterative Learning Control, linear parameter varying systems



Résumé

La précision en poursuite requise par les applications industrielles
modernes augmente sans cesse. La commande par rétroaction n’est
souvent plus capable de produire le niveau de précision nécessaire.
Ainsi les régulateurs à deux degrés de liberté, qui utilisent un terme
de commande a priori, sont devenus répandus. Traditionnellement la
commande a priori est un filtre basé sur l’inverse du modèle identifié
du système à commander. Cependant, il n’est pas possible d’obtenir
un asservissement de haute précision avec cette démarche à cause de
l’incertitude associée au modèle identifié.

Dans cette thèse, des méthodes basées sur les données sont déve-
loppées. Ces méthodes fournissent la commande a priori directement
à partir des données mesurées et, ainsi, évitent l’étape d’identifi-
cation du système, où l’incertitude est présente. Elles peuvent, par
conséquent, conduire à une précision plus élevée qu’avec les méthodes
traditionnelles.

Pour le problème général de la poursuite, un précompensateur est
considéré pour le terme de commande a priori. Ce précompensateur
filtre la sortie désirée du système à commander avant qu’elle soit ap-
pliquée comme entrée au système. Les paramètres du précompensa-
teur sont dimensionnés directement en utilisant les données mesurées.
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Ces données sont contaminées par des perturbations stochastiques,
par exemples des bruits de mesure. L’effet de ces perturbations sur les
paramètres estimés est étudié et l’approche de corrélation est utilisée
pour le réduire.

Pour le problème spécifique d’une poursuite répétitive, une situa-
tion souvent rencontrée en industrie, la commande itérative basée
sur l’apprentissage (ILC de ‘Iterative Learning Control’ en anglais)
est suggérée. L’approche ILC utilise des mesures des itérations précé-
dentes pour modifier l’entrée du système à commander lors de l’ité-
ration actuelle pour que la poursuite soit améliorée. Comme des me-
sures sont utilisées, l’entrée calculée est sensible aux perturbations
stochastiques présentes dans ces mesures. L’effet de ces perturba-
tions sur le processus d’apprentissage est examiné et des algorithmes
moins sensibles à leur présence sont développés.

Les méthodes sont étendues aux systèmes linéaires à paramètres
variants.

Les méthodes développées sont finalement implémentées avec suc-
cès sur un système de positionnement industriel.

Mots-clés : poursuite, commande a priori, synthèse d’un régula-
teur basée sur les données, commande itérative basée sur l’appren-
tissage, systèmes linéaires à paramètres variants
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Ê{·} estimate of E{·}
λ(A) eigenvalue of the matrix A

λ(A) maximum eigenvalue of the matrix A

λ(A) minimum eigenvalue of the matrix A

F{·} Fourier transform
inf infimum
xN ∈ As N (m,V) sequence of random vectors xN converges

in distribution to the normal distribution
with mean m and covariance matrix V

P (A) the probability of event A
q forward-shift time-domain operator
q−1 backward-shift time-domain operator
sup supremum
sol[c(x) = 0] x is the solution to the equation c(x) = 0
σ(A) singular value of the matrix A

σ(A) maximum singular value of the matrix A

σ(A) minimum singular value of the matrix A

tr(A) trace of the matrix A

w forward-shift iteration-domain operator
χ2

α(l) α-level of the χ2(l) distribution with l
degrees of freedom

Z{·} z-transform
〈·, ·〉 inner product of two vectors
‖ · ‖ norm of a vector, matrix or system
‖ · ‖F Frobenius norm



Contents xv

Symbols

Latin symbols

d(t) load disturbance
d supervector of d(t)
e(t) measured tracking error
e supervector of e(t)
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1

Introduction

1.1 Motivation

Trajectory tracking is essential in a multitude of applications. Tele-
scopes should track the trajectory of the stars through the night’s
sky in order to obtain a clear image, robots spray painting car bodies
should follow the correct path to produce an even coat and milling
machines need to stick closely to the programmed position track in
order to manufacture usable components. These examples are just
a fraction of the diverse applications where trajectory tracking is
necessary.

Typically, feedback loops are used to obtain the required preci-
sion. These loops can produce reasonable tracking performance, in
addition to their ability to stabilise a system, reject external distur-
bances and be robust to model uncertainty.

Modern assemblies and mechanisms are, however, being continu-
ously miniaturised and the required tracking precision is, thus, also
continuously increasing. For example, in order to store more data on
hard disk drives, the data tracks on the disk are being placed closer
together and so the accuracy with which the reading head must fol-
low each track is increasing. Similarly, to make smaller portable
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electronic devices, circuits must be smaller and thus the components
placed closer together. The manufacturing process of fitting these
components, in turn, becomes trickier. In addition, in order to save
time (to retrieve data more quickly, reduce manufacturing costs etc.),
the speed with which these trajectories must be tracked precisely is
also increasing. Feedback control alone is not capable of achieving
these two conflicting exigencies simultaneously since a compromise
of tracking performance versus stability and high-frequency distur-
bance attenuation should always be made. For modern, high preci-
sion tracking tasks feedforward control must thus be used in addition
to feedback control in a two-degree-of-freedom controller structure.
Feedforward control typically uses a model of the system to back
calculate the input needed by the system to make it follow the tra-
jectory correctly. Unlike feedback control, stability is ensured, if the
feedforward controller is stable, and noisy measurements are not used
so disturbance amplification is not an issue.

Model-based feedforward controllers are normally thus taken as
the stable inverse of an identified model of the system performing the
tracking task. The feedforward input signal to the system is gener-
ated by filtering the desired output trajectory with the feedforward
controller. The tracking achieved using this traditional approach is,
however, very dependent on the quality of the model, i.e. how well
it represents the true system [13,16].

Data-driven methods for feedforward control, on the other hand,
generate the feedforward control directly using data measured from
the system. They, therefore, avoid the use of an uncertain sys-
tem model and, consequently, can produce improved tracking per-
formance over model-based techniques.

A reasonable approach for the general tracking problem is to
use data-driven methods to directly identify the system inverse from
measured data and use it as a precompensator/prefilter that filters
the desired output before it is applied to the system’s input.

For the specific class of tracking problems where the tracking task
is repetitive it makes sense to use information available from previous
repetitions to improve the performance in the current one. This
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principle is employed by Iterative Learning Control (ILC), which is a
data-driven method using measurements from previous repetitions to
adapt the feedforward signal so as to improve the current repetition’s
tracking.

A major problem encountered by data-driven methods, however,
is the presence of stochastic disturbances affecting the system and
measurements. These disturbances mean the measurements contain
false information about the system and so the control signals pro-
duced by the data-driven methods do not lead to the desired tracking
performance. For this reason, it is important to understand the ef-
fect of these stochastic disturbances on data-driven methods and to
develop new methods that are less sensitive to them.

Furthermore, it cannot always be assumed that real systems are
well represented by the linear time invariant (LTI) class of systems,
as is often done due to this class’ mathematical tractability. If this
assumption is not valid and an LTI feedforward controller is used,
then the good tracking achieved at one operating point may not
be replicated at other operating points. Good tracking across the
entire operating range can only be achieved, in this case, by using
feedforward control for broader system classes. One such class is
that of linear parameter varying (LPV) systems. LPV systems can
represent a large number of practically encountered systems whose
dynamics change as a function of the operating point, but still retain
the useful properties of linear systems.

1.2 State of the art

This thesis makes contributions in data-driven feedforward con-
troller/precompensator tuning and ILC. Methods are proposed for
both LTI and LPV systems. This section will provide a non-
exhaustive overview of related work in these areas.
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1.2.1 Data-driven feedforward controller/precompensator
tuning

Data-driven controller tuning can be seen as a subcategory of direct
adaptive control. The main difference with standard direct adaptive
control is the adaptation period. Whereas in the standard case the
controller parameters are adjusted at every sampling instant, in data-
driven controller tuning the controller parameters are adjusted based
on batches of data i.e. a large number of samples, typically making
this approach less prone to stability problems. Nonetheless, like the
standard method, the controller parameters should be directly calcu-
lated using real measured data and so similar parameter estimation
algorithms can be used. Research into data-driven controller tuning
has been active in recent years.

Iterative Feedback Tuning is a model-free approach for tuning
the parameters of two-degree-of-freedom controllers such that the
tracking error variance is minimised. It uses specific closed-loop ex-
periments to compute an unbiased estimate of the gradient of the
control criterion [23,24]. Separate tuning of the feedforward and the
feedback controllers is proposed to improve the tracking performance
using the Iterative Feedback Tuning approach in [19]. Another iter-
ative method based on the correlation approach has been proposed
and successfully applied to a magnetic suspension system in [27] as
well as a benchmark problem in [36]. An overview of this approach
can be found in [28]. The main idea is that instead of minimising a
norm of the tracking error, it is made uncorrelated with the reference
signal. It can be shown that the controller parameter estimates are
asymptotically unaffected by stochastic disturbances.

A disadvantage of these iterative approaches is that they require
many experiments to be done on the real system for criterion eval-
uation. The main interest of the controller tuning method Virtual
Reference Feedback Tuning is that only one set of data is required
to tune a controller for the model reference problem [10]. In this
approach the controller tuning problem is transformed into an iden-
tification problem by defining a virtual reference signal. An extension
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of this method to two-degree-of-freedom controllers is given in [29].
Virtual Reference Feedback Tuning, however, requires the inverse of
the reference model to be used as a filter, which if the reference model
contains unstable zeros can be problematic. Furthermore it proposes
using either a second set of measured data or a model of the system
to obtain unbiased controller parameter estimates in the presence of
stochastic disturbances.

In [58] a method for designing precompensators directly using
data in the frequency domain is proposed. Whilst this approach is
well suited to the model reference problem, time-domain tracking
specifications must be approximated in the frequency domain.

1.2.2 Iterative learning control

ILC can be regarded as drawing on the basic principles of human
learning, with the adage ‘practice makes perfect’ being taken as its
key concept. Typically for a human to learn a task he or she repeats
the task a number of times and after each repetition analyses where
errors were made. He or she then makes adjustments in the next
repetition in order to perform the task better. ILC uses this same
principle to ameliorate a repetitive system’s tracking performance.

It is generally accepted that the first publications on ILC were
[59], which was written in Japanese in 1978, and [4], written in En-
glish in 1984. Since then the subject has been intensely researched
producing a number of surveys [1, 8, 38], books, theses and several
hundred papers.

The technique has been demonstrated to be capable of consid-
erably improving the tracking performance of systems that are pre-
dominately affected by deterministic disturbances. Since these are
repeated from one repetition to the next, ILC is capable of learn-
ing them and, in turn, compensating for them. However, when the
system is affected by stochastic, non-repeating disturbances, such as
measurement noise, the achievable performance is greatly degraded.

Some research has already been done into the influence of dis-
turbances on ILC. In [47] a disturbance analysis is done and both
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recursive and explicit expressions for the measured error in terms of
desired output and disturbances are found. They are used to dis-
cuss generally how the presence of disturbances affects the measured
error evolution. In [35] a similar analysis is done and simulation
and experimental results are used to illustrate the general effect of
iteration-dependent disturbances. In [18] analytical expressions for
the covariance matrix of the controlled error are developed for high
order ILC algorithms with load and measurement disturbances sep-
arately.

Recognising the degrading effect of stochastic iteration-dependent
disturbances, certain researchers have proposed algorithms which are
less sensitive to their presence.

The use of a forgetting factor in ILC was first proposed in [22]
for a derivative-type ILC law. It was then proposed in [3] for
proportional-type ILC. It is shown that by introducing the forget-
ting factor the system’s output converges to a neighbourhood of the
desired one, despite the presence of norm-bounded initialisation er-
rors, fluctuations of the dynamics and random disturbances. How-
ever, in [50], it is shown that the trace of the input error covariance
matrix is minimised when no forgetting factor is used.

The filtering of the ILC command has been proposed in certain
papers as a way of reducing the influence of noise on the error [44].
However, whilst it reduces the error’s variance, it causes a nonzero
converged mean error.

Kalman filtering-type techniques have also been applied to ILC
to estimate the controlled output, in the presence of stochastic dis-
turbances [2,14,43,51,52,56]. In the case of perfect knowledge of the
disturbance covariance matrices and system parameters, convergence
to the optimal input can be shown. However, this perfect knowledge
is unrealistic.

In [56] an ILC algorithm is proposed using a learning gain that
decreases inversely proportionally to the iteration number and has
the form of a stochastic approximation (SA) algorithm. No detailed
analysis is, however, carried out. An algorithm with a similar itera-
tion decreasing learning gain is also developed in [46] for repetitive
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disturbance rejection in the presence of measurement noise. This
algorithm is derived in a similar way to recursive least squares iden-
tification algorithms. The direct application of SA theory to ILC
is considered in [11] and [12] for the linear and nonlinear cases re-
spectively. It is shown that the proposed ILC law converges almost
surely to the optimal input and the output error is minimised in the
mean square sense as the number of iterations tends to infinity. The
algorithm requires only that the optimal input is realisable. Knowl-
edge of neither the disturbance covariance matrix nor the system
matrices is required because a simultaneous perturbation type algo-
rithm is employed, which uses random perturbations to estimate the
gradient. The disadvantage of this approach is slow convergence.

1.2.3 LPV systems

In many real world control applications an LTI assumption is made
on the system’s dynamics in order to use the well developed identifi-
cation and control techniques available for this class of systems. This
assumption is valid when the system remains within a certain oper-
ating zone. However, when the operating point changes considerably
the identified model is no longer valid and the controlled system’s
performance is degraded, and in the worst case it becomes unstable.
In order to achieve good performance throughout the entire oper-
ating region, but still use the linear system techniques, the class of
linear parameter varying systems has, therefore, been defined [53].

LPV systems can be thought of as a weighted combination of lin-
ear models, each valid at a specific operating point. The weightings
are a function of the operating point, which is, in turn, a function
of certain scheduling parameters. These scheduling parameters can
either be endogenous signals, such as the system’s states or outputs,
or exogenous signals, which cause the dynamics to change as a func-
tion of time according to the trajectories of these signals. The former
case is sometimes referred to as Local Linear Models [61]. The latter
means that the LPV system represents a family of linear time vary-
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ing (LTV) systems, each system corresponding to a particular set of
trajectories.

For LPV systems methods have been proposed [17, 48] to tune
precompensators and feedforward controllers whose parameters also
vary as a function of the operating point. These methods, however,
are based on uncertain identified LPV models and thus, unlike direct
data-driven methods, suffer from model uncertainty.

No data-driven precompensator, or feedforward controller, tuning
methods for LPV systems have been proposed to the author’s knowl-
edge. But, as is the case for LTI systems, parameter estimation and
system identification techniques are adaptable to the tuning of these
controllers. A brief review of the rapidly expanding LPV system
identification literature is therefore now given.

In [41] a method is proposed for the identification of LPV state-
space models. It, however, requires full-state measurement, which
is often not possible, and is only capable of handling one scheduling
parameter. Multiple scheduling parameters can be dealt with using
the method proposed in [34], but full-state measurement is still re-
quired. In [62] full-state knowledge is no longer necessary as a scheme
for estimating the states is proposed. In order to obtain consistent
estimates of the states, when the scheduling parameter is noise-free,
the use of instrumental variables (IV) is proposed. When the LPV
system to be identified has a large number of inputs and outputs the
dimensions of the matrices involved in this approach can become too
large for standard computers to handle. For this reason, a modifica-
tion using a kernel method has been proposed [63] to reduce the size
of the matrices, at the cost of only identifying an approximation of
the system.

The identification of a linear fractional transformation represen-
tation of LPV state-space models is examined in [30]. Non-linear
programming is used to minimise a quadratic cost function, making
the parameter estimates sensitive to the choice of initial estimates.

In [5] a method is proposed for the identification of the param-
eters of single input single output (SISO) LPV systems in input-
output form. Each parameter of the system transfer operator is a
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linear combination of predefined, operating point dependent func-
tions. The identification procedure is then one of estimating the
coefficients multiplying these functions, which is a linear regression
problem, and so can be computed using the standard linear least
squares technique. However, as occurs in the LTI case, the linear
least squares technique generally gives biased parameter estimates
in the presence of stochastic disturbances. In [9] (see appendix) it
is shown that, when certain conditions on the scheduling parameter
dependence are satisfied, consistent estimates can be obtained using
instrumental variables for both the noise-free and noisy scheduling
parameter measurement cases.

In [57] an extension of the well-established orthonormal basis
function identification framework for LTI systems to LPV systems
has been made. Orthonormal basis function models have the nice
properties of being linear in their parameters, having a noise model
that is independently parameterised from the system and being par-
simonious when a good choice is made of the basis functions. A good
choice of basis functions is, however, critical.

Regarding ILC for LPV systems, the only publication in this area,
to the author’s knowledge, is [31]. There the variation of the system’s
dynamics due to the changing scheduling parameter is assumed to
take place during the iteration and is the same for all iterations. A
gain scheduling type approach is used whereby a stabilising gain is
found at a fixed time in the iteration to ensure convergence in the
iterations at that instant. The gains for a number of fixed times are
then interpolated to give the global ILC controller.

1.3 Organisation and contributions of the thesis

In Chapter 2 some background information is given. This informa-
tion takes the form of basic notation, principles, theorems and details
of the linear motor positioning system that constitutes the applica-
tion in this thesis.
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The main contributions of this thesis are presented in Chapters
3-7. In Chapters 3 and 4, data-driven methods for precompensator
tuning for LTI and LPV systems, respectively, will be studied. Then
in Chapters 5-7 ILC for LTI and LPV systems will be investigated.
The individual chapters are described in more detail below.

In Chapter 3 a data-driven precompensator tuning method for
LTI systems is proposed. The method uses data from only one ex-
periment on the real system and employs the correlation approach to
estimate parameters that are asymptotically unaffected by stochastic
disturbances. By a frequency-domain analysis of the criterion, it is
shown that the model-following criterion is minimised. The method
is successfully applied to the tuning of a precompensator for the lin-
ear motor system.

Methods for direct data-driven tuning of LPV precompensators
are developed in Chapter 4. Since LPV operators do not generally
commute, the previously proposed method for LTI systems cannot
be directly adapted. When the ideal precompensator giving perfect
mean tracking exists in the proposed precompensator parameterisa-
tion, the LPV transfer operators do commute, nonetheless, and an
algorithm using only two experiments on the real system is proposed.
It is shown that this algorithm gives consistent estimates of the ideal
parameters despite the presence of stochastic disturbances. For the
more general case, when the ideal precompensator does not belong
to the set of parameterised precompensators, another technique is
developed. This technique requires a number of experiments equal
to twice the number of precompensator parameters and it is shown
that the calculated parameters minimise the mean squared tracking
error. The theoretical results are demonstrated in simulation.

Chapters 5 and 6 study ILC for LTI systems. In Chapter 5 new
expressions for the mean value and variance of the controlled error
signal, obtained using a general LTI ILC algorithm, are developed.
They are then used to analyse the statistical properties of certain,
previously proposed ILC algorithms. The analysis is illustrated via
simulation and experimental results. In Chapter 6 it is shown how
ILC fits into the well-established stochastic approximation theory
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framework. Using this framework, conditions are given that ensure
almost sure convergence of the ILC input to the optimal input in
the presence of stochastic disturbances. Specific choices for the al-
gorithm’s learning gain are proposed and tested in simulation and
experimentally.

In Chapter 7 an ILC algorithm is proposed for a certain class
of LPV systems whose dynamics change between iterations. Consis-
tency of the algorithm in the presence of stochastic disturbances is
shown. The proposed algorithm is applied to the linear motor posi-
tioning system, which is shown to be an LPV system for a specific
class of movements. The tracking performance obtained using the
proposed algorithm is compared with that obtained using an LTI
ILC algorithm and better results are achieved.

Finally in Chapter 8 the results of the thesis are summarised and
recommendations for possible future work are made.





2

Preliminaries

In this chapter some background information is given that will be
used in the thesis.

2.1 Basic notation

The controlled output of an LTI, discrete-time, causal SISO system
G(q−1), shown in Figure 2.1, at time t is given by:

z(t) = G(q−1)u(t) + d(t), (2.1)

where u(t) is the system input, d(t) is the load disturbance and q−1

is the backward-shift time-domain operator. The system’s measured
output is:

y(t) = z(t) + n(t), (2.2)

where n(t) is the measurement disturbance.
G(q−1) may represent an open or closed-loop system. When the

latter case applies, d(t) and n(t) will be signals resulting from the
filtering of external disturbances by closed-loop transfer functions i.e.
for the closed-loop system in Figure 2.2 we have that:
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- G(q−1) - ?f - ?f -u(t) z(t) y(t)

d(t) n(t)

+ +

Fig. 2.1. System affected by disturbances

G(q−1) =
P (q−1)K(q−1)

1 + P (q−1)K(q−1)
, (2.3)

d(t) =
1

1 + P (q−1)K(q−1)

(

d′(t) − P (q−1)K(q−1)n′(t)
)

(2.4)

and n(t) = n′(t). (2.5)
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u(t) z(t)
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n′(t)

+

+

-
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Fig. 2.2. Closed-loop system affected by disturbances

In general, each of the signals d(t) and n(t) may be either deter-
ministic or stochastic, or contain both deterministic and stochastic
components.

The controlled tracking error signal is defined as:

ǫ(t) = yd(t) − z(t), (2.6)

where yd(t) is the desired system output and the measured tracking
error signal is given by:
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e(t) = yd(t) − y(t). (2.7)

When considering repetitive processes, the signals are indexed by
the repetition number k as well as the time e.g. u(t, k), z(t, k) etc.

The controlled output of an LPV, discrete-time, causal SISO sys-
tem G(σ(t), q−1) is given by:

z(t, σ(t)) = G(σ(t), q−1)u(t) + d(t, σ(t)) (2.8)

where σ(t) ∈ R
nσ is a scheduling parameter vector at time t, which

contains the measurable signals that correspond to the system’s cur-
rent operating point. Likewise the measured output, y(t, σ(t)), is:

y(t, σ(t)) = z(t, σ(t)) + n(t, σ(t)). (2.9)

The disturbances are now possibly functions of σ(t).

2.2 Correlation approach and instrumental
variables in system identification

In certain chapters of this thesis use will be made of the correlation
approach and instrumental variables. They are used extensively in
the field of system identification in order to obtain consistent pa-
rameter estimates in the presence of coloured disturbances. They
are briefly presented below.

We consider that the measured output of an LTI system is given
by:

y(t) = φT (t)θ0 + v(t), (2.10)

where φ(t) is a regressor vector containing time-shifted versions of
the input and output, θ0 is the vector of true system parameters and
v(t) is a zero-mean disturbance that is uncorrelated with the system
input. A predictor, in the form of a linear regression model, is:

yp(t|θ) = φT (t)θ. (2.11)
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The philosophy behind the correlation approach is that if the
model represents the true system perfectly then the prediction error
ep(t, θ) = y(t) − yp(t|θ) will only contain a contribution from the
disturbance. Since the disturbance is uncorrelated with the input,
the prediction error will also be uncorrelated with it in this case.
The correlation approach therefore proposes estimating the system’s
parameters by decorrelating the prediction error from the system
input. This idea can be formulated mathematically as:

θ̂
N

= sol

[

1

N

N−1
∑

t=0

ζ(t, θ)ep(t, θ) = 0

]

, (2.12)

where N is the number of data points and ζ(t, θ) is a vector of
instrumental variables that is correlated with the input u(t) and
uncorrelated with v(t). In the linear case reviewed here, an explicit
expression for the parameter estimate is given by:

θ̂
N

=

[

1

N

N−1
∑

t=0

ζ(t)φT (t)

]−1

1

N

N−1
∑

t=0

ζ(t)y(t). (2.13)

The fact that this estimate can be consistent is seen by first replacing
y(t) with (2.10), giving:

θ̂
N

= θ0 +

[

1

N

N−1
∑

t=0

ζ(t)φT (t)

]−1

1

N

N−1
∑

t=0

ζ(t)v(t). (2.14)

The estimate is then consistent when the following conditions are
satisfied:

i) lim
N→∞

1

N

N−1
∑

t=0

ζ(t)φT (t) is nonsingular.

ii) lim
N→∞

1

N

N−1
∑

t=0

ζ(t)v(t) = 0.
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When the input is ‘sufficiently exciting’, the first condition is satisifed
since ζ(t) is correlated with the non-noisy component of φ(t). The
second condition is also fulfilled because ζ(t) is uncorrelated with
v(t).

2.3 Stochastic approximation

Robbins and Monro founded the subject of stochastic approximation
with their seminal paper [49]. There they addressed the problem of
using successive approximations θ(i) to find the unique scalar root θ0

of a function b(θ), when only noisy measurements of the function are
available. In their paper mean-square convergence of θ(i) to the root
was proved. Later Blum [7] showed almost sure (a.s.) convergence
for the multi-dimensional case. Blum’s result will be used later in
this thesis and so is presented below.

Theorem 2.1 Suppose that for the vector θ ∈ R
nθ there exists a

random vector a(θ) such that b(θ) = E{a(θ)} ∈ R
nθ . Now let c(θ)

be a real-valued function possessing continuous partial derivatives of
first and second order. The vector of first partial derivatives is de-
noted by qc(θ) and the matrix of second partial derivatives by Mc(θ).
Then, for any real number γ, by Taylor’s theorem one has:

c (θ + γa(θ)) = c(θ) + γ〈qc(θ),a(θ)〉

+
1

2
γ2〈a(θ),Mc (θ + κγa(θ))a(θ)〉, (2.15)

where κ is a real number with 0 ≤ κ ≤ 1. By taking expectations on
both sides we get:

E{c (θ + γa(θ))} = c(θ) + γ〈qc(θ),b(θ)〉

+
1

2
γ2E{〈a(θ),Mc (θ + κγa(θ)) a(θ)〉}. (2.16)
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Let γ(k) be a sequence of positive numbers and consider the following
sequence of recursively defined random vectors:

θ(k + 1) = θ(k) + γ(k)a(θ(k)). (2.17)

Moreover, assume that b(0) = 0, without loss of generality, and
consider the following set of conditions:

i)

∞
∑

k=0

γ(k) = ∞ and

∞
∑

k=0

γ2(k) < ∞. (2.18)

ii) c(θ) ≥ 0. (2.19)

iii) sup
Ξ≤‖θ‖

〈qc(θ),b(θ)〉 < 0 for every Ξ > 0. (2.20)

iv) inf
Ξ≤‖θ‖

‖c(θ) − c(0)‖ > 0 for every Ξ > 0. (2.21)

v) E{〈a(θ),Mc (θ + κγa(θ)) a(θ)〉} < Vγ < ∞ for every

number γ. (2.22)

Then the sequence θ(k), defined by (2.17), converges to zero a.s..

In Theorem 2.1 the 〈·, ·〉 operator denotes the inner product of
two vectors and ‖ · ‖ denotes the norm of a vector.

Remark: The conditions on the gains or step sizes γ(k) in (2.18)
ensure a balance between damping out the oscillations about the true
root due to the noise (

∑∞
k=0 γ2(k) < ∞) but not stopping prema-

turely before reaching the true solution (
∑∞

k=0 γ(k) = ∞).

Also of interest, other than conditions for almost sure conver-
gence, is the speed of convergence of the estimate to the true root. A
theorem, which will also be used later in the thesis, is now presented
which provides sufficient conditions for the sequence

√
k(θ(k) − θ0)

to converge to a normal distribution [42].

Theorem 2.2 Consider the process defined in (2.17) with initial
condition θ(0) = θ. Let the sequence γ(k) be given by γ(k) = α

k+1 ,
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where α is a positive constant. Suppose that the following conditions
are satisfied:

i) The process defined in (2.17) converges a.s. to θ0 as k → ∞ and
is a Markov process.

ii) The function b(θ) may be represented by b(θ) = Q(θ0)(θ−θ0)+
o(|θ − θ0|), where the matrix D = 1

2I + αQ(θ0) is stable in the
sense that its eigenvalues have negative real parts.

iii) All the elements of the matrix

E
{

[a(θ(k)) − b(θ(k))] [a(θ(k)) − b(θ(k))]
T
}

are finite for k ≥ 0 and

lim
k→∞

lim
θ(k)→θ0

E
{

[a(θ(k)) − b(θ(k))] [a(θ(k)) − b(θ(k))]
T
}

= lim
k→∞

E
{

a(θ0)a
T (θ0)

}

= P.

iv) For some κ > 0,

lim
Ξ→∞

sup
|θ(k)−θ0|<κ

sup
k≥1

∫

|a(θ(k))−b(θ(k))|>Ξ

|a(θ(k)) − b(θ(k))|2Pdω = 0

with Ξ being a real variable and P a probability density function
corresponding to a(θ(k)).

Then the sequence
√

k(θ(k) − θ0) ∈ As N (0,V) i.e it converges
asymptotically in distribution to a zero-mean normal distribution
with covariance:

V = α2

∫ ∞

0

exp(Dx)P exp(DT x)dx. (2.23)
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2.4 Stability

Certain definitions of stability that will be used in the thesis are now
given.

Definition 2.1 An LTI transfer operator

P (q−1) =

∞
∑

i=0

piq
−i, (2.24)

where pi is the ith impulse response coefficient, is said to be stable if

∞
∑

i=0

|pi| < ∞. (2.25)

Definition 2.2 A family of transfer operators

P (ς, q−1) =
∞
∑

i=0

pi(ς)q
−i, ς ∈ A, (2.26)

is said to be uniformly stable if

|pi(ς)| ≤ pi, ∀ς ∈ A,

∞
∑

i=0

pi < ∞. (2.27)

Definition 2.3 An LPV transfer operator

P (σ(t), q−1) =

∞
∑

i=0

pi(σ(t))q−i, σ(t) ∈ A ⊂ R
nσ , (2.28)

is said to be LPV stable if

|pi(σ(t))| ≤ pi, for t = 0, 1, . . . ,

∞
∑

i=0

pi < ∞. (2.29)

Remark: The form of stability in the above definitions is sometimes
referred to as bounded-input, bounded-output stability.



2.5 Ergodicity 21

2.5 Ergodicity

It is often useful to be able to equate (probabilistically) the infinite
time average of a random process over a single realisation with its
expected value i.e.

lim
N→∞

1

N

N−1
∑

t=0

(x(t) − E{x(t)}) = 0 w.p. 1 (2.30)

or, in the case that x(t) is stationary,

lim
N→∞

1

N

N−1
∑

t=0

x(t) = E{x(t)} w.p. 1. (2.31)

When the above relationships hold the random process in question is
said to be ergodic. Essentially, for a process to be ergodic it should
satisfy the strong law of large numbers (SLLN).

