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Abstract 

Recent research suggests that there are large variations in 
a cache’s spatial usage, both within and across programs.  
Unfortunately, conventional caches typically employ fixed 
cache line sizes to balance the exploitation of spatial and 
temporal locality, and to avoid prohibitive cache fill band-
width demands.  The resulting inability of conventional 
caches to exploit spatial variations leads to sub-optimal 
performance and unnecessary cache power dissipation. 

This paper describes the Spatial Pattern Predictor (SPP), a 
cost-effective hardware mechanism that accurately predicts 
reference patterns within a spatial group (i.e., a contiguous 
region of data in memory) at runtime.  The key observation 
enabling an accurate, yet low-cost, SPP design is that 
spatial patterns correlate well with instruction addresses 
and data reference offsets within a cache line.  We require 
only a small amount of predictor memory to store the 
predicted patterns.  Simulation results for a 64-Kbyte 2-
way set-associative L1 data cache with 64-byte lines show 
that: (1) a 256-entry tag-less direct-mapped SPP can 
achieve, on average, a prediction coverage of 95%, over-
predicting the patterns by only 8%, (2) assuming a 70nm 
process technology, the SPP helps reduce leakage energy 
in the base cache by 41% on average, incurring less than 
1% performance degradation, and (3) prefetching spatial 
groups of up to 512 bytes using the SPP improves execu-
tion time by 33% on average and up to a factor of two. 

 

1. Introduction 

Conventional cache memories divide storage into cache 
lines for design simplicity and to optimize for lookup speed.  
The line size is fixed at design time [20] and is selected to 
take advantage of spatial locality with large line sizes, while 
limiting the cache line fetch bandwidth and latency re-
quirements of overly large lines. 

Recent research [13, 17, 18, 23, 24] indicates that there 
are large spatial variations in cache line usage both within 
and across programs.  In the presence of such drastic varia-
tions, a fixed cache line size results in a sub-optimal design 
point.  Temporally-close cache references within large 

contiguous spatial groups favor a single fetch of large lines 
to eliminate subsequent cache misses and increase perform-
ance.  On the other hand, temporally-close cache references 
that are not spatially-close favor using a large number of 
small cache lines to optimize for bandwidth and placement.  
Using excessively large cache lines leads to unused sub-
blocks that unnecessarily dissipate power both upon fetch 
(dissipating bitline and bus switching energy) and during 
cache residency (dissipating bitline and supply-to-ground 
leakage energy [5, 9, 11, 26]). 

In this light, we present the Spatial Pattern Predictor 
(SPP), a table-based mechanism that accurately and cost-
effectively predicts data cache line usage patterns.  Upon a 
cache miss, the SPP predicts exactly which data words are 
referenced within a spatial group that consists of a contigu-
ous region in memory.  We design two cache optimizations 
using the SPP: (1) selective sub-blocking, in which only the 
predicted as to-be-referenced sub-blocks are fetched and 
predicted as unreferenced sub-blocks are disabled to reduce 
leakage energy, and (2) spatial group prefetching, in which 
a predicted number of cache lines are simultaneously 
fetched and placed in the cache to hide memory latency. 

We use cycle-accurate simulation of an aggressive out-
of-order superscalar processor with twelve SPEC CPU2000 
benchmarks, and circuit modeling to show the following 
contributions.  We evaluate the SPP with a 64-Kbyte 2-way 
set-associative L1 data cache with 64-byte lines. 

•  Spatial Pattern Predictor: We propose an accurate 
and cost-effective SPP design.  A 256-entry direct-
mapped SPP achieves a prediction coverage of 95% on 
average, overestimating referenced data by only 8% for 
our base cache.  Unlike prior proposals, we determine 
that a combination of program counter (PC) and data 
reference offset (a few bits) within the cache line corre-
lates accurately to spatial patterns, allowing for a small 
and accurate SPP. 

•  Leakage Energy Reduction: Using supply-gating [3] 
and prediction of unreferenced sub-blocks within a 
cache line, SPP reduces 41% of the leakage energy dis-
sipation in our base cache with 70nm CMOS technol-
ogy and incurs less than 1% performance degradation 
in all but one benchmark (less than 2% degradation in 
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all benchmarks).  We measure the energy dissipation of 
accessing a small SPP (i.e., 1.25-Kbyte) upon a cache 
miss to be negligible as compared to the leakage sav-
ings. 

•  Processor Performance Improvement: Prefetching 
spatial patterns in groups of up to 512 bytes in our base 
cache using SPP improves performance in applications 
measured by up to a factor of two and on average by 
33% over the best case execution time results achieved 
by a statically chosen cache line size. 

The rest of the paper proceeds as follows.  Section 2 pre-
sents an overview of the prior work.  Section 3 makes the 
case for the large spatial variations in cache line usage with 
empirical data.  Section 4 presents the mechanism of our 
spatial pattern predictor.  In Section 5, we describe two 
system optimizations using the predictor.  In Section 6, we 
quantitatively evaluate the predictor’s accuracy, its cover-
age, storage requirement, and effectiveness in reducing 
leakage power and execution time.  Section 7 concludes this 
paper. 

2. Prior Work 

A number of techniques for exploiting spatial locality to 
improve processor performance have been proposed in 
recent literature.  Vleet et al. [24] proposed using off-line 
profiling to determine the fetch size upon a cache miss.  
However, the lack of dynamism render these static ap-
proaches less effective when faced with a data set that 
changes rapidly during program execution. 

