
http://www.ece.cmu.edu/~powertap

Accurate and Complexity-Effective Spatial Pattern Prediction

Chi F. Chen, Se-Hyun Yang, Babak Falsafi
Computer Architecture Laboratory (CALCM)

Carnegie Mellon University

{cfchen, sehyun, babak}@cmu.edu

Andreas Moshovos
Electrical and Computer Engineering

University of Toronto

moshovos@eecg.toronto.edu

Abstract

Recent research suggests that there are large variations in
a cache’s spatial usage, both within and across programs.
Unfortunately, conventional caches typically employ fixed
cache line sizes to balance the exploitation of spatial and
temporal locality, and to avoid prohibitive cache fill band-
width demands. The resulting inability of conventional
caches to exploit spatial variations leads to sub-optimal
performance and unnecessary cache power dissipation.

This paper describes the Spatial Pattern Predictor (SPP), a
cost-effective hardware mechanism that accurately predicts
reference patterns within a spatial group (i.e., a contiguous
region of data in memory) at runtime. The key observation
enabling an accurate, yet low-cost, SPP design is that
spatial patterns correlate well with instruction addresses
and data reference offsets within a cache line. We require
only a small amount of predictor memory to store the
predicted patterns. Simulation results for a 64-Kbyte 2-
way set-associative L1 data cache with 64-byte lines show
that: (1) a 256-entry tag-less direct-mapped SPP can
achieve, on average, a prediction coverage of 95%, over-
predicting the patterns by only 8%, (2) assuming a 70nm
process technology, the SPP helps reduce leakage energy
in the base cache by 41% on average, incurring less than
1% performance degradation, and (3) prefetching spatial
groups of up to 512 bytes using the SPP improves execu-
tion time by 33% on average and up to a factor of two.

1. Introduction

Conventional cache memories divide storage into cache
lines for design simplicity and to optimize for lookup speed.
The line size is fixed at design time [20] and is selected to
take advantage of spatial locality with large line sizes, while
limiting the cache line fetch bandwidth and latency re-
quirements of overly large lines.

Recent research [13, 17, 18, 23, 24] indicates that there
are large spatial variations in cache line usage both within
and across programs. In the presence of such drastic varia-
tions, a fixed cache line size results in a sub-optimal design
point. Temporally-close cache references within large

contiguous spatial groups favor a single fetch of large lines
to eliminate subsequent cache misses and increase perform-
ance. On the other hand, temporally-close cache references
that are not spatially-close favor using a large number of
small cache lines to optimize for bandwidth and placement.
Using excessively large cache lines leads to unused sub-
blocks that unnecessarily dissipate power both upon fetch
(dissipating bitline and bus switching energy) and during
cache residency (dissipating bitline and supply-to-ground
leakage energy [5, 9, 11, 26]).

In this light, we present the Spatial Pattern Predictor
(SPP), a table-based mechanism that accurately and cost-
effectively predicts data cache line usage patterns. Upon a
cache miss, the SPP predicts exactly which data words are
referenced within a spatial group that consists of a contigu-
ous region in memory. We design two cache optimizations
using the SPP: (1) selective sub-blocking, in which only the
predicted as to-be-referenced sub-blocks are fetched and
predicted as unreferenced sub-blocks are disabled to reduce
leakage energy, and (2) spatial group prefetching, in which
a predicted number of cache lines are simultaneously
fetched and placed in the cache to hide memory latency.

We use cycle-accurate simulation of an aggressive out-
of-order superscalar processor with twelve SPEC CPU2000
benchmarks, and circuit modeling to show the following
contributions. We evaluate the SPP with a 64-Kbyte 2-way
set-associative L1 data cache with 64-byte lines.

• Spatial Pattern Predictor: We propose an accurate
and cost-effective SPP design. A 256-entry direct-
mapped SPP achieves a prediction coverage of 95% on
average, overestimating referenced data by only 8% for
our base cache. Unlike prior proposals, we determine
that a combination of program counter (PC) and data
reference offset (a few bits) within the cache line corre-
lates accurately to spatial patterns, allowing for a small
and accurate SPP.