The theorem below provides sufficient conditions for the SLLN
to apply to a random sequence.

Theorem 2.3 [p. 253 in [55]] Let x(t) be an independent random
sequence with constant mean µx and variance σ2

x(t) defined for t ≥ 0.
Define another random sequence as:

µ̂x(N) =
1

N

N−1
∑

t=0

x(t) for N ≥ 1. (2.32)

Then if

lim
N→∞

N−1
∑

t=0

σ2
x(t)

(t + 1)2
< ∞, (2.33)

µ̂x(N) → µx as N → ∞ w.p. 1. (2.34)

In the more specific case where the random process results from
the filtering of a sequence of zero-mean independent random variables
by a stable linear time varying filter, the theorem below indicates
when ergodicity in the correlation exists.
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Theorem 2.4 [p. 55 in [32]] Let {Pς(q
−1), ς ∈ A} and {Mς(q

−1), ς ∈
A} be uniformly stable families of filters, and assume that the deter-
ministic signal w(t), t = 1, 2, . . . , is subject to

|w(t)| ≤ Cw, ∀t. (2.35)

Let the signal vector sς(t) be defined, for each ς ∈ A, by

sς(t) = Pς(q
−1)v(t) + Mς(q

−1)w(t) (2.36)

where

v(t) =

∞
∑

i=0

hi(t)η(t − i) = H(t, q−1)η(t) (2.37)

and η(t) is a sequence of independent random vectors with zero-mean
values, E{η(t)ηT (t)} = Rη(t) and bounded fourth moments, and
{H(t, q−1), t = 1, 2, . . .} is a uniformly stable family of filters. Then:

sup
ς∈A

∥

∥

∥

∥

∥

1

N

N−1
∑

t=0

[

sς(t)s
T
ς (t) − E{sς(t)s

T
ς (t)}

]

∥

∥

∥

∥

∥

F

→ 0

w.p. 1, as N → ∞, (2.38)

where ‖ · ‖F is the Frobenius norm.

The corollary below states when certain types of nonstationary
signals, those generated by filtering a sequence of zero-mean inde-
pendent random variables by a stable LPV system, can be ergodic
in the correlation.

Corollary 2.1 Assume that the deterministic signal w(t), t = 1, 2, . . . ,
is subject to

|w(t)| ≤ Cw, ∀t. (2.39)

Let Mv(q
−1) be a stable filter, and the signal vector s(t) be defined

by
s(t) = Mv(q

−1)v(t) + w(t) (2.40)
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where

v(t) =

∞
∑

i=0

hi(σ(t))η(t − i) = H(σ(t), q−1)η(t) (2.41)

and η(t) is a sequence of independent random vectors with zero-mean
values, E{η(t)ηT (t)} = Rη(t) and bounded fourth moments, and
H(σ(t), q−1), t = 1, 2, . . . is an LPV stable filter. Then:

∥

∥

∥

∥

∥

1

N

N−1
∑

t=0

[

s(t)sT (t) − E{s(t)sT (t)}
]

∥

∥

∥

∥

∥

F

→ 0 w.p. 1, as N → ∞.

(2.42)

Proof: The proof follows immediately from Theorem 2.4.

2.6 Application

The majority of the methods developed in this thesis are tested
in application on a linear, permanent magnet, synchronous motor
(LPMSM), which forms the upper axis of an x-y positioning table,
see Figure 2.3.

LPMSMs are now used abundantly in industry whenever precise,
linear motion is required. They offer a number of advantages over the
traditional solution for linear motion of a rotary motor and leadscrew,
principally:

• No backlash
• Reduced translator inertia
• Reduced friction
• Increased mechanical stiffness

These properties mean that LPMSMs are capable of fast, high pre-
cision movements. Typical uses for LPMSMs include wafer stages,
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Fig. 2.3. The linear motor positioning system (courtesy of ETEL)

microscale robotic decomposition, electronic assembly and manufac-
turing, and machine tools. The precision required by all of these ap-
plications is, however, continuously increasing. These continuously
increasing demands on the tracking performance can be met in two
ways, either via improved hardware or via improved software. The
hardware option includes techniques such as using better bearings
to reduce friction and skewing the permanent magnets to reduce the
cogging forces caused by the attraction between the magnets and iron
core of the translator. These options, however, are expensive because
they increase either the component or manufacturing cost, or both.
The software option implies the use of more advanced control algo-
rithms. This latter option can be expensive to develop but, once an
algorithm is designed, it is much cheaper to implement in production
than a hardware change, leading to long-term savings. LPMSMs are
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therefore an obvious application for the new algorithms developed in
this thesis.

The motor used in the experiments is manufactured by the Swiss
company ETEL SA. It can use either a standard proportional-
integral-derivative (PID) controller or a, more general, two-degree-of-
freedom controller to control the motor’s position. The chosen con-
troller can operate at sampling frequencies 18/i kHz for i = 1, 2, . . .
An analog position encoder using sinusoidal signals with periods of
2µm, which are then interpolated with 8192 intervals/period to ob-
tain a resolution of 0.24nm, is used to measure the motor’s position.
However, the accuracy of this encoder is limited to 20nm.

Two movements of different amplitudes have been defined as
benchmarks for typical industrial movements by the manufacturer.
Both movements have the form of low-pass filtered steps, which, be-
ing less abrupt, is desirable in industry as does not excite unwanted
vibrations and avoids input saturation. They are defined in terms
of their amplitude, maximum velocity and maximum acceleration.
The smaller movement, which will be referred to as a Micromotion,
has an amplitude of 5µm, see Figure 2.4. The larger movement, the
Macromotion, has an amplitude of 25 mm. Both movements have a
maximum velocity of 0.5m/s and a maximum acceleration of 3 m/s2.

As can be seen from the above movements, the LPMSM is ex-
pected to operate accurately over a large range of amplitudes. Often
a ‘dual-stage’ approach using two actuators, for course and fine po-
sitioning, is adopted to deal with this wide operating range [15]. If
a single actuator can be used to obtain the desired positioning then
costs will normally be reduced. This further promotes the LPMSM
as an interesting application for the methods developed in the thesis.
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Data-driven precompensator tuning for

LTI systems

3.1 Introduction

In this chapter, we consider the data-driven tuning of the parameters
of precompensators for LTI systems. A precompensator filters the
desired output signal before it is applied to a system’s input. The cor-
relation approach is used to tune the precompensator’s parameters
such that the correlation between the tracking error and the desired
output is minimised. A new tuning scheme is proposed in which the
positions of the precompensator and the system are swapped. This
scheme means that the evaluation of the control criterion does not
require multiple experiments on the system and only one set of data
is sufficient for the tuning of the precompensator’s parameters. This
implies that, similarly to the Virtual Reference Feedback Tuning
approach, parameter estimation algorithms can be used to directly
‘identify’ the controller parameters. However, in this tuning scheme
the stochastic disturbances affect the input of the precompensator,
which makes the problem more difficult than classical identification
problems. This problem is known as errors-in-variables in the liter-
ature [54]. Here, it is shown that the use of extended instrumental
variables with a specific choice of instruments leads to consistent
parameter estimates. Moreover, a frequency-domain analysis of the
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criterion shows that, even when the ideal controller does not belong
to the set of parameterised controllers, the two-norm of the difference
between the reference model and the system is minimised.

The chapter is organised as follows. In Section 3.2 the precom-
pensator tuning problem is formulated. The precompensator tuning
method is presented in Section 3.3. Simulation and experimental re-
sults are presented in Sections 3.4 and 3.5, respectively. Finally, the
chapter conclusions are given in Section 3.6.

3.2 Problem formulation

The controlled output z(t) of the system when a precompensator
F (q−1) is used is given by, see Figure 3.1:

z(t) = G(q−1)F (q−1)yd(t) + d(t). (3.1)

- F (q−1) - G(q−1) - ?
f - ?

f -yd(t) u(t) z(t) y(t)

d(t) n(t)

+ +

Fig. 3.1. System with a precompensator

3.2.1 Assumptions

A3.1: The system G(q−1) is stable.
A3.2: The disturbances d(t) and n(t) are zero-mean, weakly station-

ary random processes with bounded, unknown variances, fourth
moments and cross-correlation terms.

A3.3: The desired output yd(t) is bounded and uncorrelated with
the disturbances.
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3.2.2 Ideal precompensator

The objective is to calculate the precompensator parameters so as
to reduce the controlled tracking error ǫ(t). We define the ideal
precompensator as that which gives a zero-mean controlled tracking
error i.e.

E{ǫ(t)} = 0 ∀t. (3.2)

Under the assumptions of Section 3.2.1, it is clear that the ideal
precompensator F (q−1) is equal to the inverse of the system’s trans-
fer function.

3.2.3 Precompensator parameterisation

Let F (q−1) be parameterised as:

F (ρ, q−1) = βT (q−1)ρ, (3.3)

where ρT = [ρ0, ρ1, . . . , ρnρ
] is the vector of controller parameters

and β(q−1) is the vector of linear discrete-time transfer operators:

βT (q−1) = [β0(q
−1), β1(q

−1), . . . , βnρ
(q−1)]. (3.4)

The elements of the vector β(q−1) can be any orthogonal basis func-
tions, such as Laguerre or Kautz. In the sequel, for simplicity of
presentation, we suppose that βT (q−1) = [qδ, qδ−1, . . . , qδ−nρ ] which
leads to the following FIR model for F (ρ, q−1):

F (ρ, q−1) = ρ0q
δ + ρ1q

δ−1 + · · · + ρnρ
qδ−nρ , (3.5)

where δ is a positive scalar. In fact, the desired output is applied
δ sampling periods in advance to the real system to improve the
tracking error [25].
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3.3 Tuning method

3.3.1 Correlation approach

It is evident that if the exact inverse of the system exists the mea-
sured tracking error e(t) will contain only contributions from the
stochastic disturbances. Hence, it is reasonable to adjust the con-
troller F (ρ, q−1) in such a way that the measured error e(t) be uncor-
related with the desired output. For many systems, the exact inverse
does not exist because the system is non-minimum phase or of in-
finite order. As a result, e(t) is always correlated with the desired
output. Nevertheless, it can be considered that a good precompen-
sator F (ρ, q−1) minimises the correlation between the measured error
e(t) and the desired output yd(t). In order to formulate this idea as
an optimisation problem, let the correlation function vector f(ρ) be
defined as:

f(ρ) = lim
N→∞

1

N

N−1
∑

t=0

E{ζ(t)e(t)}, (3.6)

where

ζT (t) = [yd(t + l), . . . , yd(t + 1), yd(t), yd(t − 1), . . . , yd(t − l)] (3.7)

with ζ(t) ∈ R
nζ where nζ = 2l + 1. In general, ζ(t) is a vector of

instrumental variables correlated with yd(t) and uncorrelated with
d(t) and n(t). Now, a new control criterion based on the correlation
approach is defined as:

JCA(ρ) = ‖f(ρ)‖2
2 = fT (ρ)f(ρ) (3.8)

and the optimal controller parameters are:

ρ∗ = argmin
ρ

JCA(ρ). (3.9)

Since the control criterion involves the mathematical expectation,
an exact solution, when only one finite set of data is available, is
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not attainable. However, under the assumptions of Subsection 3.2.1,
Theorem 2.4 applies meaning the signals are ergodic in the corre-
lation so a good estimate of the correlation function can be given
by:

f̂ (ρ) =
1

N

N−1
∑

t=0

ζ(t)e(t), (3.10)

where N should be large enough with respect to l. The estimate of
the correlation function leads to the following criterion:

JN
CA(ρ) = ‖f̂(ρ)‖2

2 = f̂T (ρ)f̂(ρ). (3.11)

The criterion JN
CA(ρ) converges almost surely to JCA(ρ) when N

tends to infinity.
Next a tuning scheme to estimate the parameters of the precom-

pensator F (ρ, q−1) is proposed.

3.3.2 Tuning scheme

The measured tracking error can be computed as (see Figure 3.1):

e(t) = yd(t) − y(t)

= yd(t) − G(q−1)F (ρ, q−1)yd(t) − d(t) − n(t). (3.12)

Computing e(t) for different values of ρ requires many experiments
on the system that can be avoided by a new tuning scheme in which
the positions of the system and precompensator are interchanged
so that F (ρ, q−1) acts as a post-compensator (see Figure 3.2). In
this scheme ym(t) is the measured output of the system from an
experiment where the desired output yd(t) is applied directly as the
input signal u(t). An estimate of the measured tracking error can
now be computed with only one set of data as follows:

ê(t) = yd(t) − ŷ(t) = yd(t) − F (ρ, q−1)ym(t)

= yd(t) − F (ρ, q−1)G(q−1)yd(t) − F (ρ, q−1)(d(t) + n(t)).
(3.13)
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It is clear that in the absence of disturbances (d(t) = n(t) = 0) e(t)
and ê(t) are equal. However, even in their presence, we have:

f(ρ) = lim
N→∞

1

N

N−1
∑

t=0

E{ζ(t)e(t)} = lim
N→∞

1

N

N−1
∑

t=0

E{ζ(t)ê(t)}.

(3.14)

- G(q−1) - ?f - ?f - F (q−1) -yd(t) ym(t)

d(t) n(t)

ŷ(t)
+ +

Tuning experiment

Fig. 3.2. Precompensator tuning scheme

Remarks:

1. The equality (3.14) holds true because d(t)+n(t) is uncorrelated
with yd(t) and zero mean. In the case that G(q−1) represents
a closed-loop system and the external disturbances affecting the
system are not zero mean, then d(t)+n(t) can still be zero mean
as it is the product of filtering the sum of the external distur-
bances by a closed-loop transfer function, see (2.3)–(2.5). This
closed-loop transfer function can be designed to reject non-zero
mean disturbances, such as steps and ramps, using the internal
model principle.

2. It should be mentioned that the variance of the measured track-
ing error E{e2(t)} is not equal to the variance of the measured
tracking error estimate E{ê2(t)}. Therefore, the minimisation
of the variance of the measured tracking error cannot be carried
out with only one experiment and should be done iteratively with
several experiments on the real system.
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The estimate of the measured tracking error ê(t) can be presented
in linear regression form as:

ê(t) = yd(t) − φT (t)ρ, (3.15)

where

φT (t) = [ym(t + δ), ym(t + δ − 1), . . . , ym(t + δ − nρ)]. (3.16)

This representation leads to the following expression for the correla-
tion function estimate:

f̂ (ρ) =
1

N

N−1
∑

t=0

ζ(t)[yd(t) − φT (t)ρ] = r − Qyρ (3.17)

where

r =
1

N

N−1
∑

t=0

ζ(t)yd(t) and Qy =
1

N

N−1
∑

t=0

ζ(t)φT (t). (3.18)

Finally, if QT
y Qy is nonsingular (i.e. yd(t) is sufficiently rich),

straightforward calculation gives:

ρN = (QT
y Qy)−1QT

y r, (3.19)

where ρN is the global minimiser of the criterion in (3.11).

3.3.3 Frequency-domain analysis

The correlation criterion in (3.8) can be reformulated as:

JCA(ρ) = fT (ρ)f(ρ) =

l
∑

τ=−l

r2
eyd

(τ) (3.20)

where reyd
(τ) is the cross-correlation function between the measured

tracking error e(t) and the desired output yd(t), defined by:
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reyd
(τ) = lim

N→∞

1

N

N−1
∑

t=0

E{e(t)yd(t − τ)}

= lim
N→∞

1

N

N−1
∑

t=0

E
{

[yd(t) − F (ρ, q−1)G(q−1)yd(t)]yd(t − τ)
}

.

(3.21)

The correlation criterion can be represented in the frequency domain
by applying Parseval’s theorem when l tends to infinity:

lim
l→∞

JCA(ρ) =
1

2π

∫ π

−π

|Φeyd
(ω)|2dω

=
1

2π

∫ π

−π

|1 − F (ρ, e−jω)G(e−jω)|2Φ2
yd

(ω)dω, (3.22)

where Φeyd
(ω) is the cross-spectral density between e(t) and yd(t)

and Φyd
(ω) is the spectral density of yd(t). This expression shows

that:

• The criterion is asymptotically unaffected by the disturbances.
• In the ideal case (i.e. G(q−1) is minimum phase and F (ρ, q−1)

is properly parameterised), the minimum of the correlation cri-
terion in (3.8) is such that its minimiser ρ∗ = ρ0, where ρ0 are
the parameters of the ideal precompensator i.e. F (ρ0, q

−1) =
G−1(q−1).

• If yd(t) is white noise with unit variance, the correlation criterion
becomes:

JCA(ρ) = ‖1 − F (ρ, e−jω)G(e−jω)‖2
2

= ‖E{ǫ(t)}‖2
2.

So, using the correlation approach, the difference between
F (ρ, q−1)G(q−1) and 1, or alternatively the mean controlled er-
ror, is minimised in the two-norm sense.

• If yd(t) is a deterministic signal, |1 − F (ρ, e−jω)G(e−jω)| is min-
imised at the frequencies where yd(t)’s spectrum is large.
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Remarks:

1. The above frequency-domain analysis rationalises the choice of
criterion (3.8) and instrumental variable vector (3.7) used in this
chapter. With these choices it is possible to obtain the above
frequency-domain interpretation of (3.8). This interpretation
shows that even when the exact system inverse does not exist
in the parameterised set of precompensators, which will nearly
always be the case in practice, a logical criterion is still min-
imised. It should be mentioned that other choices of the in-
strumental variable vector may be more efficient when the ideal
precompensator exists in the parameterised set of precompen-
sators, however they will give undesirable frequency weightings
when the ideal precompensator is not achievable.

2. The general model following problem in the two-norm can also
be treated with this data-driven approach. Consider that we aim
to compute the precompensator F (ρ, q−1) such that

‖M(e−jω) − F (ρ, e−jω)G(e−jω)‖2
2

is minimised. To proceed, let us define

êM (t) = M(q−1)yd(t) − φT (t)ρ

and compute ρ such that êM (t) is not correlated with yd(t), which
is chosen to be a white noise signal that is uncorrelated with d(t)
and n(t). If, for practical reasons, yd(t) cannot be chosen as a
white noise but can be expressed as yd(t) = D(q−1)η(t) where
η(t) is a white noise, the use of the filtered error D−1(q−1)êM (t)
and filtered instrumental variable D−1(q−1)ζ(t) leads to the min-
imisation of ‖M(e−jω) − F (ρ, e−jω)G(e−jω)‖2

2.
3. If instead of the correlation criterion in (3.11) the variance of ê(t)

is minimised, unacceptable results may be obtained even if the
noise to signal ratio is not very high. The reason for these poor
results can be seen from the frequency expression of the variance
of ê(t):
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lim
N→∞

1

N

N−1
∑

t=0

E{ê2(t)}

=
1

2π

∫ π

−π

[

|1 − F (ρ, e−jω)G(e−jω)|2Φyd
(ω)

+ |F (ρ, e−jω)|2 (Φd(ω) + Φn(ω) + 2Φnd(ω))
]

dω, (3.23)

where Φd(ω) and Φn(ω) are the auto-spectral density of d(t) and
n(t), respectively, and Φnd(ω) is the cross-spectral density of d(t)
and n(t). It is clear that, when Φnd(ω) = 0, the variance of the
measured tracking error estimate is minimised when the three
positive terms in the integral are minimised. However, minimis-
ing the first term requires that F (ρ, q−1) be close to a high-pass
filter (as G(q−1) is usually a low-pass filter) which consequently
increases the effect of high-frequency disturbances in the second
and third terms of the integral.

4. Although, theoretically l in (3.22) should go to infinity in order to
obtain the frequency interpretation of the criterion, in practice
a large value for l is sufficient. The reason is that reyd

(τ) is
close to zero for τ greater than the settling time of the impulse
response of the transfer function between yd(t) and e(t) when
yd(t) is white noise. This gives a guideline to choose the value
of l. Additionally the number of data N should be chosen much
greater than l (e.g. N > 10l).

3.3.4 Controller structure selection

The controller structure given in (3.5) has only two parameters δ and
nρ to be chosen. Here a simple algorithm to select these parameters
is presented. It is clear that for a given value of δ, increasing nρ will
reduce the correlation criterion in (3.8). However, it is not reasonable
to continue increasing the controller order when the design objective
(decorrelation of the measured tracking error and the desired out-
put) is already achieved. It can be shown that if JN

CA(ρ) is within a
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confidence interval the measured tracking error and the desired out-
put can be considered uncorrelated. This confidence interval can be
computed using the fact that, when the measured tracking error and
the desired output are uncorrelated, the random variable

√
Nr̂êyd

(τ)
converges in distribution to a normal distribution when N goes to
infinity [32]:

√
Nr̂êyd

(τ) =
1√
N

N−1
∑

t=0

ê(t)yd(t − τ) → N (0, C) (3.24)

where

C =

∞
∑

τ=−∞

rê(τ)ryd
(τ) (3.25)

with rê(τ) and ryd
(τ) being the autocorrelation functions of ê(t) and

yd(t), respectively. Thus, from the criterion (3.11), it follows that:

lim
N→∞

N

C
JN

CA(ρ0) → χ2(nζ) (3.26)

where ρ0 is the parameter vector that corresponds to the ideal prec-
ompensator and therefore that achieves decorrelation. We denote the
α-level of the χ2(nζ) distribution as χ2

α(nζ), i.e. α = P (x > χ2
α(nζ))

where P (A) is the probability of event A and x is a random variable
with a χ2(nζ) distribution and nζ degrees of freedom. The condition
to be satisfied in selecting the controller order is then:

JN
CA(ρ) ≤ Ĉ

N
χ2

α(nζ) (3.27)

where Ĉ is an estimate of C based on the calculated parameter vector
ρ. This condition allows an algorithm to be proposed for the selection
of the values of the parameters δ and nρ:
Algorithm: nρ = 1

I : δ∗ = arg min
δ

JN
CA(ρ, nρ, δ) for δ = 0 : δmax

if JN
CA(ρ, nρ, δ

∗) ≤ Ĉ
N χ2

α(nζ)
stop; n∗

ρ = nρ and ρ = ρ0

else nρ = nρ + 1 and go to I
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3.4 Simulation results

The proposed method is tested in simulation.

Example 1

The method is applied to a system represented by the following trans-
fer function:

G(q−1) =
0.2q−4

1 − 1.5q−1 + 0.7q−2
. (3.28)

This simple model is used in this example as its exact inverse exists in
the set of parameterised precompensators. The ideal precompensator
F (ρ0, q

−1) = G−1(q−1), where

ρ0 = [5,−7.5, 3.5]T , (3.29)

should therefore be found by the proposed method under ideal con-
ditions.

The desired output is the response of the discrete-time second-
order system:

0.0941q−1 + 0.0708q−2

1 − 1.262q−1 + 0.4274q−2
(3.30)

to a square-wave signal (between -1 and 1) of ten periods (N =
2000). 200 simulations are carried out in order to assess the mean
performance of the method. In each simulation the desired output
yd(t) is applied to the system without a precompensator to obtain
the simulated measured output as:

ym(t) = G(q−1)yd(t) + d(t) + n(t) (3.31)

where the disturbances d(t) and n(t) are signals resulting from fil-
tering independent realisations of a normally distributed zero-mean
random sequence with a variance of 0.052 by the transfer function
1−G(q−1). They both have average variances of 0.05822, where the
average variances are calculated as
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1

N

N−1
∑

t=0

Ê{v2(t)}

and the estimated expected value Ê is evaluated using the ensemble
average over the 200 simulations i.e.

Ê{v2(t)} =
1

Ns

Ns
∑

j=1

v2
j (t) (3.32)

where vj(t) represents a random variable at simulation j, and Ns is
the number of simulations.

Figure 3.3 shows one period of the desired output yd(t) and a re-
alisation of the measured output ym(t). The precompensator tuning

0 50 100 150 200
−1.5

−1

−0.5

0

0.5

1

1.5

Time (in sampling periods)

Fig. 3.3. Desired output (solid) and a realisation of the measured output
ym(t) (dashed) for Example 1

algorithm in Eqs.(3.17)-(3.19), together with the controller structure
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selection algorithm, are used to calculate the precompensator. A
value of l = 25 is chosen based on the estimated settling time of
ym(t). Figure 3.4 shows the value of JN

CA(ρ, nρ, δ
∗) for different val-

ues of nρ for one of the simulations. Additionally the corresponding

values of Ĉ
N χ2

α(nζ) for α = 0.05 and nζ = 2l + 1 = 51 are shown.
It is clearly seen that the condition (3.27) is satisfied for nρ ≥ 2,
thus nρ = 2 was chosen. Additionally 4 sampling periods of preview
(δ = 4) gives the minimum value of the correlation criterion for this
order. These values are found for each of the 200 simulations, despite
the different noise realisations. Figure 3.5 compares the disturbance-
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Fig. 3.4. Correlation criterion (solid) and controller order selection crite-
rion (dashed) versus nρ for Example 1

free output of the original system without a precompensator with
the disturbance-free output of the system using the precompensator
computed in one of the simulations. The disturbances are not present
in this validation-type simulation so that the true tracking obtained
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using a precompensator, tuned in the presence of disturbances, is
clearly visible. A precompensator whose parameters are tuned to
minimise the variance of ê(t) is also computed each simulation. The
disturbance-free output of the system with a precompensator calcu-
lated this way is also shown in Figure 3.5. Table 3.1 compares the
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Fig. 3.5. Desired output (dotted), tracking obtained in one of the val-
idation simulations for Example 1 for the system: without precompen-
sator (dashed), with precompensator tuned using the correlation approach
(solid/superimposed on desired output) and with precompensator tuned
to minimise the variance of ê(t) (dash-dot).

mean square values of the parametric error ρ0 − ρN obtained by
the two parameter tuning methods. Additionally the mean square
tracking error obtained in the validation simulation with the differ-
ent precompensators is presented. It can be observed that the pro-
posed method estimates the ideal precompensator parameters very
well and produces almost perfect tracking in the validation experi-
ment. The presence of the stochastic disturbances in ym(t) causes
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biased precompensator parameters to be estimated by the minimi-
sation of the variance of ê(t), however, leading to greatly reduced
tracking improvement. This reduced performance is further empha-
sised in Figure 3.6, which compares the mean square tracking error
values obtained using the different precompensators calculated at
each simulation. Considerably smaller mean square tracking error
values are achieved for all of the simulations using the precompen-
sators tuned by the correlation approach.

System Ê
˘

(ρ0 − ρ
N )T (ρ0 − ρ

N)
¯

Ê

(

1

N

N−1
X

t=0

e
2(t)

)

i) − 0.1201

ii) 0.000012 0.0000089

iii) 0.4351 0.0121

Table 3.1. Results for Example 1 for the system: i) without precompen-
sator, ii) with precompensator tuned using the correlation approach and
iii) with precompensator tuned to minimise the variance of ê(t).

Example 2

A second simulation example is carried out with a different system:

G(q−1) =
−0.2q−3 + 0.4q−4

1 − 1.5q−1 + 0.7q−2
. (3.33)

This G(q−1) is chosen to represent a more complicated system whose
exact inverse is unstable and does not exist in the set of parame-
terised precompensators. 200 simulations are carried out again using
the same yd(t) as in Example 1. The disturbance signals were gen-
erated similarly to Example 1 i.e. normally distributed zero-mean
random sequences being filtered by 1−G(q−1). This time they have
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Fig. 3.6. Mean square values obtained in the validation simulations for
Example 1 for the system: with precompensator tuned using the corre-
lation approach (solid) and with precompensator tuned to minimise the
variance of ê(t) (dashed).

average variances of 0.06162. l = 25 is also used. In each simulation
the controller structure selection algorithm is utilised. This time,
however, since the exact system inverse does not exist in the prec-
ompensator parameterisation and a finite number of data are used,
the controller structure selection algorithm does not find the same
structure in each iteration. Nonetheless, disturbance-free validation
simulations are carried out to test the precompensators tuned in the
presence of disturbances and, as can be seen from Figure 3.7 and Ta-
ble 3.2, the tracking is still greatly improved. Moreover, Figure 3.8
shows that smaller mean square error values are obtained than those
achieved using precompensators tuned to minimise the variance of
ê(t) in all simulations.
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Fig. 3.7. Desired output (dotted), tracking obtained in one of the val-
idation simulations for Example 2 for the system: without precompen-
sator (dashed), with precompensator tuned using the correlation approach
(solid/partially superimposed on desired output) and with precompensator
tuned to minimise the variance of ê(t) (dash-dot).

System Ê

(

1

N

N−1
X

t=0

e
2(t)

)

Without precompensator 0.1689

With precompensator tuned
with the correlation approach 0.00080

With precompensator tuned
to minimise the variance of ê(t) 0.0064

Table 3.2. Results for Example 2
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Fig. 3.8. Mean square values obtained in the validation simulations for
Example 2 for the system: with precompensator tuned using the corre-
lation approach (solid) and with precompensator tuned to minimise the
variance of ê(t) (dashed).

3.5 Experimental results

The proposed precompensator tuning method is applied to the
LPMSM described in Chapter 2. As mentioned there, LPMSM are
used extensively in industry for high precision positioning applica-
tions. The traditional model-based route for precompensator tuning
is very labour intensive as it requires an extremely precise model to
be identified in order to obtain the precision needed by these appli-
cations, if it is obtainable at all. Additionally, it requires that this
identification process be repeated each time the system’s parameters
change, which happens regularly in an industrial setting due to wear.
The method proposed in this chapter is thus highly suited to indus-
trial applications as it provides a fast and efficient way to tune the
precompensator parameters.
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In the experiment the LPMSM uses the two-degree-of-freedom
position controller, which contains an integrator. It operates at a
sampling frequency of 6kHz, chosen to ensure good conditioning of
the matrix QT

y Qy. The controller was tuned previously in order to
achieve robust stability using the method in [26]. It should be noted
that in this experiment G(q−1) represents the closed-loop plant and
u(t) its reference signal.

The desired output is taken as the Micromotion. At the chosen
sampling frequency, the duration of Micromotion is such that N =
1200.

yd(t) is applied as the reference signal to the closed-loop system,
without a precompensator, to obtain ym(t). The precompensator
order and preview value are selected using the controller structure
selection algorithm. A value of l = 110 is used, this value being
estimated by measuring the settling time of the error signal of the
system, without a precompensator, when an impulse is applied as a
reference signal. The controller structure selection algorithm selects
a precompensator with an order of nρ = 3 and a preview of δ = 4.
It can be seen from Figure 3.9 that this order is the first to satisfy
condition (3.27). The calculated precompensator is applied to the
system and the resulting system’s output can be seen in Figure 3.10.
In a similar way to the simulations a precompensator, with the same
structure, is also calculated in order to minimise the variance of ê(t).
The system’s response using this precompensator is also shown in
Figure 3.10. As measures of performance the root mean square
(RMS) of the measured error signal, the maximum overshoot and
the settling time to within 2% of the final value are used. Table 3.3
shows the results obtained without and with the precompensator.
It is clearly seen that the proposed technique greatly improves the
system’s tracking performance compared to the original performance.
Compared to the performance obtained using the precompensator
tuned to minimise the variance of ê(t), the proposed technique can
be seen, from the RMS values, to give better general tracking. The
benefit of the proposed technique, however, is not as obvious as in
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Fig. 3.9. Correlation criterion (solid) and controller order selection crite-
rion (dashed) versus nρ for the experimental results

the simulations because the signal-to-noise ratio in this application
is much higher.