Many have resorted to hardware mechanisms for exploit-
ing spatial locality at runtime.  Temam and Jegou [22] 
suggested fetching cache lines adjacent to the requested line 
into a buffer to avoid cache pollution incurred by larger a 
cache line size while exploiting spatial locality.  Gonzalez, 
Aliagas, and Valero [12] proposed the dual-cache that 
dynamically divides data across two caches with two dis-
tinct line sizes to optimize simultaneously for temporal and 
spatial locality.  Johnson, Merten, and Hwu [13] suggested 
using a Spatial Locality Detection table to alternate line 
fetch sizes between a conventional size and a macroblock 
size for data that processes spatial locality.  Dubnicki and 
LeBlanc [10] proposed an algorithm for monitoring cache 
line footprint and gradually increasing/decreasing fetch size 
by a factor of two to reduce false sharing in a cache-
coherent shared memory multiprocessor.  Veidenbaum et al. 
[23] proposed using a similar algorithm within a conven-
tional uniprocessor cache.  However, these techniques 
either exploit spatial locality at coarser granularity than our 
approach or provide limited adaptiveness and result in sub-
optimal performance. 

Kumar and Wilkerson suggested using the Spatial Foot-
print Predictor [17] to improve miss ratio in a decoupled 
sectored cache.  Lin et al. [18] proposed using density 

vectors to filter out superfluous traffic when prefetching 
from Rambus memory banks.  However, their predictors 
use prediction indices that are a function of data addresses 
and therefore require either (1) a large amount of predictor 
memory that is impractical to implement, (2) coarser pre-
diction granularity to reduce storage requirement at the cost 
of opportunity to optimize bandwidth usage, or (3) lowered 
prediction accuracy and coverage.  Our mechanism con-
trasts with their approaches by using a prediction index that 
is based on data reference offsets.  Our study shows that 
employing data-reference-offset based prediction index 
results in accurate and cost-effective designs. 

In addition, we study the effectiveness of exploiting spa-
tial variation in line usage to reduce cache leakage power 
consumption.  Prior studies in reducing cache leakage have 
primarily focused on identifying inactive cache regions at 
the cache line granularity either through resizing [26] or 
decay [11, 15].  Azizi, Moshovos, and Najm [4] also sug-
gested using asymmetric SRAM to take advantage of value 
properties.  Our technique contrasts with previous ap-
proaches by using spatial pattern prediction in conjunction 
with a supply gating mechanism [3] to reduce leakage 
energy dissipation at a sub-block granularity. 

3. Variations in Spatial Locality 

To measure the variation in cache line usage, we simu-
late an aggressive out-of-order processor core running a 
subset of the SPEC CPU2000 benchmark suite [8] using the 
SimpleScalar tool set [6] with Alpha binaries and reference 
inputs.  Table 1 lists the configuration parameters for the 
simulated processor.  In the interest of simulation turn-
around, we focus the evaluation on twelve benchmarks that 
cover a spectrum of cache line usage behaviors and are 
representative of the rest of the suite.  To mitigate the 
inaccuracies in measurement often introduced by using 
abbreviated instruction execution streams, we simulate each 
of the benchmarks to completion.  We measure cache line 
usage as the fraction of data referenced in a cache line 

Table 1. Base system configuration parameters. 

Processor 
Core 

128-entry issue queue; 128-entry reorder 
buffer; 64-entry load/store queue; 8-wide 
fetch/dispatch/issue 

Branch 
Predictor 

Combination predictor with a 2K bimodal 
and a 2-level predictor table; 2-level predic-
tor with a 2-entry level-1 (10-bit history), 
1024-entry level-2, and 1-bit XOR; 1K BTB 

Memory 
System 

64-Kbyte 2-way level-1 data cache; 2-cycle 
hit latency; 64-Kbyte 2-way level-1 instruc-
tion cache, 2-cycle hit latency; 2-Mbyte 8-
way unified level-2 cache, 12-cycle hit 
latency; unlimited MSHRs; 4 memory ports 

Functional 
Units 

8 integer ALUs; 2 integer multiplier/divider 
units; 2 floating-point ALUs; 2 floating-point 
multiplier/divider units 

 



starting from when the line is fetched until it is evicted from 
the L1 data cache.  While spatial variations also exist in 
instruction caches, the design and evaluation of hardware 
mechanisms to capture these variations are beyond the 
scope of this work. 

Figure 1 shows the distribution of cache line usage in the 
data cache with 64-byte and 256-byte cache lines, respec-
tively.  A minimum data word reference granularity of 8 
bytes is assumed.  The stacked bars indicate the fraction of 
all lines that exhibit a specific fraction of references before 
eviction.  For instance, the legend for 14-25% in a bar 
indicates the fraction (on the y-axis) of all the lines where 
14% ~ 25% of the lines had been accessed before eviction. 

The figure shows a large variation in cache line usage 
within and across programs, regardless of the cache line 
size.  In gcc and lucas, 80% of all cache lines are fully 
referenced when using 64-byte lines (Figure 1 (a)).  These 
applications exhibit a compact data reference pattern where 
they reference almost all fields of their data structures.  In 
contrast, in art and bzip2, where a single data field is refer-
enced with a long stride, only a single 8-byte data word 
(i.e., ≤ 13%) is referenced in over 60% of all cache lines 
when using 64-byte lines.  Ammp, fma3d, gap, and mcf do 
not exhibit a dominant line usage pattern and do not benefit 
from a particular fixed line size.  For these applications, 
different program phases reference different numbers of 
fields in their data structures. 

When using 256-byte lines (Figure 1 (b)), the overall 
fraction of fully-referenced lines drops as compared to that 
of 64-byte lines, but large variations in line usage persist.  
The majority of cache lines in gcc are still fully-referenced 
with 256-byte lines.  Lucas exhibits a bimodal distribution 
in which half of the lines only contain up to 32 bytes of 
referenced data, and the other half are fully referenced.  