• Leakage Energy Reduction: Using supply-gating [3]
and prediction of unreferenced sub-blocks within a
cache line, SPP reduces 41% of the leakage energy dis-
sipation in our base cache with 70nm CMOS technol-
ogy and incurs less than 1% performance degradation
in all but one benchmark (less than 2% degradation in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147949692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

all benchmarks). We measure the energy dissipation of
accessing a small SPP (i.e., 1.25-Kbyte) upon a cache
miss to be negligible as compared to the leakage sav-
ings.

• Processor Performance Improvement: Prefetching
spatial patterns in groups of up to 512 bytes in our base
cache using SPP improves performance in applications
measured by up to a factor of two and on average by
33% over the best case execution time results achieved
by a statically chosen cache line size.

The rest of the paper proceeds as follows. Section 2 pre-
sents an overview of the prior work. Section 3 makes the
case for the large spatial variations in cache line usage with
empirical data. Section 4 presents the mechanism of our
spatial pattern predictor. In Section 5, we describe two
system optimizations using the predictor. In Section 6, we
quantitatively evaluate the predictor’s accuracy, its cover-
age, storage requirement, and effectiveness in reducing
leakage power and execution time. Section 7 concludes this
paper.

2. Prior Work

A number of techniques for exploiting spatial locality to
improve processor performance have been proposed in
recent literature. Vleet et al. [24] proposed using off-line
profiling to determine the fetch size upon a cache miss.
However, the lack of dynamism render these static ap-
proaches less effective when faced with a data set that
changes rapidly during program execution.

Many have resorted to hardware mechanisms for exploit-
ing spatial locality at runtime. Temam and Jegou [22]
suggested fetching cache lines adjacent to the requested line
into a buffer to avoid cache pollution incurred by larger a
cache line size while exploiting spatial locality. Gonzalez,
Aliagas, and Valero [12] proposed the dual-cache that
dynamically divides data across two caches with two dis-
tinct line sizes to optimize simultaneously for temporal and
spatial locality. Johnson, Merten, and Hwu [13] suggested
using a Spatial Locality Detection table to alternate line
fetch sizes between a conventional size and a macroblock
size for data that processes spatial locality. Dubnicki and
LeBlanc [10] proposed an algorithm for monitoring cache
line footprint and gradually increasing/decreasing fetch size
by a factor of two to reduce false sharing in a cache-
coherent shared memory multiprocessor. Veidenbaum et al.
[23] proposed using a similar algorithm within a conven-
tional uniprocessor cache. However, these techniques
either exploit spatial locality at coarser granularity than our
approach or provide limited adaptiveness and result in sub-
optimal performance.

Kumar and Wilkerson suggested using the Spatial Foot-
print Predictor [17] to improve miss ratio in a decoupled
sectored cache. Lin et al. [18] proposed using density

vectors to filter out superfluous traffic when prefetching
from Rambus memory banks. However, their predictors
use prediction indices that are a function of data addresses
and therefore require either (1) a large amount of predictor
memory that is impractical to implement, (2) coarser pre-
diction granularity to reduce storage requirement at the cost
of opportunity to optimize bandwidth usage, or (3) lowered
prediction accuracy and coverage. Our mechanism con-
trasts with their approaches by using a prediction index that
is based on data reference offsets. Our study shows that
employing data-reference-offset based prediction index
results in accurate and cost-effective designs.

In addition, we study the effectiveness of exploiting spa-
tial variation in line usage to reduce cache leakage power
consumption. Prior studies in reducing cache leakage have
primarily focused on identifying inactive cache regions at
the cache line granularity either through resizing [26] or
decay [11, 15]. Azizi, Moshovos, and Najm [4] also sug-
gested using asymmetric SRAM to take advantage of value
properties. Our technique contrasts with previous ap-
proaches by using spatial pattern prediction in conjunction
with a supply gating mechanism [3] to reduce leakage
energy dissipation at a sub-block granularity.