System

v

u

u

t

1

N

N−1
X

t=0

e2(t) Overshoot Settling time

(µm) (µm) (s)

Without precomp. 0.5128 1.1367 0.0188

With precomp. tuned with
the correlation approach 0.0490 0.0212 0.0162

With precomp. tuned to
minimise the variance of ê(t) 0.0763 0.0171 0.0163

Table 3.3. System tracking performance
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Fig. 3.10. Desired output (dotted), output without precompensator
(dashed), output with precompensator tuned using the correlation ap-
proach (solid) and output with precompensator tuned to minimise the
variance of ê(t) (dash-dot) for the experimental results

3.6 Conclusions

A model-free approach to precompensator tuning based on the corre-
lation approach has been proposed. It is shown that, using only one
set of data and a specific tuning scheme, the controller parameters
can be tuned for desired output tracking or the general model follow-
ing problem. The approach is based on a correlation criterion which
is asymptotically insensitive to noise and can be minimised using the
linear least squares algorithm. The effectiveness of the method has
been illustrated via simulation and experimental results.

The traditional approach to precompensator design involves two
steps. Firstly a model of the system is identified. Secondly the
precompensator is taken as the stable inverse of the identified model.
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The approach proposed in this chapter has several advantages over
the standard one:

• Only one-step is required.
• The inverse of an identified model may be unstable even if the

system is minimum phase. This problem is avoided in the pro-
posed method as the precompensator is parameterised as a finite
impulse response, which is always stable.

• The structure of the precompensator (order, preview and basis
functions βi(q

−1) ) can be directly specified by the user, rather
than being dictated by the identified model.

• In the popular prediction error identification methods the differ-
ence between G(q−1) and the identified model is weighted by the
inverse of the noise model. This weighting is not necessarily ap-
propriate for control. If a method without a noise model, such as
the output error method, is used,

‖G(e−jω) − F−1(e−jω)‖2
2

= ‖|F−1(e−jω)||F (e−jω)G(e−jω) − 1|‖2
2 (3.34)

is minimised so the control objective, which is the minimisation
of the two norm of F (q−1)G(q−1)− 1, is weighted by the inverse
of the precompensator. This weighting is not necessarily desir-
able and cannot be compensated for by data pre-filtering because
F (q−1) is not known a priori and the use of iterative (bootstrap)
methods does not guarantee convergence to the optimal solution.



50 3 Precompensator tuning for LTI systems

Appendix

3.A Input weighting

When a precompensator is used to improve the tracking performance,
it is possible that an input signal, most notably the plant input, be-
comes too large and saturates for certain desired outputs. Therefore,
it is reasonable to take this signal into account in the design of the
precompensator. In general, the input signal that is at risk of satu-
rating, and therefore in need of reducing, can be described as:

uw(t) = U(q−1)u(t) + Hu(q−1)(d(t) + n(t)). (3.35)

It should be noted that in the case where G(q−1) describes an open-
loop, stable system, it is normally the signal u(t) that we wish to
influence and so U(q−1) = 1 and Hu(q−1) = 0. In the case that
G(q−1) represents a closed-loop system uw(t) may be an internal
input, such as the plant input, so U(q−1) will have another transfer
function and Hu(q−1) will be non-zero.

We denote as uw,m(t) the input uw(t) measured when u(t) = yd(t)
is applied in the tuning experiment. An estimate of the input uw(t)
that will occur when the precompensator is used can be obtained by:

ûw(t) = F (ρ, q−1)uw,m(t) = ϕT (t)ρ (3.36)

where

ϕT (t) = [uw,m(t + δ), uw,m(t + δ − 1), . . . , uw,m(t + δ − nρ)]. (3.37)

It is clear that in the absence of noise, ûw(t) is equal to uw(t) and in
the presence of noise we have:

g(ρ) = lim
N→∞

1

N

N−1
∑

t=0

E{ζ(t)uw(t)} = lim
N→∞

1

N

N−1
∑

t=0

E{ζ(t)ûw(t)}.

(3.38)
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Now in order to consider the spectrum of uw(t) in the control design,
let the following correlation criterion be defined:

JCA(ρ) = fT (ρ)f(ρ) + wug
T (ρ)g(ρ)

=

l
∑

τ=−l

[

r2
eyd

(τ) + wur2
uwyd

(τ)
]

(3.39)

where ruwyd
(τ) is the cross-correlation function between the input

uw(t) and the desired output yd(t), and wu is a positive scalar weight-
ing factor. This new criterion can be interpreted in the frequency
domain as:

lim
l→∞

JCA(ρ) =
1

2π

∫ π

−π

[

|Φeyd
(ω)|2 + wu|Φuwyd

(ω)|2
]

dω

=
1

2π

∫ π

−π

[

|1 − F (ρ, e−jω)G(e−jω)|2

+ wu|F (ρ, e−jω)U(e−jω)|2
]

Φ2
yd

(ω)dω. (3.40)

Therefore, using the criterion in (3.39) and an appropriate choice of
wu the magnitude of the frequency response of uw(t) can be reduced
in the frequency range where the spectrum of the desired output is
large.

For a finite number of data, an approximation of the criterion can
be obtained as:

JN
CA(ρ) = f̂T (ρ)f̂ (ρ) + wuĝ

T (ρ)ĝ(ρ) (3.41)

where

ĝ(ρ) =
1

N

N−1
∑

t=0

ζ(t)ϕT (t)ρ = Quρ and Qu =
1

N

N−1
∑

t=0

ζ(t)ϕT (t).

The global minimum of this criterion is given by:

ρN = (QT
y Qy + wuQ

T
uQu)−1QT

y r. (3.42)





4

Data-driven precompensator tuning for

LPV systems

4.1 Introduction

Motivated by the interest to extend the methodology of the previ-
ous chapter to broader system classes, data-driven tuning of prec-
ompensators for LPV systems is investigated in this chapter. It is
shown that if the ideal precompensator giving zero-mean tracking er-
ror exists in the precompensator parameterisation, the LPV transfer
operators commute and a tuning technique is proposed which gives
consistent estimates using measurements from just two experiments.
For the more general case, where the LPV transfer operators do not
commute, another algorithm is proposed requiring a number of ex-
periments equal to twice the number of precompensator parameters.
The algorithm leads to parameter estimates that converge to those
that minimise the desirable mean squared error criterion.

The chapter is organised as follows. In Section 4.2 the ideal pre-
compensator is defined and the LPV precompensator parameterisa-
tion is described. The tuning technique when the ideal precompen-
sator exists in the precompensator parameterisation is presented in
Section 4.3. In Section 4.4, the tuning method for the general case is
developed. Simulation results are presented in Section 4.5. Finally,
concluding remarks for the chapter are made in Section 4.6.
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4.2 Problem formulation

In this chapter only measurement disturbances will be considered
in order to simplify notation. The presence of zero-mean stochastic
load disturbances would not affect the main results. Moreover the
dependence of the signals on the scheduling parameter i.e. y(σ(t), t)
will not be explicitly stated, again for notational clarity. With this
notation the measured output of the SISO LPV system G(σ(t), q−1)
is given by:

y(t) = G(σ(t), q−1)u(t) + n(t)

= G(σ(t), q−1)u(t) + H(σ(t), q−1)η(t) (4.1)

where H(σ(t), q−1) is a, possibly LPV, transfer operator filtering
the sequence of zero-mean, independent random variables η(t) to
give n(t). The scheduling parameter vector contains the measurable
signal(s) which correspond to the system’s current operating point.

4.2.1 Assumptions

A4.1: G(σ(t), q−1) and H(σ(t), q−1) are LPV stable.
A4.2: The scheduling parameter σ(t) and the desired output yd(t)

are bounded signals.
A4.3: η(t) is a sequence of independent random variables with zero-

mean values and unknown, bounded variances and fourth mo-
ments.

4.2.2 Ideal precompensator

The output of the system with an LPV precompensator F (σ(t), q−1),
when the desired output yd(t) is applied at the precompensator’s
input, is given by (see Figure 4.1):

y(t) = G(σ(t), q−1)F (σ(t), q−1)yd(t) + n(t). (4.2)
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F (σ(t), q−1) G(σ(t), q−1)

H(σ(t), q−1)

f- - - -?

?

yd(t) u(t) y(t)
n(t)

η(t)

+

Fig. 4.1. System with precompensator

The ideal precompensator is defined as that which produces a
zero-mean measured tracking error. It can be seen from (4.2) that it
is the precompensator for which:

G(σ(t), q−1)F (σ(t), q−1) = 1 ∀σ(t), ∀t. (4.3)

A fact which should be noted is that due to the time-varying
nature of the transfer operators, commutativity does not apply to
them, in general. In fact, the backward-shift operator should obey a
non-commutative multiplicative operation i.e.

q−i
(

σ(t)q−ju(t)
)

= σ(t − i)u(t − i − j).

4.2.3 Precompensator parameterisation

As in the LTI case, the precompensator is parameterised such that
F (σ(t), q−1) is linear in its parameters and can be expressed as:

F (ρ, σ(t), q−1) = βT (σ(t), q−1)ρ (4.4)

where

β(σ(t), q−1) =
[

β1
0(q−1)

(

σT (t)β2
0(q−1)

)

, β1
1(q−1)

(

σT (t)β2
1(q−1)

)

,

. . . , β1
nβ

(q−1)
(

σT (t)β2
nβ

(q−1)
)

]T

, (4.5)
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and ρ ∈ R
nρ , with nρ = (nσ + 1)(nβ + 1), is the vector of controller

parameters:

ρ = [ρ0
0, ρ

1
0, . . . , ρ

nσ

0 , ρ0
1, ρ

1
1, . . . , ρ

nσ

1 , . . . , ρ0
nβ

, ρ1
nβ

, . . . , ρnσ
nβ

]T . (4.6)

The βj
i (q−1) are LTI discrete-time transfer operators, which can

be any orthogonal basis functions. In the sequel, however, for clarity
of presentation, we suppose that β1

i (q−1) = 1 and β2
i (q−1) = q−i.

These choices mean βT (σ(t), q−1) is given by:

β(σ(t), q−1) = [σ0(t), σ1(t), . . . , σnσ
(t), σ0(t)q

−1, σ1(t)q
−1, . . . ,

σnσ
(t)q−1, . . . , σ0(t)q

−nβ , σ1(t)q
−nβ , . . . , σnσ

(t)q−nβ ]T (4.7)

where σj(t) represents the jth element of σ(t). This parameterisation
allows a wide range of dependence on the scheduling parameter to
be described. For example each σj(t) could represent a function of
a different scheduling parameter. Alternatively the σj(t) could be
a set of orthogonal basis functions of a single scheduling parameter
e.g. polynomials:

σj(t) = σj(t), (4.8)

where σ(t) is the single scheduling parameter considered.
With the above choices, F (ρ, σ(t), q−1) is given by:

F (ρ, σ(t), q−1) =
[

ρ0
0σ0(t) + ρ1

0σ1(t) + · · · + ρnσ

0 σnσ
(t)

]

+
[

ρ0
1σ0(t) + ρ1

1σ1(t) + · · · + ρnσ

1 σnσ
(t)

]

q−1 + . . .

+
[

ρ0
nβ

σ0(t) + ρ1
nβ

σ1(t) + · · · + ρnσ
nβ

σnσ
(t)

]

q−nβ . (4.9)

Remark: In the case that the desired output yd(t) and scheduling
parameter σ(t) are known a priori, they can be used to improve the
tracking of systems with a time delay. This improvement is achieved
by setting β1

i (q−1) = qδ, where δ equals the system’s time delay.
This fact can be illustrated via the following example. Consider the
noise-free system with a time delay m:
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y(t) = −a1(σ(t))y(t − 1) + u(t − m). (4.10)

We want y(t) = yd(t), so substituting this equality into the above
equation gives:

u(t − m) = yd(t) + a1(σ(t))yd(t − 1) (4.11)

or
u(t) = yd(t + m) + a1(σ(t + m))yd(t + m − 1),

which shows that the structure required for perfect tracking is
achieved by choosing δ = m. This result implies that σ(t + δ) and
yd(t+δ) should be used at time t, which is possible if they are known
in advance. Unfortunately, in applications where σ(t) is measured
in real time advanced knowledge of σ(t) will not be available.

4.3 Tuning when LPV transfer operators
commute

As mentioned previously, in general, time-varying operators do not
commute. One case, however, where they do is when the two op-
erators considered are reciprocal. Thus, in the case that the prec-
ompensator’s parameterisation and parameters are such that (4.3) is
satisfied then F (ρ0, σ(t))G(σ(t)) = G(σ(t))F (ρ0, σ(t)) = 1, where
ρ0 are the parameters satisfying (4.3). This fact means that a similar
tuning scheme to that employed for LTI precompensators is usable.

For clarity of presentation, the argument q−1 will be omitted
where appropriate in the rest of this chapter.

4.3.1 Tuning scheme

We have that the measured tracking error of the system, with a
precompensator, is given by:

e(t) = yd(t) − G(σ(t))F (ρ, σ(t))yd(t) − n(t). (4.12)
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In the absence of noise and when G(σ(t)) and F (ρ, σ(t)) commute,
the same tracking error would be obtained if the positions of the
system and the precompensator were swapped so that F (ρ, σ(t))
acts as a post-compensator. So, as for the LTI case, it is possible to
estimate e(t) from one set of data obtained from the system without
a precompensator as:

ê(t) = yd(t) − ŷ(t)

= yd(t) − F (ρ, σ(t))ym(t)

= yd(t) − F (ρ, σ(t))zm(t) − F (ρ, σ(t))n(t) (4.13)

where zm(t) and ym(t) are the noise-free and noisy system outputs,
respectively, when yd(t) is applied as the input (see Figure 4.2).

F (σ(t), q−1)G(σ(t), q−1) f -- - -? ŷ(t)yd(t) zm(t) ym(t)

n(t)

+

Tuning experiment

Fig. 4.2. Precompensator tuning scheme

This estimate can be expressed in linear regression form as:

ê(t) = yd(t) − φT
m(t)ρ

where:

φm(t) = [σ0(t)ym(t), σ1(t)ym(t), . . . , σnσ
(t)ym(t),

σ0(t)ym(t − 1), σ1(t)ym(t − 1), . . . , σnσ
(t)ym(t − 1), . . . ,

σ0(t)ym(t − nβ), σ1(t)ym(t − nβ), . . . , σnσ
(t)ym(t − nβ)]T . (4.14)

It is possible to imagine that the precompensator parameters
could be estimated by the minimisation of the quadratic cost func-
tion:
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JN
mLS(ρ) =

1

2N

N−1
∑

t=0

ê2(t), (4.15)

whose minimiser is given by:

ρN
mLS =

[

1

N

N−1
∑

t=0

φm(t)φT
m(t)

]−1

1

N

N−1
∑

t=0

φm(t)yd(t). (4.16)

However, as in the LTI case, when F (ρ, σ(t)) is placed as a post-
compensator it also filters the noise n(t), as seen in Figure 4.2. The
parameters that minimise the variance of the measured tracking error
estimate will, therefore, not be the same as those that minimise the
variance of the true measured tracking error.

The instrumental variables method can be used, nonetheless, to
give consistent estimates of the ideal precompensator’s parameter
vector ρ0. For the IV estimate to converge to the ideal vector, the
IV vector must be correlated with the non-noisy component of φm(t),
but not with the noise n(t). These conditions are satisfied by the use
of a vector similar to φm(t), but with ym(t) obtained from a second
experiment, performed in the same way as the first. The second
experiment will, however, be affected by a different, independent
noise realisation. This choice of IV vector is made rather than the
choice of lagged inputs used in the last chapter because the output
of a time-varying system is not necessarily correlated with the input.
The IV estimate is thus given by:

ρN
mIV =

[

1

N

N−1
∑

t=0

φm1(t)φ
T
m2(t)

]−1

1

N

N−1
∑

t=0

φm1(t)yd(t), (4.17)

where φm1(t) and φm2(t) are the φm(t) from the two experiments
using ym1(t) and ym2(t) respectively.

The consistency of the IV estimate is not directly obvious as,
unlike the standard LTI case, the signals considered contain nonsta-
tionary stochastic components. The applicability of ergodicity type
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results typically used in consistency analysis is not, therefore, imme-
diately evident. An analysis is thus performed in the next subsection
which demonstrates that the IV method does indeed lead to consis-
tent estimates, despite the presence of these types of disturbances.

4.3.2 Consistency of the estimate

To see that the IV method gives a consistent estimate of ρ0 we begin
by rewriting (4.17) as:

ρN
mIV =

[

1

N

N−1
∑

t=0

φm1(t)φ
T
m2(t)

]−1

1

N

N−1
∑

t=0

φm1(t)φ
T
z (t)ρ0

=

[

1

N

N−1
∑

t=0

φm1(t)φ
T
m2(t)

]−1

1

N

N−1
∑

t=0

φm1(t)
(

φT
m2(t) − φT

n2(t)
)

ρ0

=ρ0 −
[

1

N

N−1
∑

t=0

φm1(t)φ
T
m2(t)

]−1

1

N

N−1
∑

t=0

φm1(t)φ
T
n2(t)ρ0, (4.18)

where φz(t) and φni(t) are similar to φmi(t), but ymi(t) is replaced
by zm(t) and ni(t) respectively. Additionally φmi(t) = φz(t)+φni(t).

In order for the parameter estimates to be consistent i.e. that
ρN

mIV converges almost surely to ρ0 as N → ∞, it is necessary that:

i) lim
N→∞

1

N

N−1
∑

t=0

φm1(t)φ
T
m2(t) be nonsingular. (4.19)

ii) lim
N→∞

1

N

N−1
∑

t=0

φm1(t)φ
T
n2(t) = 0 w.p. 1. (4.20)

Condition (4.19) is a persistency of excitation condition. It is
similar to the persistency of excitation condition found in methods
for the identification of input-output form LPV models, as similar
signals are involved i.e. noisy output signals multiplied by func-
tions of the scheduling parameter. Persistency of excitation for LPV
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identification was first considered in [5] and sufficient conditions for
polynomial type coefficient dependence on the scheduling parameter
are given. It is shown that if the system input signal is ‘sufficiently
rich’ then persistency of excitation is ensured if the scheduling pa-
rameter ‘visits’ nσ +1 distinct points infinitely many times, where nσ

is the order of the polynomial dependence. More recently [64] pro-
duced more general sufficient conditions for other types of coefficient
dependence.

To show Condition (4.20) further analysis is required. We have
that:

1

N

N−1
∑

t=0

φm1(t)φ
T
n2(t) =

1

N

N−1
∑

t=0

φz(t)φ
T
n2(t) +

1

N

N−1
∑

t=0

φn1(t)φ
T
n2(t).

(4.21)
Considering the first matrix on the right hand side of (4.21), each
of its elements is the time average of products of terms such as
σj(t)zm(t − r) and σi(t)n2(t − p). Then, referring to Corollary 2.1,
we can define:

s(t) =

[

σj(t)zm(t − r)
σi(t)n2(t − p)

]

=

[

0
σi(t)H(σ(t − p))η2(t − p)

]

+

[

σj(t)G(σ(t − r))yd(t − r)
0

]

=

[

v1
1(t)

v1
2(t)

]

+

[

w1
1(t)

w1
2(t)

]

(4.22)

where w1
1(t), w1

2(t), v1
1(t) and v1

2(t) have their obvious definitions.
The signals w1

1(t) and w1
2(t) satisfy (2.39), due to the assumed LPV

stability of G(σ(t)) and the boundedness of σj(t) and yd(t). Also
v1
1(t) and v1

2(t) fit in with the desired form of (2.41) due to the
assumed LPV stability of H(σ(t)). The components of s(t)sT (t)
give, amongst others, σj(t)zm(t − r)σi(t)n2(t − p). So by applying
Corollary 2.1 we can state that:
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∥

∥

∥

∥

∥

1

N

N−1
∑

t=0

[φz(t)φ
T
n2(t) − E{φz(t)φ

T
n2(t)}]

∥

∥

∥

∥

∥

F

→ 0 w.p. 1, as N → ∞,

and, as zm(t) and n(t) are uncorrelated and n(t) is zero mean,
E{φz(t)φ

T
n2(t)} = 0 implying:

lim
N→∞

1

N

N−1
∑

t=0

φz(t)φ
T
n2(t) = 0 w.p. 1.

A similar result for the second matrix on the right hand side of (4.21)
can be derived using Corollary 2.1 i.e. that:

lim
N→∞

1

N

N−1
∑

t=0

φn1(t)φ
T
n2(t) = 0 w.p. 1

and combining these two satisfies Condition (4.20), showing that,
when Condition (4.19) is satisfied, the parameters estimates obtained
with the IV method are consistent.

4.3.3 Noisy scheduling parameters

The values of the scheduling parameter σj(t) used in the calculation
of ρN

mIV will often be measured. They are, therefore, susceptible to
measurement noise. In the case that the noise-to-signal ratio is very
low, the effect of this noise can be neglected. However, if the ratio is
not negligible the measurement noise may lead to biased parameter
estimates.

The effect of noisy scheduling parameter measurements on the
consistency of certain LPV identification methods has been consid-
ered in [9] (see appendix). It was shown that if the noise affecting
the scheduling parameter is uncorrelated with that affecting the out-
put signal and the dependency on the scheduling parameter is affine,
then consistent parameter estimates are obtained using an IV vector
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with scheduling parameter values measured during a second experi-
ment. It will be shown in this section that a similar result holds for
the consistency of the estimated precompensator parameters.

We express the noisy, measured scheduling parameter vector
σv(t) as the sum of a noise-free component and a noisy component
i.e.

σv(t) = σ(t) + vσ(t). (4.23)

σv(t) ∈ R
nσ and vσ(t) ∈ R

nσ are, therefore, stochastic vectors, and
additionally vσ(t) is assumed zero mean and to have independent
realisations. The measured regressor vector is now given by:

φσv

mi(t) = φmi(t) + φvσ

mi(t), (4.24)

where φmi(t) is as defined in (4.14) for experiment i and

φvσ

mi(t) = [vT
σi(t)ymi(t),v

T
σi(t)ymi(t − 1), . . . ,vT

σi(t)ymi(t − nβ)]T .
(4.25)

The IV estimate is then given by:

ρN
mIV =

[

1

N

N−1
∑

t=0

φσv

m1(t)[φ
σv

m2(t)]
T

]−1

1

N

N−1
∑

t=0

φσv

m1(t)yd(t). (4.26)

Consistency of the IV estimate with noisy scheduling
parameters

To show that, using this estimate, consistent estimates can be ob-
tained we start by rewriting (4.26) as:
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ρN
mIV =

[

1

N

N−1
∑

t=0

φσv

m1(t)[φ
σv

m2(t)]
T

]−1

1

N

N−1
∑

t=0

φσv

m1(t)φ
T
z (t)ρ0

=

[

1

N

N−1
∑

t=0

φσv

m1(t)[φ
σv

m2(t)]
T

]−1

1

N

N−1
∑

t=0

φσv

m1(t) [φσv

m2(t) − φvσ

m2(t) − φn2(t)]
T

ρ0

= ρ0 −
[

1

N

N−1
∑

t=0

φσv

m1(t)[φ
σv

m2(t)]
T

]−1

1

N

N−1
∑

t=0

φσv

m1(t) [φvσ

m2(t) + φn2(t)]
T

ρ0. (4.27)

For the estimate to be consistent we require, in a similar fashion to
before, that:

i) lim
N→∞

1

N

N−1
∑

t=0

φσv

m1(t)[φ
σv

m2(t)]
T be nonsingular. (4.28)

ii) lim
N→∞

1

N

N−1
∑

t=0

φσv

m1(t) [φvσ

m2(t) + φn2(t)]
T

= 0 w.p. 1. (4.29)

As before, Condition (4.28) is a persistency of excitation condition.
Condition (4.29) can, again, be analysed using Corollary 2.1. We

first consider the matrix φσv

m1(t)[φ
vσ

m2(t)]
T . This contains the follow-

ing cross-product type terms:

σv1,j(t)ym1(t − p)vσ2,i(t)ym2(t − r)

= [σj(t) + vσ1,j(t)]ym1(t − p)vσ2,i(t)ym2(t − r). (4.30)

Considering (4.30), it is equal to:
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σj(t) [G(σ(t − p))yd(t − p) + H(σ(t − p))η1(t − p)]

vσ2,i(t) [G(σ(t − r))yd(t − r) + H(σ(t − r))η2(t − r)]

+ vσ1,j(t) [G(σ(t − p))yd(t − p) + H(σ(t − p))η1(t − p)]

vσ2,i(t) [G(σ(t − r))yd(t − r) + H(σ(t − r))η2(t − r)] . (4.31)

So, referring to Corollary 2.1, we can write:

s2(t) =

















0
σj(t)H(σ(t − p))η1(t − p)

vσ2,i(t)G(σ(t − r))yd(t − r)
vσ2,i(t)H(σ(t − r))η2(t − r)
vσ1,j(t)G(σ(t − p))yd(t − p)
vσ1,j(t)H(σ(t − p))η1(t − p)

















+

















σj(t)G(σ(t − p))yd(t − p)
0
0
0
0
0

















=

















v2
1(t)

v2
2(t)

v2
3(t)

v2
4(t)

v2
5(t)

v2
6(t)

















+

















w2
1(t)

w2
2(t)

w2
3(t)

w2
4(t)

w2
5(t)

w2
6(t)

















. (4.32)

In order to write v2
4(t) = vσ2,i(t)H(σ(t − r))η2(t − r) and v2

6(t) =
vσ1,j(t)H(σ(t − p))η1(t − p) it is necessary that vσ,j(t) and η(t) are
uncorrelated. This condition is reasonable so long as the scheduling
parameter is not the system output y(t). If they are correlated the
expected value of their product is non-zero and does not satisfy the
corollary’s assumptions on the stochastic component. The ergodicity
of the signals would, therefore, not be provable in this case.

Additionally it is not possible to establish the ergodicity of the
signals when the scheduling parameter has the polynomial depen-
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dence discussed in (4.8) which is of an order greater than 1. The
reason is that we would have higher order moments of the noise term
affecting σ(t), which would be non-zero mean. This, in turn, would
imply that vσ,j(t) is non-zero mean and thus v2

4(t) and v2
6(t) are

non-zero mean, violating the corollary’s assumptions again.
With these conditions in mind, we see that amongst the elements

of s2(t)s
T
2 (t) are all the cross-terms found in (4.31), and thus:

∥

∥

∥

1

N

N−1
∑

t=0

[

σv1,j(t)ym1(t − p)vσ2,i(t)ym2(t − r)

− E{σv1,j(t)ym1(t − p)vσ2,i(t)ym2(t − r)}
]

∥

∥

∥

F
→ 0

w.p. 1, as N → ∞. (4.33)

Now since the vector vσ(t) is assumed to be zero mean, uncorrelated
with the system output and to have independent realisations we have
that:

E{σv1,j(t)ym1(t − p)vσ2,i(t)ym2(t − r)}
= E{σv1,j(t)ym1(t − p)ym2(t − r)}E{vσ2,i(t)} = 0. (4.34)

This result implies that:

lim
N→∞

1

N

N−1
∑

t=0

σv1,j(t)ym1(t − p)vσ2,i(t)ym2(t − r) = 0 w.p. 1 (4.35)

which in turn implies:

lim
N→∞

1

N

N−1
∑

t=0

φσv

m1(t)[φ
vσ

m2(t)]
T = 0 w.p. 1. (4.36)

We next consider the second matrix in (4.29) φσv

m1(t)φ
T
n2(t). This

contains the following cross-product type terms:

σv1,j(t)ym1(t − p)σi(t)n2(t − r). (4.37)
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Under similar conditions on the scheduling parameter, Corollary 2.1
can be used to show that:

lim
N→∞

1

N

N−1
∑

t=0

σv1,j(t)ym1(t − p)σi(t)n2(t − r) = 0 w.p. 1 (4.38)

and so:

lim
N→∞

1

N

N−1
∑

t=0

φσv

m1(t)φ
T
n2(t) = 0 w.p. 1. (4.39)

Results (4.36) and (4.39) imply that Condition (4.29) is satisfied
by the IV estimate (4.26) so, when Condition (4.28) is also satisfied,
the estimate is consistent despite the contamination of the scheduling
parameter measurements by noise.

4.4 Tuning when LPV transfer operators do not
commute

In general condition (4.3) is unlikely to be satisfied by a precompen-
sator with the linear parameterisation proposed. In this case, the
order of the precompensator can be increased until the condition is
approximately satisfied and the method of the previous section can
be used. The order required to approximately satisfy (4.3) may be
too large to be implemented on the real system in practice, however.
A method that can be used in this situation is therefore developed
below.

4.4.1 Tuning scheme

The signal u(t) = F (ρ, σ(t))yd(t) can be expressed as:

u(t) = F (ρ, σ(t))yd(t) = φT (t)ρ (4.40)

where
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φT (t) = [σ0(t)yd(t), σ1(t)yd(t), . . . , σnσ
(t)yd(t),

σ0(t)yd(t − 1), σ1(t)yd(t − 1), . . . , σnσ
(t)yd(t − 1), . . . ,

σ0(t)yd(t − nβ), σ1(t)yd(t − nβ), . . . , σnσ
(t)yd(t − nβ)]. (4.41)

It is now possible to write the output as:

y(t) = G(σ(t))F (ρ, σ(t))yd(t) + n(t)

= G(σ(t))φT (t)ρ + n(t)

= xT (t)ρ + n(t), (4.42)

where x(t) = G(σ(t))φ(t) ∈ R
nρ .

