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ABSTRACT
In chip multiprocessors (CMPs), limiting the number of off-
chip cache misses is crucial for good performance. Many
multithreaded programs provide opportunities for construc-
tive cache sharing, in which concurrently scheduled threads
share a largely overlapping working set. In this paper, we
compare the performance of two state-of-the-art schedulers
proposed for fine-grained multithreaded programs: Parallel
Depth First (PDF), which is specifically designed for con-
structive cache sharing, and Work Stealing (WS), which is
a more traditional design. Our experimental results indi-
cate that PDF scheduling yields a 1.3–1.6X performance
improvement relative to WS for several fine-grain parallel
benchmarks on projected future CMP configurations; we
also report several issues that may limit the advantage of
PDF in certain applications. These results also indicate that
PDF more effectively utilizes off-chip bandwidth, making it
possible to trade-off on-chip cache for a larger number of
cores. Moreover, we find that task granularity plays a key
role in cache performance. Therefore, we present an au-
tomatic approach for selecting effective grain sizes, based
on a new working set profiling algorithm that is an order
of magnitude faster than previous approaches. This is the
first paper demonstrating the effectiveness of PDF on real
benchmarks, providing a direct comparison between PDF
and WS, revealing the limiting factors for PDF in practice,
and presenting an approach for overcoming these factors.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—threads,
scheduling

General Terms
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1. INTRODUCTION
Chip multiprocessors (CMPs) are emerging as the de-

sign of choice for harnessing performance from future multi-
billion transistor chips. All the major chip manufacturers
have made the paradigm shift to focus on producing chips
with multiple cores. Unlike wide-issue single-core designs
that have run into power, thermal flux, and instruction-level
parallelism (ILP) limitations, CMPs allow for both perfor-
mance and power scalability across future-generation semi-
conductor fabrication processes. Projections indicate that
by 2015, there will be 64 to 128 cores integrated into a sin-
gle chip [11].

To effectively exploit available parallelism, CMPs must
address contention for shared resources [18, 42]. In particu-
lar, CMPs share two precious hardware resources among the
cores: (i) on-chip memory, and (ii) pin bandwidth. CMPs
are limited by a fixed chip area budget that is divided mainly
between processing cores and memory (i.e. cache). Conse-
quently, techniques which improve the efficiency of cache re-
sources enable processor architects to devote less chip area to
caches and more to processing cores, which, in turn, enables
the CMP to exploit more parallelism. Similarly, in CMPs,
re-use of data cached on-chip is especially important in re-
ducing contention for the limited memory bandwidth which
must be shared among a number of processing cores— with
a continued increase in the processor/memory performance
gap, the resulting off-chip accesses incur higher penalties,
making performance increasingly sensitive to effective on-
chip caching.

Many multithreaded programs provide opportunities for
constructive cache sharing, where concurrently scheduled
threads share a largely overlapping working set, as opposed
to destructive competition for cache spaces among threads.
In this paper, we evaluate the impact of thread schedul-
ing algorithms on on-chip cache sharing for multithreaded
programs. Many parallel programming languages and run-
time systems use greedy thread scheduling algorithms to
maximize processor utilization and throughput. We com-
pare the performance of two state-of-the-art greedy sched-
ulers: Parallel Depth First (PDF) [5, 6], a recently proposed
scheduler designed for constructive cache sharing, and Work
Stealing (WS), a popular scheduler that takes a more tra-
ditional approach. Analytical bounds [5, 10, 8] imply that
PDF should outperform WS on CMPs with shared caches—
however, there has been no direct comparison on real bench-
marks. We study a variety of benchmark programs on pro-
jected future CMPs through simulations. Our experimental
results show that:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147949706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


• For several application classes, PDF enables signifi-
cant constructive cache sharing among threads, thus
improving performance and reducing off-chip traffic
compared to WS. In particular, PDF provides a per-
formance speedup of 1.3–1.6X and an off-chip traffic
reduction of 13–41% relative to WS for parallel divide-
and-conquer programs and bandwidth-limited irregu-
lar programs. Perhaps surprisingly, in such cases, PDF
running on a CMP architecture with a relatively slow
monolithic shared L2 cache retains its advantage over
WS even when WS is run on a CMP architecture with
a faster distributed L2 cache.

• For several other application classes, PDF and WS
have similar performance, either because there is only
limited data reuse that can be exploited or because
the programs are not limited by off-chip bandwidth.
In the latter case, PDF reduces the working set size,
which has other benefits (see Section 2).

• Task granularity plays a key role in CMP cache per-
formance. To help programmers and system designers
cope with this issue, we present an automatic approach
for selecting effective task grain sizes, based on a new
working set profiling algorithm that is an order of mag-
nitude faster than previous approaches.

This is the first paper demonstrating the effectiveness of
PDF for constructive cache sharing on real benchmarks, pro-
viding a direct comparison between PDF and WS, revealing
the limiting factors for PDF in practice, and presenting an
approach for overcoming these factors.

The rest of the paper is organized as follows. Section 2
elaborates the benefits of constructive cache sharing and dis-
cusses related work. Section 3 describes PDF and WS sched-
ulers in detail. Section 4 provides experimental methodol-
ogy, then Section 5 presents our detailed experimental study.
Focusing on the task granularity issue observed in the study,
Section 6 proposes and evaluates a technique to automati-
cally select task granularity for a class of parallel applica-
tions. Finally, Section 7 concludes the paper.

2. CONSTRUCTIVE CACHE SHARING
In this section, we motivate the need for constructive

cache sharing on CMPs, then discuss related work on achiev-
ing it. Our discussion in this section, as well as the proper-
ties of the techniques we study, are in many ways agnostic
to the particulars of the CMP implementations. This gen-
erality is important, given the ongoing debate over on-chip
cache organizations, interconnect designs, and capabilities
of cores in a CMP with many cores. Our argument relies
on only two features. First, there is considerable on-chip
cache that can service requests by any core. This can be
a shared L2 cache or even private (L1 or L2) caches that
can service misses from other cores. Second, the off-chip la-
tency and bandwidth is significantly worse than the on-chip
latency and bandwidth. The on-chip cache organization can
be flat or hierarchical, uniform or heterogeneous, static or
dynamic, etc.—as long as the worst of the on-chip latency
and bandwidth is still many times better than going off chip,
our discussion and results apply.