3. Variations in Spatial Locality

To measure the variation in cache line usage, we simu-
late an aggressive out-of-order processor core running a
subset of the SPEC CPU2000 benchmark suite [8] using the
SimpleScalar tool set [6] with Alpha binaries and reference
inputs. Table 1 lists the configuration parameters for the
simulated processor. In the interest of simulation turn-
around, we focus the evaluation on twelve benchmarks that
cover a spectrum of cache line usage behaviors and are
representative of the rest of the suite. To mitigate the
inaccuracies in measurement often introduced by using
abbreviated instruction execution streams, we simulate each
of the benchmarks to completion. We measure cache line
usage as the fraction of data referenced in a cache line

Table 1. Base system configuration parameters.

Processor
Core

128-entry issue queue; 128-entry reorder
buffer; 64-entry load/store queue; 8-wide
fetch/dispatch/issue

Branch
Predictor

Combination predictor with a 2K bimodal
and a 2-level predictor table; 2-level predic-
tor with a 2-entry level-1 (10-bit history),
1024-entry level-2, and 1-bit XOR; 1K BTB

Memory
System

64-Kbyte 2-way level-1 data cache; 2-cycle
hit latency; 64-Kbyte 2-way level-1 instruc-
tion cache, 2-cycle hit latency; 2-Mbyte 8-
way unified level-2 cache, 12-cycle hit
latency; unlimited MSHRs; 4 memory ports

Functional
Units

8 integer ALUs; 2 integer multiplier/divider
units; 2 floating-point ALUs; 2 floating-point
multiplier/divider units

starting from when the line is fetched until it is evicted from
the L1 data cache. While spatial variations also exist in
instruction caches, the design and evaluation of hardware
mechanisms to capture these variations are beyond the
scope of this work.

Figure 1 shows the distribution of cache line usage in the
data cache with 64-byte and 256-byte cache lines, respec-
tively. A minimum data word reference granularity of 8
bytes is assumed. The stacked bars indicate the fraction of
all lines that exhibit a specific fraction of references before
eviction. For instance, the legend for 14-25% in a bar
indicates the fraction (on the y-axis) of all the lines where
14% ~ 25% of the lines had been accessed before eviction.

The figure shows a large variation in cache line usage
within and across programs, regardless of the cache line
size. In gcc and lucas, 80% of all cache lines are fully
referenced when using 64-byte lines (Figure 1 (a)). These
applications exhibit a compact data reference pattern where
they reference almost all fields of their data structures. In
contrast, in art and bzip2, where a single data field is refer-
enced with a long stride, only a single 8-byte data word
(i.e., ≤ 13%) is referenced in over 60% of all cache lines
when using 64-byte lines. Ammp, fma3d, gap, and mcf do
not exhibit a dominant line usage pattern and do not benefit
from a particular fixed line size. For these applications,
different program phases reference different numbers of
fields in their data structures.

When using 256-byte lines (Figure 1 (b)), the overall
fraction of fully-referenced lines drops as compared to that
of 64-byte lines, but large variations in line usage persist.
The majority of cache lines in gcc are still fully-referenced
with 256-byte lines. Lucas exhibits a bimodal distribution
in which half of the lines only contain up to 32 bytes of
referenced data, and the other half are fully referenced.

Such usage variation is mainly due to the misalignment of
its data structure instances with 256-byte cache lines. In
art, bzip2, and vortex, less than 32-byte data items are
referenced for most of the cache lines.