The measured tracking error can then be expressed as:

e(t) = yd(t) − xT (t)ρ − n(t) (4.43)

or in vector form as:

e = yd − Xρ − n, (4.44)

where the vector e is given by:

e = [e(0), e(1), . . . , e(N − 1)]T , (4.45)

yd and n are defined similarly, and the matrix X is:

X = [x(0),x(1), . . . ,x(N − 1)]T . (4.46)

The aim is to find ρ such that the average tracking error is small,
therefore a logical objective is to minimise its mean squared value
i.e. to find the ρ that minimises:

JN
LMS(ρ) =

1

2N
E

{

eT (ρ)e(ρ)
}

, (4.47)

where the dependence of e on ρ has been shown explicitly.
The minimiser of (4.47) is given by:
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ρN
LMS =

[

1

N
XTX

]−1
1

N
XTyd. (4.48)

In the case that G(σ(t)) were known exactly, X could be calcu-
lated, followed by ρN

LMS . G(σ(t)) is never known exactly, however,
and the model uncertainty leads to a non-optimal ρ. It is, neverthe-
less, possible to obtain an estimate X̂ of the matrix X without the
use of a model via a series of experiments on the real system. This
can be seen to be the case by noting that the t, jth element of the
matrix X is the output of the system G(σ(t)) when the jth element
of φ(t) is applied as an input. Thus for each column of X an exper-
iment can be carried out on the real system i.e. nρ experiments in
total. In reality an estimate, rather than the exact value, of X will
be found as each experiment will have its own noise realisation nj(t).
The estimate of X is:

X̂ = X + N, (4.49)

where N is a matrix whose t, jth element is nj(t). Substituting X̂ in
for X in (4.48) we have:

ρ̂N
LMS =

[

1

N
(X + N)T (X + N)

]−1
1

N
(X + N)Tyd

=

[

1

N
(XT X + NTX + XTN + NTN)

]−1
1

N
(X + N)Tyd.

(4.50)

Therefore when X̂ is used in place of X in (4.48) the presence of
the noise in the experiments performed to find X̂ will mean that the
minimising value ρN

LMS cannot be calculated i.e. ρ̂N
LMS 6= ρN

LMS .
One way of dealing with this problem is to use instrumental vari-

ables again. This time two estimates of X, X̂1 and X̂2, are used.
They are obtained from two sets of the nρ experiments previously
described. The IV estimate is then given by:

ρ̂N
IV =

[

1

N
X̂T

1 X̂2

]−1
1

N
X̂T

1 yd. (4.51)
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Remarks:

1. The same G(σ(t)) should be used at each t for all the experi-
ments i.e. when different signals u(t) are applied. It is therefore
necessary that the scheduling parameter σ(t) be independent of
u(t), which may not be the case for certain quasi-LPV systems
where the scheduling parameter can be an input-dependent, in-
ternal variable. Nonetheless, a number of LPV systems found
in practice do satisfy this requirement, such as x-y positioning
tables where the dynamics of one stage depend on the position
of the other and not their own.

2. The specific choice of instrumental variables obtained from a sec-
ond set of experiments is used because it can be shown that
consistent estimates of the true minimiser of (4.47) are obtained
using them, as will be seen in the next subsection. This is not
necessarily possible for a general choice of instrumental variables.
A disadvantage of this specific choice is that, due to the second
set of noise realisations affecting the instrumental variables, the
variance of the estimates can be large when the number of data
measured is small.

4.4.2 Consistency of the estimate

To demonstrate that the IV estimate (4.51) converges to the true
minimiser of (4.47) when N → ∞ we first write:

ρ̂N
IV =

[

1

N
(X + N1)

T (X + N2)

]−1
1

N
(X + N1)

T yd

=

[

1

N
(XT X + NT

1 X + XT N2 + NT
1 N2)

]−1
1

N
(X + N1)

Tyd

(4.52)

where N1 and N2 denote matrices of noise realisations associated
with the first and second set of experiments. For ρ̂N

IV to converge
to ρN

LMS we require 1
N

[

NT
1 X + XTN2 + NT

1 N2

]

and 1
N NT

1 yd to
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converge to zero as N → ∞. This can be shown to be the case by
noting that the i, jth element of the matrix NT

1 X is given by:

1

N
[NT

1 X]i,j =
1

N

N−1
∑

t=0

n1i(t)Xt,j

=
1

N

N−1
∑

t=0

[H(σ(t))η1i(t)][G(σ(t))φj(t)], (4.53)

where n1i(t) corresponds to the t, i element of N1, and n1i(t) =
H(σ(t))η1i(t). Corollary 2.1 is applicable to this time average and
can be used to show that:
∥

∥

∥

∥

∥

1

N

N−1
∑

t=0

[n1i(t)Xt,j − E{n1i(t)Xt,j}]
∥

∥

∥

∥

∥

F

→ 0 w.p. 1, as N → ∞,

(4.54)
and since E{n1i(t)Xt,j} = 0 we have

lim
N→∞

1

N

N−1
∑

t=0

n1i(t)Xt,j = 0 w.p. 1.

This result can be applied to each element of NT
1 X, and similar

results hold for XTN2, NT
1 N2 and NT

1 yd. Therefore, ρ̂
N
IV → ρN

LMS

as N → ∞ almost surely.

4.4.3 Noisy scheduling parameters

As was the case for the method in the previous section, it is pos-
sible that the values of scheduling parameters used will have been
measured and thus contaminated by noise. For example consider the
case when the precompensator is tuned to control the lower axis of
an x-y positioning table whose dynamics depend on the position of
the upper axis. In this case the scheduling parameter would be the
position of the upper axis. This can either be the position reference
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signal or the measured position. The former may not be a very good
measure of the true position and the latter is affected by noise. When
the noise is negligible its effect can be neglected and the IV estimate
(4.51) can be used. However, when this is not the case, it will be
shown that, under certain conditions on the scheduling parameter, by
using two independent sets of scheduling parameter measurements,
the IV estimate will lead to consistent estimates.

We have that the noisy, measured scheduling parameter vector
σv(t) is expressed as the sum of a noise-free component and a noisy
component as in (4.23). When this is used to construct the φ(t)
vector, the noisy φ(t) for the ith set of experiments is given by:

φσv

i (t) = φ(t) + φvσ

i (t), (4.55)

where φ(t) is as defined in (4.41) and

φvσ

i (t) = [vT
σi(t)yd(t),v

T
σi(t)yd(t− 1), . . . ,vT

σi(t)yd(t−nβ)]T . (4.56)

It is therefore the elements of φσv

i (t) that are now used as the inputs
for the nρ experiments. This will lead to the new estimate of X:

X̂σv

i = X + Xvσ

i + Ni. (4.57)

The IV estimate is now:

ρ̂N
IV =

[

1

N
[X̂σv

1 ]T X̂σv

2

]−1
1

N
[X̂σv

1 ]Tyd. (4.58)

Consistency of the IV estimate with noisy scheduling
parameters

To demonstrate that the IV estimate (4.58) converges to the true
minimiser of (4.47) when N → ∞ we first write:
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ρ̂
N
IV =

[

1

N
(X + Xvσ

1 + N1)
T (X + Xvσ

2 + N2)

]−1

1

N
(X + Xvσ

1 + N1)
Tyd

=

[

1

N

(

XTX + XTXvσ

2 + XT N2 + [Xvσ

1 ]TX + [Xvσ

1 ]T Xvσ

2

+ [Xvσ

1 ]T N2 + NT
1 X + NT

1 Xvσ

2 + NT
1 N2

)

]−1

1

N

(

X + Xvσ

1 + N1

)T
yd. (4.59)

For ρ̂N
IV to converge to ρN

LMS we require 1
N (XT Xvσ

2 + XTN2 +
[Xvσ

1 ]TX+ [Xvσ

1 ]T Xvσ

2 + [Xvσ

1 ]TN2 +NT
1 X+NT

1 Xvσ

2 +NT
1 N2) and

1
N (Xvσ

1 + N1)
T yd to converge to zero as N → ∞. In a similar

analysis to that previously presented in Subsection 4.4.2 this can be
shown to be the case under the assumptions that the noise affecting
the scheduling parameter is not correlated with that affecting the
output and that the scheduling parameter’s dependence is affine.

4.5 Simulation results

Simulations are used to demonstrate the effectiveness of the proposed
methods.

Example 1

The first method, presented in Section 4.3, is applied to a system
represented by the following transfer operator:

G(σ(t), q−1) =
1

a0(σ(t)) + a1(σ(t))q−1 + a2(σ(t))q−2
(4.60)

where
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a0(σ(t)) = 1 − 0.2σ(t) + 0.7σ2(t),

a1(σ(t)) = 1 − 0.5σ(t) + 0.2σ2(t)

and a2(σ(t)) = 1 − 0.7σ(t) − 0.1σ2(t).

The precompensator satisfying Condition (4.3) and giving perfect
mean tracking can be represented exactly using the parameterisation
proposed and thus the first method can be employed to find the
correct parameters; they being:

ρ0 = [1,−0.2, 0.7, 1,−0.5, 0.2, 1,−0.7,−0.1]T . (4.61)

The desired output yd(t) is a pseudo random binary signal (PRBS)
with an amplitude of 1 and a shift register length of 12, giving N =
4095. The noise transfer operator is given by H(σ(t)) = 1−G(σ(t)).
Its input η(t) is taken as a zero-mean, normally distributed, station-
ary random sequence with a variance of 0.015. The scheduling pa-
rameter is chosen as σ(t) = 0.5 + 0.4 sin

(

2πt
3

)

. This choice of σ(t)
satisfies the persistency of excitation conditions in [5] as it visits
(nσ + 1) distinct points periodically. The n(t) resulting from these
choices has an average standard deviation of 0.1287, where the aver-
age standard deviation is calculated as ( 1

N

∑N−1
t=0 Ê{n2(t)})1/2. The

estimated expected value Ê is evaluated using the ensemble average
over 200 simulations, each with a new, independent noise realisation.

Both the least squares and IV variants of the first method are
tested. The orders corresponding to the precompensator satisfying
(4.3) are used i.e. nβ = 2 and nσ = 2. The mean square parametric
distance between the true and estimated parameters is presented in
Table 4.1, along with the mean square tracking error achieved in the
absence of noise using the calculated precompensators.

It can be seen that, due to its reduced sensitivity to the stochas-
tic disturbances, the IV method gives better estimates of the true
parameters and thus produces precompensators that give better av-
erage tracking performance.
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Ê
˘

(ρ0 − ρ
N )T (ρ0 − ρ

N )
¯

Ê

(

1

N

N−1
X

t=0

e
2(t)

)

mLS 0.0457 0.00102

mIV 0.0123 0.00009

Table 4.1. Results for Example 1

Example 2

A second example is carried out to test the effect of noisy schedul-
ing parameter measurements on the precompensator parameters es-
timated using the first method.

The system used in this simulation is given by:

G(σ(t), q−1) =
1

a0(σ(t)) + a1(σ(t))q−1
(4.62)

where

a0(σ(t)) = 1 − 0.2σ(t) and a1(σ(t)) = 1 − 0.5σ(t).

This system is chosen because its coefficients depend affinely on the
scheduling parameter. As discussed in Subsection 4.3.3, it is not pos-
sible to obtain consistent estimates when the scheduling parameter
measurements are noisy if the dependency is not affine. The desired
output yd(t) is the same signal as that used in Simulation 1. The
true scheduling parameter is given by σ(t) = 0.5+0.4 cos(πt), which
satisfies the persistency of excitation conditions in [5]. The noise
vσ(t) contaminating the measurements of the scheduling parameter
signal is a zero-mean, normally distributed, stationary random se-
quence with a variance of 0.01. The disturbance n(t) affecting the
output is set to zero in order to better emphasise the effect of the
scheduling parameter noise. Both the least squares and IV variants
of the first method are tested. This time the IV vector uses σ(t)
measured during the second experiment. The values nβ = 1 and
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nσ = 1 are used as they correspond to the precompensator giving
perfect mean tracking whose parameters are:

ρ0 = [1,−0.2, 1,−0.5]T . (4.63)

The results are shown in Table 4.2. Again, the expected value is
estimated using the ensemble average over 200 simulations.

Ê
˘

(ρ0 − ρ
N)T (ρ0 − ρ

N)
¯

Ê

(

1

N

N−1
X

t=0

e
2(t)

)

mLS 0.00207 0.00113

mIV 0.00002 0.00002

Table 4.2. Results for Example 2

It is clearly evident that the IV variant gives superior parameter
estimates over the LS method. In turn this leads to much better
tracking performance.

Example 3

A third example is performed to see how the methods behave when
Condition (4.3) cannot be satisfied using the parameterisation pro-
posed. The system used in this simulation is given by:

G(σ(t), q−1) =
b0(σ(t)) + b1(σ(t))q−1

a0(σ(t)) + a1(σ(t))q−1
(4.64)

where

b0(σ(t)) = 0.5 − 0.4σ(t), b1(σ(t)) = 0.2 − 0.3σ(t)

a0(σ(t)) = 1 − 0.2σ(t), a1(σ(t)) = 1 − 0.5σ(t). (4.65)
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The desired output yd(t) and scheduling parameter σ(t) are the
same signals as those used in Simulation 2. The values nβ = 1 and
nσ = 1 are chosen.

A simulation is first carried out without any disturbances to test
the methods. Since it is not possible to satisfy Condition (4.3) with
the finite order precompensator used, the first method is not theo-
retically applicable. It is tested, nonetheless, to see how it performs.
The results are shown in Table 4.3. As the parameters corresponding
to the ideal precompensator do not exist in this case, the distance
between those minimising the LMS criterion, calculated using (4.48),
and those estimated is shown instead. The IV methods are not tested
because in the absence of stochastic disturbances they give the same
values.

(ρN
LMS − ρ

N )T (ρN
LMS − ρ

N )
1

N

N−1
X

t=0

e
2(t)

Without precomp. − 0.753

mLS 10.802 1.857

LMS 0 0.325

Table 4.3. Results for Example 3 in the absence of disturbances

From Table 4.3 it can be observed that, as expected, the precom-
pensator calculated with the general method, presented in Section
4.4, gives a smaller tracking error. Furthermore the first method
does not find the parameters that minimise the LMS criterion and
actually estimates parameters that produce a larger tracking error
than that obtained without a precompensator, clearly illustrating
the need for the general method.

The general method is then tested in the presence of disturbances.
The noise transfer operator is, again, given by H(σ(t)) = 1−G(σ(t))
and η(t) is a zero-mean, normally distributed random sequence with
a variance of 0.015. The average standard deviation of n(t) this time
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is 0.1063. The simulations are again carried out 200 times. The
results are shown in Table 4.4.

Ê
˘

(ρN
LMS − ρ̂

N )T (ρN
LMS − ρ̂

N)
¯

Ê

(

1

N

N−1
X

t=0

e
2(t)

)

LMS 35.0564 0.642

IV 7.9891 0.400

Table 4.4. Results for Example 3 in the presence of disturbances

We see that the presence of the stochastic disturbances causes a
large bias in the parameter estimates found using the LMS technique.
This bias, in turn, greatly deteriorates the tracking performance ob-
tained. The IV technique, however, is less sensitive to the presence
of the disturbances and the parameters calculated are much closer to
the true minimising parameters. In turn, an average tracking error
that is much closer to the value found in the absence of disturbances
is obtained.

4.6 Conclusions

Direct data-driven tuning methods of precompensators for LPV sys-
tems have been developed in this chapter.

Two techniques have been proposed. The first one, applicable
when the precompensator and the system commute, only requires
two experiments in order to obtain consistent estimates of the pa-
rameters that give perfect mean tracking. The second one, which
does not require that the precompensator and the system commute,
uses a number of experiments equal to twice the number of prec-
ompensator parameters. It is demonstrated that the computed pa-
rameters converge to those minimising the mean squared tracking
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error in the presence of noise. The methods’s effectiveness has been
demonstrated in simulation.

The main benefit of the first method over the second method is
clearly the reduced number of experiments required. However, it is
only applicable to the reduced class of systems that commute with
the precompensator. The second method is more general as does not
have this condition and thus is more practically applicable. The use
of sufficiently long data lengths is, however, important in order to
keep the variance of the parameter estimates small.

The second method is, in fact, applicable to a more general sys-
tem class than LPV systems, that of stable, nonlinear systems whose
input space is extended by a scheduling parameter. The noise filter
must, however, remain linear in order for the consistency of the es-
timates to be demonstrable.
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Appendix

4.A Input weighting

As discussed for the LTI precompensator tuning case, in practice
it may be of interest to be able to weight an input in the system
in order to stop it becoming too large when the precompensator is
used. Similarly to the LTI case, we have that in general the input
concerned can be described as:

uW (t) = U(σ(t))u(t) + Hu(σ(t))n(t)

= U(σ(t))u(t) + nu(t). (4.66)

It is possible to affect the magnitude of uW (t) by including a
weighting term on it in the cost function:

JN
LMS(ρ) =

1

2N

[

E
{

eT (ρ)Wee(ρ)
}

+ E
{

uT
W (ρ)WuuW (ρ)

}]

,

(4.67)
where We and Wu are positive- and positive-semidefinite weighting
matrices, respectively, and uW is defined similarly to e in (4.45).

Additionally, similarly to (4.42), we can write:

uW (t) = U(σ(t))φT (t)ρ + nu(t)

= xT
u (t)ρ + nu(t). (4.68)

Therefore we have:

uW (ρ) =











xT
u (0)

xT
u (1)
...

xT
u (N − 1)











ρ + nu

= Xuρ + nu. (4.69)

The minimiser of (4.67) is thus:
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ρN
LMS =

[

1

N
(XTWeX + XT

u WuXu)

]−1
1

N
XT yd. (4.70)

In the same way that X is not known exactly, neither is Xu, but
an estimate X̂u can be obtained using the same experiments used to
estimate X. This time not only the system output y(t) should be
measured during the experiments but also the input to be weighted
uW (t). Because this input can also be affected by noise, it is neces-
sary to use measurements from two experiments again and use the
IV estimate:

ρ̂N
IV =

[

1

N
(X̂T

1 WeX̂2 + X̂T
u1WuX̂u2)

]−1
1

N
X̂T

1 yd. (4.71)

It should be noted that input weighting cannot be considered
for the method in Section 4.3 where the exact system inverse exists
in the precompensator parameterisation. This is because there the
aim is to identify the precompensator that satisfies Condition (4.3)
exactly. This would not be possible if a trade-off is made with the
reduction of the input signal amplitude.





5

ILC for LTI systems – A statistical

analysis of certain ILC algorithms

5.1 Introduction

In the previous two chapters data-driven precompensator tuning has
been considered for LTI and LPV systems in order to improve the
system’s tracking performance for general movements. In the next
three chapters ILC is considered to improve the system’s tracking for
the specific case where the movement is repetitive.

The aim of this chapter is to compare a number of different exist-
ing ILC algorithms for LTI systems, firstly by a statistical analysis,
then in simulation and finally by their application to the LPMSM.
A recursive formulation for the controlled error is used to develop
a new transfer function relationship in the iteration domain. This
formulation allows novel expressions for both the mean and variance
of the error for each algorithm to be developed.

In [18] analytical expressions for the covariance matrix of the con-
trolled error have been developed for high order ILC algorithms with
load and measurement disturbances separately. These expressions
together are similar to the complete variance expression derived in
this chapter, though here transfer operators are used instead of ma-
trix operators allowing certain insightful frequency-domain expres-
sions to be derived. The contributions differ, also, as here a different
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analysis is made including expressions for the mean controlled error
and analytical and experimental comparisons of specific algorithms
are given.

The algorithms that are compared are:

1. A deterministic algorithm e.g. [4].
2. An algorithm with a forgetting factor e.g. [3, 22].
3. An algorithm with an iteration decreasing gain e.g. [46, 56].
4. A filtered algorithm e.g. [44].

The chapter is organised as follows. In Section 5.2 the ILC
problem is formulated and an insight is given into how stochastic,
iteration-varying disturbances affect the error convergence. Addi-
tionally, the assumptions used during the analysis are given. In
Section 5.3 expressions for the mean and variance of the error are
developed. In Section 5.4 the expressions are used to analyse the dif-
ferent ILC algorithms. Section 5.5 tests the algorithms in simulation.
They are then applied experimentally to the LPMSM in Section 5.6.
Finally in Section 5.7 the chapter conclusions are made.

5.2 Problem formulation

In this chapter we consider repetitive processes. The signals are now,
therefore, indexed by the repetition number k i.e. the controlled
output at repetition k is given by:

z(t, k) = G(q−1)u(t, k) + d(t, k), (5.1)

and the measured output by:

y(t, k) = z(t, k) + n(t, k). (5.2)

A general form of an ILC command is given by:

u(t, k + 1) = Q(q−1)
(

u(t, k) + qmL(q−1)e(t, k)
)

(5.3)
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where Q(q−1) and L(q−1) are linear, discrete, and possibly non-
causal, filters, m is the relative degree of G(q−1) and the measured
error signal is given by:

e(t, k) = yd(t) − y(t, k). (5.4)

The desired output yd(t) is now defined over the finite repetition
duration for t = 0, . . . , N −1. The controlled error signal is given as:

ǫ(t, k) = yd(t) − z(t, k). (5.5)

By combining equations (5.1) - (5.5), a recursive expression for the
controlled error evolution equation is found as:

ǫ(t, k + 1) = G(q−1)Q(q−1)[1 − qmL(q−1)G(q−1)]G−1(q−1)ǫ(t, k)

+ [1 − G(q−1)Q(q−1)G−1(q−1)]yd(t)

+ G(q−1)Q(q−1)G−1(q−1)d(t, k) − d(t, k + 1)

+ G(q−1)Q(q−1)qmL(q−1)n(t, k). (5.6)

It should be noted that in the finite-time setting, causal and non-
causal operators do not commute in general. If, however, Q(q−1)
and L(q−1) are causal or N is sufficiently large that the effects of
finite time are negligible then (5.6) simplifies to:

ǫ(t, k+1) = Q(q−1)[1−G(q−1)qmL(q−1)]ǫ(t, k)+[1−Q(q−1)]yd(t)

+ Q(q−1)d(t, k) − d(t, k + 1)

+ G(q−1)Q(q−1)qmL(q−1)n(t, k). (5.7)

It is clear from this expression that, even if qmL(q−1) is chosen
such that qmL(q−1) = G−1(q−1), the presence of iteration-varying
disturbances and/or the use of a filter Q(q−1) 6= 1 mean that a steady
converged error value equal to zero is not achievable.

In the absence of disturbances it can be seen that the quickest
convergence of the error can be achieved by taking:



86 5 ILC for LTI systems – A statistical analysis

qmL(q−1) = G−1(q−1). (5.8)

Finding even a good approximation of G−1(q−1) is a laborious task,
however, and identifying G−1(q−1) exactly is impossible. A fre-
quently encountered, sufficient condition for monotonic convergence
of the 2-norm of the error between iterations, when Q(q−1)[1 −
G(q−1)qmL(q−1)] is stable and causal, is the following, see e.g. [45]:

sup
ω∈[0,π]

∣

∣Q(e−jω)
(

1 − G(e−jω)ejmωL(e−jω)
)∣

∣ < 1. (5.9)

It should be noted that, when the repetition length is long enough
that N = ∞ can be assumed, this condition also assures mono-
tonic convergence of the 2-norm of the controlled error if Q(q−1)[1−
G(q−1)qmL(q−1)] is stable and non-causal. This fact can be seen
using Parseval’s theorem.

Often qmL(q−1) is chosen to satisfy condition (5.9) and can be
expressed generally as:

qmL(q−1) = Ĝ−1(q−1)

=
(

1 + ∆(q−1)
)

G−1(q−1), (5.10)

where Ĝ(q−1) is a model of the system and ∆(q−1) represents the
multiplicative uncertainty due to the unmodelled dynamics i.e.

G(q−1) = [1 + ∆(q−1)]Ĝ(q−1). (5.11)

It should be noted that the direct use of the model inverse is only
one choice for qmL(q−1) from a number of approaches proposed in
the literature. It will be used in this chapter, however, because many
of these other choices can be seen as approximations to the inverse
model, each with their own associated ∆(q−1). Moreover it can be
obtained using the method presented in Chapter 3 since the precom-
pensator is an approximation of the inverse system.

In [39] a forward-shift iteration-domain operator, w, is defined.
It has the property:
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v(t, k + 1) = wv(t, k) (5.12)

where v(t) is an arbitrary variable. Using this operator it is possible
to rewrite equation (5.7) as:

ǫ(t, k) =
1

w − Q(q−1)[1 − G(q−1)qmL(q−1)]

(

[1 − Q(q−1)]yd(t)

+ [Q(q−1) − w]d(t, k) + G(q−1)Q(q−1)qmL(q−1)n(t, k)
)

. (5.13)

This expression will be used later to analyse the effect of distur-
bances.

5.2.1 Assumptions

In order to make a detailed analysis of the effect of the disturbances
on ILC algorithms, it is necessary to first make some assumptions
about the nature of the disturbances. In general the load and mea-
surement disturbances can be either iteration repetitive or iteration-
varying. Repetitive disturbances will be learnt, in a similar way to
the desired output, and thus will not be considered here. The fol-
lowing assumptions are thus made:

A5.1: d(t, k) and n(t, k) are zero-mean, weakly stationary random
sequences, which are uncorrelated between iterations and have
variances equal to σ2

d and σ2
n respectively i.e.

E{d(t, k)} = 0, E{n(t, k)} = 0,

E{d(t, k)d(t, k + r)} =

{

σ2
d r = 0

0 otherwise
(5.14)

E{n(t, k)n(t, k + r)} =

{

σ2
n r = 0

0 otherwise
(5.15)

and
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E{d(t, k)n(t, k + r)} =

{

rdn(0) r = 0
0 otherwise,

(5.16)

where r is a lag.
A5.2: d(t, k) and n(t, k) are assumed to be uncorrelated with the

system input u(t, k) i.e.

E{u(t, k)d(t + r, k)} = 0 ∀r, (5.17)

E{u(t, k)n(t + r, k)} = 0 ∀r. (5.18)

A5.3: Q(q−1) and G(q−1)Q(q−1)qmL(q−1) are stable and condition
(5.9) is satisfied.

5.3 Mean and variance expressions

It is desirable to calculate the statistical properties of an ILC algo-
rithm in order to see how the presence of noise affects the achievable
error. To this end, expressions for the mean and variance of the
controlled error are given below.

Theorem 5.1 For the system described by equations (5.1)-(5.2) us-
ing the ILC algorithm (5.3), and respecting Assumptions (A5.1)-
(A5.3), the converged mean controlled error signal is:

lim
k→∞

E{ǫ(t, k)} =
[1 − Q(q−1)]

1 − Q(q−1)[1 − G(q−1)qmL(q−1)]
yd(t). (5.19)

Proof: From equation (5.13) we have:

E{ǫ(t, k)} =
1

w − Q(q−1)[1 − G(q−1)qmL(q−1)]

(

[1 − Q(q−1)]E{yd(t)}

+ [Q(q−1) − w]E{d(t, k)}
+ G(q−1)Q(q−1)qmL(q−1)E{n(t, k)}

)

=
[1 − Q(q−1)]

w − Q(q−1)[1 − G(q−1)qmL(q−1)]
yd(t). (5.20)
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The z-transform of equation (5.20) in the iteration domain gives:

Z{E{ǫ(t, k)}} =
[1 − Q(q−1)]

z − Q(q−1)[1 − G(q−1)qmL(q−1)]
· yd(t)z

z − 1
(5.21)

where yd(t), being constant from one iteration to the next, acts as a
step input at iteration k = 0. In order to find the value of the error
signal as the iteration number tends to infinity it is possible to use
the standard Final Value Theorem for discrete-time systems, since
Assumption (A5.3) implies that the system’s poles in the iteration
domain are within the unit circle. This gives:

lim
k→∞

E{ǫ(t, k)} = lim
z→1

(z − 1)[1 − Q(q−1)]

z − Q(q−1)[1 − G(q−1)qmL(q−1)]
· yd(t)z

z − 1

=
[1 − Q(q−1)]

1 − Q(q−1)[1 − G(q−1)qmL(q−1)]
yd(t),

which is the expression in Theorem 5.1.

Theorem 5.2 For the system described by equations (5.1)-(5.2) us-
ing the ILC algorithm (5.3), and respecting Assumptions (A5.1)-
(A5.3), the variance of the controlled error signal at iteration k + 1
is:

E{ǫ̃2(t, k + 1)} = E{[I(q−1)ǫ̃(t, k)]2} + E{[Q(q−1)d(t, k)]2}
+ E{d2(t, k + 1)} + E{[G(q−1)Q(q−1)qmL(q−1)n(t, k)]2}

− 2E{[I(q−1)d(t, k)][Q(q−1)d(t, k)]}
− 2E{[I(q−1)d(t, k)][G(q−1)Q(q−1)qmL(q−1)n(t, k)]}

+ 2E{[Q(q−1)d(t, k)][G(q−1)Q(q−1)qmL(q−1)n(t, k)]}, (5.22)

where I(q−1) = Q(q−1)[1 − G(q−1)qmL(q−1)].

Proof: The variance of the controlled error at iteration k is defined
as:
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E{ǫ̃2(t, k)} = E{[ǫ(t, k) − E{ǫ(t, k)}]2}. (5.23)

Using equations (5.13) and (5.20) we find:

ǫ̃(t, k) =
[Q(q−1) − w]d(t, k) + G(q−1)Q(q−1)qmL(q−1)n(t, k)

w − I(q−1)
.

(5.24)
Expanding equation (5.24) into its recursive form in the iteration
domain gives:

ǫ̃(t, k + 1) = Iǫ̃(t, k) + Qd(t, k) − d(t, k + 1) + GQLmn(t, k), (5.25)

where q−1 has been omitted to simplify the presentation and
Lm(q−1) = qmL(q−1). Taking the square of equation (5.25) gives:

ǫ̃2(t, k+1) = [Iǫ̃(t, k)]
2
+[Qd(t, k)]

2
+d2(t, k+1)+[GQLmn(t, k)]

2

+ 2
[

[Iǫ̃(t, k)][Qd(t, k)] − d(t, k + 1)[Iǫ̃(t, k)]

+ [Iǫ̃(t, k)][GQLmn(t, k)] − d(t, k + 1)[Qd(t, k)]

+ [Qd(t, k)][GQLmn(t, k)] − d(t, k + 1)[GQLmn(t, k)]
]

, (5.26)

which on applying the expectation operator leads to:

E{ǫ̃2(t, k + 1)} = E{[Iǫ̃(t, k)]2}+ E{[Qd(t, k)]2}+ E{d2(t, k + 1)}
+ E{[GQLmn(t, k)]2} + 2

[

E{[Iǫ̃(t, k)][Qd(t, k)]}
+ E{[Iǫ̃(t, k)][GQLmn(t, k)]} + E{[Qd(t, k)][GQLmn(t, k)]}

]

,
(5.27)

where certain cross terms are lost as they are uncorrelated.
The other cross terms can be further evaluated. For example,
E{[Iǫ̃(t, k)][Qd(t, k)]} can be found by filtering equation (5.25), eval-
uated at iteration k, by I(q−1) and then multiplying by Q(q−1)d(t, k)
and taking the expected value, this gives:

E{[Iǫ̃(t, k)][Qd(t, k)]} = E{[I2ǫ̃(t, k − 1)][Qd(t, k)]}
+E{[IQd(t, k − 1)][Qd(t, k)]} − E{[Id(t, k)][Qd(t, k)]}

+ E{[IGQLmn(t, k − 1)][Qd(t, k)]}
= −E{[Id(t, k)][Qd(t, k)]}. (5.28)
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Similar manipulations give:

E{[Iǫ̃(t, k)][GQLmn(t, k)]} = −E{[Id(t, k)][GQLmn(t, k)]}. (5.29)

Substituting these results into equation (5.27) gives the expression
in Theorem 5.2.