2.1 Constructive Sharing is Critical for CMPs
Mitigating the latency and bandwidth gap. In CMPs,
there is a large latency and bandwidth gap between the on-

chip and off-chip storage. The latency to off-chip storage
is worse because of the much slower and longer inter-chip
buses and the much larger off-chip storage (e.g., main mem-
ory) with significantly higher latency than on-chip storage
(e.g., L1 and L2 caches). The bandwidth to off-chip stor-
age is severely constrained by pin limitations. As a result,
it is not uncommon to have an order of magnitude gap be-
tween the latency and bandwidth on-chip versus off-chip. To
make matters worse, the number of cores on chip is rapidly
increasing as a result of Moore’s Law. Concurrently execut-
ing program threads on P cores may speed up the on-chip
part of the computation P -fold. However, this may also re-
sult in a P -fold demand for the precious off-chip bandwidth,
which is the case with program threads processing large dis-
joint working sets (as in many of the benchmarks we study).
The threads compete for the same limited on-chip cache stor-
age and off-chip bandwidth. In contrast, constructive cache
sharing aims to have concurrently executing threads share
a largely overlapping working set and therefore can reduce
the aggregate working set size by up to a factor of P .

Enabling better use of on-chip real estate. One ap-
proach to attacking the off-chip bottleneck is to use larger
and larger on-chip caches. If the number of cores doubles,
double the cache size. While seductive, this approach suffers
from the well-known fact that increasing the cache size of-
ten provides diminishing returns on reducing the miss rate.
Moreover, it overlooks the fact that the same area may
be more profitably devoted to other components, such as
adding more cores. Constructive sharing removes the re-
quirement that the cache scales directly with the number of
cores. As a result, a given semiconductor fabrication tech-
nology generation can support more cores within the same
area, while providing better miss rates.

Reducing power consumption. Because constructive
cache sharing reduces the amount of cache needed by mul-
tithreaded programs (by up to a factor of P ), it provides
new opportunities to power down segments of the cache [25,
4, 41]. Consider, for example, a cache architecture that
supports eight 1 MB on-chip caches that can be powered
on or off as needed. If constructive cache sharing reduces
the working set from 8 MB to < 1 MB, then 7 of the 8
caches can be powered down. Moreover, constructive cache
sharing saves power by reducing the off-chip traffic—studies
have shown that an L2 miss serviced off-chip incurs 35X the
power of an on-chip L2 hit [26].

2.2 Related Work
Much of the previous work that considers shared cache

performance focuses on concurrent or interleaved indepen-
dent computations [39, 2, 36, 31, 17, 38]. In particular,
recent years have witnessed a number of investigations into
the scheduling of such tasks to improve the utilization of
various platform resources, including caches, for SMT [35,
29] and CMP [13, 37, 24, 22] processors by reducing de-
structive interference. In contrast, our work focuses on pro-
moting constructive cache interference by taking advantage
of the potential overlap in memory references among co-
operating threads that share an address space, particularly
multithreaded programs, for the reasons cited above.

Interestingly, Anderson and Calandrino [3] have a similar
objective of encouraging the co-scheduling of cooperative
threads—but in the context of real-time systems. While
their approach is not particularly well-suited to non-real-
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Figure 1: Scheduling parallel Mergesort using WS and PDF: Picturing the misses. Each horizontal box is a
sorted array of records, where at each level, pairs of arrays from the previous level are merged until all the
records are sorted. The L2 hits and misses are shown for sorting an array of CP bytes, where CP is the size
of the shared L2 cache, using 8 cores.

time systems, their micro-benchmark results do indicate that
intelligent co-scheduling of cooperative threads can reduce
the number of L2 misses substantially.

Philbin et al. [30] studied the possibility of reducing cache
misses for sequential programs through intelligent scheduling
of fine-grained threads. Their approach relies on memory ac-
cess hints in the program to identify threads that should ex-
ecute in close temporal proximity in order to promote cache
re-use. Although the scheduler is not directly applicable
to parallel scheduling, the approach may be a useful pre-
processing step for the PDF scheduler, which relies on the
program having a cache-friendly sequential schedule.

3. WORK STEALING AND PARALLEL
DEPTH FIRST SCHEDULERS

In this paper, we compare the performance of two greedy
schedulers proposed for fine-grained multithreaded programs:
Work Stealing (WS) and Parallel Depth First (PDF).

Threads and the dependences among them are often de-
scribed as a computation DAG. Each node in the DAG rep-
resents a task, which is a thread or portion of a thread that
has no internal dependences to/from other nodes. A weight
associated with each node represents the task’s runtime. We
refer to the longest (weighted) path in the DAG as the depth
D. The DAG unfolds as the computation proceeds, and the
job of the scheduler is to assign nodes of the DAG to pro-
cessor cores over time so that no node is assigned at a time
before its ancestors in the DAG have completed.

Work Stealing (WS) is a popular greedy thread scheduling
algorithm1 for programs, with proven theoretical properties
with regards to memory and cache usage [10, 8, 1]. The
policy maintains a work queue for each processor (actually
a double-ended queue which allows elements to be inserted
on one end of the queue, the top, but taken from either
end). When forking a new thread, this new thread is placed
on the top of the local queue. When a thread completes on a
processor, the processor looks for a ready-to-execute thread
by first looking on the top of the local queue. If it finds a
thread, it takes the thread off the queue and runs it. If the

1In a greedy schedule, a ready job remains unscheduled only
if all processors are already busy.

local queue is empty it checks the work queues of the other
processors and steals a thread from the bottom of the first
non-empty queue it finds. WS is an attractive scheduling
policy because when there is plenty of parallelism, stealing
is quite rare and, because the threads in a queue are related,
there is good affinity among the threads executed by any one
processor. However, WS is not designed for constructive
cache sharing, because the processors tend to have disjoint
working sets.