Such usage variation is mainly due to the misalignment of 
its data structure instances with 256-byte cache lines.  In 
art, bzip2, and vortex, less than 32-byte data items are 
referenced for most of the cache lines. 

The numbers on top of each bar in Figure 1 indicate the 
average cache line usage.  They show that a large fraction 
of data fetched into L1 caches is not referenced (an average 
of 45% for 64-byte cache lines and 66% for 256-byte cache 
lines).  Therefore, a significant amount of L1 cache capac-
ity and fetch bandwidth is wasted on not referenced data.  
Note that the average cache line usage decreases as the 
cache line size increases, although the actual amount of 
useful data fetched on cache misses increases.  Intuitively, 
the locality between non-adjacent words is looser than that 
of adjacent words because applications tend to reference 
data words whose addresses that are near one another close 
together in time.  Thus, larger cache lines are less efficient 
in terms of cache capacity and fetch bandwidth utilization. 

Instead of using a fixed cache line size, if caches dy-
namically adapt the amount of data fetched upon a miss 
based on the spatial locality, the cache space and fetch 
bandwidth can be exploited by other useful data to improve 
processor performance, or unused portions of the cache 
lines can be turned off to reduce energy dissipation. 

4. Predicting Spatial Patterns at Runtime 

To exploit variations in spatial locality, hardware (or 
software) must provide an accurate mechanism to predict 
referenced data items among the data items in adjacent 
cache locations.  Inaccurate prediction results in wasted 
processor resources, and a potentially large performance 
and energy efficiency degradation by incurring extra ac-
cesses to lower level caches.  These adverse effects may 
offset gains achieved by accurate predictions. 
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Figure 1.  Variations in cache line usage for SPEC CPU2000. 



The prediction mechanism proposed in this work is a 
simple history-based hardware design; it predicts future 
spatial locality of the executing program based on the 
program’s behavior in the recent past.  In the sections that 
follow, we first define the basic framework of our spatial 
locality prediction algorithm and then describe the details 
of the predictor and discuss its design space. 

4.1 Spatial Patterns and Groups 

In our hardware mechanism, spatial locality is recorded 
and predicted at the granularity of the minimum fetch unit 
of the cache.  A minimum fetch unit is the smallest re-
placement unit of the cache and represents the amount of 
data including the requested word that will be fetched into 
cache on a cache miss.  In a conventional cache the mini-
mum fetch unit is a cache line, whereas in a sub-blocking 
cache the minimum fetch unit is a sub-block. 

To facilitate the recording and prediction of spatial lo-
cality, adjacent minimum fetch units are grouped into 
spatial groups.  The size of the spatial group is a predictor 
design parameter and can be independent of the base cache 
configuration.  Each spatial group is assigned a logical tag 
that is used as if the group were one large cache line.  The 
logical tag of a spatial group is obtained by masking out the 
least significant bits that are required to index the fetch 
units within the group from the address tag. 

A bit vector is used to represent the recorded or pre-
dicted spatial locality of a spatial group as in [17].  We call 
this vector a spatial pattern.  Each of the bits in a spatial 
pattern corresponds to a fetch unit and indicates if the unit 
is referenced.  A spatial pattern is recorded over a spatial 
group generation.  Similar to the cache line generation 
defined by Wood, Hill, and Kessler [25], a spatial group 
generation is the interval when the group is accessed with a 
unique logical tag.  A spatial group generation starts when a 
fetch unit within the group is accessed with another logical 
tag.  Figure 2 illustrates this definition. 

4.2 The Spatial Pattern Predictor (SPP) 

To dynamically predict spatial patterns of spatial groups, 
the spatial pattern predictor (SPP) consists of a feedback 
mechanism and a memory to facilitate learning from feed-
back.  The predictor is depicted in Figure 3.  The main 
component of the feedback mechanism is the current pat-
tern table (CPT), which records spatial patterns of the 
executing program.  The CPT’s entries are spatial pattern 
registers that record patterns.  During a spatial group gen-
eration, the table’s spatial group is read and the spatial 
pattern is updated on every access to that group.  To avoid 
the high cost of implementing a separate tag array for the 
CPT, the table is combined with the tag array for the cache.  
The combination also eliminates conflicts among spatial 
groups because each spatial group in the cache has a dedi-
cated entry for recording its spatial patterns. 

Inside the predictor memory is the pattern history table 
(PHT).  The PHT maintains previously-captured spatial 
pattern histories.  At the end of each spatial group genera-
tion, the recorded spatial pattern of the spatial group is 
transferred from the CPT to the PHT.  The PHT is read at 
the beginning of a new generation to make a prediction on 
the spatial pattern.  The pattern histories stored in the PHT 
are accessed by using the prediction index.  The prediction 
index can be a function of the program counter (PC) of 
memory instructions, a data address that starts a new gen-
eration of a spatial group, traces of PCs or data addresses 
that access a spatial group or a combination of these. 

4.2.1 A Working Example.  Figure 4 illustrates how a 
spatial pattern predictor learns and predicts in the presence 
of a sequence of memory instructions.  When a spatial 
group is accessed with a new logical tag, the predictor 
probes the PHT that is initially empty.  A new PHT entry 
will be allocated for storing the recorded spatial pattern.  
The spatial pattern register in the CPT entry for that spatial 
group is initialized to zero (not shown), and then the bit that 
corresponds to the minimum fetch unit containing the 
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Figure 2.  Spatial group, minimum fetch unit, spatial 
pattern, and spatial group generation. 
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requested word is set.  A pointer to the newly allocated 
PHT entry will be stored in the CPT, so the recorded spatial 
pattern can be directly copied into the PHT entry without 
having to probe the PHT.  As each subsequent load or store 
instruction arrives, the spatial pattern of the spatial group 
will be captured by setting the bits corresponding to the 
referenced fetch units.  When the spatial group generation 
ends by referencing another logical tag, the pattern recorded 
will be transferred to the PHT entry pointed to by the 
pointer.  The next time another spatial group generation 
starts, the same process will repeat. 