Remarks:

1. It is clear from Theorem 5.1, as remarked earlier, that the use of
a filter Q(q−1) 6= 1 does not allow a zero-mean controlled error
value to be reached.

2. Using the fact that the variance can be expressed as:

E{ǫ̃2(t, k)} = E{ǫ2(t, k)} − E{ǫ(t, k)}2, (5.30)

we get that:

E{ǫ2(t, k)} = E{ǫ̃2(t, k)} + E{ǫ(t, k)}2. (5.31)

The RMS value of the controlled error is then defined as:
√

√

√

√E

{

1

N

N−1
∑

t=0

ǫ2(t, k)

}

=

√

√

√

√

1

N

N−1
∑

t=0

[E{ǫ̃2(t, k)} + E{ǫ(t, k)}2].

(5.32)
This illustrates that a small RMS value is only achievable when
both the variance and the expected value of the controlled er-
ror are small, thus motivating the need for an analysis of these
quantities.

5.4 Analysis of the algorithms

In this section the different algorithms are analysed using the expres-
sions developed in the previous section. Throughout the section the
assumption of perfect system knowledge is made because, for this
case, the expressions can be intuitively interpreted. Expressions for
the general case are given in the chapter’s appendix.
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5.4.1 A deterministic algorithm

In the standard case, where the ILC law is designed without con-
sideration for stochastic disturbances, we have Q(q−1) = 1 and
qmL(q−1) = G−1(q−1). With these choices Theorem 5.1 gives:

lim
k→∞

E{ǫ(t, k)} = 0. (5.33)

The mean error, therefore, eventually converges to 0, as desired.
However, Theorem 5.2 gives the variance of the error signal as:

E{ǫ̃2(t, k + 1)} = E
{

d2(t, k)
}

+ E
{

d2(t, k + 1)
}

+ E{n2(t, k)} + 2E{d(t, k)n(t, k)}
= 2σ2

d + σ2
n + 2rdn(0), (5.34)

where σ2
d is the variance of both d(t, k) and d(t, k + 1) due to the

stationarity assumption made on d(t, k). In general rdn(0) can be
positive or negative so it is difficult to comment on it. However,
in the case that d(t, k) and n(t, k) are uncorrelated, the variance
of the error can be seen to be the sum of twice the variance of the
load disturbance and the variance of the measurement disturbance.
The fact that the load disturbance’s variance is doubled corresponds
to results found in [56] and [14], though in both only a single
perturbation source is considered. It demonstrates how the presence
of non-repetitive disturbances can be particularly detrimental to
the tracking performance achievable using ILC as they are fed back
from the previous iteration.

Remark: If, instead of taking qmL(q−1) as above, it is taken as
qmL(q−1) = κG−1(q−1) with 0 < κ < 1, and Q(q−1) = 1 still, the
mean error converges to zero in the limit but the variance of the error
is now:

E{ǫ̃2(t, k + 1)} = (1 − κ)2E{ǫ̃2(t, k)} − (1 − 2κ)E{d2(t, k)}
+ E{d2(t, k + 1)} + κ2E{n2(t, k)} + 2κ2rdn(0). (5.35)
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Since (1 − κ)2 < 1,

lim
k→∞

E{ǫ̃2(t, k + 1)} = E{ǫ̃2(t, k)} = E{ǫ̃2(t,∞)}, (5.36)

where

E{ǫ̃2(t,∞)} =
2

(2 − κ)
σ2

d +
κ

(2 − κ)
σ2

n +
2κ

(2 − κ)
rnd(0). (5.37)

So, considering the case where d(t, k) and n(t, k) are uncorrelated,
the limit variance of the error can be reduced compared to that of
the standard case when κ = 1. This reduction in the error vari-
ance entails, nonetheless, a reduction in the rate of convergence of
the deterministic error and thus a compromise must be made. The
expression for the component of the error variance due to the load
disturbances is in agreement with an expression found in Section 6.2
of [18].

5.4.2 An algorithm with a forgetting factor

An ILC law with a forgetting factor is given by:

u(t, k + 1) = (1 − α)u(t, k) + qmL′(q−1)e(t, k), (5.38)

where 0 ≤ α < 1 is the forgetting factor. The objective of intro-
ducing the forgetting factor is to increase the learning algorithm’s
robustness to initialisation errors, fluctuations of the dynamics and
random disturbances. The reasoning behind this is that when con-
sidering the input at the k’th iteration the previous inputs will be
multiplied by (1 − α)k. Thus when α is chosen such that 1 − α < 1
their influence on the current input should be diminished, and so
will that of the disturbances from previous iterations that are fed
back in the inputs. The law (5.38) will now be investigated using the
framework presented above.

By comparing the ILC laws (5.3) and (5.38), it is possible to see

that Q(q−1) = 1 − α and qmL(q−1) = qmL′(q−1)
1−α . If qmL′(q−1) =

G−1(q−1) is taken, Theorem 5.1 gives:
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lim
k→∞

E{ǫ(t, k)} =
α

α + 1
yd(t). (5.39)

So when α 6= 0 the mean error cannot converge to zero. Examining
the variance, Theorem 5.2 gives:

E{ǫ̃2(t, k + 1)} =α2E{ǫ̃2(t, k)} + (1 − α)2E{d2(t, k)}
+ E{d2(t, k + 1)} + E{n2(t, k)}
+ 2α(1 − α)E{d2(t, k)} + 2αE{d(t, k)n(t, k)}
+ 2(1 − α)E{d(t, k)n(t, k)}, (5.40)

which in the limit k → ∞ reduces to:

E{ǫ̃2(t,∞)} = σ2
d +

1

1 − α2
(σ2

d + σ2
n + 2rdn(0)). (5.41)

Thus, for the case that d(t, k) and n(t, k) are uncorrelated, the for-
getting factor that minimises the limit variance of the error can be
seen to be α = 0 i.e. no forgetting factor should be used, giving
the deterministic algorithm. This result is similar to a result found
in [50], which uses a different analysis framework but concludes that
the optimal forgetting matrix is zero when the trace of the input
error covariance matrix is to be minimised.

It is interesting to note that if qmL(q−1) = qmL′(q−1) =
G−1(q−1) is used instead and Q(q−1) is as before, i.e. the forgetting
factor affects the entire algorithm, a different conclusion is reached.
In this case Theorem 5.1 gives:

lim
k→∞

E{ǫ(t, k)} = αyd(t). (5.42)

So again we see that in order to minimise limk→∞ E{ǫ(t, k)} the
optimal α is α = 0. But Theorem 5.2 gives:

E{ǫ̃2(t, k + 1)} = E
{

d2(t, k + 1)
}

+ (1 − α)2
(

E
{

d2(t, k)
}

+ E
{

n2(t, k)
})

= σ2
d + (1 − α)2

(

σ2
d + σ2

n + 2rdn(0)
)

. (5.43)
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This time the optimal value of α to minimise the variance of the
error, when the d(t, k) and n(t, k) are uncorrelated, is α = 1 and
leads to E{ǫ̃2(t, k+1)} = σ2

d. This value makes sense as it means that
the previous input is not fed back at all so only the load disturbance
during the current iteration affects the error. A compromise therefore
needs to be made between minimising the variance of the error and
keeping its converged, mean value small.

5.4.3 An algorithm with an iteration decreasing gain

An ILC command with an iteration decreasing learning gain has the
form:

u(t, k + 1) = u(t, k) +
qmL′(q−1)

k + 1
e(t, k). (5.44)

With this law Q(q−1) = 1 and qmL(q−1) = qmL′(q−1)
k+1 and Theorem

5.1 gives:
lim

k→∞
E{ǫ(t, k)} = 0, (5.45)

and Theorem 5.2, with qmL′(q−1) = G−1(q−1), gives:

E{ǫ̃2(t, k + 1)} =
1

k + 1

(

σ2
n + rdn(0)

)

+
1 + 2/k

1 + 1/k
σ2

d. (5.46)

In the limit (5.46) gives:

lim
k→∞

E{ǫ̃2(t, k + 1)} = σ2
d. (5.47)

Results (5.45) and (5.47) show that, when a decreasing learning gain
is used, the mean error converges to zero and the variance of the error
converges to just that of the load disturbance. This performance is
the best that can be achieved. The disadvantage of this algorithm
is that the error contraction rate reduces with iteration number and
eventually the learning practically stops so it cannot react to slow
changes in the desired output or the repetitive disturbances affecting
the system.
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5.4.4 A filtered algorithm

A filtered ILC law is that given by the general form (5.3):

u(t, k + 1) = Q(q−1)[u(t, k) + qmL(q−1)e(t, k)],

where Q(q−1) is the filter referred to. When qmL(q−1) = G−1(q−1)
is used, Theorem 5.1 gives:

lim
k→∞

E{ǫ(t, k)} = [1 − Q(q−1)]yd(t). (5.48)

Since ILC is defined over a finite time duration, N , the infinite-time
Fourier transform cannot be applied in order to work in the frequency
domain. However, when N is large compared to the settling time
of G(q−1), the finite-time Fourier transform can be used to make
a reasonably accurate frequency-domain analysis. The magnitude
response of the Fourier transform of equation (5.48) is:

∣

∣

∣

∣

F
{

lim
k→∞

E{ǫ(t, k)}
}∣

∣

∣

∣

2

= |1 − Q(e−jω)|2Φyd
(ω).

It is clear that in order to converge to a zero-mean error it is necessary
to use a filter that has a magnitude of 1 and zero phase shift at
frequencies where Φyd

(ω) is non-zero.
Now considering the error variance, Theorem 5.2 gives:

E{ǫ̃2(t, k+1)} = σ2
d +E

{

[Q(q−1)d(t, k)]2
}

+E
{

[Q(q−1)n(t, k)]2
}

+ 2E{[Q(q−1)d(t, k)][Q(q−1)n(t, k)]}. (5.49)

Since d(t, k) and n(t, k) are stationary so is ǫ(t, k + 1), therefore,
(5.49) can also be expressed as:

E{ǫ̃2(t, k + 1)} = σ2
d +

1

2π

∫ π

−π

|Q(e−jω)|2[Φd(ω) + Φn(ω)

+ 2Φnd(ω)]dω. (5.50)
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When Φnd(ω) = 0, it is possible to see that the variance of the
error can be reduced below that obtained using the deterministic
algorithm by choosing Q(q−1) to have a magnitude of less than one
at frequencies where the disturbance power spectra are large.

A compromise, therefore, needs to be made again, between fil-
tering in order to reduce the error variance, but not filtering at fre-
quencies important to yd(t) so as to allow a reasonable converged
mean error to be achieved. Fortunately low-frequency signals are of-
ten used for yd(t), whilst Φd(ω) and Φn(ω) tend to be large at high
frequencies. This means that the minimisation of the converged error
and the error variance are usually not conflicting aims, and Q(q−1)
can be taken as a low-pass filter with a sensibly chosen cut-off fre-
quency.

5.5 Simulation results

A simulation is carried out to illustrate the theoretical results. The
real, continuous-time system, Gc(s), and its identified model, Ĝc(s),
are:

Gc(s) =
20

(s + 1)(s + 20)
and Ĝc(s) =

1

(s + 1)
. (5.51)

Gc(s) and Ĝc(s) are discretised using a sampling period of h = 0.1s
and a zero-order hold to give the discrete-time systems G(q−1) and
Ĝ(q−1) respectively. yd(t) is defined by:

yd(t) =

{

1 − cos(0.1πt) 0 ≤ t ≤ 20s
0 20.1 ≤ t ≤ 30s

(5.52)

Using this yd(t) and the specified sampling period give N = 301.
The load disturbance, d(t, k), is taken as a zero-mean, normally
distributed, random sequence with σ2

d = 0.052. The measurement
disturbance, n(t, k), is taken as a zero-mean, normally distributed,
random sequence with variance equal to 0.052 filtered by a 5th order
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Butterworth high-pass filter with a cut-off frequency of 2Hz, to simu-
late high frequency measurement noise. It has an estimated variance
of 0.03872. The different algorithms analysed in the previous section
are tested. 10 iterations are carried out for each algorithm and, in
order to obtain an estimate of the mean and variance of the error at
a specific time, each simulation is repeated 200 times. The expected
value and variance at t = 15s, and the RMS value are estimated for
the error at k = 10 for the 200 simulations. The iteration number is
chosen to allow the algorithm to have converged to a point where the
errors due to the disturbances are dominant over the deterministic
errors. The time t = 15s is chosen arbitrarily. Although the dis-
turbances affecting the system are different for the 200 simulations,
the same disturbance signals are used for each of the different algo-
rithms. This means a direct comparison can be made of how each
algorithm performs in the presence of the same disturbances.

Table 5.1 shows the simulation results for the different algorithms.
Certain clarifications are perhaps necessary. The algorithm with the
forgetting factor is tested using different values for the forgetting fac-
tor. Additionally, the different ways of implementing the forgetting
factor are tested, firstly when the factor only affects the previous

input i.e. qmL(q−1) = qmL′(q−1)
1−α , and secondly when it affects the

entire algorithm i.e. qmL(q−1) = qmL′(q−1). Two versions of the
filtered algorithm are tested, a causal and a non-causal one. The
non-causal version can be justified by making the assumption that
the repetition length is sufficiently long that the effects of finite time
are negligible. Both versions use a 5th order Butterworth low-pass
filter with a cut-off frequency of 0.3Hz for Q(q−1). The filter’s cut-
off frequency is chosen to be above that of the highest frequency
component of yd(t), which is at 0.05Hz. The non-causal version is
implemented by first filtering the ILC command normally, then fil-
tering the result in reverse-time, before flipping the new result so
that it is in forward-time again. These operations mean the filtered
signal has zero phase change compared to the initial signal.
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Algorithm
˛

˛

˛
Ê{ǫ(15, 10)}

˛

˛

˛
Ê{ǫ̃2(15, 10)}

v

u

u

tÊ

(

1

N

N−1
X

t=0

ǫ2(t, 10)

)

Deterministic 0.0065 0.0050 0.0683

Forgetting factor
(α = 0.1)

L = L′

1−α
0.0987 0.0048 0.1124

L = L′ 0.1081 0.0044 0.1184

Forgetting factor
(α = 0.5)

L = L′

1−α
0.3474 0.0048 0.3395

L = L′ 0.5177 0.0032 0.5018

Forgetting factor
(α = 0.9)

L = L′

1−α
0.8184 0.0071 0.6461

L = L′ 0.9317 0.0027 0.8996

Decreasing gain 0.0266 0.0030 0.0557

Low-pass filter
- Causal 0.5113 0.0029 0.3141

- Noncausal 0.0045 0.0027 0.0513

Table 5.1. Estimated mean and variance of ǫ(15, 10) and the RMS values
of ǫ(t, 10) found over 200 simulations

From the table the compromise between minimising the variance
of the error whilst keeping its mean value small is clearly seen. The
deterministic algorithm has the second smallest mean error value but
the second largest error variance. The algorithms using the forgetting
factor show the tendencies anticipated from the theoretical results.
In the case of the decreasing gain, we see that the variance is much
smaller than that achieved with the deterministic algorithm, how-
ever, the mean value of the error is not so small. This is because, as
previously mentioned, the learning rate reduces with each iteration
so the error has not converged as quickly as that of the determinis-
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tic algorithm. The algorithm using the causal filter produces a low
error variance, as predicted by the analysis, but a large mean error
value due to the phase shift introduced by the filter. The non-causal
filtered algorithm has the lowest mean error and joint lowest vari-
ance, it also has the smallest RMS value. This good performance is
because the yd(t) is limited to low frequencies so allows a low-pass
filter to effectively filter out the disturbances at higher frequencies.
Additionally, the non-causal implementation means that it does not
suffer from the phase-shift problems of the causal filter.

5.6 Experimental results

The different ILC algorithms are applied to the tracking control of
the LPMSM. The two-degree-of-freedom controller operating at a
sampling frequency of 2kHz is used. The sampling frequency is im-
posed by the way ILC is implemented on the system.

The input, u(t, k), computed by the ILC algorithms is used as the
reference signal of the closed-loop system, meaning the transfer func-
tion G(q−1) represents the closed-loop motor system. The desired
output position, yd(t), is a series of three Macromotions in the pos-
itive direction, followed by a similar series in the negative direction,
as can be seen in Figure 5.1 and has N = 8192.

An approximate Box-Jenkins model of the closed-loop motor sys-
tem is identified using standard identification techniques and a PRBS
as an input signal. The PRBS is created using a shift register of 10
bits and the resulting signal is repeated eight times giving a total
length of 8184 points. The identified model is:

Ĝ(q−1) =
q−1

(

0.00201 + 0.00092q−1 + 0.01972q−2 − 0.00938q−3
)

1 − 3.104q−1 + 3.739q−2 − 2.058q−3 + 0.4364q−4
.

(5.53)
It is used to calculate a phase lead compensator as an approxima-
tion to Ĝ−1(q−1) [33]. This gives Ĝ−1(q−1) = 0.85q6, which satisfied
condition (5.9) up to a frequency of 424Hz, with Q(q−1) = 1, see
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Fig. 5.1. Desired output position

Figure 5.2. To assure monotonic convergence it is thus necessary
to take Q(q−1) as a low-pass filter with a cut-off frequency below
424Hz, 400Hz was chosen. The filter is implemented in a non-causal
way so as to give zero-phase shift. A fifth order Butterworth filter
is used. Despite the phase lead compensator not being an accurate
inverse of the system model it allows reasonably rapid convergence
to be attained without going through the laborious process of very
accurate modelling. Because a low-pass filter is necessary for de-
terministic convergence the standard, deterministic algorithm is not
implementable experimentally. The other algorithms, however, are
implemented, all being filtered. For each experiment 100 iterations
are carried out and each experiment is repeated four times. It is,
obviously, not possible to measure ǫ(t, k) in real experiments so the
measured error e(t, k) is used for comparisons. For all experiments
u(t, 0) = yd(t) is taken.
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˛

˛

˛
Q(e−jωh)

“

1 − G(e−jωh)Ĝ−1(e−jωh)
”˛

˛

˛
with Q(q−1) = 1 and

Ĝ−1(q−1) = 0.85q6

For the forgetting factor algorithms a forgetting factor of α =
10−6 is used. This value is chosen in order to allow a reasonable
RMS value of the converged measured error, e(t,∞), to be obtained.
Expressions (5.32), (5.39) and (5.42) are used in the noiseless case
i.e. e(t, k) = ǫ(t, k) to find lower bounds on the RMS value of e(t,∞).
The desired RMS value of e(t,∞) is taken as that achieved with the
low-pass filtered algorithm. The forgetting factor is so small that
L′ ≈ L′

1−α , meaning the two variations become, essentially, the same.
Table 5.2 shows the RMS values of e(t, 100) obtained with the

different algorithms. It is seen that the value achieved by the de-
creasing gain algorithm is about 1.4 times greater than that achieved
with the filtered version and the forgetting factor algorithm gives a
value approximately five times larger.

Figure 5.3 shows the mean tracking performance at k = 100 for
the forgetting factor algorithm for a small section of the trajectory.
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Algorithm

r

Ê
n

1
N

PN−1
t=0 e2(t, 100)

o

(mm)

Low-pass filter 7.4257 × 10−5

Forgetting factor 3.8603 × 10−4

Decreasing gain 1.0673 × 10−4

Table 5.2. RMS values for e(t, 100) found over 4 experiments
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Fig. 5.3. Mean system output for the forgetting factor algorithm at k = 0
(solid) and k = 100 (dashed), and yd(t) (dot-dash)

It is clear that even with the small α used a constant error still
occurs, explaining the much larger RMS value. Figure 5.4 shows a
zoom for the other two algorithms. The decreasing gain algorithm
has slightly more oscillation in the overshoot region due to its slower
learning of the deterministic errors. This is probably the cause of
its larger RMS value. However, it does give less oscillatory tracking
in the steady-state region. This, perhaps, is because noise exists at
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Fig. 5.4. Mean system output at k = 100 for the algorithms: decreasing
gain (dashed) and low-pass filtered (solid), and yd(t) (dot-dash)

frequencies below the filter’s cut-off frequency so the decreasing gain
algorithm helps reduce its detrimental effect. Reducing the filter cut-
off frequency would help reduce the algorithms sensitivity to noise
but would cause a larger expected error to occur for this yd(t).

These observations are confirmed in Table 5.3, where the mean
and variance of the error for a certain time in this region are smaller
for the decreasing gain algorithm.

5.7 Conclusions

In this chapter expressions for the mean and variance of the con-
trolled tracking error in the presence of stochastic disturbances have
been developed in general, and for several specific ILC algorithms.

It has been shown that a trade off between minimising the mean
and variance of the error commonly occurs. This can be recognised
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Algorithm
˛

˛

˛
Ê{e(1, 100)}

˛

˛

˛
Ê{ẽ2(1, 100)}

(mm) (mm2)

Low-pass filter 1.3672 × 10−5 9.1445 × 10−10

Forgetting factor 8.6169 × 10−4 2.7705 × 10−9

Decreasing gain 1.4038 × 10−7 6.1343 × 10−12

Table 5.3. Estimated mean and variance of e(1, 100) over 4 experiments

as the well-known bias-variance tradeoff, which commonly occurs in
estimation theory. When the spectra of the noise and desired output
are situated in different frequency regions it has been found that a
filtered algorithm can give good tracking performance. If the spectra
overlap too much, however, an algorithm with a decreasing learning
gain has been shown to give good robustness to noise and small
tracking errors, although it has a slower error convergence rate.
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Appendix

5.A Derivation of expression (5.6)

The controlled error at iteration k + 1 is given by:

ǫ(t, k + 1) =yd(t) − G(q−1)u(t, k + 1) − d(t, k + 1)

=yd(t) − G(q−1)Q(q−1)
[

u(t, k) + qmL(q−1)e(t, k)
]

− d(t, k + 1)

=G(q−1)Q(q−1)[qmL(q−1)G(q−1) − 1]u(t, k)

+ [1 − G(q−1)Q(q−1)qmL(q−1)]yd(t) − d(t, k + 1)

+ G(q−1)Q(q−1)qmL(q−1)[d(t, k) + n(t, k)]. (5.54)

This expression gives:

u(t, k) =
[

G(q−1)Q(q−1)[qmL(q−1)G(q−1) − 1]
]−1

[ǫ(t, k + 1)

− [1 − G(q−1)Q(q−1)qmL(q−1)]yd(t) + d(t, k + 1)

− G(q−1)Q(q−1)qmL(q−1)[d(t, k) + n(t, k)]]. (5.55)

We also have that:

u(t, k) = G−1(q−1)[yd(t, k) − ǫ(t, k) − d(t, k)]. (5.56)

Equating (5.55) and (5.56) gives:

G(q−1)Q(q−1)[qmL(q−1)G(q−1) − 1]G−1(q−1)[yd(t, k) − ǫ(t, k)

− d(t, k)] = ǫ(t, k + 1) − [1 − G(q−1)Q(q−1)qmL(q−1)]yd(t)

+ d(t, k + 1) − G(q−1)Q(q−1)qmL(q−1)[d(t, k) + n(t, k)], (5.57)

from which we have:

ǫ(t, k + 1) = G(q−1)Q(q−1)[1 − qmL(q−1)G(q−1)]G−1(q−1)ǫ(t, k)

+ [1 − G(q−1)Q(q−1)G−1(q−1)]yd(t) − d(t, k + 1)

+G(q−1)Q(q−1)G−1(q−1)d(t, k)+G(q−1)Q(q−1)qmL(q−1)n(t, k),

which is equal to (5.6).
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5.B Derivation of expression (5.46)

Theorem 5.2, with Q(q−1) = 1 and qmL(q−1) = G−1(q−1)
k+1 , gives:

E{ǫ̃2(t, k + 1)}

=
k2

(k + 1)2
E{ǫ̃2(t, k)} + E{d2(t, k)} + E{d2(t, k + 1)}

+
1

(k + 1)2
E

{

n2(t, k)
}

− 2

(

1 − 1

k + 1

)

E
{

d2(t, k)
}

− 2

((

1 − 1

k + 1

)

1

k + 1
− 1

k + 1

)

E {d(t, k)n(t, k)}

=
k2

(k + 1)2
E{ǫ̃2(t, k)} +

1

(k + 1)2
(

σ2
n + 2rdn(0)

)

+
2(k + 1)

(k + 1)2
σ2

d

=
k2

(k + 1)2

[

(k − 1)2

k2
E{ǫ̃2(t, k − 1)} +

1

k2

(

σ2
n + 2rdn(0)

)

+
2k

k2
σ2

d

]

+
1

(k + 1)2
(

σ2
n + 2rdn(0)

)

+
2(k + 1)

(k + 1)2
σ2

d

=
k2

(k + 1)2

[

(k − 1)2

k2

[

(k − 2)2

(k − 1)2
E{ǫ̃2(t, k − 2)}

+
1

(k − 1)2
(

σ2
n + 2rdn(0)

)

+
2(k − 1)

(k − 1)2
σ2

d

]

+
1

k2

(

σ2
n + 2rdn(0)

)

+
2k

k2
σ2

d

]

+
1

(k + 1)2
(

σ2
n + 2rdn(0)

)

+
2(k + 1)

(k + 1)2
σ2

d
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=
k2

(k + 1)2
(k − 1)2

k2

(k − 2)2

(k − 1)2
. . .

02

12
E{ǫ̃2(t, 0)}

+

[

k2

(k + 1)2
(k − 1)2

k2

(k − 2)2

(k − 1)2
. . .

1

12
+ . . .

+
k2

(k + 1)2
(k − 1)2

k2

1

(k − 1)2
+

k2

(k + 1)2
1

k2
+ . . .

+
1

(k + 1)2

]

(

σ2
n + 2rdn(0)

)

+

[

k2

(k + 1)2
(k − 1)2

k2

(k − 2)2

(k − 1)2
. . .

2

12
+ . . .

+
k2

(k + 1)2
(k − 1)2

k2

2(k − 1)

(k − 1)2
+

k2

(k + 1)2
2k

k2
+ · · · + 2(k + 1)

(k + 1)2

]

σ2
d

=(k + 1)
1

(k + 1)2
(

σ2
n + rdn(0)

)

+ [1 + · · · + k + (k + 1)]
2

(k + 1)2
σ2

d

=
1

k + 1

(

σ2
n + rdn(0)

)

+
(k + 1)(k + 2)

2

2

(k + 1)2
σ2

d

=
1

k + 1

(

σ2
n + rdn(0)

)

+
1 + 2/k

1 + 1/k
σ2

d.

5.C Full mean and variance expressions

Here the expressions for the controlled error’s expected value and
variance, in the case of uncertain system knowledge, are given.

5.C.1 A deterministic algorithm

We have Q(q−1) = 1 and qmL(q−1) = [1 + ∆(q−1)]G−1(q−1), so
Theorem 5.1 gives:

lim
k→∞

E{ǫ(t, k)} = 0 (5.58)

and Theorem 5.2 gives:
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E{ǫ̃2(t, k+1)} = E{[∆(q−1)ǫ̃(t, k)]2}+E{d2(t, k)}+E{d2(t, k+1)}
+ E{[(1 + ∆(q−1))n(t, k)]2} + 2E{d(t, k)[∆(q−1)d(t, k)]}

+ 2E{[∆(q−1)d(t, k)][(1 + ∆(q−1))n(t, k)]}
+ 2E{d(t, k)[(1 + ∆(q−1))n(t, k)]}. (5.59)

5.C.2 An algorithm with a forgetting factor

For the first variant of the forgetting factor algorithm we have

Q(q−1) = 1 − α and qmL(q−1) = qmL′(q−1)
1−α . When qmL′(q−1) =

[1 + ∆(q−1)]G−1(q−1) is used, Theorem 5.1 gives:

lim
k→∞

E{ǫ(t, k)} =
α

α + [1 + ∆(q−1)]
yd(t) (5.60)

and from Theorem 5.2 we have:

E{ǫ̃2(t, k + 1)} = E{[(α + ∆(q−1))ǫ̃(t, k)]2} + (1 − α)2E{d2(t, k)}
+ E{d2(t, k + 1)} + E{[(1 + ∆(q−1))n(t, k)]2}

+ 2(1 − α)E{d(t, k)[(α + ∆(q−1))d(t, k)]}
+ 2E{[(α + ∆(q−1))d(t, k)][(1 + ∆(q−1))n(t, k)]}

+ 2(1 − α)E{d(t, k)[(1 + ∆(q−1))n(t, k)]}. (5.61)

For the alternative forgetting factor algorithm qmL′(q−1) =
qmL(q−1) = [1 + ∆(q−1)]G−1(q−1) and Q(q−1) = 1, and Theorem
5.1 gives:

lim
k→∞

E{ǫ(t, k)} =
α

1 + (1 − α)∆(q−1)
yd(t), (5.62)

and Theorem 5.2 leads to:
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E{ǫ̃2(t, k+1)} = (1−α)2E{[∆(q−1)ǫ̃(t, k)]2}+(1−α)2E{d2(t, k)}
+ E{d2(t, k + 1)} + (1 − α)2E{[(1 + ∆(q−1))n(t, k)]2}

+ 2(1 − α)2E{d(t, k)[∆(q−1)d(t, k)]}
+ 2(1 − α)2E{[∆(q−1)d(t, k)][(1 + ∆(q−1))n(t, k)]}

+ 2(1 − α)2E{d(t, k)[(1 + ∆(q−1))n(t, k)]}. (5.63)

5.C.3 An algorithm with an iteration decreasing gain

For the ILC command with an iteration decreasing learning gain we

have Q(q−1) = 1 and qmL(q−1) = [1+∆(q−1)]G−1(q−1)
k+1 thus Theorem

5.1 leads:
lim

k→∞
E{ǫ(t, k)} = 0, (5.64)

and Theorem 5.2:

E{ǫ̃2(t, k + 1)} =
1

(k + 1)2
E{[(k −∆(q−1))ǫ̃(t, k)]2} + E{d2(t, k)}

+ E{d2(t, k + 1)} +
1

(k + 1)2
E{[(1 + ∆(q−1))n(t, k)]2}

− 2

k + 1
E{[(k − ∆(q−1))d(t, k)]d(t, k)}

− 2

(k + 1)2
E{[(k − ∆(q−1))d(t, k)][(1 + ∆(q−1))n(t, k)]}

+
2

k + 1
E{d(t, k)[(1 + ∆(q−1))n(t, k)]}. (5.65)

5.C.4 A filtered algorithm

Theorem 5.1 gives, for the filtered ILC law with qmL(q−1) = [1 +
∆(q−1)]G−1(q−1):

lim
k→∞

E{ǫ(t, k)} =
[1 − Q(q−1)]

1 + Q(q−1)∆(q−1)
yd(t). (5.66)
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The frequency domain interpretation is therefore:

∣

∣

∣

∣

F
{

lim
k→∞

E{ǫ(t, k)}
}∣

∣

∣

∣

2

=
|1 − Q(e−jω)|2

|1 + Q(e−jω)∆(e−jω)|2 Φyd
(ω).