The numbers on top of each bar in Figure 1 indicate the
average cache line usage. They show that a large fraction
of data fetched into L1 caches is not referenced (an average
of 45% for 64-byte cache lines and 66% for 256-byte cache
lines). Therefore, a significant amount of L1 cache capac-
ity and fetch bandwidth is wasted on not referenced data.
Note that the average cache line usage decreases as the
cache line size increases, although the actual amount of
useful data fetched on cache misses increases. Intuitively,
the locality between non-adjacent words is looser than that
of adjacent words because applications tend to reference
data words whose addresses that are near one another close
together in time. Thus, larger cache lines are less efficient
in terms of cache capacity and fetch bandwidth utilization.

Instead of using a fixed cache line size, if caches dy-
namically adapt the amount of data fetched upon a miss
based on the spatial locality, the cache space and fetch
bandwidth can be exploited by other useful data to improve
processor performance, or unused portions of the cache
lines can be turned off to reduce energy dissipation.

4. Predicting Spatial Patterns at Runtime

To exploit variations in spatial locality, hardware (or
software) must provide an accurate mechanism to predict
referenced data items among the data items in adjacent
cache locations. Inaccurate prediction results in wasted
processor resources, and a potentially large performance
and energy efficiency degradation by incurring extra ac-
cesses to lower level caches. These adverse effects may
offset gains achieved by accurate predictions.

0%

20%

40%

60%

80%

100%
am

m
p ar
t

bz
ip

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
p

gc
c

lu
ca

s

m
cf

m
gr

id

vo
rte

x

P
er

ce
n

ta
g

e
o

f A
ll

C
ac

h
e

L
in

e
U

sa
g

es

am
m

p

a
rt

bz
ip

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
p

gc
c

lu
ca

s

m
cf

m
gr

id

vo
rt

ex

<=13% 14-25% 26-38% 39-50% 51-63% 64-75% 76-88% 89-100%

44 2022

Average Cache Line U sage (%)(a) (b) Average Cache Line U sage (%)

1126 850 2140 2850 4169 3789 7484 5426 887 8648 16

Figure 1. Variations in cache line usage for SPEC CPU2000.

The prediction mechanism proposed in this work is a
simple history-based hardware design; it predicts future
spatial locality of the executing program based on the
program’s behavior in the recent past. In the sections that
follow, we first define the basic framework of our spatial
locality prediction algorithm and then describe the details
of the predictor and discuss its design space.

4.1 Spatial Patterns and Groups

In our hardware mechanism, spatial locality is recorded
and predicted at the granularity of the minimum fetch unit
of the cache. A minimum fetch unit is the smallest re-
placement unit of the cache and represents the amount of
data including the requested word that will be fetched into
cache on a cache miss. In a conventional cache the mini-
mum fetch unit is a cache line, whereas in a sub-blocking
cache the minimum fetch unit is a sub-block.

To facilitate the recording and prediction of spatial lo-
cality, adjacent minimum fetch units are grouped into
spatial groups. The size of the spatial group is a predictor
design parameter and can be independent of the base cache
configuration. Each spatial group is assigned a logical tag
that is used as if the group were one large cache line. The
logical tag of a spatial group is obtained by masking out the
least significant bits that are required to index the fetch
units within the group from the address tag.

A bit vector is used to represent the recorded or pre-
dicted spatial locality of a spatial group as in [17]. We call
this vector a spatial pattern. Each of the bits in a spatial
pattern corresponds to a fetch unit and indicates if the unit
is referenced. A spatial pattern is recorded over a spatial
group generation. Similar to the cache line generation
defined by Wood, Hill, and Kessler [25], a spatial group
generation is the interval when the group is accessed with a
unique logical tag. A spatial group generation starts when a
fetch unit within the group is accessed with another logical
tag. Figure 2 illustrates this definition.

4.2 The Spatial Pattern Predictor (SPP)

To dynamically predict spatial patterns of spatial groups,
the spatial pattern predictor (SPP) consists of a feedback
mechanism and a memory to facilitate learning from feed-
back. The predictor is depicted in Figure 3. The main
component of the feedback mechanism is the current pat-
tern table (CPT), which records spatial patterns of the
executing program. The CPT’s entries are spatial pattern
registers that record patterns. During a spatial group gen-
eration, the table’s spatial group is read and the spatial
pattern is updated on every access to that group. To avoid
the high cost of implementing a separate tag array for the
CPT, the table is combined with the tag array for the cache.
The combination also eliminates conflicts among spatial
groups because each spatial group in the cache has a dedi-
cated entry for recording its spatial patterns.