If an access to the PHT misses, the predictor returns a 
default spatial pattern which minimizes either the perform-
ance or energy impact of mispredictions, depending on the 
predictor application.  When a spatial pattern missing in the 
history table is recorded during a new generation of the 
spatial group, we call it the training phase as opposed to the 
prediction phase.  Unlike many other prediction techniques, 
an SPP causes two types of mispredictions.  If the predicted 
spatial pattern excludes a minimum fetch unit that is refer-
enced during the generation of the spatial group, this mis-
prediction is referred to as an underprediction.  On the other 
hand, if a predicted minimum fetch unit is not referenced 
during the generation of the spatial group, it is called an 
overprediction.  Depending on the application of the predic-
tor, its training and misprediction rates affect the perform-
ance and energy efficiency in different ways.  The 
implications of misprediction will be discussed in Section 5 
with the details of example applications. 

4.3 Predictor Design Space 

The design space for the SPP includes the prediction in-
dex (the index used to access entries in the PHT), spatial 
group size, and the size and organization of the predictor 
memory.  The selection of these parameters affects predic-
tion accuracy, coverage, and the predictor memory’s re-
quirements.  The implications of the parameters discussed 
in this section will be investigated in Section 6, Evaluation. 

In this design space, the most critical design choice is 
the prediction index.  Memory instructions typically refer-
ence a single field of a program’s data structure.  Therefore, 
as long as the data structure is aligned with the spatial 

group, the program counter (PC) of the instruction may be a 
good indicator for the spatial pattern.  The key observation 
behind using a PC-based index for prediction is that instruc-
tions provide a concise representation of history [14].  
Moreover, it has been observed that most cache misses are 
caused by a very small number of instructions [2], and thus 
repetitive code fragments may help capture and predict the 
spatial patterns of a program. 

Unfortunately, data structure instances are not necessar-
ily aligned with the spatial group’s boundaries, so data 
address information may be required.  Using a PC concate-
nated with the data address as the prediction index can 
effectively track different alignments of data structures.  
However, the PC-data-address combination can impose a 
high demand on the capacity of the PHT; tracking spatial 
patterns of active memory instructions at each unique data 
location requires a large number of entries to maintain 
satisfactory prediction coverage in the presence of a large 
working set. 

To address the high predictor memory capacity require-
ment imposed by the PC-and-data-address based prediction 
index and alignments, one can use the index based on the 
PC concatenated with the offset within a spatial group of 
requested data.  The key observation behind using the PC 
along with the spatial group offset as the prediction index is 
that a given sequence of memory instructions accesses the 
same fields of a data structure.  Although different instances 
of a data structure may have different offsets within a 
spatial group, the number of different offsets of an instance 
with respect to a fix-sized spatial group is bounded.  Thus, 
the spatial pattern of a sequence of load and store instruc-
tions following a faulting memory instruction can be cap-
tured by simply tracking the PC of the faulting memory 
instruction and the offset of the requested word within the 
spatial group. 

This approach requires more predictor memory than a 
PC-only based prediction index because each unique offset 
will require a separate entry in the PHT.  Nevertheless, the 
prediction index based on PC and spatial group offset will 
have higher coverage than that of the PC-data-address 
combination with approximately the same prediction accu-
racy because multiple data locations may have the same 
alignment within a spatial group.  Thus, the effort of learn-
ing of a particular PC-offset combination can be amortized 
over all data with the same offset that is accessed by the 
same memory instruction.  In this work, instead of using the 
full data address, we employ the offset in the spatial group 
to indicate the alignment of the data field.  The spatial 
group offset is concatenated with the PC of the faulting 
memory instruction.  To keep the resulting prediction index 
to a reasonable size, a number of most significant bits are 
masked out from the PC.  The PC-spatial-group-offset 
combination results in efficient predictor designs (see 
Section 6.1 for evaluation). 
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Figure 4.  Spatial pattern learning and prediction mecha-
nism. 



Another important design parameter is the spatial group 
size.  Enlarging the spatial group increases the number of 
minimum fetch units that can be fetched together.  Data 
items that are placed far from each other in a larger spatial 
group are less likely to exhibit dense spatial locality.  As 
such, with a fixed minimum fetch unit size, larger spatial 
groups require longer spatial patterns which are harder to 
predict accurately.  Similarly, spatial patterns for larger 
spatial groups might not be as predictable as those for 
smaller spatial groups, even if a larger minimum fetch unit 
is employed and the size of spatial pattern remains constant. 

As in any table-based predictor, a key design parameter 
affecting the SPP’s accuracy and coverage is the size and 
organization of the predictor memory.  The required predic-
tor memory size and organization are determined by the 
prediction index and spatial group size.  The number of 
stored spatial pattern histories directly affects accuracy and 
coverage.  To avoid aliasing, the PHT can be built with tags 
extracted from the prediction index.  Using tags may de-
crease the predictor’s coverage but increase accuracy.  In 
this case, to reduce the history table access misses, the 
predictor can be organized with a high associativity.  Be-
cause the history table is not frequently accessed (only at 
the start and the end of a spatial group generation) and 
therefore is tolerant of high latency, a high associativity 
does not adversely affect the predictor’s performance. 