Parallel Depth First (PDF) [6] is another greedy schedul-
ing policy, based on the following insight. Important (se-
quential) programs have already been highly tuned to get
good cache performance on a single core, by maintaining
small working sets, getting good spatial and temporal reuse,
etc. In PDF, when a core completes a task, it is assigned
the ready-to-execute task that the sequential program would
have executed the earliest.2 As a result, PDF tends to co-
schedule tasks in a way that tracks in some sense the se-
quential execution. Thus, for programs with good sequen-
tial cache performance, PDF provides good parallel cache
performance (i.e., constructive cache sharing), as evidenced
by the following theorem:

Theorem 3.1. [5] Let M1 be the number of misses when
executing an arbitrary computation DAG G sequentially with
an (ideal) cache of size C. Then a parallel execution of G
using PDF on P cores with a shared (ideal) cache of size at
least C + P · D incurs at most M1 misses, where D is the
depth of G.

This compares favorably to the comparable upper bound
for WS, where the cache size must be at least C ·P to guar-
antee roughly M1 misses [8, 1]. However, these analytical
guarantees leave open a number of problems. For example,
how does the number of misses decreases as the size CP of
the on-chip cache increases past C + P · D? In this pa-
per, we address the problems through experimental studies,
where CP is determined by technology factors, and increases
roughly linearly with P in the default configurations part of
our study.

2Note that [6, 7, 28] show how to do this on-line without
executing the sequential program.



Table 1: Parameters common to all configurations.

Processor core In-order scalar
Private L1 cache 64KB, 128-byte line, 4-way,

1-cycle hit latency
Shared L2 cache 128-byte line, configuration-dependent
Main Memory latency: 300; service rate: 30 (cycles)

Table 2: Default configurations.

Number of cores 1 2 4 8 16 32

Technology (nm) 90 90 90 65 45 32
L2 cache size (MB) 10 8 4 8 20 40
Associativity 20 16 16 16 20 20
L2 hit time (cycles) 15 13 11 13 19 23

Table 3: Single technology configurations with 45nm technology.

Number of cores 1 2 4 6 8 10 12 14 16 18 20 22 24 26

L2 cache size (MB) 48 44 40 36 32 32 28 24 20 16 12 9 5 1
Set associativity 24 22 20 18 16 16 28 24 20 16 24 18 20 16
L2 hit time (cycles) 25 25 23 23 21 21 21 19 19 17 15 15 13 7

Figure 1 depicts pictorially the L2 cache hits and misses
when using WS and PDF to schedule a parallel Mergesort
(which is detailed in Section 4.2). Mergesorting an n byte
(sub)array uses 2n bytes of memory, because after complet-
ing a merge of two sub-arrays X and Y of size n/2 into a
sub-array of size n, the buffers holding X and Y can be
reused. In (a), we see a snapshot in which WS is starting
to encounter capacity misses because each core, P1–P8, is
working on a sub-array of size n = CP /8, and hence their
aggregate working set of 2 · CP does not fit within the L2
cache. In contrast, PDF has P1–P8 performing a parallel
merge into a sub-array of size CP /2, and hence is incur-
ring no capacity misses. In fact, the only misses thus far
are the cold misses in bringing in the first half of the in-
put array. From (b) we see that with P cores there are
log P levels in which PDF incurs no misses while WS incurs
all misses. This is a general phenomenon for the common
recursive divide-and-conquer paradigm where the problem
sizes decrease by (roughly) a factor of 2 at each level of the
recursion: PDF eliminates the misses in log P levels (only).

As apparent in Figure 1, for Mergesort using PDF, the
number of misses is Mpdf ≈ N

B
log(N/CP ), where N is the

number of items being sorted and each cache line can hold
B items. A standard (recursive) sequential Mergesort in-
curs M1 = N

B
log(N/C) misses, where C is the size of the

cache. Note that because CP > C, we have that Mpdf < M1.
For Mergesort using WS, the number of misses is Mws ≈
N
B

log(NP/CP ) = N
B

log P + Mpdf . These results hold for
any CP ≥ C + P · D, including CP = P · C as well as the
configurations in our study.

4. METHODOLOGY
In this section, we describe our experimental methodol-

ogy, focusing on the CMP design space to explore and the
benchmarks to use in our study.

4.1 CMP Design Space
We evaluate the performance of the WS and PDF sched-

ulers across a range of realistic (future) CMP configurations.
We assume area-constrained scaling and use a proportional
chip area allocation [20]. All area factors used are based on
the 2005 ITRS edition [32]. We consider, in particular, the
90nm, 65nm, 45nm, and 32nm technologies.3 Although to
be concrete the configurations described below are based on
specific technologies, our results hold more generally across
a wide range of cache parameters.

3By the end of 2006, major microprocessor manufacturers
have already been shipping or started shipping products
based on 65nm process technology. Intel has announced
plans to start 45nm production in the second half of 2007.

We focus on CMP designs with private L1 caches and
a shared L2 cache. For our purposes, the most important
configuration parameters are (i) the number of processing
cores (P ), and (ii) the size of L2 cache (CP ). (We consider a
private L1 cache as a component in a core design and keep
the L1 cache size per core fixed.) The die size is fixed at
240mm2. 75% of the total die area is allocated to the pro-
cessing cores, shared L2 cache, and the processor intercon-
nect, leaving the rest for other system-on-chip components.
Of the core-cache area, 15% is used by the processor in-
terconnect and related components, leaving approximately
65% of the total die area (150mm2) for cores and caches. We
model a single-threaded in-order core. We compute its area
requirement by using the data of IBM PowerPCRS64 ([12]),
which is an in-order, dual-threaded core, and by assuming a
5% area decrease for removing the second hardware thread
context [19]. Then we use the logic area factors from ITRS
to compute the core area under various process technologies.
Given a P , we can determine the area occupied by all cores,
and the remaining area is allocated to the L2 cache.