Inside the predictor memory is the pattern history table
(PHT). The PHT maintains previously-captured spatial
pattern histories. At the end of each spatial group genera-
tion, the recorded spatial pattern of the spatial group is
transferred from the CPT to the PHT. The PHT is read at
the beginning of a new generation to make a prediction on
the spatial pattern. The pattern histories stored in the PHT
are accessed by using the prediction index. The prediction
index can be a function of the program counter (PC) of
memory instructions, a data address that starts a new gen-
eration of a spatial group, traces of PCs or data addresses
that access a spatial group or a combination of these.

4.2.1 A Working Example. Figure 4 illustrates how a
spatial pattern predictor learns and predicts in the presence
of a sequence of memory instructions. When a spatial
group is accessed with a new logical tag, the predictor
probes the PHT that is initially empty. A new PHT entry
will be allocated for storing the recorded spatial pattern.
The spatial pattern register in the CPT entry for that spatial
group is initialized to zero (not shown), and then the bit that
corresponds to the minimum fetch unit containing the

Time

Tag0

GenerationGeneration

Tag0 Tag0 Tag1 Tag1 Tag1.

Min imum Fetch Uni t

Spatia l Group

Spatia l Pattern

. . .

1 . . .0 1

Figure 2. Spatial group, minimum fetch unit, spatial
pattern, and spatial group generation.

Prediction Index

SPG OFFSET

Spat ial Prediction to
L1 Data Cache Controller

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0

0

1

Prediction
Index Status

Spat ial Pattern
Histroy

Pattern History Table
(PHT)

1 1 0 0 0 0 1 1 001

0 0 0 1 1 1 1 0 010

1 1 0 0 0 0 0 0 000

PC

Spat ial Pattern
Register

PHT Entry
Pointer

Current Pat tern Table
(CPT)

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

Tag

. .
 .

. .
 .

Status

. .
 .

Data

Data Cache

M
U

X
 2:1

=

Default Predict ion

Hit

Figure 3. Spatial Pattern Predictor organization.

requested word is set. A pointer to the newly allocated
PHT entry will be stored in the CPT, so the recorded spatial
pattern can be directly copied into the PHT entry without
having to probe the PHT. As each subsequent load or store
instruction arrives, the spatial pattern of the spatial group
will be captured by setting the bits corresponding to the
referenced fetch units. When the spatial group generation
ends by referencing another logical tag, the pattern recorded
will be transferred to the PHT entry pointed to by the
pointer. The next time another spatial group generation
starts, the same process will repeat.

If an access to the PHT misses, the predictor returns a
default spatial pattern which minimizes either the perform-
ance or energy impact of mispredictions, depending on the
predictor application. When a spatial pattern missing in the
history table is recorded during a new generation of the
spatial group, we call it the training phase as opposed to the
prediction phase. Unlike many other prediction techniques,
an SPP causes two types of mispredictions. If the predicted
spatial pattern excludes a minimum fetch unit that is refer-
enced during the generation of the spatial group, this mis-
prediction is referred to as an underprediction. On the other
hand, if a predicted minimum fetch unit is not referenced
during the generation of the spatial group, it is called an
overprediction. Depending on the application of the predic-
tor, its training and misprediction rates affect the perform-
ance and energy efficiency in different ways. The
implications of misprediction will be discussed in Section 5
with the details of example applications.

4.3 Predictor Design Space

The design space for the SPP includes the prediction in-
dex (the index used to access entries in the PHT), spatial
group size, and the size and organization of the predictor
memory. The selection of these parameters affects predic-
tion accuracy, coverage, and the predictor memory’s re-
quirements. The implications of the parameters discussed
in this section will be investigated in Section 6, Evaluation.