Theorem 5.2 gives the variance as:

E{ǫ̃2(t, k+1)} = E{[Q(q−1)∆(q−1)ǫ̃(t, k)]2}+E{[Q(q−1)d(t, k)]2}
+ E{d2(t, k + 1)} + E{[Q(q−1)[1 + ∆(q−1)]n(t, k)]2}

+ 2E{[Q(q−1)∆(q−1)d(t, k)][Q(q−1)d(t, k)]}
+ 2E{[Q(q−1)∆(q−1)d(t, k)][Q(q−1)[1 + ∆(q−1)]n(t, k)]}

+ 2E{[Q(q−1)d(t, k)][Q(q−1)[1 + ∆(q−1)]n(t, k)]}. (5.67)





6

ILC for LTI systems – ILC based on

stochastic approximation

6.1 Introduction

The main contribution of this chapter is to show how ILC for linear
systems affected by stochastic disturbances fits into the stochastic
approximation theory framework. Using SA theory it is possible to
derive conditions for well-known ILC algorithms to converge almost
surely to the optimal input signal in the presence of stochastic dis-
turbances. In addition, the important practical issues of monotonic
convergence of the error signal and robustness to system uncertainty
are addressed. Also two choices of learning matrix based on an un-
certain model are studied, as well as a model-free choice.

In [11] SA theory is used to develop an ILC algorithm for linear
systems. There the input produced by the algorithm at each itera-
tion is randomly perturbed and applied to the system in a second
experiment in order to estimate the gradient of the proposed cost
function. In contrast, here either an uncertain system model or a
second special experiment is considered. These choices will typically
lead to faster convergence.

Steepest descent algorithms have been applied to ILC for the
discrete-time case in [21]. Although certain similarities exist be-
tween the algorithms considered in this chapter and steepest descent
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algorithms, the major difference is the conditions SA sets on the
step sizes between iterations. These conditions are necessary to en-
sure almost sure convergence to the optimal input in the presence of
stochastic disturbances.

This chapter is organised as follows. In Section 6.2 the notational
framework used is defined and the assumptions are stated. In Section
6.3 ILC is considered from an SA perspective. Then in Section 6.4
possible choices of the learning matrix are considered. Simulations
are carried out in Section 6.5. In Section 6.6 experimental results
obtained on the LPMSM are presented. Finally in Section 6.7 the
chapter conclusions are made.

6.2 Problem formulation

As the signals in ILC are defined over a finite duration, it is possible
to express a discrete-time system’s input-output relationship by a
matrix representation. Taking advantage of the non-causal filtering
possibilities of ILC, the lifted-system representation is used. For a
system with a relative degree m we define the vectors:

u(k) = [u(0, k), u(1, k), . . . , u(N − m − 1, k)]T (6.1)

and

z(k) = [z(m, k), z(m + 1, k), . . . , z(N − 1, k)]T . (6.2)

The vectors y(k), d(k), n(k) and yd are defined similarly to z(k).
Using these vectors, the measured output of the system is:

y(k) = Gu(k) + d(k) + n(k), (6.3)

where G is:

G =











gm 0 . . . 0
gm+1 gm . . . 0

...
...

. . .
...

gN−1 gN−2 . . . gm











, (6.4)
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gi being the ith Markov parameter of G(q−1). The controlled error
vector is:

ǫ(k,u(k)) = yd − z(k) = yd − Gu(k) − d(k) (6.5)

and the measured error vector:

e(k,u(k)) = yd − y(k) = ǫ(k,u(k)) − n(k), (6.6)

where the errors’ dependence on u(k) is explicitly stated.
Furthermore, we have that the real system can be represented in

lifted-system form as:
G = Ĝ[I + ∆] (6.7)

where I is the identity matrix, and Ĝ and I + ∆ are Toeplitz
matrices formed similarly to (6.4) from the Markov parameters of
qm̂Ĝ(q−1) and qm−m̂[1 + ∆(q−1)], respectively. m̂ is the relative
degree of Ĝ(q−1).

Definition: A real, square matrix M (not necessarily symmetric) is
called positive definite M > 0 if and only if all the eigenvalues of its
symmetric part (M + MT )/2 are positive.

6.2.1 Assumptions

A6.1: The ideal input:
u0 = G−1yd (6.8)

is realisable.
A6.2: The system uncertainty satisfies:

I + ∆ > 0. (6.9)

A6.3: The disturbances d(k) and n(k) are zero-mean, weakly sta-
tionary random vectors with bounded, unknown covariance ma-
trices Rd and Rn, respectively. Additionally, they have bounded,
unknown cross-covariance matrices Rdn and Rnd. Moreover, dif-
ferent realisations of d(k) and n(k) between iterations are mu-
tually independent.
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A6.4: The mean input is bounded for all iterations:

E{u(k)} < ∞ ∀k.

Remarks:

1) It is shown in [20] that a sufficient condition for (6.9) is that the
filter qm−m̂[1 + ∆(q−1)] is strictly positive real (SPR). So when
m = m̂, Assumption A6.2 is satisfied when ‖∆‖∞ < 1. This con-
dition occurs frequently in the model uncertainty representation
and so is a reasonable assumption.

2) The validity of Assumption A6.4 will be discussed later in the
chapter.

6.3 ILC from a stochastic approximation
viewpoint

The ideal aim of tracking control is to achieve zero controlled error.
When stochastic disturbances affect a system this objective is not
possible. A reasonable aim, in this case, is to set the mean controlled
error equal to zero. We can state a goal of an ILC algorithm, thus,
as to iteratively calculate the optimal input signal u0 such that:

E{Lǫ(k,u0)} = E{Le(k,u0)} = 0, (6.10)

where L ∈ R
(N−m)×(N−m) is a non-singular matrix.

It is straightforward to see that the solution to criterion (6.10) is
(6.8). However, in order to calculate the ideal input u0 directly exact
knowledge of G is needed, which is not available. Nevertheless, u0

can be found using an iterative SA procedure, such as the Robbins-
Monro algorithm, which does not require exact system knowledge.
This algorithm calculates the input iteratively as:

u(k + 1) = u(k) + γ(k)Le(k,u(k)). (6.11)
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This algorithm clearly has the form of a standard P-type ILC law
with an iteration varying learning gain γ(k). In the next subsection
conditions will be given that, according to SA theory, ensure almost
sure convergence of the algorithm to the ideal input.

6.3.1 Almost sure convergence

Theorem 6.1 Under the Assumptions A6.1, A6.3 and A6.4, the
iterative update algorithm (6.11) converges almost surely to the so-
lution u0 of (6.10) when k → ∞ if:

i) The sequence γ(k) of positive steps satisfies:

∞
∑

k=0

γ(k) = ∞ and

∞
∑

k=0

γ2(k) < ∞. (6.12)

ii) E{Le(k,u(k))} is monotonically decreasing:

Q(u(k)) =
d

du(k)
E{Le(k,u(k))} < 0. (6.13)

Proof: The proof follows by applying Theorem 2.1. The condi-
tions on the step sizes in (6.12) are those in Condition i of Theorem
2.1. Setting c(u) = E{Le(k,u)}T E{Le(k,u)} automatically satis-
fies Condition ii. Conditions iii and iv follow from (6.13). Condition
v is satisfied by Assumptions A6.1, A6.3 and A6.4.

Condition (6.12) should be fulfilled by an appropriate choice of
the sequence γ(k). Q(u(k)), in Condition (6.13), can be rewritten
as:

Q(u(k)) =
d

du(k)
E{Le(k,u(k))}

=
d

du(k)
E{Lyd − LGu(k) + Ld(k) + Lv(k)}

= −LG = −LĜ[I + ∆] (6.14)
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and so Condition (6.13) becomes:

LĜ[I + ∆] > 0. (6.15)

Remark: By combining equations (6.5), (6.6), (6.8) and (6.11) we
can obtain the input error evolution as:

eu(k + 1) = u0 − u(k + 1)

= (I − γ(k)LG)eu(k) + γ(k)L(yd − d(k) − n(k)).
(6.16)

A necessary, but not sufficient, condition for asymptotic convergence
of the input error, in the absence of disturbances, is:

|λi(I − γ(k)LG)| < 1 ∀k, ∀i (6.17)

where λi(·) is the ith eigenvalue. If L represents a causal operator
and is therefore a real, lower triangular matrix, a link between this
condition and those given by SA theory can be made, as detailed
below. Since I − γ(k)LG will be a real, lower triangular matrix, its
eigenvalues will be real. (6.17) therefore implies:

λ(I − γ(k)LG) < 1 ⇐⇒ 1 − γ(k)λ(LG) < 1

⇐⇒ γ(k)λ(LG) > 0 (6.18)

and

λ(I − γ(k)LG) > −1 ⇐⇒ 1 − λ(γ(k)LG) > −1

⇐⇒ γ(k)λ(LG) < 2, (6.19)

where λ(·) and λ(·) are the minimum and maximum eigenvalues,
respectively. Moreover we can write:

LGxi = λixi, (6.20)

where xi is the real eigenvector corresponding to λi. Taking the
transpose of (6.20) gives:
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xT
i (LG)T = λix

T
i . (6.21)

Left multiplying (6.20) by xT
i , right multiplying (6.21) by xi and

adding gives:

xT
i LGxi + xT

i (LG)Txi = 2λix
T
i xi

⇐⇒ xT
i

(

LG + (LG)T

2

)

xi = λix
T
i xi. (6.22)

So, if LG is positive definite, (6.18) is satisfied. (6.19) can be satisfied
by an appropriate choice of γ(k).

6.3.2 Monotonic convergence

Whilst almost sure convergence of the input sequence to the solution
u0 when k → ∞ is, obviously, of utmost importance, practically it
is not the only type of convergence of interest. The monotonic con-
vergence, from one iteration to the next, of a norm of the controlled
error is also of concern.

To proceed, we will need the following lemma:

Lemma 6.1 If a real, square matrix M (not necessarily symmetric)
is positive definite, there exists an α > 0 such that:

σ(I − αM) < 1, (6.23)

where σ(·) is the maximum singular value.

Proof: Condition (6.23) is true iff:

λi

(

I − α(MT + M) + α2MTM
)

< 1 ∀i

⇐⇒ 1 − λi

(

α(MT + M) − α2MTM
)

< 1 ∀i

⇐⇒ λi

(

MT + M − αMT M
)

> 0 ∀i. (6.24)

Furthermore the eigenvalues satisfy:

[MT + M − αMTM]xi = λixi. (6.25)
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Left multiplying (6.25) by xT
i we get:

xT
i

(

MT + M
)

xi − αxT
i MTMxi = λix

T
i xi. (6.26)

So if M > 0, (6.24), and thus Condition (6.23), are satisfied when:

0 < α < min
i

xT
i

(

MT + M
)

xi

xT
i MTMxi

. (6.27)

Theorem 6.2 If Ĝ[I + ∆]L > 0, there exists a sequence of posi-
tive step sizes γ(k), satisfying Condition (6.12), such that monotonic
convergence of the 2-norm of the mean controlled error is achieved.

Proof: By combining equations (6.5), (6.6), (6.7) and (6.11) we
can obtain the controlled error evolution equation as:

ǫ(k + 1,u(k + 1)) = (I − γ(k)Ĝ[I + ∆]L)ǫ(k,u(k)) + d(k)

− d(k + 1) + γ(k)Ĝ[I + ∆]Ln(k). (6.28)

The mean value of equation (6.28) is:

E{ǫ(k + 1,u(k + 1))} = (I− γ(k)Ĝ[I + ∆]L)E{ǫ(k,u(k))}. (6.29)

Monotonic convergence of the 2-norm of the mean controlled error
is obtained if the following condition is satisfied (see e.g. Theorem
2, [45]):

σ(I − γ(k)Ĝ[I + ∆]L) < 1 ∀k. (6.30)

If a given sequence γ(k), satisfying Condition (6.12), does not satisfy
(6.30), a new, scaled sequence γ(k) , κγ(k), κ > 0 can always be
defined that does, as follows from Lemma 6.1.

Remarks:

1) Theorem 6.2’s requirement that Ĝ[I + ∆]L be positive definite

is satisfied when L and Ĝ[I + ∆] commute, i.e. when L(q−1) is
causal, and condition (6.15) is satisfied.
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2) As shown in the proof of Theorem 6.2, in order to achieve mono-
tonic convergence of the 2-norm of the mean controlled error con-
dition (6.30) should be satisfied. This can be achieved by reducing
maxk γ(k).

6.3.3 Boundedness of the system’s signals

Since the system G(q−1) is assumed stable, its output and internal
states will be bounded if its input is bounded. Combining equations
(6.5), (6.6), (6.7) and (6.11) gives the input evolution equation as:

u(k+1) = (I−γ(k)LĜ[I+∆])u(k)+γ(k)L(yd−d(k)−n(k)). (6.31)

According to Theorem 5 of [45] the input will remain bounded from
one iteration to the next if a) (6.31) is a uniformly exponentially
stable iterative system, b) for a finite constant κ, ‖γ(k)L‖ < κ ∀k,
and c) yd, d(k) and n(k) are bounded. As stated in Corollary 1
of [45], (6.31) is a uniformly exponentially stable iterative system
if σ(I − γ(k)LĜ[I + ∆]) < 1 ∀k. This condition is considered in

Lemma 6.1, implying that, when LĜ[I + ∆] > 0, a sequence γ(k)
exists that achieves uniform exponential stability. Furthermore, since
‖γ(k)L‖ = |γ(k)|‖L‖, there exists a sequence γ(k) that satisfies the
condition ‖γ(k)L‖ < κ ∀k. So the boundedness of the system’s
signals requires the disturbances to be bounded, which can usually
be assumed to be the case in practice.

It should be noted that the mean input E{u(k)} will be bounded
if only the means of the disturbances are bounded, rather than the
disturbances themselves.

6.3.4 Asymptotic distribution of the input error

The asymptotic distribution of the input error is given by the follow-
ing theorem:

Theorem 6.3 Assume that:
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i) Algorithm (6.11) converges almost surely to the solution u0 as
k → ∞.

ii) The sequence of step sizes is chosen as γ(k) = α
k+1 .

iii) All the eigenvalues of the matrix D = I/2+αQ(u0) have negative
real parts.

Then the sequence
√

k(u(k) − u0) ∈ As N (0,V) i.e it converges
asymptotically in distribution to a zero-mean normal distribution
with covariance:

V = α2

∫ ∞

0

exp(Dx)P exp(DT x)dx (6.32)

where P is the covariance matrix of Le(u0):

P = E{Le(k,u0)(Le(k,u0))
T }. (6.33)

Proof: The proof follows directly by applying Theorem 2.2.

Using Theorem 6.3 we have that:

P = E{Le(k,u0)(Le(k,u0))
T }

= E{(−L(d(k) + n(k)))(−L(d(k) + n(k)))T }
= L(Rd + Rdn + Rnd + Rn)LT . (6.34)

Additionally, as Q(u0) = d
du(k)E{Le(k,u(k))}

∣

∣

u(k)=u0

= −LG, we

have that:
D = (I/2 − αLG). (6.35)

The covariance matrix V is then the unique symmetric solution of
the following Lyapunov equation:

2α2L(Rd + Rdn + Rnd + Rn)LT + (I − 2αLG)V

+ V(I − 2αLG)T = 0. (6.36)

It is shown in [6] (Proposition 4, p.112) that if, instead of using a
scalar learning gain α, we use a non-singular learning matrix K, then
the optimal matrix K∗ to mimimise the trace of V is given by:
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K∗ = −Q(u0)
−1 = (LG)−1. (6.37)

Using this gain matrix results in the learning law:

u(k + 1) = u(k) +
G−1

k + 1
e(k,u(k)), (6.38)

and the optimal asymptotic covariance matrix:

V∗ = G−1(Rd + Rdn + Rnd + Rn)G−T , (6.39)

which means that the sequence
√

k(u(k) − u0) ∈ As N (0,V∗).
Moreover we have that ǫ(k,u(k)) = −G(u(k)−u0)−d(k) so the

covariance matrix of ǫ(k,u(k)) is then given by:

cov(ǫ(k,u(k))) = E{ǫ(k,u(k))ǫT (k,u(k))}
= GE{(u(k) − u0)(u(k) − u0)

T }GT + Rd. (6.40)

Using the optimal gain matrix K∗ means that the sequence ǫ(k,u(k))
will have a converged covariance matrix given by cov(ǫ(k,u(k))) =
1
k (Rd + Rdn + Rnd + Rn) + Rd and in the limit we have:

lim
k→∞

cov(ǫ(k,u(k))) = Rd. (6.41)

K∗ is, however, not implementable because exact knowledge of G is
not achievable. Nonetheless it gives an ideal law to aim for in the
design of a stochastic ILC algorithm.

Remark: Result (6.41) is similar to that derived in Chapter 5 for the
algorithm with an iteration decreasing gain. This similitude clearly
occurs because the algorithm there is the same as that considered
here. It is, however, presented, and the result derived, under different
frameworks in the two chapters.

6.4 Specific choices of the learning matrix

In this section specific choices of the learning matrix L will be con-
sidered.
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6.4.1 Use of the uncertain system inverse

We consider here the choice of L = Ĝ−1 i.e. the inverse of the
uncertain system model. This choice is motivated by the fact that
L = Ĝ−1 is an approximation of the optimal learning gain used in
(6.38).

Theorem 6.4 Under Assumption A6.2 and when L = Ĝ−1, there
exists a sequence of positive step sizes γ(k), satisfying Condition
(6.12), that ensures that the ILC algorithm (6.11) converges almost
surely to u0 and that the 2-norm of the mean controlled error con-
vergences monotonically.

Proof: Condition (6.15) is automatically satisfied when L = Ĝ−1,
under Assumption A6.2. Therefore, when the sequence of positive
step sizes γ(k) satisfies Condition (6.12), the ILC algorithm (6.11)
converges almost surely to u0, as stated by Theorem 6.1. Moreover,
because I+∆ is a lower triangular Toeplitz matrix, I+∆ commutes
with Ĝ and, under Assumption A6.2, Ĝ[I + ∆]L > 0. This result
means Theorem 6.2 applies, implying the existence of a sequence,
satisfying Condition (6.12), that ensures monotonic convergence.

6.4.2 Use of the uncertain system transpose

Another choice is L = ĜT . This choice is motivated by the fact
that it can be used when Ĝ is ill conditioned, as may be the case
when Ĝ(q−1) has unstable zeros. The previously considered choice
of L, on the other hand, may not be usable because the input signal
generated by the ILC algorithm can grow unacceptably large before
converging to the ideal input.

Theorem 6.5 Under Assumption A6.2 and when L = ĜT , there ex-
ists a sequence of positive step sizes γ(k), satisfying Condition (6.12),
that ensures that the ILC algorithm (6.11) converges almost surely
to u0 and that the 2-norm of the mean controlled error convergences
monotonically.
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Proof: Since I + ∆ is a lower triangular Toeplitz matrix, I + ∆

commutes with Ĝ and condition (6.15) can be written as ĜT [I +

∆]Ĝ > 0, when L = ĜT . This condition is fulfilled when Ĝ is non-
singular and I+∆ > 0. The former is true because N is finite and the
latter is Assumption A6.2. Therefore, when the sequence of positive
step sizes γ(k) satisfies Condition (6.12), the ILC algorithm (6.11)
converges almost surely to u0, as stated by Theorem 6.1. Moreover,
Theorem 6.2 applies, implying the existence of a sequence, satisfying
Condition (6.12), that ensures monotonic convergence.

6.4.3 Use of an experiment

So far the use of a model to give an L that can then be used in (6.11)
to evaluate Le(k,u(k)) has been considered. For the specific choice
of L = GT , it is, however, possible to use an extra experiment per
iteration to evaluate Le(k,u(k)). Condition (6.15) is automatically
satisfied with this choice, and Theorem 6.2 also applies.

The fact that a special experiment can be used is seen by noting
that e2 = GT e(k,u(k)) is equal to the following filtering operations:

e1(t) = G(q−1)e(N − t, k,u(k)) (6.42)

e2(t) = e1(N − t). (6.43)

We see that, in the disturbance free case, e2 can be found using an
experiment on the true system, where the time reversed error signal
is fed into the system as its input, the system output is measured and
then time reversed itself. In reality the special experiment will have
its own disturbances d2(t) and v2(t) associated with it. Nonetheless,
an unbiased estimate of e2 can still be found since:

E{e2} = E{GTe(k,u(k)) + d2 + v2}
= E{GTe(k,u(k))} + E{d2} + E{n2}
= GT E{ǫ(k,u(k))} + 0 + 0. (6.44)



126 6 ILC for LTI systems – SA based ILC

This method of evaluating e2 is attractive as it avoids the problems
of model uncertainty. It does, however, require an additional,
non-standard, experiment at each iteration, which, depending on
the application, may not always be possible. One case where it
may be useful is when ILC is used to tune the input to improve
the system’s performance before the system is used in its intended
application.

Remarks:

1) So far the motivation of the ILC algorithms considered has been
to find the input that solves the root-finding type criterion (6.10),
which aims to set the mean controlled error to zero. The model-
free algorithm can be motivated differently. Instead of criterion
(6.10), a logical alternative objective is the minimisation of the
trace of the controlled error covariance matrix i.e.:

min
u(k)

JSA(k,u(k)) = min
u(k)

1

2
tr

(

E{ǫ(k,u(k))ǫT (k,u(k))}
)

. (6.45)

The minimum of this criterion occurs when:

dJSA(k,u(k))

du(k)

∣

∣

∣

u(k)=u∗

= E

{

(

∂ǫ(k,u(k))

∂u(k)

∣

∣

∣

u(k)=u∗

)T

ǫ(k,u∗)

}

= −GT E{ǫ(k,u∗)} = 0. (6.46)

E{ǫ(k,u(k))} is not directly measurable. Nonetheless, because
equation (6.46) can be written as:

dJSA(k,u(k))

du(k)

∣

∣

∣

u(k)=u∗

= −GT E{ǫ(k,u∗)}

= −GT E{e(k,u∗)} = 0 (6.47)

it is possible to find the minimiser of the criterion, again, using
the Robbins-Monro algorithm:

u(k + 1) = u(k) + γ(k)GT e(k,u(k)), (6.48)

i.e. (6.11) with L = GT .
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2) The model-free algorithm has similarities to that proposed in [65]
where reversed time inputs are used to cancel the system phase
and produce monotonic convergence. Stochastic aspects are not
considered there, however.
It also has similarities to [21], which uses the steepest descent
method, and calls GT the adjoint of G. It shows that by using
this ‘adjoint’ with an iteration-varying gain, monotonic conver-
gence occurs. The gain sequence is calculated via an optimisa-
tion, which does not consider stochastic disturbances. The gain
at iteration k is given by:

γ(k) =
‖GTe(k − 1)‖2

wγ + ‖GGTe(k − 1)‖2
, (6.49)

where wγ is a weight on γ(k) in the cost function. Since the mea-
sured error signal is used to calculate the gain, it will be affected
by stochastic disturbances. This means limk→∞ ‖GTe(k−1)‖2 6=
0 and so limk→∞ γ(k) 6= 0. This implies that the second series
in (6.12) cannot be satisfied. Therefore, whilst the algorithm de-
veloped can lead to fast deterministic convergence to the optimal
input, this cannot be proved when stochastic disturbances are
present.

6.5 Simulation results

Simulations are carried out to illustrate the theoretical results. The
specific choices of the learning matrix L discussed in Section 6.4 are
tested. A continuous-time system, Gc(s), and its identified model,
Ĝc(s), are taken as:

Gc(s) =
1

s2 + (2 × 0.7 × 1)s + 1
(6.50)

and
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Ĝc(s) =
1.22

s2 + (2 × 0.8 × 1.2)s + 1.22
. (6.51)

Gc(s) and Ĝc(s) are discretised using h = 0.1s and a zero-order hold
to give the discrete-time systems G(q−1) and Ĝ(q−1) respectively.
yd(t) is defined by:

yd(t) =

{

1 − cos(0.1πt) 0 ≤ t ≤ 20s
0 20 < t ≤ 30s.

(6.52)

Using this yd(t) and the specified sampling period gives N = 301.
The load disturbance, d(t, k), is taken as a normally distributed,
random sequence with E{d(t, k)} = 0 and σ2

d = 0.042. The mea-
surement disturbance, n(t, k), is also taken as a zero-mean, normally
distributed, random sequence with variance equal to 0.042 but is
then filtered with a 5th order Butterworth high-pass filter with a
cut-off frequency of 2Hz, to simulate high frequency noise. It has a
measured variance of 0.0312.

20 iterations are carried out for each of the different choices
of L. u(0) = yd is used. Each simulation is repeated 200
times. Estimates of both 1

N E{ǫ(k,u(k))}T E{ǫ(k,u(k))} and
1
N E{ǫT (k,u(k))ǫ(k,u(k))} are calculated for iterations k = 0, 10
and 20.

Although d(k) and n(k) are different for the 200 simulations,
the same disturbance signals are used for the different choices, thus
making possible a direct comparison of the performance of each L in
the presence of the same disturbances.

The system G(q−1) and model Ĝ(q−1) used in the simulation are
such that Assumption A6.2 is satisfied, since λ(I+∆+ (I+∆)T ) =
1.0217. Theorems 6.4 and 6.5 therefore apply. They state that, when
L = Ĝ−1 or L = ĜT is used, a sequence γ(k), satisfying Condition
(6.12), exists that ensures that the ILC algorithm (6.11) converges
almost surely to u0 and that the 2-norm of the mean controlled error
convergences monotonically.

A sequence satisfying Condition (6.12) is γ(k) = α
k+1 , α > 0. As

stated in the remarks after Theorem 6.2, monotonic convergence of
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the 2-norm of the mean controlled error can be achieved by reducing
maxk γ(k) = α in order to satisfy the condition (6.30). For the
system and model used here this condition is satisfied when α = 1
for both choices of L.

These choices are tested along with the model-free option. This
latter option requires the special experiment at each iteration, involv-
ing the inputting of the reversed time error signal into the system.
This experiment is carried out in simulation and the output is af-
fected by a new realisation of the disturbance signals. The same
γ(k) is used as for the other two options.

In addition to testing the different options for the algorithm de-
veloped using SA theory, a fixed learning gain ILC algorithm using
the same L = Ĝ−1, but with γ(k) = 1, is also tested in simula-
tion. It should be noted that this choice of γ(k) does not satisfy the
conditions set by SA and therefore almost sure convergence to the
optimal input is not guaranteed. This algorithm corresponds to the
deterministic algorithm considered in Chapter 5.

Table 6.1 shows the values of 1
N Ê{ǫ(k,u(k))}T Ê{ǫ(k,u(k))}

found for the different options. We see that all options achieve prac-

k L = Ĝ
−1

L = Ĝ
T Model-free Deterministic

0 0.0712 0.0712 0.0712 0.0712

10 0.000010 0.000018 0.000016 0.000015

20 0.000009 0.000014 0.000014 0.000015

Table 6.1. 1
N

Ê{ǫ(k,u(k))}T Ê{ǫ(k,u(k))} found in simulation

tically zero-mean converged controlled error compared to the initial
mean error. This result is as expected, even for the deterministic,
fixed-gain algorithm, which was shown in the last chapter to achieve
zero-mean controlled error.

Table 6.2 shows the values of 1
N Ê{ǫT (k,u(k))ǫ(k,u(k))} found

for the different options. It can be seen that all three options devel-
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oped using SA theory give mean square error values that are about
the half of the deterministic, fixed-gain algorithm, illustrating the
benefit of taking into account the stochastic affects.

k L = Ĝ
−1

L = Ĝ
T Model-free Deterministic

0 0.0728 0.0728 0.0728 0.0728

10 0.0019 0.0016 0.0016 0.0031

20 0.0017 0.0016 0.0016 0.0031

Table 6.2. 1
N

Ê{ǫT (k, u(k))ǫ(k,u(k))} found in simulation

6.6 Experimental results

The model-free algorithm is applied to the tracking control of the
LPMSM. As in the experiments of Chapter 5, the two-degree-of-
freedom position controller is used to control the motor’s position,
operating at a sampling frequency of 2kHz. The input, u(k), com-
puted by the ILC algorithm, is used as the position reference signal
of the closed-loop system. The desired output position, yd(t), is also
the same as that used in the experiments in the previous chapter i.e.
a series of three Macromotions in the positive direction, followed by
a similar series in the negative direction, see Figure 5.1.

If the model identified for the experiments in Chapter 5 is written
in pole-zero form we have, from (5.53):

Ĝ(q−1) =
0.00207(q − 0.456)(q − (−0.4567± 3.1675j))

(q − (0.8182 ± 0.3214j))(q − (0.7336± 0.1626j))
. (6.53)

As can be seen, this model has 2 unstable zeros, due to the discretisa-
tion process. These unstable zeros make the matrix Ĝ badly condi-
tioned so if its inverse is used as L the signals grow very large before
converging and are not practically applicable. Either the choice of
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L = ĜT or the model-free option are thus preferable as they do not
require the inversion of Ĝ. Here the model-free choice is tested.