Our L2 cache design assumes a rectangular cache layout in
which cache banks are connected through switches on a 2D-
mesh network, similar to S-NUCA-2 [23] but with a uniform
access delay. We calculate CP for each technology using
ITRS estimates of SRAM cell area factors and efficiency.
The cache access latency is the network round-trip latency
to access the furthest away bank, plus the bank access delay.

Cacti 3.2 [34] is used to determine optimized cache de-
signs and their latencies. Our optimized cache designs em-
ploy 1MB or 2MB cache banks. These bank sizes balance
network delay with bank access latency. Using realistic sig-
nal delay models [14], we calculate the bank-to-bank hop
latency to be 1 cycle for the cache sizes and technologies
considered. We optimize the overall bank access latency by
using Cacti recursively on each bank, where each recursion
step determines whether dividing this sub-bank even fur-
ther will result in lower access latency. Our optimized 1MB
cache bank design employs 4 x 256KB sub-banks with split
tag and data arrays, with an access latency of 7 cycles and
wave pipeline time of 3 cycles at 45 nm technology, while
our 2MB cache bank design employs 4 sub-banks each di-
vided into 4 x 128KB sub-banks with split tag and data
arrays, resulting in 9 cycles access latency and 2 cycles wave
pipeline time for the same technology. We assume conserva-
tively that those latencies are the same for the 90nm, 65nm
and 32nm geometries.

Given the above methodology, we generate realistic con-
figurations in two different design spaces: scaling technology
and single technology. The non-varying configuration pa-
rameters of our experiments are summarized in Table 1.



Scaling technology. Under scaling technology, we assume
that the process technology will change as we increase the
number of cores. Such an assumption represents realistic
trends over time, as designers tend to increase the number
of cores with subsequent process generations. One effect
of scaling technology is that configurations with more cores
tend to also accommodate larger caches. The six settings as
shown in Table 2 were selected as the default configurations
for the given number of cores.

Single technology. In contrast, the single technology
design space represents the trade-offs associated with a par-
ticular technology. Microprocessor designers typically must
design for a particular process generation and, consequently,
must evaluate trade-offs within a particular technology. We
chose the 45nm process technology as a contemporary design
space and the selected configurations for this technology are
given in Table 3.

Given a particular configuration, we evaluate the perfor-
mance of the two schedulers on each multithreaded program
by (1) annotating the program to mark task boundaries, (2)
collecting a trace of its computation DAG annotated with
the memory references for each task, and finally (3) execut-
ing the DAG on the simulated CMP in accordance with the
scheduler. (Details are in [16].)

4.2 Benchmarks
We studied the effect of scheduling on a number of bench-

marks from a variety of domains. However, here we focus on
only three of the benchmarks (LU, Hash Join, and Merge-
sort), as representative of common classes of benchmarks,
deferring discussions of other benchmarks to Section 5.5.

LU. LU is a representative scientific benchmark, with its
easy parallelization and small working sets. We used the
parallel LU implementation of the Cilk distribution. The
benchmark performs a recursive factorization on a dense
N×N matrix. The input matrix is partitioned into four
quadrants recursively, until the size of the quadrant is equal
to the block size B. A smaller block size creates a larger
number of smaller threads. The block size effectively con-
trols the grain of parallelism, thus we did not have to modify
the benchmark. (Due to trace size limitations, the largest
input size we were able to factorize is a 2K×2K matrix of
doubles, or 32MB input data. As this is smaller than the L2
cache in the 32-core default configuration, we only report
LU results for up to 16 cores.)

Hash Join. Hash Join is representative of many (com-
mercial or otherwise) programs that use large irregular data
structures and benefit from large caches. We use a state-of-
the-art database hash join code [15]. In an initial I/O parti-
tion phase, each of the two large input tables is partitioned
into fragments that fit within the memory buffer allocated
for the join (1GB in our study). We study the second, join
phase, which joins pairs of partitions; in current database
systems, this is the most time-consuming phase. Each par-
tition is divided into sub-partitions that fit within the L2
cache. For each sub-partition, the keys from the “build”
table are placed in a hash table, which is then probed for
matches from the “probe” table. The matching build and
probe records are concatenated to produce outputs. While
the original code used one thread per sub-partition, we fur-
ther divided the probe procedure (which typically dominates
the join phase [15]) for each sub-partition into multiple par-

allel tasks to produce finer-grained threading. Here, we re-
port representative experiments that join a pair of build and
probe partitions that fit tightly in a 1GB memory buffer.
Every build record matches 2 probe records where each
record is 100B and the join attribute is 4B.

Mergesort. Mergesort is representative of many pro-
grams that use a recursive divide-and-conquer paradigm.
Our Mergesort benchmark is structured after libpmsort [40],
a parallel recursive mergesort library, but with the serial
merging of two sorted sub-arrays modified to use a parallel
merge instead. We select a total of k splitting points from
the two sorted sub-arrays, for a suitable value of k seeking
to optimize the cache performance at the given level of re-
cursion (details in Section 5.4 and Section 6.2). For each
chosen value from one array, we locate the closest value in
the other array using binary search. In this way, we create k
pairs of array chunks, which can be merged in parallel. An
example is given in Figure 1.

5. EXPERIMENTAL STUDY
In this section, we present a detailed experimental study

of the PDF and WS schedulers. We explore the CMP design
space in order to answer the following questions: (i) Is the
choice of PDF vs. WS significant in practice? If yes, what
types of applications benefit most from PDF? (ii) How does
the performance of PDF vs. WS change across the CMP
design space? How does this impact the choice of CMP
design points? (iii) Are the results sensitive to changes in
architectural parameters? (iv) What is the impact of thread
granularity on the performance of PDF vs. WS?

In the following, we begin in Section 5.1 by comparing
PDF and WS using the default CMP configurations. Then
we explore the CMP design points under the 45nm tech-
nology in Section 5.2. We perform sensitivity analysis in
Section 5.3, and study the impact of thread granularity in
Section 5.4. Finally, Section 5.5 summarizes our findings.