5. Predictor Applications 

The spatial pattern predictor can be applied in various 
ways to compensate for the shortcomings of a fixed cache 
line size.  This section applies the SPP to (1) reduce energy 
dissipation by disabling the sub blocks that are fetched but 
not referenced before eviction, and (2) improve processor 
performance by prefetching neighboring data that would 
otherwise cause cache misses. 

5.1 Energy-Aware Selective Sub-Blocking 

Leakage energy dissipation in high-performance cache 
memories has emerged as a critical issue in a wide spectrum 
of microprocessor designs [11, 15, 26].  Historically, the 
primary source of energy dissipation in CMOS transistor 
devices has been the switching energy from charg-
ing/discharging load capacitances when a device switches 
states.  However, scaling down transistor supply and thresh-
old voltages to reduce switching energy consumption and 
maintain performance exponentially increases sub-threshold 
leakage current [5, 9].  Moreover, modern state-of-the-art 
microprocessor designs devote a large fraction of the chip 
area to memory structures.  For instance, more than 50% of 
the die area of the Intel Itanium2 processor [16] and 60% of 
the StrongARM processor is designated to cache and other 
memory structures [19].  Because leakage energy is a 
function of the number of on-chip transistors, independent 

pendent of their switching activity, leakage energy dissipa-
tion in caches accounts for an increasingly large component 
of energy dissipation and will continue to do so in the 
future. 

Prior architectural techniques for reducing leakage en-
ergy dissipation in cache memories [11, 15, 26, 27] have 
focused on controlling the energy dissipation at a granular-
ity of one or more cache lines.  Our technique contrasts 
with, yet complements previous approaches by using the 
SPP to exploit usage variation and underutilization within a 
single cache line.  The SPP determines the cache line’s 
underutilization and reduces leakage energy dissipation 
from the unreferenced fractions of a cache line. 

To exploit usage variation within a cache line, we as-
sume a sub-blocking cache where each of the cache lines is 
partitioned into a number of sub-blocks.  In the context of 
SPP, the minimum fetch unit is a sub-block, and we elect to 
use a cache line as its spatial group.  A single spatial pattern 
is recorded and predicted for each cache line at a sub-block 
granularity.  A spatial group generation is the same as the 
cache line generation [25]: the interval between two con-
secutive misses on the same cache line.  The predictor 
probes the PHT on every cache miss and makes a spatial 
pattern prediction for each incoming cache line.  All sub-
blocks are fetched on a cache miss.  However, once a cache 
line is filled, only the sub-blocks that are predicted to be 
referenced are kept in an active mode.  The rest of the sub-
blocks are put into a standby mode to reduce leakage en-
ergy dissipation.  We call this cache a selective sub-
blocking cache.  In training, the predictor conservatively 
enables all sub-blocks to minimize the performance impact. 

5.1.1 Data Retention Gated-Ground.  To reduce the 
leakage energy dissipation in a selective sub-blocking cache 
with aggressive threshold-voltage scaling, we elect to use a 
circuit-level technique called data retention gated-ground 
[3, 21].  The technique introduces an extra transistor in the 
leakage path from the supply voltage to the ground of the 
cache’s SRAM cells; the extra transistor is turned on only 
in sub-blocks that are in active energy mode, “gating” the 
cell’s supply voltage.  Gated-ground maintains the perform-
ance advantages of lower supply and threshold voltages, 
while reducing leakage.  Figure 5 depicts the anatomy of a 

Bit Line

Word Line

. . . . . .

GND

Virtual Groud

Gated-Ground
Control

Vdd

Bit  Line

Figure 5.  Gated-ground illustrated. 



data retention gated-ground scheme in which the gated-
ground transistor is shared across a sub-block. 

Data retention gated-ground enables a selective sub-
blocking cache to virtually eliminate the leakage in disabled 
sub-blocks while preserving the data values.  By preserving 
the data, mispredictions of selective sub-blocking do not 
incur additional lower-level cache accesses; if the words 
within a disabled sub-block are referenced, the request can 
be serviced after the sub-block is enabled.  Using SPICE 
simulation tools, we measured the leakage energy reduction 
and performance impact of the data retention gated-ground 
with an assumption of 70nm CMOS technology and a 1V 
supply voltage [1].  When the gated-ground transistor is off 
and the leakage path between the supply voltage and ground 
is cut off, the leakage energy dissipation of the SRAM cell 
falls by a factor of 19.  The transition delay of turning on a 
gated-ground transistor shared by a 16-byte sub-block is 
only 0.20ns, or one clock cycle in a 5-GHz microprocessor. 

5.1.2 Impact on Energy and Processor Performance.  
Mispredictions and predictor training have implications on 
the total energy dissipation and performance.  Overpredic-
tion and underprediction in the case of mispredictions have 
different impacts on energy and performance.  Overpredic-
tion (mistakenly enabled unreferenced sub-blocks) de-
creases the effectiveness of the predictor and reduces 
energy savings.  Underprediction (mistakenly disabled 
referenced sub-blocks) incurs an access delay, impacting 
processor performance.  Accesses on underpredicted sub-
blocks must be delayed until the gated-ground transistor of 
the sub-blocks turns on.  Those delayed memory accesses 
affect the performance in two ways: (1) the data acquired 
from the memory instruction is ready after a cycle delay, 
and (2) instruction scheduling is complicated due to an 
increased variation in load latency (modern processors 
speculate on load latency to enable aggressive scheduling of 
dependent instructions). 