The sequence γ(k) = α
k+1 is used with α = 0.85, which is

chosen to produce monotonic convergence. The initial input is
taken as u(0) = yd and 100 iterations are carried out. Fig-
ures 6.1 and 6.2 show the convergence of the mean square error
1
N eT (k,u(k))e(k,u(k)) and the initial and final tracking achieved,
respectively.
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Fig. 6.1. Mean square error values obtained using the model-free method

As can be seen the algorithm considerably improves the tracking
and near monotonic convergence is achieved.
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Fig. 6.2. LPMSM output at iteration k = 0 (dashed) and k = 100 (solid)
using the model-free method, yd(t) (dot-dash)

6.7 Conclusions

The main contribution of this chapter is to show how stochastic
approximation theory can be used to derive and analyse ILC al-
gorithms for linear time-invariant systems that are less sensitive to
non-repetitive disturbances. SA theory has provided general condi-
tions that ensure almost sure convergence of the algorithm to the
optimal input in the presence of stochastic disturbances. The de-
creasing gain algorithm, examined in Chapter 5, is a specific case of
a family of algorithms that satisfy the conditions.

ILC for LTI systems has been considered here. Many of the re-
sults apply, however, to linear time-varying-in-the-iteration systems
as well. In this case, however, the matrix G would not be lower tri-
angular Toeplitz but a general lower triangular matrix instead. This
implies that L, Ĝ and I + ∆ will not, in general, commute.
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It is noted that the conditions imposed by SA require the learning
gain to tend to zero as the iterations tend to infinity. This require-
ment is essential for learning algorithms to converge to the ideal
input. Practically it means that the learning ceases after a large
number of iterations and if the desired output or repetitive distur-
bances change slowly the algorithm will not react and the tracking
will deteriorate. It is thus necessary to have a surveillance program
that restarts the learning when the errors rise above a certain thresh-
old.
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Appendix

6.A Input weighting

Using the minimisation philosophy discussed in Remark 1 of Section
6.4.3, it is possible to influence the amplitude of the converged input
signal by modifying the cost function (6.45) to include a weighting
on the input signal i.e.

JSA(k,u(k)) =
1

2
tr

(

E{ǫ(k,u(k))Wǫǫ
T (k,u(k))}

+ u(k)Wuu
T (k)

)

, (6.54)

where Wǫ and Wu are (N − m) × (N − m) positive- and positive-
semidefinite weighting matrices, respectively. The minimum of this
criterion is found when:

dJSA(k,u(k))

du(k)

∣

∣

∣

u(k)=u∗

= E

{

(

∂ǫ(k,u(k))

∂u(k)

∣

∣

∣

u(k)=u∗

)T

ǫ(k,u∗)

}

+
1

2

∂

∂u(k)
uT (k)Wuu(k)

∣

∣

∣

u(k)=u∗

= −GTWǫE{ǫ(k,u∗)} + Wuu
∗ = 0,

(6.55)

whose solution is:

u∗ = (Wu + GTWǫG)−1GTWǫyd. (6.56)

With this input the controlled error is:

ǫ(u∗) = yd − G(Wu + GT WǫG)−1GTWǫyd − d(k)

= G(Wu + GTWǫG)−1WuG
−1yd − d(k). (6.57)
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It can be seen that when Wu = 0 the optimal solution gives zero-
mean controlled error, as expected, but when Wu 6= 0, perfect mean
tracking is no longer achieved.

In order to calculate u∗ from (6.56), exact knowledge of G is,
however, required. As before, it is possible to avoid this requisite
and calculate the minimiser using the Robbins-Monro algorithm:

u(k + 1) = u(k) + γ(k)(WǫG
Te(k,u(k)) − Wuu(k))

= (I − γ(k)Wu)u(k) + γ(k)WǫG
Te(k,u(k)). (6.58)

This algorithm converges almost surely to the optimal value u∗,
since for almost sure convergence of (6.58):

d2JSA(k,u(k))

du(k)2
= GT WǫG + Wu > 0, (6.59)

should hold, and this is the case as Wǫ and Wu are positive- and
positive-semidefinite matrices, respectively, and G is non-singular.





7

ILC for LPV systems

7.1 Introduction

In the previous two chapters ILC algorithms that reduce the method-
ology’s sensitivity to iteration-varying, stochastic disturbances have
been studied. In practice, a system may also be affected by other
types of iteration variation, such as deterministic changes in its dy-
namics and disturbances. In this case, instead of using the previous
approaches aimed at making the algorithms less sensitive to these
variations, it may be possible to use available information about the
changes to adapt the algorithm.

To the author’s knowledge, very little work has been done on this
problem. In [40] the problem of deterministically iteration varying
disturbances is considered. It is shown that, by using the internal-
model principle in the iteration domain, the disturbances can be
rejected as the iterations tend to infinity. The problem with this
approach is that it is necessary to know the form of the disturbance
variation in advance in order to include its model in the ILC con-
troller.

In this chapter an ILC algorithm is developed that can lead to
improved tracking for systems that can be represented by the LPV
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class of systems, and therefore whose dynamics change as a function
of a scheduling parameter. ILC for LPV systems has been considered
in [31]. The variation due to the changing scheduling parameter is,
however, assumed to take place during the iteration, rather than
from one iteration to the next. The problem considered is, therefore,
different to that studied here.

The method developed in this chapter is applied to the LPMSM.
LPMSMs are affected by a periodic, position-dependent force ripple
disturbance. When a movement starts from the same place this dis-
turbance will be repetitive. ILC can thus adjust the system’s input
to compensate for it. However, if the movement starts from a dif-
ferent position, the disturbance will change and the learnt input will
no longer produce optimal tracking. This problem has been investi-
gated in [60]. The method proposed there is to learn the input that
gives optimal tracking for a specific starting position. This input will
compensate for errors due to the system’s dynamics and the ripple
force disturbance. It can thus be decomposed into these two com-
ponents. When the movement is executed from a different starting
position the component compensating the system’s dynamics can be
applied to the system, plus a phase-shifted version of the component
that compensates the periodic, position dependent disturbance. The
phase shift will be a function of the distance between starting po-
sitions. This method has the benefit that the input only needs to
be learnt once, rather than for every starting position. Its disadvan-
tage is that the learning process has to be done offline as a tuning
procedure in order that the same starting position is used at each
iteration.

In this chapter it will be shown how, for a certain class of move-
ments whose amplitude is negligible compared to the period of the
force ripple, the LPMSM can be modelled as an LPV system with
the position-dependent force ripple as the scheduling parameter. The
proposed LPV ILC algorithm is therefore applicable to the LPMSM
and is shown to produce better performance than a standard LTI
ILC algorithm.
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The chapter is organised as follows. In Section 7.2 the problem
is formulated. The proposed learning algorithm is presented in 7.3.
Then its application to the LPMSM is detailed in Section 7.4. Finally
some conclusions are made in Section 7.5.

7.2 Problem formulation

7.2.1 System description

The output at time t of the LPV SISO discrete-time system, resulting
from linearising a real nonlinear system about the operating point
σ(k), is given by:

A(σ(k), q−1)y(t, k, σ(k))

= B(q−1)u(t, k) + d(t, k, σ(k)) + n(t, k, σ(k)), (7.1)

where

A(σ(k), q−1) =

na
∑

j=0

aj(σ(k))q−j and B(q−1) =

nb
∑

j=0

bjq
−j .

d(t, k, σ(k)) and n(t, k, σ(k)) are a deterministic and a stochastic
disturbance, respectively, both possibly dependent on σ. The op-
erating point σ(k) remains constant throughout repetition k. The
dependence of the coefficients ai and the deterministic disturbance
on the scheduling parameter is assumed polytopic:

ai(σ(k)) =

J−1
∑

j=0

ξj(σ(k))ai,j

and d(t, k, σ(k)) =

J−1
∑

j=0

ξj(σ(k))dj(t),

0 ≤ ξj(σ(k)) ≤ 1,

J−1
∑

j=0

ξj(σ(k)) = 1, (7.2)
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where ξj(σ(k)) : R
nσ → R. Additionally we designate the values of

σ at the vertices of the polytopic space as σj .
As in the previous chapter, the lifted-system representation can

be used, giving the vectors:

u(k) = [u(0, k), u(1, k), . . . , u(N − m − 1, k)]T

and y(k, σ(k)) = [y(m, k, σ(k)), y(m + 1, k, σ(k)),

. . . , y(N − 1, k, σ(k))]T , (7.3)

with yd, dj and n(k, σ(k)) defined similarly to y(k, σ(k)). This
representation can then be used to write (7.1) as:

A(σ(k))y(k, σ(k)) =

J−1
∑

j=0

ξj(σ(k))Ajy(k, σ(k))

= Bu(k) +
J−1
∑

j=0

ξj(σ(k))dj + n(k, σ(k)), (7.4)

where Aj =











a0,j 0 . . . 0
a1,j a0,j . . . 0
...

...
. . .

...
aN−m−1,j aN−m−2,j . . . a0,j











and B =











bm 0 . . . 0
bm+1 bm . . . 0

...
...

. . .
...

bN−1 bN−2 . . . bm











. (7.5)

7.2.2 Ideal input

The measured error is defined as:

e(k, σ(k)) = yd − y(k, σ(k)). (7.6)
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The ideal input vector, defined as the one that achieves zero-mean
error, i.e. E{e(k, σ(k))} = 0 ∀σ, is given by:

u0(k, σ(k)) =

J−1
∑

j=0

ξj(σ(k))B−1 (Ajyd − dj) . (7.7)

At the values of σ that correspond to the vertices of the polytopic
dependence we have:

u0(k, σj) = u0(σj) = B−1 (Ajyd − dj) . (7.8)

Using this (7.7) can be written as:

u0(k, σ(k)) =

J−1
∑

j=0

ξj(σ(k))u0(σj). (7.9)

Remark: Expression (7.9) rationalises the class of LPV systems
considered here i.e. LPV systems with dependence on the schedul-
ing parameter solely in the denominator. Only for this system class
does the ideal input depend linearly on the ideal inputs at the ver-
tices. This linear dependence means the estimation of these inputs,
as considered in the next section, can be done via linear least squares
and a global minimiser will be found. Furthermore, as will be seen in
the application section, real systems exist that belong to this system
class.

7.2.3 Input parameterisation

We see from (7.9) that the ideal input is a function of the scheduling
parameter σ(k). The ILC algorithm should therefore estimate an
input that is also a function of σ(k). Motivated by the form of the
ideal input, and under the assumption that the functions ξj(σ(k))
are known, the input is parameterised as:

u(k, σ(k)) =

J−1
∑

j=0

ξj(σ(k))uj . (7.10)



142 7 ILC for LPV systems

The system output can be written as:

y(k, σ(k)) = A−1(σ(k)) [Bu(k) + d(k, σ(k)) + n(k, σ(k))]

= G(σ(k))u(k) + dA(k, σ(k)) + nA(k, σ(k)), (7.11)

where G(σ(k)) = A−1(σ(k))B, dA(k, σ(k)) = A−1(σ(k))d(k, σ(k))
and nA(k, σ(k)) = A−1(σ(k))n(k, σ(k)). If the parameterised input
(7.10) is applied to the system we have:

y(k, σ(k)) = G(σ(k))

J−1
∑

j=0

ξj(σ(k))uj + dA(k, σ(k)) + nA(k, σ(k))

=
[

ξ0(σ(k))G(σ(k)), ξ1(σ(k))G(σ(k)), . . . ,

ξJ−1(σ(k))G(σ(k))
] [

uT
0 ,uT

1 , . . . ,uT
J−1

]T

+ dA(k, σ(k)) + nA(k, σ(k))

= G(σ(k))ū + dA(k, σ(k)) + nA(k, σ(k)), (7.12)

where G(σ(k)) ∈ R
(N−m)×J(N−m) and ū ∈ R

J(N−m).
The ideal input (7.9) is achieved when:

ū = ū0 =
[

[u0(σ0)]
T , [u0(σ1)]

T , . . . , [u0(σJ−1)]
T
]T

. (7.13)

7.2.4 Assumptions

A7.1: The ideal input u0(k, σ(k)) is realisable.
A7.2: The disturbance vector n(k, σ(k)) is a zero-mean, ran-

dom vector with an unknown but bounded covariance matrix
Rn(k, σ(k)). Additionally, realisations of n(k, σ(k)) are inde-
pendent.

7.3 Learning algorithm

The aim of the algorithm is to estimate ū0 over the iterations.
The approach proposed here to find the estimate is to minimise a
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quadratic cost function over all previous iterations i.e. to find the
estimate that minimises:

JK(ū) =
1

2K

K−1
∑

k=0

eT (k, σ(k), ū)e(k, σ(k), ū), (7.14)

where K is the number of completed iterations. Via some straight-
forward calculations, the estimate after K iterations, can be found
as:

ū(K) = PG(K)

K−1
∑

k=0

GT (σ(k))[yd − dA(k, σ(k)) − nA(k, σ(k))],

(7.15)

where

PG(K) =

[

K−1
∑

k=0

GT (σ(k))G(σ(k))

]−1

.

Alternatively, via some simple manipulations, (7.15) can be written
in the recursive form as:

ū(k + 1) = ū(k) + PG(k + 1)GT (σ(k))e(k, σ(k), ū(k)). (7.16)

The error signal:

e(k, σ(k), ū(k)) = yd − G(σ(k))ū(k) − dA(k, σ(k)) − nA(k, σ(k))

can be evaluated experimentally by applying the input u(k, σ(k))
from (7.10) based on ū(k) to the real system. Therefore we see that
the estimate ū can be evaluated recursively using data measured
from the real system.

7.3.1 Consistency of estimates

Next a condition that assures consistent estimates is given.
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Theorem 7.1 Under the assumptions made in Subsection 7.2.4, the
algorithm (7.16) is a consistent estimator, i.e. ū(K) converges al-
most surely to ū0 as K → ∞, if:

lim
K→∞

1

K
P−1

G (K) (7.17)

is nonsingular.

Proof: The recursive algorithm (7.16) has the same asymptotic
properties as the batch result (7.15) so the consistency of (7.15) can
be considered. (7.15) can be rewritten as:

ū(K) = KPG(K)
1

K

K−1
∑

k=0

GT (σ(k)) [G(σ(k))ū0 − nA(k, σ(k))]

= ū0 − KPG(K)
1

K

K−1
∑

k=0

GT (σ(k))nA(k, σ(k)).

In order for the estimates to be consistent it is necessary that:

lim
K→∞

1

K
P−1

G (K) (7.18)

be nonsingular and

h(K) =
1

K

K−1
∑

k=0

GT (σ(k))nA(k, σ(k)) → 0 a.s., as K → ∞. (7.19)

(7.18) is the condition in the theorem that should be satisfied.
To show that (7.19) is true we first write:

GT (σ(k))nA(k, σ(k)) = GT (σ(k))A−1(σ(k))n(k, σ(k))

= m(k, σ(k)).

Since n(k, σ(k)) is assumed to be zero mean and independent be-
tween iterations, and A is nonsingular, this expression means that
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m(k, σ(k)) will also be zero mean and independent between itera-
tions. Additionally m(k, σ(k))’s covariance matrix is given by:

Rm(k, σ(k)) = GT (σ(k))A−1(σ(k))Rn(k, σ(k))A−T (σ(k))G(σ(k)).

Since Rn(k, σ(k)) is assumed bounded and A is nonsingular,
Rm(k, σ(k)) will be bounded.

The ith component of h(K) in (7.19) therefore represents the
sample average of a sequence of zero-mean, independent random vari-
ables with finite, though possibly different, variances σ2

m(i, k, σ(k)).
Lemma 2.3 implies that (7.19) is satisfied if:

lim
K→∞

K−1
∑

k=0

σ2
m(i, k, σ(k))

(k + 1)2
< ∞. (7.20)

Since
K−1
∑

k=0

σ2
m(i, k, σ(k))

(k + 1)2
≤ σ2

m(i)

K−1
∑

k=0

1

(k + 1)2

where σ2
m(i, k, σ(k)) ≤ σ2

m(i) < ∞ ∀k, and

lim
K→∞

K−1
∑

k=0

1

(k + 1)2
=

π

6
,

(7.20) is satisfied. The theorem is therefore proved.

Remark: The condition (7.17) in Theorem 7.1 is a persistency of ex-
citation condition that requires the scheduling parameter trajectory
to be sufficiently rich.

7.4 Application results

As mentioned previously, the proposed method is applied to the
LPMSM. The PID feedback controller operating at a sampling fre-
quency of 2kHz is used to control the motor’s position. The input,
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u(k, σ(k)), computed by the ILC algorithm, is used as the closed-
loop system’s position reference signal.

The desired output motion is the Micromotion. In this chapter
we consider the problem of improving the tracking performance of
the LPMSM when it executes the movement repetitively but from
a different starting position each repetition. This scenario is clearly
possible in an industrial setting. If the system’s dynamics and dis-
turbances were position-independent, this problem could be solved
with an LTI ILC algorithm. This, however, is not the case for the
LPMSM, as can be seen from Figures 7.1 and 7.2. In these figures
the mean system’s response is shown when the movement is car-
ried out at 10 different starting positions spaced 1.6 mm apart. The
movements are repeated 10 times at each position in order to be able
to differentiate between the effect of stochastic disturbances on the
system’s response and that due to changing dynamics. It can be

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

1

2

3

4

5

6

7

8

y
d
(t

),
y
(t

)
(µ

m
)

t(s)

Fig. 7.1. Mean system response to desired output yd(t) (dashed) applied
as closed-loop reference at 10 different positions
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Fig. 7.2. Zoom of mean system response at different positions with error
bars showing 1 standard deviation

clearly seen that significantly different responses are obtained which
differ by an amount greater than could be expected from stochastic
effects.

7.4.1 System modelling

Experimentally, a position dependence of the system’s response has
been shown. In order to understand where this comes from a model
of the system will now be developed. The position y(t, k) of the
translator of the LPMSM, at time t and repetition k, obeys the
following equation:

d2y(t, k)

dt2
= fm(t, k) − cf

dy(t, k)

dt
− fr(y(t, k)) (7.21)
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where fm(t, k) is the force applied to the motor, cf is the viscous
friction coefficient and fr(y(t, k)) is the force ripple. Since the sys-
tem has a current loop whose dynamics are much faster than the
position dynamics, the force applied to the motor can be consid-
ered proportional to the applied current i.e. fm(t, k) = kmi(t, k).
The force ripple term contains both the cogging force and reluctance
force, and is primarily a periodic function of the system’s position
y(t, k) that can be modelled by:

fr(y(t, k)) =

nr−1
∑

i=0

Fr,i sin

(

2πy(t, k)

Tr,i
+ φr,i

)

, (7.22)

where the periods Tr,i are influenced by different factors such as the
average pitch of the magnets and the size of the bearings. We see
that this force has a nonlinear dependence on the system’s position
making the system, itself, nonlinear.

The developed ILC algorithm is for the LPV system class. The
system represented by (7.21) does not have the form of an LPV sys-
tem. Nonetheless for the specific class of movements considered here,
whose amplitude is negligible compared to the force ripple’s princi-
pal period, certain manipulations can be made in order to obtain an
LPV model. Under this assumption on the movement amplitude,
we can assume that the force ripple varies linearly in a small zone
about a certain operating point corresponding to a specific starting
position ȳ(k). Using this idea we can obtain an LPV model, whose
dynamics change as a function of the starting position. To show this
we linearise the force ripple term at the operating point. This op-
eration is done by first evaluating (7.21) at y(t, k) = ȳ(k) + δy(t, k),
where δy(t, k) is a small deviation about ȳ(k):

d2(ȳ(k) + δy(t, k))

dt2
= f̄m(k) + δfm(t, k)−

cf
d(ȳ(k) + δy(t, k))

dt
− fr(ȳ(k) + δy(t, k))), (7.23)
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where f̄m(k) + δfm(t, k) is the force input required to maintain the
system at this operating point. Using a Taylor series expansion,
(7.23) can be written approximately as:

d2(ȳ(k) + δy(t, k))

dt2
≈ f̄m(k) + δfm(t, k)

− cf
d(ȳ(k) + δy(t, k))

dt
− fr(ȳ(k))

− dfr(y(t, k))

dy(t, k)

∣

∣

∣

y(t,k)=ȳ(k)
δy(t, k). (7.24)

Subtracting (7.21), evaluated at y(t, k) = ȳ(k), from this gives:

d2

dt2
δy(t, k) ≈ δfm(t, k) − cf

d

dt
δy(t, k)

− dfr(y(t, k))

dy(t, k)

∣

∣

∣

y(t,k)=ȳ(k)
δy(t, k)

= δfm(t, k) − cf
d

dt
δy(t, k) − σ(ȳ(k))δy(t, k), (7.25)

where

σ(ȳ(k)) =
dfr(y(t, k))

dy(t, k)

∣

∣

∣

y(t,k)=ȳ(k)

=

nr−1
∑

i=0

(

2πFr,i

Tr,i

)

cos

(

2πȳ(k)

Tr,i
+ φr,i

)

. (7.26)

This model can be seen to represent an LPV system with σ(ȳ(k))
as the scheduling parameter. For simplicity of notation from now
on δy(t, k) and δfm(t, k) will be replaced by y(t, k) and fm(t, k),
respectively, though it should be remembered that they represent
small deviations about the operating point values.

Taking the Laplace transform of (7.25), for a fixed σ(ȳ(k)), gives:

Y (s, σ(ȳ(k)))

Fm(s, k)
= Pc(s, σ(ȳ(k))) =

1

s2 + cfs + σ(ȳ(k))
. (7.27)
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In practice, the ILC algorithm is applied to the reference signal of
the system operating in closed loop with a PID feedback controller:

Kc(s) = Kp

(

1 +
1

Tis
+ Tds

)

. (7.28)

The closed-loop transfer function between the reference signal and
the system output is:

Y (s, σ(ȳ(k)))

U(s)
=

Kc(s)Pc(s, σ(ȳ(k)))

1 + Kc(s)Pc(s, σ(ȳ(k)))
. (7.29)

The ILC algorithm is applied in discrete-time. It is therefore
necessary to discretise the transfer function (7.29). This discreti-
sation is done using Euler’s second method i.e. by substituting s
by (1 − z−1)/h, where h is the sampling period. Additionally the
discrete-time system has a two sampling period input delay. We
therefore have the discrete-time closed-loop LPV system transfer
function given by:

G(z−1, σ(ȳ(k))) =
B(z−1)

A(σ(ȳ(k)), z−1)

=
z−2

(

b2 + b3z
−1 + b4z

−2
)

a0 (σ(ȳ(k))) + a1 (σ(ȳ(k))) z−1 + a2z−2 + a3z−3
, (7.30)

where

a0 (σ(ȳ(k))) = a0
0ξ0(σ(ȳ(k))) + a1

0ξ1(σ(ȳ(k))),

a1 (σ(ȳ(k))) = a0
1ξ0(σ(ȳ(k))) + a1

1ξ1(σ(ȳ(k)))

and

ξ0(σ(ȳ(k)) =
σ − σ(ȳ(k))

σ − σ
, ξ1(σ(ȳ(k)) =

σ(ȳ(k)) − σ

σ − σ
.

σ and σ are the minimum and maximum values of σ(ȳ(k)), respec-
tively.

It has, therefore, been shown that the LPMSM can be represented
by an LPV model for the class of movements considered and thus the
developed algorithm is applicable.
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7.4.2 System identification

The developed ILC algorithm uses the matrix G(σ(k)), as seen in
(7.16). This matrix is formed from the system matrix G(σ(k))
and the functions ξi(σ(ȳ(k))). A model of G(z−1, σ(ȳ(k))) needs
to be identified in order to construct the matrix G(σ(k)). This iden-
tification will be considered first, followed by the identification of
ξi(σ(ȳ(k))).

The LPV model of G(z−1, σ(ȳ(k))), Ĝ(z−1, σ(ȳ(k))), could be
found by first identifying LTI models, each with the same structure
(order and delay) as (7.30) at different positions. These models’
parameters could then be used to find the parameters of the overall
LPV model (7.30). This method is, however, very time consuming
and calls into question the practical usefulness of the ILC method.
A single LTI model Ĝ(q−1) is therefore identified to be used in the
place of the LPV model in (7.16); the assumption being made that
a certain amount of model uncertainty is acceptable.

In order to excite the system correctly for the identification of the
LTI model, a PRBS signal is chosen as the system’s reference signal.
It uses a shift register of 10 bits and a divider of 7 giving a signal
length of 7161 points. These values are chosen to sufficiently excite
the system at low frequencies, and are calculated from an estimate
of the system’s settling time obtained via a step response test on the
real system. The amplitude of the signal is selected large enough
to give a good signal-to-noise ratio and reduce the effects of static
friction, but small enough to remain in the zone of linearisation and
avoid saturation. Two experiments are carried out at an arbitrarily
chosen position, one set for parameter estimation and the other for
validation. An output error model, with the same order and number
of input delays as (7.30), is found to give a good fit to the validation
data in simulation.

Next the identification of the functions ξi(σ(ȳ(k))) is undertaken.
These functions are based on the scheduling parameter σ(ȳ(k)).
σ(ȳ(k)) cannot be measured directly, only ȳ(k). In order to cal-
culate σ(ȳ(k)) it is necessary to estimate the values of Fr,i, Tr,i and
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φr,i for i = 0, . . . , nr −1. This can be done using measurements from
the motor. The force applied by the feedback controller is measured
whilst the motor moves at constant velocity. Since the acceleration
is approximately equal to zero and the friction force is assumed con-
stant, any variation in the applied force is to compensate the force
ripple. By doing several experiments in the positive and negative
directions, removing the offset due to the constant friction force and
taking the average we can obtain an estimate of the force ripple, see
Figure 7.3. The spectrum of the measured force ripple is calculated

0 5 10 15 20 25 30
−1500

−1000

−500

0

500

1000

f
r
(y

)
(i
n
cr

)

Position, y (mm)

Fig. 7.3. Measured force ripple (‘incr’ are the LPMSM’s unit of force)

in order to estimate the periods Tr,i. Significant peaks occur at spa-
tial frequencies corresponding to periods of 2 mm, 3.7 mm, 8 mm, 13
mm and 21 mm. These values are thus used for Tr,i for i = 0, . . . , 4,
respectively. With these values the parametric model of the force
ripple is:
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f̂r(y(t, k)) =

4
∑

i=0

Fr,i sin

(

2πy(t, k)

Tr,i
+ φr,i

)

=























sin
(

2πy(t,k)
Tr,0

)

cos
(

2πy(t,k)
Tr,0

)

sin
(

2πy(t,k)
Tr,1

)

...

cos
(

2πy(t,k)
Tr,4

)























T















f1
r,0

f2
r,0

f1
r,1
...

f2
r,4















.

f1
r,0, f

2
r,0, . . . are estimated by a least squares procedure using data

from a 13 mm section of the total measured data. This length is
chosen as it corresponds to the period of the largest component in
the force ripple spectrum. The values of Fr,1, φr,1, . . . are then calcu-
lated from these estimates. This procedure gives Fr,0 = 92.03 incr,
φr,0 = 0.74 rad, Fr,1 = 179.07 incr, φr,1 = 1.20 rad, Fr,2 = −253.36
incr, φr,2 = 0.67 rad, Fr,3 = −754.19 incr, φr,3 = 0.62 rad,
Fr,4 = 435.79 incr and φr,4 = 0.86 rad. A comparison of the output
of the model formed with these parameters and the force estimated
from the measurements is shown in Figure 7.4. We see that the
model fits the measurement estimates reasonably well.

Using this model, the scheduling parameter σ(ȳ(k)) can be calcu-
lated from (7.26). The maximum and minimum values of σ(ȳ(k)), σ

and σ are also needed. As the dependence of the derivative of σ(ȳ(k))
is nonlinear w.r.t. ȳ(k), it is not possible to evaluate these values an-
alytically. They are, therefore, estimated by gridding σ(ȳ(k)) over
the range considered.

7.4.3 Application of the proposed algorithm

With the required model identified, the proposed algorithm is applied
to the LPMSM. The desired motion consists of a Micromotion in the
positive direction followed by one in the negative direction. Its length
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Fig. 7.4. Measured force ripple (dashed) and model estimate (solid)

is such that N − m = 26. In the implementation of the algorithm
the matrix:

PG(k + 1) =

[

k
∑

i=0

GT (σ(ȳ(i)))G(σ(ȳ(i)))

]−1

where

G(σ(ȳ(k))) = [ξ0(σ(ȳ(k)))G(σ(ȳ(k))), ξ1(σ(ȳ(k)))G(σ(ȳ(k))]

is required at each iteration of the algorithm. In order for the in-
verse to exist, it is necessary that this matrix be full rank. For this
to be the case a persistency of excitation condition on the scheduling
parameter trajectory should be satisfied. A necessary, but not suffi-
cient, condition for the matrix to be full rank is that 2 different values
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of ȳ(k) are visited.1 In order to satisfy this the algorithm is not used
to calculate the system input until 2 different values of ȳ(k) have
been visited, using u(k, σ(k)) = yd for k = 0, 1. Nonetheless the
matrix P−1

G (k + 1) is still ill-conditioned. This is because the iden-

tified model Ĝ(q−1) used to produce the matrix G has an unstable
zero at q = −7. The G used to generate P−1

G (k+1) thus uses Ĝ(q−1)
with this zero stabilised by replacing it with a zero at q = −1/7. This
stabilisation process is motivated by the fact that it gives a system
with a frequency response that has the same magnitude as Ĝ(q−1),
though the phase is different.

The movement’s starting positions are chosen as a sawtooth wave-
form that periodically visits 13 equally spaced positions in the 13 mm
range considered.

The results obtained using the proposed method are compared
with those obtained using an ILC algorithm developed under the
assumption of the system being LTI. The algorithm is given by:

u(k + 1) = u(k) +
1

k + 1
G−1e(u(k)). (7.31)

This algorithm can be motivated either by the stochastic approxima-
tion theory presented in the last chapter or as the equivalent recursive
version of the least squares solution when the 2-norm of the tracking
error is minimised over all iterations up to iteration k+1. The latter
is the same motivation as that used to develop the LPV ILC algo-
rithm so makes the comparison fair. The algorithm is implemented
on the system with the starting position being changed in the same
way as for the experiments with the proposed algorithm.

The mean square values achieved using the LPV and LTI ILC al-
gorithms are shown in Figures 7.5 and 7.6. It can be seen, especially
from Figure 7.6, that the LPV algorithm gives better tracking than

1 This condition arises because G(σ(ȳ(k))) ∈ R
(N−m)×2(N−m) is of max-

imum rank N − m, and thus so is GT (σ(ȳ(k)))G(σ(ȳ(k))). P
−1
G

(k + 1)
must be of rank 2(N −m). This is only possible after 2 different values
of ȳ(k) are visited.
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Fig. 7.5. Mean square values of e(k) using the proposed algorithm (solid)
and the LTI algorithm (dashed)

that achieved with the LTI algorithm. More specifically the large
peaks occurring with the LTI algorithm are reduced, meaning that
the LPV ILC algorithm achieves more even tracking for all starting
positions, as expected.