5.1 Default Configurations: PDF vs. WS
Figure 2 compares the performance of the PDF and WS

schedulers for the three application benchmarks running on
our default CMP configurations with 1 to 32 cores. Each
row of sub-figures in Figure 2 shows the performance results
of a single application. From left to right, we report (i)
the speedup of running the application using all the cores
compared to sequential execution of the application on one
of the cores with the same CMP configuration, and (ii) the
L2 cache misses of the application with different schedulers.

From Figure 2, we see that the comparisons between PDF
and WS vary significantly for the three applications. There-
fore, we analyze the results for each application in turn.

LU. Figures 2(a)-(b) depict the performance results of LU
for five default configurations, using PDF and WS. We can
see that PDF reduces up to 36.8% L2 misses per instruc-
tion relative to WS. However, the miss per instruction ratio
is very low to begin with because of the algorithm’s small
working set. In fact, the average memory bandwidth utiliza-
tion for LU is only 0.15%-1.57% for PDF and 0.15%-2.41%
for WS, with PDF having slightly smaller utilization as ex-
pected. Therefore, the reduced L2 misses by PDF scarcely
affects performance, and the absolute speedups are practi-
cally the same for both PDF and WS.
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Figure 2: Parallel Depth First vs. Work Stealing
with default CMP configurations.

Hash Join. Figures 2(c)-(d) report the performance re-
sults of joining a single pair of memory-sized partitions for
all six default configurations. We can see that PDF achieves
significantly better performance than WS. For 2-32 cores,
PDF achieves a factor of 1.97-14.28 fold speedups over se-
quential execution, while WS obtains only a factor of 1.81-
10.19 fold speedups. These result in a factor of 1.09-1.50 fold
relative speedups of PDF over WS. The good performance
of PDF comes from effective constructive cache sharing to
avoid off-chip cache misses. As shown in Figure 2(d), PDF
reduces 13.2%-38.5% L2 misses per instruction compared
to WS. Interestingly, the performance increase by doubling
the number of cores is significantly smaller from 16 to 32
cores than in other cases. This is because Hash Join is main
memory bandwidth-bound for the 16-core and 32-core con-
figurations: it utilizes 89.5%-90.1% of the available memory
bandwidth with PDF and 92.2%-97.3% with WS.

Mergesort. Figures 2(e)-(f) show the performance results
of sorting 32 million integers using Mergesort, for the six
default CMP configurations. For 2-32 cores, PDF achieves
a factor of 2.00-26.44 fold speedups over sequential execu-
tion, while WS obtains a factor of 1.93-22.30 fold speedups.
These lead to a factor of 1.03-1.19 fold relative speedups
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(c) Mergesort: execution time (d) Mergesort: 10-26 cores

Figure 3: Parallel Depth First vs. Work Stealing
under a single technology (45nm).

with 2-32 cores of PDF over WS. Figure 2(f) depicts the L2
misses per instruction ratios. Similar to Hash Join, PDF
successfully reduces 13.8%-40.6% L2 misses per instruction
compared to WS. Comparing Figure 2(b), Figure 2(d), and
Figure 2(f), we see that the L2 misses per instruction ratio
of Mergesort (around 0.1%) is much lower than Hash Join
(around 0.6%), but is still significant enough compared to
LU (around 0.01%) to make a difference on performance. We
can clearly see the trend that the larger the ratio of L2 misses
per instruction, the larger impact constructive cache sharing
may have, and therefore the larger relative performance ben-
efits of PDF over WS. Moreover, unlike Hash Join, Merge-
sort experiences only up to 71.0% memory utilization due
to the lower misses per instruction ratios, and thus the ab-
solute speedup continues to increase dramatically from 16
to 32 cores.

Considering the performance results of the three bench-
marks, we conclude that PDF achieves significantly better
performance than WS for a group of important applica-
tions that have non-trivially large working sets, as evidenced
by the L2 misses per instruction ratios. Because LU does
not differentiate PDF and WS, we focus on Hash Join and
Mergesort in the rest of the experimental study.

5.2 Single Technology Analysis
Figure 3 shows the execution time of Hash Join and Merge-

sort using PDF and WS, for 1-26 cores under the 45nm pro-
cess technology. As shown previously in Table 3, the L2
cache size decreases from 48MB with 1 core to 1MB with 26
cores. We examine Figure 3 for two purposes: (i) comparing
the performance of PDF and WS; and (ii) understanding the
impact of PDF on the choices of CMP design points. For
the first purpose, as shown in Figure 3, we see that PDF
wins across all the CMP configurations, achieving over WS
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(a) Hash Join (b) Mergesort

Figure 4: Varying L2 cache hit time with the 16-
core default configuration.
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Figure 5: Varying main memory latency with the
16-core default configuration.

  8M    4M    2M   1M   512K   256K   128K   64K  32K 
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

task working set size (bytes)

L2
 m

iss
es

 p
er

 1
00

0 
in

st

pdf
ws

  8M    4M    2M   1M   512K   256K   128K   64K  32K 
0

2

4

6

8

10 x 108

task working set size (bytes)

ex
ec

ut
io

n 
tim

e 
(c

yc
le

s)
pdf
ws

  8M    4M    2M   1M   512K   256K   128K   64K  32K 
0

5

10

15 x 108

task working set size (bytes)

ex
ec

ut
io

n 
tim

e 
(c

yc
le

s)

(a) L2 misses on 32 cores (b) Execution time on 32 cores (c) Execution time on 16 cores

Figure 6: Varying the task granularity of parallel Mergesort for default configurations.

a factor of 1.06-1.64 fold speedup for Hash Join and a factor
of 1.03-1.11 speedup for Mergesort.