In this design space, the most critical design choice is
the prediction index. Memory instructions typically refer-
ence a single field of a program’s data structure. Therefore,
as long as the data structure is aligned with the spatial

group, the program counter (PC) of the instruction may be a
good indicator for the spatial pattern. The key observation
behind using a PC-based index for prediction is that instruc-
tions provide a concise representation of history [14].
Moreover, it has been observed that most cache misses are
caused by a very small number of instructions [2], and thus
repetitive code fragments may help capture and predict the
spatial patterns of a program.

Unfortunately, data structure instances are not necessar-
ily aligned with the spatial group’s boundaries, so data
address information may be required. Using a PC concate-
nated with the data address as the prediction index can
effectively track different alignments of data structures.
However, the PC-data-address combination can impose a
high demand on the capacity of the PHT; tracking spatial
patterns of active memory instructions at each unique data
location requires a large number of entries to maintain
satisfactory prediction coverage in the presence of a large
working set.

To address the high predictor memory capacity require-
ment imposed by the PC-and-data-address based prediction
index and alignments, one can use the index based on the
PC concatenated with the offset within a spatial group of
requested data. The key observation behind using the PC
along with the spatial group offset as the prediction index is
that a given sequence of memory instructions accesses the
same fields of a data structure. Although different instances
of a data structure may have different offsets within a
spatial group, the number of different offsets of an instance
with respect to a fix-sized spatial group is bounded. Thus,
the spatial pattern of a sequence of load and store instruc-
tions following a faulting memory instruction can be cap-
tured by simply tracking the PC of the faulting memory
instruction and the offset of the requested word within the
spatial group.

This approach requires more predictor memory than a
PC-only based prediction index because each unique offset
will require a separate entry in the PHT. Nevertheless, the
prediction index based on PC and spatial group offset will
have higher coverage than that of the PC-data-address
combination with approximately the same prediction accu-
racy because multiple data locations may have the same
alignment within a spatial group. Thus, the effort of learn-
ing of a particular PC-offset combination can be amortized
over all data with the same offset that is accessed by the
same memory instruction. In this work, instead of using the
full data address, we employ the offset in the spatial group
to indicate the alignment of the data field. The spatial
group offset is concatenated with the PC of the faulting
memory instruction. To keep the resulting prediction index
to a reasonable size, a number of most significant bits are
masked out from the PC. The PC-spatial-group-offset
combination results in efficient predictor designs (see
Section 6.1 for evaluation).

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 1

0

0

1

Prediction
Index Status

Spat ial Pattern
Histroy

Pattern History Table
(PHT)

1 0 0 0 0 0 0 0 000

1 0 0 0 0 0 0 1 000

1 1 0 0 0 0 0 1 000

1 1 0 0 0 0 0 1 000

Spat ial Pattern
Register

PHT Entry
Pointer

Current Pattern Table
(CPT)

Instruction Stream

PC ld/st tagXi

PC ld/st tagXj

PC ld/st tagXk

PC ld/st tagYy

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

Update

Figure 4. Spatial pattern learning and prediction mecha-
nism.

Another important design parameter is the spatial group
size. Enlarging the spatial group increases the number of
minimum fetch units that can be fetched together. Data
items that are placed far from each other in a larger spatial
group are less likely to exhibit dense spatial locality. As
such, with a fixed minimum fetch unit size, larger spatial
groups require longer spatial patterns which are harder to
predict accurately. Similarly, spatial patterns for larger
spatial groups might not be as predictable as those for
smaller spatial groups, even if a larger minimum fetch unit
is employed and the size of spatial pattern remains constant.