In training, the predictor enables all sub-blocks in the 
cache line.  Although this strategy reduces the energy 
savings, it minimizes the performance degradation from 
accessing disabled sub-blocks.  The high coverage and 
accuracy of the predictor (see Section 6 for evaluation) 
ensures that the opportunity for energy savings is closely 
tracked without incurring significant performance degrada-
tion. 

The predictor’s own hardware structures also consume 
energy.  The energy overhead of the CPT is minimal, as the 
table is essentially just a few bits added in the tag array of 
the cache.  The number of extra bits is the size of the spatial 
pattern, which is between 4 and 16 bits.  The added bits 
increase the overall switching energy of a 64-Kbyte 2-way 
set-associative L1 data cache by approximately 2%.  The 
PHT’s energy overhead is also minimal.  Our study shows 
(see Section 6.3) that the PHT can be designed as a 256-

entry tag-less RAM table with each entry containing one 
spatial pattern.  Although such a structure has a per access 
power consumption that is approximately equal to 12% of 
that of the L1 data cache, the table is accessed infrequently, 
only on cache misses.  Simulation results show that the 
PHT increases the overall L1 data cache switching energy 
by only 1% on average and up to 4%, in the case of art.  
The effectiveness of using SPP to reduce leakage energy 
will be evaluated in Section 6.4. 

5.2 Spatial Group Prefetchers (SGP) 

Increasing processor clock speeds and microarchitec-
tural innovations have led to a growing disparity between 
processor and memory performance.  Many chip designers 
have resorted to prefetching techniques to mitigate the 
shortcomings of the conventional memory hierarchy or-
ganization.  Prefetching uses predictions based on past 
memory usage patterns to fetch data in advance of its use to 
hide the memory latency.  In this section, we present the 
Spatial Group Prefetcher (SGP) as an application of the 
SPP for improving processor performance.  An SGP pre-
dicts neighboring data items to be fetched with the data 
requested on a cache miss.  The key observations behind an 
SGP are that: (1) data reference streams exhibit spatial 
locality, and (2) the utilized fraction of a cache line tends to 
decrease as the cache line size increases.  Although larger 
cache lines may help exploit high spatial locality and im-
prove miss rates, they also impose higher bus bandwidth 
requirements and greater miss penalties.  As a result, a 
processor with larger cache lines may spend much time 
stalled due to increased bus bandwidth demands, offsetting 
the benefit of reduced miss ratios.  With its high accuracy 
and coverage, the SGP enables building a data cache that 
has the high hit rate benefits of a cache with larger lines and 
the bandwidth efficiency of smaller cache lines [7]. 

To apply an SPP to data prefetching, we group adjacent 
cache lines into a spatial group.  Each of the cache lines 
within a group has its own tag, and therefore a cache line is 
still the smallest replacement unit.  To facilitate the feed-
back mechanism, each spatial group is assigned a logical 
tag that is used as if the group were one large cache line.  
The logical tag of a spatial group is obtained by masking 
out the least significant bits from the address tag that are 
required to index the cache lines within the group. 

Unlike selective sub-blocking caches, the spatial group 
generation for an SGP starts with a request to a logical tag 
that differs from the tag whose spatial pattern is being 
recorded.  Note that such a request does not necessarily 
occur during a miss because the requested data may already 
reside in one of the member cache lines in the group.  The 
spatial group generation is chosen to exploit spatial locality 
where items whose addresses are close in space are likely to 
be accessed close in time.  A request to a different tag can 



indicate that the reference stream in the vicinity of the 
current recording tag has terminated. 

An SGP predicts which lines within the group should be 
fetched upon each cache miss.  Because the SGP does not 
store data addresses, the addresses to prefetch are obtained 
from the requested address, based on the spatial pattern 
prediction.  In training, the predictor fetches only the re-
quested data to avoid data pollution and bus bandwidth 
waste commonly seen in overly-aggressive prefetching 
schemes [6].  The effectiveness of the SGP on improving 
processor performance will be evaluated in Section 6.5. 

6. Evaluation 

We conduct a sensitivity study over the design space of 
the SPP to find the best practical configuration.  The effec-
tiveness of using the SPP for reducing leakage energy of an 
on-chip cache memory and for data prefetching to improve 
processor performance is also evaluated using an optimally 
configured predictor.  In Section 6.1 and 6.2, we investigate 
the impact of various prediction indices and spatial group 
sizes on the predictor's accuracy and coverage.  In both sub-
sections, we assume a PHT with an unlimited number of 
entries to filter out artifacts introduced by having an insuffi-
cient predictor memory.  In Section 6.3, we consider a 
variety of practical PHT implementations and organiza-
tions.  In Section 6.4 and 6.5, the predictor configured with 
attributes chosen in the sensitivity study will be used to 
evaluate the effectiveness of an SPP in the example applica-
tions. 

In the sensitivity study, we simulate each benchmark to 
completion.  In the interest of simulation turnaround with 
our timing simulator, we elect to skip the first 10 billion 
instructions and simulate the next 500 million instructions 
for each benchmark.  The configuration parameters for the 
simulated processor are in Table 1. 

6.1 Prediction Index 

The prediction index selection can have a profound im-
pact on the predictor’s accuracy.  We consider several 
prediction indices that are based on the program counter 
(PC) of faulting memory instructions.    Figure 6 presents 
the prediction accuracy and coverage of a spatial group 
predictor for a 64-Kbyte 2-way set associative L1 data 
cache.  The graph shows the percentage of correct spatial 
pattern predictions, the fraction of underpredictions, and the 
fraction of overpredictions.  Figure 6 also shows the frac-
tion of spatial patterns not predicted due to predictor train-
ing with respect to a perfect predictor that always knows 
exactly what fetch units will be referenced, given an index 
for prediction.  Since we assume a PHT with unlimited 
capacity, few spatial patterns are not predicted due to 
training. 