7.5 Conclusions

An ILC algorithm has been proposed for systems that can be rep-
resented by the discrete-time, LPV class of systems with poly-
topic dependence of the denominator polynomial’s coefficients on the
scheduling parameter. Consistency of the algorithm in the presence
of nonstationary stochastic disturbances has been shown when the
scheduling parameter trajectory is sufficiently exciting.
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Fig. 7.6. Mean square values of e(k) using the proposed algorithm (solid)
and the LTI algorithm (dashed)

The algorithm has been applied to the LPMSM, which has been
shown to be an LPV system when its displacement is negligible com-
pared to the period of the force ripple disturbance. Improved per-
formance is achieved over that obtained using a standard LTI ILC
algorithm.

Monotonic convergence of a norm of the error signal is of practical
interest, and much attention has been given to this issue in LTI ILC,
as seen in the previous chapters. Unfortunately, it seems unlikely
that this property can be incorporated into LPV ILC algorithms as
the system’s dynamics change from one iteration to the next and so,
depending on how they change, it is always possible that the error
will increase slightly, though the overall trend should be to decrease.
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Appendix

7.A Derivation of (7.16)

Equation (7.15) gives:

ū(k+1) = PG(k + 1)

k
∑

i=0

GT (σ(i))
[

yd − dA(i, σ(i)) − nA(i, σ(i))
]

= PG(k + 1)

k−1
∑

i=0

GT (σ(i))
[

yd − dA(i, σ(i)) − nA(i, σ(i))
]

+ PG(k + 1)GT (σ(k))
[

yd − dA(k, σ(k)) − nA(k, σ(k))
]

= PG(k + 1)
[

P−1
G (k)ū(k) + GT (σ(k))

[

yd − dA(k, σ(k))

− nA(k, σ(k))
]

]

= PG(k + 1)
[

[

P−1
G (k + 1) − GT (σ(k))G(σ(k))

]

ū(k)

+ GT (σ(k))
[

yd − dA(k, σ(k)) − nA(k, σ(k))
]

]

= ū(k) + PG(k + 1)GT (σ(k))
[

yd − G(σ(k))ū(k)

− dA(k, σ(k)) − nA(k, σ(k))
]

= ū(k) + PG(k + 1)GT (σ(k))e(k, σ(k), ū(k)),

which is equal to expression (7.16).
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Conclusions

8.1 Summary

In this thesis data-driven methods for tracking improvement have
been proposed and analysed. For the general tracking problem,
data-driven tuning methods for precompensators/prefilters are pro-
posed. For the specific case of repetitive trajectory tracking, Iterative
Learning Control has been studied. For both tracking problems al-
gorithms have been investigated and developed for LTI systems and
the broader system class of LPV systems.

In Chapter 3, a data-driven precompensator tuning method using
the correlation approach is proposed. The method requires only one
simple tuning experiment on the system. Moreover, the use of the
correlation approach means that the 2-norm of the model-following
criterion can be minimised and is asymptotically unaffected by the
presence of stochastic disturbances on the measurements.

In Chapter 4, data-driven methods for precompensator tuning for
LPV systems is considered. Since LPV systems do not commute in
general, it is not possible to directly extend the method from Chap-
ter 3. Nonetheless, in the specific case that the inverse of the system
exists in the set of parameterised precompensators, the precompen-
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sator and the system do commute, and parameters for the precom-
pensator that represents the system inverse can be estimated using
two straightforward experiments on the system. In the more, general
case, when the precompensator and the system do not commute, a
method is proposed that uses a number of experiments equal to twice
the number of precompensator parameters. For both cases, consis-
tency of the parameters is shown when the scheduling parameter is
either noise free, or the noise affecting it is uncorrelated with that
affecting the system output and the dependence on the scheduling
parameters is affine.

In Chapter 5, a statistical analysis is carried out for a general
ILC algorithm for LTI systems, as well as for a number of previously
proposed algorithms that aim to be less sensitive to stochastic distur-
bances. Expressions are developed for the mean converged controlled
error value and the controlled error variance. These expressions al-
low the different algorithms to be compared in a unified framework.
It is shown that, when the disturbance spectra and spectrum of the
desired output do not overlap, a filtered algorithm can give good
performance. However, when this is not the case, an algorithm using
an iteration decreasing gain can lead to a small mean and variance
value for the error.

In Chapter 6, it is shown how ILC fits into the well-developed
stochastic approximation framework. Using this framework, condi-
tions are given that ensure almost sure convergence of the learnt
input to the ideal input, which produces zero-mean controlled error.

In Chapter 7, an ILC algorithm for LPV systems, whose dynamics
change from one iteration to the next, is developed. It is shown that
the algorithm gives consistent estimates of the ideal input, despite
the presence of nonstationary stochastic disturbances. Additionally
it is shown that the LPMSM is a linear parameter varying system
for the class of movements whose amplitude is negligible compared
to the period of the LPMSM’s force ripple disturbance.

From a practical point of view, the methods developed and anal-
ysed in this thesis can be easily applied to existing, stable open or
closed-loop systems in order to improve their tracking performance.
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Since they can be used to adjust the reference signal of a closed-loop
system, they do not require the existing controller structure to be
modified, which is clearly advantageous. Moreover, the methods do
not require complex system information, such as probability distribu-
tions, which is sometimes the case for control algorithms for systems
affected by stochastic disturbances.

The majority of the approaches developed in this thesis have been
applied successfully in practice to the LPMSM, illustrating their in-
dustrial applicability.

8.2 Possible future work

There are a number of possible research directions that arise from
the work done. A few are discussed below.

• It would be of interest to investigate data-driven precompensator
tuning for multi-input multi-output systems. In general, as in
the general SISO LPV case, the precompensator and system will
not commute so the special tuning scheme of swapping their po-
sitions will not be feasible. A number of experiments will there-
fore be necessary to tune the precompensator parameters. It is
possible, however, that using the correlation approach this num-
ber will be less than would be needed by a tuning method that
minimises the error variance. This saving is because, as in the
feedback controller tuning case [37], the system’s inputs, and pos-
sibly scheduling parameters, could be simultaneously excited if
they are uncorrelated.

• Experimentally the LPV ILC algorithm has been shown to be
robust to a certain amount of model uncertainty. Nevertheless,
a theoretical result quantifying the acceptable uncertainty would
be of interest. Furthermore, the proposed method is restricted
to LPV systems with a dependence on the scheduling parameter
only in the denominator of the system’s transfer function. It is
clear that a more general algorithm that works for systems with
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scheduling parameter dependence in the numerator as well would
be of interest. A different approach to that presented in this
thesis would be necessary, nonetheless, as the ideal input could
not be represented as a linear combination of the ideal inputs at
the polytopic vertices.

• A number of the consistency results have relied on the, prac-
tically impossible, use of an infinite number of data or itera-
tions. It has been shown, via simulation and experiment, that
the methods give good results even with a large, finite number of
data/iterations. Nonetheless, it would be interesting to develop
theoretical results quantifying the effect of using only this finite
number of data.
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Appendix

A.1 On the consistency of certain identification
methods for LPV systems

A.1.1 Introduction

In this appendix the consistency of certain identification methods for
LPV systems is addressed. In order to prove consistency it is nec-
essary to apply ergodicity results to the time averages encountered
in the analysis process. The ergodicity of the signals used in the
identification of LPV systems is thus studied for different assump-
tions on the scheduling parameter. It is shown that the signals are
ergodic if the scheduling parameter is noise-free or the measurement
noise on the scheduling parameter is independent of that affecting
the output. In these cases the use of instrumental variables leads
to consistent parameter estimates. However, for the cases that the
scheduling parameter’s noise is correlated with that of the output
signal or the LPV system does not have an affine dependency on the
noisy scheduling parameter, the ergodicity of the signals cannot be
proved and so consistency of the estimates cannot be shown.

The appendix is organised as follows. The identification problem
is presented in Section A.1.2. The non-noisy scheduling parameter
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case is considered in Section A.1.3. Then the noisy scheduling pa-
rameter case is analysed in Section A.1.4. Simulation results are
presented in Section A.1.5. Finally, some concluding remarks are
made in Section A.1.6.

A.1.2 Problem formulation

True system representation

Suppose that the measured output of the SISO LPV system
G0(σ(t), q−1) is given by (see Fig A.1):

y(t) = G0(σ(t), q−1)u(t) + H0(σ(t), q−1)η(t), (A.1)

where G0(σ(t), q−1) and H0(σ(t), q−1) are the system and noise
transfer operators, respectively. They are assumed to be LPV stable
for all σ(t) in the operating zone.

- G0(σ(t), q−1) - ?

H0(σ(t), q−1)

?

?

-

f -u(t) y(t)

η(t)

σ(t)

+

Fig. A.1. LPV system

G0(σ(t), q−1) can be represented as:

G0(σ(t), q−1) =
B0(σ(t), q−1)q−m

A0(σ(t), q−1)
(A.2)

where:
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B0(σ(t), q−1) = b0
0(σ(t)) + b0

1(σ(t))q−1 + · · ·+ b0
nb

(σ(t))q−nb (A.3)

and

A0(σ(t), q−1) = 1 + a0
1(σ(t))q−1 + · · · + a0

na
(σ(t))q−na . (A.4)

nb and na are the numerator and denominator orders, respectively.
The coefficients of B0(σ(t), q−1) are given by:

b0
i (σ(t)) = b0

i,0σ0(t) + b0
i,1σ1(t) + · · · + b0

i,nσ
σnσ

(t), (A.5)

where σj(t) represents the jth element of σ(t). As in the precompen-
sator tuning case, this parameterisation allows a wide range of de-
pendence on the scheduling parameter to be described. For example
each σj(t) could represent a function of a different scheduling param-
eter. Alternatively, as used in [5], the numerator and denominator
coefficients could be polynomially dependent on a single scheduling
parameter i.e.

σj(t) = σj(t), (A.6)

where σ(t) is the single measured scheduling parameter. A similar
representation to (A.5) exists for a0

i (σ(t)).
Using (A.1) and (A.2) we can write:

A0(σ(t), q−1)y(t) = B0(σ(t), q−1)q−mu(t)

+ A0(σ(t), q−1)H0(σ(t), q−1)η(t)

= B0(σ(t), q−1)q−mu(t) + v(t) (A.7)

This, in turn, can be written in linear regression form as:

y(t) = φT (t)θ0 + v(t), (A.8)

where the regressor vector is given by:

φ(t) = ϕ(t) ⊗ σ(t) (A.9)

where ⊗ is the Kronecker product and
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ϕT (t) = [−y(t − 1),−y(t − 2), . . . ,−y(t − na),

u(t − m), u(t − m − 1), . . . , u(t − m − nb)] (A.10)

and the true parameter vector is:

θT
0 = [a0

1,0, a
0
1,1, . . . , a

0
1,nσ

, . . . , a0
na,0, a

0
na,1, . . . , a

0
na,nσ

,

b0
0,0, b

0
0,1, . . . , b

0
0,nσ

, . . . , b0
nb,0, b

0
nb,1, . . . , b

0
nb,nσ

]. (A.11)

Model representation

The model of the system is written as:

A(σ(t), q−1)y(t) = B(σ(t), q−1)q−mu(t) (A.12)

which allows the predictor:

ŷ(t|θ) = φT (t)θ (A.13)

to be defined, along with the prediction error:

ep(t, θ) = y(t) − ŷ(t|θ) = y(t) − φT (t)θ. (A.14)

As consistency is being considered here, it will be assumed that the
model order is always chosen equal to the true system order.

A.1.3 Non-noisy scheduling parameters

In this section the case of non-noisy scheduling parameters is consid-
ered. This assumption is normally made in the LPV identification
literature, and is somewhat unrealistic unless the scheduling param-
eter is a function of the system input. It is considered here to il-
lustrate some basic results of the analysis, before studying the more
complete, but more complicated, case of noisy scheduling parame-
ters in the next section. It also allows the polynomial scheduling
parameter (A.6) to be analysed when the degree of the polynomial is
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greater than 1, which is not possible in the next section. Moreover,
in the case of a very low noise-to-signal ratio it might be possible to
ignore the noise on the scheduling parameter.

One specific case that the following analysis does not apply to is
that when the scheduling parameters is the system output y(t). This
case is excluded because the output is expressly considered noisy.

As in [5], we examine the case of minimising a quadratic criterion
for the estimation of the system parameters i.e.

θ̂
N

= arg min
θ

1

N

N−1
∑

t=0

e2
p(t, θ). (A.15)

This estimate can be evaluated using a number of well-known algo-
rithms, including the recursive least squares algorithm as proposed
in [5]. It is also possible to use the standard linear least squares
algorithm for batch data, giving:

θ̂
N

LS =

[

1

N

N−1
∑

t=0

φ(t)φT (t)

]−1

1

N

N−1
∑

t=0

φ(t)y(t). (A.16)

Replacing y(t) in (A.16) with (A.8) gives:

θ̂
N

LS = θ0 +

[

1

N

N−1
∑

t=0

φ(t)φT (t)

]−1

1

N

N−1
∑

t=0

φ(t)v(t). (A.17)

For the estimate θ̂
N

LS to be consistent i.e. that θ̂
N

LS converges almost
surely to θ0, it is well-known that it is necessary that:

i) lim
N→∞

1

N

N−1
∑

t=0

φ(t)φT (t) be nonsingular. (A.18)

ii) lim
N→∞

1

N

N−1
∑

t=0

φ(t)v(t) = 0 w.p. 1. (A.19)
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Condition (A.18) is a persistency of excitation condition, which
in the LPV case requires more attention, as discussed in [5] for the
polynomial dependence case (A.6) and [64] for the more general case.

Condition (A.19) can be analysed using Corollary 2.1. We first
note that φ(t)v(t) contains terms such as σj(t)u(t − p)v(t) and
σj(t)y(t − p)v(t). We then define:

s1(t) =





σj(t)u(t − p)
σj(t)y(t − p)

v(t)





=





0
σj(t)H0(σ(t − p), q−1)η(t − p)
A0(σ(t), q−1)H0(σ(t), q−1)η(t)





+





σj(t)u(t − p)
σj(t)G0(σ(t − p), q−1)u(t − p)

0





=





v1
1(t)

v1
2(t)

v1
3(t)



 +





w1
1(t)

w1
2(t)

w1
3(t)



 (A.20)

where w1
1(t) and w1

2(t) satisfy (2.39), due to the assumed LPV sta-
bility of G0(σ(t), q−1) and the boundedness of σj(t) and u(t). Also
v1
2(t) and v1

3(t) fit in with the desired form of (2.41) due to the as-
sumed LPV stability of H0(σ(t), q−1).

The components of s1(t)s
T
1 (t) give, amongst others, σj(t)u(t −

p)v(t) and σj(t)y(t − p)v(t). Then Corollary 2.1 means that it is
possible to write:
∥

∥

∥

∥

∥

1

N

N−1
∑

t=0

φ(t)v(t) − 1

N

N−1
∑

t=0

E{φ(t)v(t)}
∥

∥

∥

∥

∥

F

→ 0 w.p. 1, as N → ∞.

(A.21)

Analysing the components of E{φ(t)v(t)} we see that:

E{σj(t)u(t − p)v(t)} = σj(t)u(t − p)E{v(t)} = 0 (A.22)
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and

E{σj(t)y(t− p)v(t)} = σj(t)E{[φT (t− p)θ0 + v(t− p)]v(t)} (A.23)

which is only zero when either v(t) is a zero-mean, white noise se-
quence, or na = 0. Neither of these cases occur often in practice, so
the second sum in (A.21) will, in general, be non-zero, and thus also
the first. The least squares method therefore typically does not give
consistent parameter estimates.

In order to obtain consistent parameter estimates the IV tech-
nique can be used. The IV estimate is given by:

θ̂
N

IV =

[

1

N

N−1
∑

t=0

ζ(t)φT (t)

]−1

1

N

N−1
∑

t=0

ζ(t)y(t) (A.24)

where ζ(t) is the IV vector, which must be correlated with the re-
gressor φ(t) but not with the noise v(t) in order that the algorithm
be consistent. It should be mentioned that, in order to keep the
variance of the estimates low, the IV vector for LPV system identi-
fication should be a function of the scheduling parameters, as φ(t)
is. Good choices are either to use an auxiliary LPV model (identi-
fied by the LS method) to generate the IV vector, or use a second
experiment.

A.1.4 Noisy scheduling parameters

In this section the more realistic case of the measured values of σ(t)
being contaminated by noise will be examined. To do this, the noisy,
measured scheduling parameter vector, σv(t), is expressed as the
sum of a noise-free component and a noisy component i.e.

σv(t) = σ(t) + vσ(t). (A.25)

The measured regressor vector is now given by:

φσv
(t) = φ(t) + φvσ

(t), (A.26)
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where φ(t) is as defined in (A.9) and

φvσ
(t) = ϕ(t) ⊗ vσ(t). (A.27)

If the least squares algorithm is now used to estimate the param-
eters we have:

θ̂
N

LS =

[

1

N

N−1
∑

t=0

φσv
(t)φT

σv
(t)

]−1

1

N

N−1
∑

t=0

φσv
(t)y(t) (A.28)

where it can be seen that the measured version φσv
(t) is used instead

of φ(t). Substituting in (A.8) for y(t) gives:

θ̂N
LS =

[

1

N

N−1
∑

t=0

φσv
(t)φT

σv
(t)

]−1

1

N

N−1
∑

t=0

φσv
(t)(φT (t)θ0 + v(t))

= θ0 −
[

1

N

N−1
∑

t=0

φσv
(t)φT

σv
(t)

]−1

1

N

N−1
∑

t=0

φσv
(t)

(

φT
vσ

(t)θ0 − v(t)
)

.

(A.29)

It is clear that this expression has an extra term over (A.17), which
comes from the fact that not only the output y(t) is noisy but also
the scheduling parameter signal. This can be recognised as an errors-
in-variables type problem.

For the estimate to be consistent we require, in a similar fashion
to before, that:

i) lim
N→∞

1

N

N−1
∑

t=0

φσv
(t)φT

σv
(t) be nonsingular. (A.30)

ii) lim
N→∞

1

N

N−1
∑

t=0

φσv
(t)

(

φT
vσ

(t)θ0 − v(t)
)

= 0 w.p. 1. (A.31)

As before, Condition (A.30) is a persistency of excitation condi-
tion.
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Condition (A.31) can, again, be analysed using Corollary 2.1. We
first consider the matrix φσv

(t)φT
vσ

(t). This contains the following
terms:

(σj(t) + vσ,j(t))y(t − p)vσ,i(t)y(t − r), (A.32)

(σj(t) + vσ,j(t))y(t − p)vσ,i(t)u(t − r) (A.33)

and (σj(t) + vσ,j(t))u(t − p)vσ,i(t)u(t − r). (A.34)

Considering (A.32), it is clearly equal to:

σj(t)
[

G0(σ(t − p), q−1)u(t − p) + H0(σ(t − p), q−1)η(t − p)
]

vσ,i(t)
[

G0(σ(t − r), q−1)u(t − r) + H0(σ(t − r), q−1)η(t − r)
]

+ vσ,j(t)
[

G0(σ(t − p), q−1)u(t − p) + H0(σ(t − p), q−1)η(t − p)
]

vσ,i(t)
[

G0(σ(t − r), q−1)u(t − r) + H0(σ(t − r), q−1)η(t − r)
]

.
(A.35)

So, referring to Corollary 2.1, we can write:

s2(t) =

















σj(t)H0(σ(t − p), q−1)η(t − p)
vσ,j(t)G0(σ(t − p), q−1)u(t − p)
vσ,j(t)H0(σ(t − p), q−1)η(t − p)
vσ,i(t)G0(σ(t − r), q−1)u(t − r)
vσ,i(t)H0(σ(t − r), q−1)η(t − r)

0

















+

















0
0
0
0
0

σj(t)G0(σ(t − p), q−1)u(t − p)

















=

















v2
1(t)

v2
2(t)

v2
3(t)

v2
4(t)

v2
5(t)

v2
6(t)

















+

















w2
1(t)

w2
2(t)

w2
3(t)

w2
4(t)

w2
5(t)

w2
6(t)

















. (A.36)

In order to write v2
3(t) = vσ,j(t)H0(σ(t−p), q−1)η(t−p) and v2

5(t) =
vσ,i(t)H0(σ(t−r), q−1)η(t−r) it is necessary that vσ(t) and η(t) are
uncorrelated. This condition is reasonable so long as the scheduling
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parameter is not the system output y(t). If they are correlated the
expected value of their product is non-zero and does not satisfy the
corollary’s assumptions on the stochastic component. The ergodicity
of the signals used in the identification method is, thus, not provable
in this case.

Additionally it is not possible to establish the ergodicity of the
signals when the scheduling parameter has the polynomial depen-
dence discussed in (4.8) which is of a degree greater than 1. The
reason is that we would have higher order moments of the noise term
affecting σ(t), which are non-zero mean. This, in turn, would imply
that vσ,j(t) is non-zero mean and thus v2

2(t) and v2
4(t) are non-zero

mean, violating the corollary’s assumptions.
With these conditions in mind, we see that amongst the elements

of s2(t)s
T
2 (t) are all the cross-terms found in (A.35), and thus:

∥

∥

∥

∥

1

N

N−1
∑

t=0

[

(σj(t) + vσ,j(t))y(t − p)vσ,i(t)y(t − r)

− E{(σj(t) + vσ,j(t))y(t − p)vσ,i(t)y(t − r)}
]

∥

∥

∥

∥

F

→ 0

w.p. 1, as N → ∞. (A.37)

Similar results exist for (A.33) and (A.34), meaning that:

∥

∥

∥

∥

∥

1

N

N−1
∑

t=0

φσv
(t)φT

vσ
(t) − 1

N

N−1
∑

t=0

E{φσv
(t)φT

vσ
(t)}

∥

∥

∥

∥

∥

F

→ 0

w.p. 1, as N → ∞. (A.38)

Considering, for example, E{(σj(t)+vσ,j(t))y(t−p)vσ,i(t)y(t−r)}
in (A.37) it contains terms like

E
{(

vσ,j(t)G0(σ(t − p), q−1)u(t − p)
)

(

vσ,i(t)G0(σ(t − r), q−1)u(t − r)
)}
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which are not necessarily equal to zero. This, with other terms, will
mean that the second sum in (A.38) will not, in general, be zero.
This implies that the first sum will not be zero either.

Now examining the second term in (A.31) we have that the vector
φσv

(t)v(t) contains the terms

(σj(t) + vσ,j(t)) y(t − p)v(t) and (σj(t) + vσ,j(t)) u(t − p)v(t).

Again referring to Corollary 2.1 we can write:

s3(t) =













σj(t)H0(σ(t − p), q−1)η(t − p)
vσ,j(t)G0(σ(t − p), q−1)u(t − p)
vσ,j(t)H0(σ(t − p), q−1)η(t − p)
A0(σ(t), q−1)H0(σ(t), q−1)η(t)

0










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+
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0
0
0
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=
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+
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
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w3
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
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





. (A.39)

The components of s3(t)s
T
3 (t) include the terms (σj(t)+vσ,j(t))y(t−

p)v(t) and (σj(t) + vσ,j(t))u(t − p)v(t). So it is possible to write:

∥

∥

∥

∥

∥

1

N

N−1
∑

t=0

φσv
(t)v(t) − 1

N

N−1
∑

t=0

E{φσv
(t)v(t)}

∥

∥

∥

∥

∥

F

→ 0

w.p. 1, as N → ∞. (A.40)

In (A.40) we have

E{φσv
(t)v(t)} = E{(φ(t) + φvσ

(t))v(t)} (A.41)

which contains terms similar to those found in (A.23), so, as in Sec-
tion A.1.3, typically E{φ(t)v(t)} 6= 0. Thus the second sum, and
so the first, in (A.40) will usually be non-zero. This, together with
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the result above for the first matrix in (A.31), means that Condition
(A.31) is not normally satisfied and again the estimates obtained
using the least squares algorithm are usually not consistent.

The instrumental variables method can be used to find a consis-
tent estimate of the parameters in this case also. The IV estimate is
given by:

θ̂
N

IV =

[

1

N

N−1
∑

t=0

ζ(t)φT
σv

(t)

]−1

1

N

N−1
∑

t=0

ζ(t)y(t). (A.42)

This time, however, not only should ζ(t) be correlated with the re-
gressor φ(t) and not with the noise v(t), it should also be uncorre-
lated with φT

vσ
(t) in order that the algorithm be consistent.

A.1.5 Simulation results

Simulations are carried out to see how the identification techniques
perform for a finite number of data.

Example 1

The case of non-noisy scheduling parameters is first tested. The true
system is given by:

G0(σ(t), q−1) =
(b0

0(σ(t)) + b0
1(σ(t))q−1)q−1

1 + a0
1(σ(t))q−1 + a0

2(σ(t))q−2
. (A.43)

The coefficient dependence on the scheduling parameter is chosen as
polynomial in a single parameter, as in (A.6), giving:

a0
1(σ(t)) = 1 − 0.5σ(t) + 0.2σ2(t)

a0
2(σ(t)) = 0.5 − 0.7σ(t) − 0.1σ2(t)

b0
0(σ(t)) = 0.5 − 0.4σ(t) + 0.01σ2(t)

b0
1(σ(t)) = 0.2 − 0.3σ(t) − 0.02σ2(t).
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The true vector of parameters is, thus:

θT
0 = [1,−0.5, 0.2, 0.5,−0.7,−0.1, 0.5,−0.4, 0.01, 0.2,−0.3,−0.02].

(A.44)
The signal u(t) is chosen as a PRBS with a shift register of length 12,
giving N = 4095 points, and an amplitude of 1. σ(t) is selected as a
sinusoid with a period equal to N . It oscillates in the interval (0,1).
In order for the algorithm to be consistent it is necessary that the
persistency of excitation conditions are met. With the choice of u(t)
and σ(t) used, this is easily the case. The noise on the output is taken
such that η(t) is a zero-mean, normally distributed white noise with
a variance of 0.005, and H0(σ(t), q−1) = 1. The least squares and
instrumental variables method are tested. The instrumental variable
vector is taken as the regression vector using y(t) calculated from the

model formed using θ̂
N

LS i.e.

ζ(t) = ϕls(t) ⊗ σ(t) (A.45)

where

ϕT
ls(t) = [−yls(t − 1),−yls(t − 2), . . . ,−yls(t − na),

u(t − m), u(t − m − 1), . . . , u(t − m − nb)] (A.46)

It therefore satisfies the conditions in Section A.1.3.
The simulations are carried out 200 times in order to estimate

the bias and variance of the parameters. Table A.1 shows the results
for the different methods. The expectation operators are estimated
as averages over the simulations.

It can be seen from the table that the IV method can be con-
sidered to give unbiased parameter estimates compared to the LS
method. The IV method does, however, have a larger variance, a
known problem with these methods, which comes as a trade-off with
their low computational complexity. This can often be improved
using the Multistep Algorithm in [32].

A noise-free validation simulation is carried out for the θ esti-
mated, using different signals for u(t) and σ(t) to those used in identi-
fication. They are 2 uniformly distributed random sequences varying



176 A Appendix

LS IV

“

θ0 − Ê
n

θ̂
N

o”T “

θ0 − Ê
n

θ̂
N

o”

1.3505 0.0164

Ê



“

θ̂
N

− Ê
n

θ̂
N

o”T “

θ̂
N

− Ê
n

θ̂
N

o”

ff

0.0112 0.0250

Ê

(

1

N

N−1
X

t=0

e
2
p(t)

)

0.0514 0.0099

Table A.1. Results for Example 1 with noise-free σ(t)

in the intervals [-1,1] and [0,1] respectively, and of length 1024 points.
The mean squared prediction error is calculated for each simulation
and the average values over the 200 simulations for each method are
shown in Table A.1. It can be seen that due to the fact that the pa-
rameters identified using the instrumental variables are consistent,
the prediction errors achieved in the validation simulations are much
smaller than those obtained with the LS method.

Example 2

A second simulation is done to examine the case where the scheduling
parameter is contaminated by noise. To be in accordance with the
conditions on the scheduling parameter in Section A.1.4 i.e. polyno-
mial dependence no greater than affine, the system is given as:

G0(σ(t), q−1) =
(b0

0(σ(t)) + b0
1(σ(t))q−1)q−1

1 + a0
1(σ(t))q−1 + a0

2(σ(t))q−2
(A.47)

where
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a0
1(σ(t)) = 1 − 0.5σ(t), a0

2(σ(t)) = 0.5 − 0.7σ(t),

b0
0(σ(t)) = 0.5 − 0.4σ(t), b0

1(σ(t)) = 0.2 − 0.3σ(t).

The true vector of parameters is this time, therefore, given by:

θT
0 = [1,−0.5, 0.5,−0.7, 0.5,−0.4, 0.2,−0.3]. (A.48)

The signals u(t), σ(t) and the noise on the output are chosen as
before. The noise on σ(t) is taken such that vσ(t) is a zero-mean,
normally distributed white noise with a variance of 0.0005. The least
squares and instrumental variables method are tested. This time it is
not possible to use the regression vector generated using the output
of the model formed from θ̂LS as an instrumental variable vector.
This is because it would still use σv(t) from the first simulation.
The instrumental variable vector is therefore formed by using the
measured values of y(t) and σv(t) from a second simulation, which
has different realisations of η(t) and vσ(t), and are therefore not
correlated with those in the first simulation.

The simulations are, again, carried out 200 times to estimate the
statistical properties of the parameters. Table A.2 shows the bias
and variance estimates for the parameters found using the different
methods.

Again the results show that the IV method can be considered
to give unbiased parameter estimates compared to the LS method,
though once more the IV estimate’s variance is larger.

Noise-free validation simulations are again done, using the same
signals as in the validation in Example 1. The mean squared predic-
tion errors are shown in Table A.2. Again we see that the prediction
errors achieved using the instrumental variables method are, on av-
erage, much smaller than those obtained with the LS method.

A.1.6 Conclusions

In this appendix the consistency of certain LPV identification meth-
ods is investigated. It has been shown that ergodicity results, under
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LS IV
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n
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Ê

(

1

N

N−1
X

t=0

e
2
p(t)

)

0.0376 0.0051

Table A.2. Results for Example 2 with noisy σ(t)

certain conditions, can be applied to the signals in these LPV identi-
fication methods in order to carry out a consistency analysis, despite
the fact that the stochastic disturbances are non-stationary.

When the scheduling parameter is noisy, it has been shown that
an errors-in-variables type identification problem occurs and con-
sistent estimates can be calculated using the IV method. In this
case ergodicity was only demonstrable when the noise affecting the
scheduling parameter and that affecting the output are uncorrelated.
Furthermore, ergodicity is not provable when a polynomial depen-
dence on the noisy scheduling parameter of degree greater than affine
is present.
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