For the second purpose, as shown in Figures 3(a) and (c),
we can see that the major trend of all the curves is to gen-
erally decrease as the number of cores increases, meaning
that application performance generally improves with more
cores. When there are 10 or more cores, the curves seem flat.
However, when we zoom into the 10-26 core performance in
Figures 3(b) and (d), we see that the curves actually vary.
The Hash Join curves reach the lowest points around 18
cores then go up, while the Mergesort curves continue to
decrease until 24 or 26 cores. With 18 or more cores, Hash
Join utilizes over 95% of the main memory bandwidth. In-
creasing the number of cores while decreasing the cache size
only makes the situation worse, leading to the worse perfor-
mance. In contrast, Mergesort is not bounded by memory
bandwidth and its performance improves with more cores.4

When making a design choice in the CMP design space,
a typical goal is to optimize the performance of a suite of
benchmark applications (e.g. SPEC) measured by aggre-
gate performance metrics. Compared to WS, PDF pro-
vides larger freedom in the choice of design points in or-
der to achieve a desired level of performance (e.g., more
than K times faster than a reference configuration) for a
multithreaded application. For example, for Hash Join, 10-
26 cores with PDF achieve similar or better performance
than the best WS performance. Similarly, 20-26 cores with
PDF achieve similar or better performance than the best
WS performance for Mergesort. In this way, designers are

4From 24 cores (5MB cache) to 26 cores (1MB cache),
Mergesort with PDF experiences a large jump (41% in-
crease) of the L2 misses per instruction ratio. This results
in the jump of the execution time.

able to make better trade-offs balancing sequential vs. multi-
threaded programs, and computation-intensive vs. memory-
intensive programs.

5.3 CMP Parameter Sensitivity Analysis
Figure 4 and Figure 5 compare the performance of PDF

vs. WS varying the L2 cache hit time and varying the main
memory latency. The results are similar to our default con-
figurations. In particular, compared to WS, PDF achieves a
factor of 1.21-1.62 fold relative speedups for Hash Join and
1.03-1.29 fold relative speedups for Mergesort.

Interestingly, from Figure 4, we can compare the PDF
bar with 19-cycle L2 hit time to the WS bar with 7-cycle hit
time. This shows that PDF running on a CMP architecture
with a relatively slow monolithic shared cache (19-cycle hit
time) retains its advantage over WS even when WS is run on
a CMP architecture with a faster distributed on-chip cache
(7-cycle hit time to a core’s local bank). This is because for
Hash Join and Mergesort, in our experiments, the number
of L2 hits is on par with the number of L2 misses, so the L2
miss time dominates any differences in L2 hit times.

5.4 Impact of Thread Granularity
In the course of parallelizing the benchmark applications,

we found that task granularity had a large impact on cache
performance and execution times. As discussed in Section 4.2,
the original versions of the Hash Join and Mergesort pro-
grams both suffered from being too coarse-grained. The
original Hash Join code generates only one thread per cache-
sized sub-partition. The original Mergesort code employs a
serial merging procedure. By parallelizing the probe proce-
dure within the processing of a sub-partition in Hash Join
and by parallelizing the merging procedure for Mergesort,



we removed serial bottlenecks and improved constructive
cache sharing among multiple threads.5 As a result, our
fine-grained versions are up to 2.85X faster than the coarse-
grained originals.

We further study the impact of task granularities on the
fine-grained versions of the code. Here we focus on the
deeper, more complicated (and thus more interesting) Merge-
sort DAG. (In contrast, Hash Join has a simple two-level
task structure.) Figure 6 shows the L2 misses per instruction
and the execution time of Mergesort as a function of the task
working set sizes. Because of the regularity of Mergesort,
adapting the Mergesort code to use a desired task working
set size is straightforward; by choosing the sorting sub-array
size to be half the desired working set size6, the sub-array
can be sorted efficiently within a single sequential task.

Figure 6 shows that while the cache performance of WS is
relatively flat across the range of task sizes, the cache per-
formance of PDF improves considerably with smaller task
sizes. As a result, PDF’s cache performance advantage in-
creases with smaller task sizes (e.g., PDF incurs fewer than
half as many misses as WS for 32KB task sizes with the
32-core default configuration). Thus, as the figure shows,
thread granularity has a large impact on the relative perfor-
mance gains of PDF vs. WS. When each scheduler gets its
optimal task size, PDF is 1.17X faster than WS because of
this improved cache performance.

5.5 Summary of Our Benchmark Study
Although in this section we have focused on only three

benchmarks, in all, we have studied additional benchmarks
from a variety of domains: numeric (Cholesky [9], Matrix
Multiply), scientific simulation (Barnes, Heat [9]), data min-
ing (Hmmer [21]), sorting (Quicksort), meshing (Triangle [33])
and classification (C4.5 [27]). We now summarize the key
findings from the experimental results in this section as well
as briefly describe the lessons we learned from our extended
benchmark study.

First, there are benchmarks (Hash Join, Mergesort) for
which PDF’s advantage translates into up to 1.3–1.6X per-
formance improvement over WS. As discussed in Section 4,
Hash Join is representative of many (commercial or other-
wise) programs that use large irregular data structures and
benefit from large caches. Mergesort demonstrates the ben-
efits PDF provides for benchmarks with a recursive divide-
and-conquer paradigm. Many other benchmarks (Quick-
sort, Triangle, C4.5) follow this paradigm. However, unlike
Mergesort, their “divide” steps may break a subproblem into
two highly imbalanced parts because the “divide” point is
often chosen for specific algorithmic needs not for balanc-
ing the two parts. Fortunately, PDF can effectively handle
irregular parallel tasks that are dynamically spawned [5].

Second, many benchmarks (LU in the above study, and
other benchmarks such as Matrix Multiply, Cholesky, Barnes)
can achieve good cache performance with a very small amount
of data in cache. In such cases, the fact that WS increases

5In all the above experiments in Section 5, we manually
chose the number of splitting points k in the parallel merge
to obtain sufficient parallelism. Within the sub-DAG of sort-
ing a sub-array A that is half the L2 cache size, we choose
k so that the aggregate number of merging tasks per DAG
level is 64, which is larger than the number of cores.
6Note that the working set size for mergesorting a sub-array
of size n is 2n.

the working set by the number of cores P does not effect per-
formance, because the aggregate working set still fits in the
shared cache, and hence WS matches PDF’s performance.
As discussed in Section 5.1, the small working set often man-
ifests itself as low L2 misses per instruction ratios. Our re-
sults support that this ratio should be on the order of 0.1%
or more for PDF to make a significant difference in execu-
tion time. However, even for these applications, PDF can be
valuable. As pointed out in Section 2, PDF’s smaller work-
ing set can translate into better use of on-chip real estate
and reduced power consumption. Additionally, when multi-
ple programs are run at the same time, the PDF version is
less of a cache hog and its smaller working set is more likely
to remain in the cache across context switches.