As indicated by the graph, using the PC (program 
counter of the faulting memory instruction or the memory 
instruction accessing a different logical tag) concatenated 
with the data address as the prediction index produces the 
best overall prediction accuracy.  On the other hand, using 
just the PC as the prediction index yields the poorest pre-
diction accuracy among all considered indices for predic-
tion.  Our observation is in agreement with Kumar and 
Wilkerson [17].  The reason why the index based on PC has 
low prediction accuracy is that, although the same memory 
instructions always access the same field of a particular data 
structure, different instances of the data structure may have 
different alignments with respect to a spatial group.  Simi-
larly, using a PC concatenated with a spatial group tag 
yields low prediction accuracy because spatial group tags 
do not contain the data structure alignments.  With bzip2 
and mcf, in particular, indices that do not pertain to align-
ments within a spatial group have noticeably lower predic-
tion accuracy than other candidates because the benchmarks 
perform computations on sets of arrays whose elements 
tend to have different spatial group alignments.  The results 
also show that using a PC concatenated with the spatial 
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Figure 6.  Prediction accuracy and coverage of various 
prediction indices with infinite large predictor memory. 
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group offset produces a prediction accuracy that is compa-
rable with the PC-data-address based prediction index. 

6.2 Spatial Group and Fetch Unit Size 

Spatial group size can affect the prediction accuracy of 
an SGP as well.  Figure 7 presents the prediction accuracy 
and coverage of a spatial group predictor with various 
spatial group and fetch unit sizes.  As indicated by the 
graph, the predictor's accuracy degrades as the size of the 
spatial group increases.  The key intuition behind why 
prediction accuracy decreases as the spatial group size 
increases is that memory instructions within a basic block 
tend to access data in close vicinity; as the size of a spatial 
group increases it might cover data accessed by multiple 
basic blocks with different memory behaviors.  Since the 
predictor uses only the program counter and spatial group 
offset as the prediction index, different instruction se-
quences that share the same faulting memory instruction 
and spatial group offset are not uniquely tracked.  There-
fore, the spatial patterns corresponding to a particular 
prediction index from previous generations may not be the 
same.  Prediction accuracy with larger spatial group sizes 
may also decrease if the spatial groups span across a data 
set accessed from multiple basic blocks. 

Modern out-of-order superscalar engines can issue mul-
tiple accesses in parallel.  This further increases the likeli-
hood that spatial patterns captured for a particular index 
may be polluted by instruction sequences from other basic 
blocks whose data sets are contained in the same spatial 
group.  The effect is especially profound with integer appli-
cations such as bzip2, gap, and vortex.  Floating point 
applications tend to be less sensitive to the spatial group 
size, with the exception of ammp.  To contain the effect of 
aliasing instruction sequences, one can combine multiple 
spatial pattern histories from different spatial group genera-
tions to generate a prediction for each index.  This may bias 
the predictor towards overprediction.  Alternatively, one 

can increase coarseness of the prediction by using a larger 
fetch unit size, as indicated by Figure 8. 

6.3 Predictor Memory Capacity and Organiza-
tion 

Figure 9 shows the prediction accuracy and coverage of 
the SPP for a selective sub-blocking cache with various 
PHT sizes.  In a selective sub-blocking cache, the predictor 
conservatively enables all sub-blocks in a cache line when 
given an index and no corresponding spatial pattern is 
found.  Thus, the predictor may cause additional overpre-
dictions when in training.  Figure 10 presents the prediction 
accuracy and coverage of an SPP for an SGP with various 
PHT sizes.  In an SGP, the predictor fetches only the re-
quested data if the requested spatial pattern is not found in 
the PHT.  Therefore, the predictor may cause additional 
underpredictions when in training. 

To gauge the full potential of each capacity, the tables 
are assumed to be fully associative.   Practical implementa-
tion for the table sizes that produce the best prediction 
accuracy and coverage will be considered later in this 
section.  Ideally, the number of PHT entries is the product 
of the unique active memory instruction sequences and the 
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different spatial data structure offsets referenced in a given 
program phase. 

As indicated by the graphs, the capacity of the PHT has 
a profound impact on the prediction coverage of the predic-
tor.  The results show that, while a PHT with 128 and 256 
entries yields prediction accuracy and coverage that is 
comparable to that of an infinite table.  In general the pre-
diction coverage of an SPP degrades as the capacity of the 
PHT decreases.  Bzip2 and vortex, in particular, show little 
tolerance for tables with insufficient capacity.  Although 
bzip2, a lossless, block-sorting data compressor, has a small 
code base, its algorithm performs multiple transformations 
that have a large number of concurrent memory instruction 
sequences.  Similarly, vortex, a single-user object-oriented 
database, performs a mix of database operations, and there-
fore has many memory instructions that cause cache misses 
to data with different alignments within spatial groups. 

Figure 11 presents the prediction accuracy and coverage 
of 128- and 256-entry PHTs with various organizations for 
selective sub-blocking caches.  In the interest of space, the 
results of the predictor for the data prefetching application 
are omitted because they display similar behavior.  We 
consider a 16-way set associative and a direct-mapped tag 
less implementation for each capacity.  The results show 
that while the 16-way set associative tables produce a 
prediction accuracy comparable to an ideal fully-associative 
table, they incur a severe prediction coverage degradation.  
The impact on prediction coverage is especially noticeable 
in art and vortex.  On the other hand, direct-mapped tables 
have a lower prediction accuracy, but they yield perform-
ance closer to an ideal fully associative table. 

6.4 Energy Reduction Effectiveness 

Figure 12 shows the leakage energy dissipation in a 64-
Kbyte, 2-way set associative L1 data cache (upper bars) and 
the increase in execution time of the programs (lower bars).  
The leakage energy dissipation and execution time are 
normalized to a processor with a conventional data cache.  

The graph does not account for the predictor energy dissi-
pation overhead because the leakage energy dissipated by 
the CPT and the PHT is negligible, as explained in Section 
5.1.  The graph indicates that selective sub-blocking is 
effective in reducing leakage energy dissipation; on average 
the technique reduces the leakage energy dissipation by 
41%, with less than a 1% performance impact.  The most 
notable benchmarks are art, bzip2, and mcf, where selective 
sub-blocking achieves a leakage energy reduction of 73%, 
64%, and 68%, respectively, thanks to the programs' sparse 
spatial patterns. 

We compare SGP against conventional data caches with 
cache line sizes equal to that of the predictor's spatial 
group.  In order to measure the impact of a longer cache fill 
time and L1/L2 bus contention incurred by larger cache line 
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Figure 12.  Normalized leakage energy dissipation in a 64-
Kbyte, 2-way set associative L1 data cache and program 
execution time increase for selective sub-blocking. 
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Table 2.  Performance comparison of SGP against de-
mand-fetched systems with various cache line sizes. 
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ammp -9 -41 -63 7 10 -25 

art 4 32 96 15 121 305 

bzip -10 -43 -49 3 6 8 

equake -2 -34 -41 14 59 99 

facerec -4 -13 -3 9 58 103 

fma3d -2 -9 -9 -2 0 0 

gap 7 20 31 9 31 47 

gcc 0 -2 -2 0 1 1 

lucas 0 -23 -67 8 34 51 

mcf -6 -27 -32 6 38 67 

mgrid 10 6 12 14 36 53  

vortex -4 -27 -43 0 1 1  

AVG -1 -13 -14 7 33 59  

 



sizes, the simulator is augmented to model a realistic bus 
implementation. The bus between L1 and L2 cache is 256 
bits wide.  On a cache miss, the critical word is serviced 
first.  The remaining words are transferred in round-robin 
fashion with each word taking 2 additional cycles.  The 
transaction completes when the last word of the cache line 
is filled.  The bus always gives priority to processor re-
quests over SGP prefetch requests. 

Table 2 presents percent speedup of an SGP with 256-, 
512-, and 1024-byte spatial groups and demand-fetched L1 
data caches with various cache line sizes over a demand-
fetched data cache with 64-byte cache lines.  Our first 
observation is that although larger cache lines can help 
exploit high spatial locality and improve miss rates, they 
might cause performance degradation as a result of longer 
cache fill time and increased bus traffic.  As indicated by 
the results, many benchmarks see their execution time 
increase as the processor spends more time stalled due to 
limited bus bandwidth.  For benchmarks that march through 
arrays of data structures such as art, gap, and mgrid, larger 
cache lines indeed help eliminate misses caused by under-
sized cache lines and improve performance.  For the rest of 
benchmarks, the performance degrades as the cache line 
size increases, due either to increased bus contention or 
data conflicts, or both. 

Because the SGP only fetches cache lines that will 
probably be referenced, it can eliminate bus traffic wasted 
by fetching unused data.  On average, the SGP achieves a 
33% and 59% speedup with 512- and 1024-byte spatial 
group sizes, respectively.  For benchmarks with high, yet 
sparse, spatial locality such as art, equake, and gap, the 
SGP further improves upon larger cache lines by prefetch-
ing only the data that will be referenced and reducing bus 
contention, and achieves a 305%, 99%, and 47% speedup 
respectively.  For benchmarks that have high and dense 
spatial locality such as gcc, the SGP does not improve 
performance because SGP prefetches approximately the 
same amount of data as a conventional cache with a cache 
line size equal to its spatial group.  In ammp, the SGP with 
1024-byte spatial groups causes a performance degradation 
of 25% due to untimely prefetching; the prefetcher fetches 
data too early and causes replacements of data items that 
are later referenced again.  Such an effect can be avoided 
by either using a prefetch buffer where the prefetched cache 
lines are stored until they are referenced or employing 
confidence counters.  Design and evaluation of such buffers 
and confidence counters is beyond the scope of this work. 

7. Conclusion 

We described the Spatial Pattern Predictor (SPP), a cost-
effective table-based hardware mechanism that accurately 
predicts the reference patterns within a spatial group at 
runtime.  The key observation enabling the accurate, low-
cost SPP design is that spatial patterns correlate well with 

instruction addresses and data reference offsets within a 
line, requiring a small number of table entries to store the 
predicted patterns.  We presented two cache optimizations 
using an SPP: (1) selective sub-blocking, in which the 
predicted as to-be-referenced sub-blocks are fetched simul-
taneously to eliminate subsequent misses and predicted as 
unreferenced sub-blocks are disabled to save leakage en-
ergy, and (2) spatial group prefetching, in which predicted 
cache lines are simultaneously fetched and placed in the 
cache. 

Using cycle-accurate simulation of an aggressive out-of-
order processor and circuit modeling for a 64-Kbyte 2-way 
set-associative L1 data cache with 64-byte lines, we showed 
that: (1) a 256-entry tag-less direct-mapped SPP can 
achieve, on average, a prediction coverage of 95%, over-
predicting the patterns only by 8%, (2) assuming a 70nm 
process technology, our SPP reduces leakage energy in the 
base cache by 41% on average, incurring less than 1% 
performance degradation, and (3) prefetching spatial groups 
of up to 512 bytes improves execution time by 33% on 
average and up to a factor of two. 
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