Third, PDF achieves significant performance gains over
WS across a large number of CMP design points and ar-
chitectural parameters as shown in the above subsections.
Because of this, PDF provides larger freedom in the choice
of design points in order to achieve a desired level of bench-
mark performance.

Finally, most benchmark programs, as written, use such
coarse-grained threading that there is no opportunity for
cache-friendly scheduling. In fact, many programs use a
scheduler only at the beginning of the program: for P pro-
cessors, P threads are spawned at the beginning of the pro-
gram and no further spawning is done. Thus, in our study,
we incorporated much finer-grained threading in the pro-
grams (e.g. Hash Join and Mergesort) we studied. Our
work quantifies the benefits of more fine-grained threading.
Because of its importance, in the following section, we focus
on the problem of selecting task granularities.

6. AUTOMATIC SELECTION OF THREAD
GRANULARITY

One of the important findings in Section 5 is that task
granularity has a large impact on cache performance and
execution times. On the one hand, coarse-grained tasks
may have serial bottlenecks and large disjoint working sets
that hinder constructive cache sharing. On the other hand,
threading that is too fine-grained increases scheduling and
synchronization overheads, as well as any instruction over-
heads for running parallel code versus sequential code.7 Thus
judiciously choosing task granularity is an important yet
challenging problem.

In general, selecting good task sizes is challenging because
it requires predicting how P tasks that might run concur-
rently would interact in the L2 cache. To guide the selec-
tion of appropriate task grain sizes, we have developed an
efficient working-set profiler for multi-threaded programs,
which can be used for profile-based feedback during software
development to set appropriate task sizes. In this approach,
programs are first written with fine-grained tasks, and the
profiler suggests groups of tasks to combine into larger tasks
based on their working sets for better performance.

In the following, we present our working set profiler in
Section 6.1, then in Section 6.2 we describe how to use the
profiling information to automatically choose task granular-
ity for a class of applications, and evaluate our approach
with Mergesort.

7In Mergesort, for example, it is well known that sorting
small sub-arrays sequentially is faster than continuing to
apply parallel Mergesort recursively.



6.1 Efficient One-Pass Profiling for Groups of
Consecutive Tasks

We call a group of consecutive tasks (corresponding to
a sub-graph in the DAG) a task group. Consider the case
of parallel Mergesort. The task group for sorting an en-
tire sub-array consists of three smaller task groups: sorting
the left half, sorting the right half, and merging the two
parts. Parallel merging may be formed into multiple levels
of task groups by recursively dividing a group containing
K tasks into two sub-groups containing bK/2c and dK/2e
tasks, respectively. In this way, task groups form a hierar-
chical structure, where each parent task group is a superset
of all the child task groups, sibling task groups are disjoint,
and the leaf nodes are the finest-grain individual tasks. In
general, given very fine-grained tasks, we would like to know
the working set sizes of all task groups and use this infor-
mation to guide task selections.

To obtain the working set size of a single task group, a
straightforward approach is to generate the memory refer-
ence trace of the task group then perform trace-driven simu-
lations of set-associative caches across a range of cache sizes
(starting with a cold cache). We call this approach SetAssoc.
However, SetAssoc becomes tedious when a large number of
nested task groups are to be measured. It has to process the
trace of the entire application multiple times corresponding
to the number of levels in the task group hierarchy.

We propose a one-pass algorithm that first processes a
program’s memory reference trace once to collect statistics
on every task and then uses the gathered statistics to effi-
ciently compute the working set size of potential groups of
consecutive tasks. We restrict our analysis to tasks that are
consecutive in a sequential run of the program, as these are
the tasks that are naturally grouped together when coars-
ening. Note that our use of predefined hierarchical task
groups already captures opportunities to group parallel sib-
lings together. We do not seek to group together arbitrary
collections of tasks, however.

To collect per-task statistics, we perform a one-pass cache
simulation using the LRU stack model, where each cache
line data structure is augmented with the last visiting task
ID. Given a memory reference R of task i, the cache simu-
lator returns two values: the distance d of the visited line
to the stack top and the ID j of the task that last visited
the line. Note that whether R is a cache hit or a miss de-
pends on both the cache size and the task group considered.
To understand why the latter is also important, consider
a task group including consecutive tasks b, b + 1, . . . , i,
. . . , and e. Then, starting with a cold cache before task b,
reference R of task i would be a cold miss if the last visit-
ing task ID j < b, but possibly a hit if j ≥ b (depending
on the cache size). Therefore, the per-task statistics must
capture both the distance and the previous task informa-
tion. We design the per-task statistics as a two-dimensional
histogram. The distance dimension is divided into buckets
D1 < D2 < · · · < Dk corresponding to the list of increasing
cache sizes for working-set computations. In the previous-
task dimension, the bucket ID is the difference between the
task IDs of the current and previous visits to the same line.
For example, given the above return values for reference R,
the algorithm looks for Dp−1 < d ≤ Dp, and then incre-
ments the count of the bucket (Dp, i − j) by 1.

After obtaining the per-task two-dimensional histogram,
the algorithm computes the working set size of any group of

consecutive tasks as follows. Given a task group including
task b to e, the number of cache hits for a cache size Dp is
equal to the sum of all the buckets (D, T ) where D ≤ Dp

and T ≤ i − b for every task i in the group.
Let us examine the complexity of the above algorithm.

The LRU stack model can be implemented as a doubly
linked list of nodes representing cache lines. Moreover, all
the nodes can be indexed by a hash table with cache line ad-
dresses as hash keys. A typical operation involves four steps:
(i) looking up the cache line address of a reference R; (ii)
counting the distance from the current node to the stack top;
(iii) updating the stack model by moving the visited node
to the top of stack; and (iv) retrieving and updating the
previous task ID. Steps (i), (iii) and (iv) are all O(1). For
step (ii), we build a tree structure on top of the linked list to
count the distance from a node to the stack top in O(log N),
where N is the number of cache lines of the largest cache size
considered. For good cache performance, we implemented
a B-tree structure with cache-line-sized tree nodes. We call
this algorithm LruTree.

We compare the performance of the LruTree and the Se-
tAssoc algorithms by processing a trace of Mergesorting 32
million integers. The trace consists of 2.85 billion mem-
ory references, over 110,000 tasks, and over 190,000 task
groups. We ran the algorithms on a desktop machine with
3.2GHz Pentium 4, 1GB memory, and a Seagate Barracuda
7200rpm IDE disk. We find that the SetAssoc algorithm
took 253 minutes, while the LruTree algorithm ran in only
13.4 minutes—an 18X improvement. Because of the nesting
nature of task groups, SetAssoc suffers from revisiting each
memory record over 22 times on average, whereas LruTree is
a one-pass algorithm. This performance advantage increases
as the problem and DAG sizes grow. Note that LruTree can
be implemented with on-the-fly trace consumption, thus re-
ducing the cost of generating traces.

6.2 Using Profiling Information for Automatic
Task Coarsening

The automatic task coarsening algorithm traverses the
task group tree from top to bottom and evaluates a heuristic
stop criterion at every node. Suppose node G’s working set
size is W , and it has K child task groups of similar sizes.
We stop at G’s children if the following is true8:

W ≤ K × (cachesize/(numcores ∗ 2))

In this way, the child tasks can keep the cores busy. Note
that due to task size variability, some child tasks may finish
early and other parallel work may be scheduled, leading to
sub-optimal cache behavior. The “2” in the criterion is to
reduce this effect.

To incorporate the task selection information into paral-
lel programs, we capitalize upon the fact that many paral-
lel programs are written with a general divide-and-conquer
structure as shown in Figure 7(a). When the Parallelize

function is evaluated True for the parameter, the task is
further divided into child parallel tasks; otherwise, a se-
quential version of the code is executed. Typically, the
Parallelize function compares the parameter with an ap-
propriate threshold value T , which must be hand-tuned based
on the programmer’s knowledge of the program data struc-

8Note that G’s children may have dependencies as in the
case of Mergesort. For each independent set of children, we
separately apply the criterion and decide whether to stop.



Function parallel f(param) {
If (Parallelize(param, FILE , LINE )) {

Spawn (parallel f(Subdivide(param, 1)));
Spawn (parallel f(Subdivide(param, 2)));
...
Spawn (parallel f(Subdivide(param, k)));
Sync ();
combine results(param);

} Else {
sequential f(param);

}
}

(a) Example divide-and-conquer style parallel program

CMP Configuration Calling Location Param
L2 Size # Cores File Line Threshold

.... .... .... .... ....

.... .... .... .... ....

(b) Table for implementing the Parallelize function

Figure 7: Incorporating task selection results into
parallel programs.

tures and would vary with different cache sizes at run-time.
Such tuning is error-prone and further complicated in the
presence of constructive cache sharing.

This tuning task can be greatly simplified by including
a parallelization table as part of the compiled program, as
shown in Figure 7(b). In the table, Param thresholds are in-
dexed by CMP configuration parameters and the locations
of parallelization decisions. At compile-time, these thresh-
olds are seeded with default values that correspond to very
fine-grain threading. The program is then profiled as de-
scribed in Section 6.1. Each task group is also annotated
with the corresponding param value by recording the value
at every spawn invocation. After that, the above analysis is
used to determine the stopping task groups for the combina-
tions of CMP configurations and calling locations. Finally,
the default threshold values in the table are replaced with
the param values that are associated with the stopping task
groups in the final executable.

Note that we obtain the working set information once
through a single profiling pass, but we need to perform a
task coarsening analysis for every CMP configuration be-
cause the stopping criterion is configuration dependent. For-
tunately, the number of CMP configurations can be reason-
ably bounded by the expected lifetime of the executable.
Moreover, the run-time table lookup costs can be reduced
by identifying the CMP configuration at program initializa-
tion and replace the lookup with a single memory read with
appropriate compiler/system support.

Finally, we evaluate the effectiveness of the automatic task
coarsening algorithm. Figure 8 compares three schemes us-
ing the Mergesort benchmark while varying the number of
cores. The left bar uses the manually selected tasks and cor-
responds to previous results in Section 5. The middle and
right bars both use the same task selections recommended
automatically by our algorithm. The difference is how we
perform CMP simulation using the task selections. For the
right bar, we manually change the Mergesort code to real-
ize the selection. We run CMP simulation based on the new
trace. In contrast, for the middle bar, we use the same finest-
grain trace in the CMP simulation but simply substitute a
new task DAG based on the recommended task grouping.
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Figure 8: Effectiveness of the task selection schemes.

Therefore, compared to the right bar, an individual task of
the middle case may be less efficient because it still contains
the parallel code (e.g. parallel merging). From Figure 8, we
see that the right bars are within 5% of the optimal in all
cases, demonstrating the effectiveness of our automatic task
coarsening scheme.

7. CONCLUSION
The advent of Chip Multiprocessor (CMP) platforms re-

quires a re-evaluation of standard practices for parallel com-
puting. While traditional (Symmetric MultiProcessors) SMP
configurations (where the main system limitation was often
coherence traffic) encouraged coarse-grained parallelism to
reduce sharing, the off-chip bandwidth bottleneck of CMP
machines encourages a fine-grained parallelism to increase
resource sharing.

This study demonstrates that the Parallel Depth First
(PDF) scheduler, which was designed to encourage coopera-
tive threads to constructively share cache, either matches or
outperforms the Work Stealing (WS) scheduler on a CMP
machine for all the fine-grained parallel programs studied.
By making more effective use of cache resources, the PDF
scheduler also broadens the design space for microprocessor
designers—potentially enabling the inclusion of more cores
at the expense of cache resources that are less critical given
PDF. Finally, task granularity plays a key role in CMP cache
performance, and we present an automatic approach for se-
lecting effective task grain sizes when using PDF.
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