As in any table-based predictor, a key design parameter
affecting the SPP’s accuracy and coverage is the size and
organization of the predictor memory. The required predic-
tor memory size and organization are determined by the
prediction index and spatial group size. The number of
stored spatial pattern histories directly affects accuracy and
coverage. To avoid aliasing, the PHT can be built with tags
extracted from the prediction index. Using tags may de-
crease the predictor’s coverage but increase accuracy. In
this case, to reduce the history table access misses, the
predictor can be organized with a high associativity. Be-
cause the history table is not frequently accessed (only at
the start and the end of a spatial group generation) and
therefore is tolerant of high latency, a high associativity
does not adversely affect the predictor’s performance.

5. Predictor Applications

The spatial pattern predictor can be applied in various
ways to compensate for the shortcomings of a fixed cache
line size. This section applies the SPP to (1) reduce energy
dissipation by disabling the sub blocks that are fetched but
not referenced before eviction, and (2) improve processor
performance by prefetching neighboring data that would
otherwise cause cache misses.

5.1 Energy-Aware Selective Sub-Blocking

Leakage energy dissipation in high-performance cache
memories has emerged as a critical issue in a wide spectrum
of microprocessor designs [11, 15, 26]. Historically, the
primary source of energy dissipation in CMOS transistor
devices has been the switching energy from charg-
ing/discharging load capacitances when a device switches
states. However, scaling down transistor supply and thresh-
old voltages to reduce switching energy consumption and
maintain performance exponentially increases sub-threshold
leakage current [5, 9]. Moreover, modern state-of-the-art
microprocessor designs devote a large fraction of the chip
area to memory structures. For instance, more than 50% of
the die area of the Intel Itanium2 processor [16] and 60% of
the StrongARM processor is designated to cache and other
memory structures [19]. Because leakage energy is a
function of the number of on-chip transistors, independent

pendent of their switching activity, leakage energy dissipa-
tion in caches accounts for an increasingly large component
of energy dissipation and will continue to do so in the
future.

Prior architectural techniques for reducing leakage en-
ergy dissipation in cache memories [11, 15, 26, 27] have
focused on controlling the energy dissipation at a granular-
ity of one or more cache lines. Our technique contrasts
with, yet complements previous approaches by using the
SPP to exploit usage variation and underutilization within a
single cache line. The SPP determines the cache line’s
underutilization and reduces leakage energy dissipation
from the unreferenced fractions of a cache line.

To exploit usage variation within a cache line, we as-
sume a sub-blocking cache where each of the cache lines is
partitioned into a number of sub-blocks. In the context of
SPP, the minimum fetch unit is a sub-block, and we elect to
use a cache line as its spatial group. A single spatial pattern
is recorded and predicted for each cache line at a sub-block
granularity. A spatial group generation is the same as the
cache line generation [25]: the interval between two con-
secutive misses on the same cache line. The predictor
probes the PHT on every cache miss and makes a spatial
pattern prediction for each incoming cache line. All sub-
blocks are fetched on a cache miss. However, once a cache
line is filled, only the sub-blocks that are predicted to be
referenced are kept in an active mode. The rest of the sub-
blocks are put into a standby mode to reduce leakage en-
ergy dissipation. We call this cache a selective sub-
blocking cache. In training, the predictor conservatively
enables all sub-blocks to minimize the performance impact.

5.1.1 Data Retention Gated-Ground. To reduce the
leakage energy dissipation in a selective sub-blocking cache
with aggressive threshold-voltage scaling, we elect to use a
circuit-level technique called data retention gated-ground
[3, 21]. The technique introduces an extra transistor in the
leakage path from the supply voltage to the ground of the
cache’s SRAM cells; the extra transistor is turned on only
in sub-blocks that are in active energy mode, “gating” the
cell’s supply voltage. Gated-ground maintains the perform-
ance advantages of lower supply and threshold voltages,
while reducing leakage. Figure 5 depicts the anatomy of a

Bit Line

Word Line

.

GND

Virtual Groud

Gated-Ground
Control

Vdd

Bit Line

Figure 5. Gated-ground illustrated.

data retention gated-ground scheme in which the gated-
ground transistor is shared across a sub-block.

Data retention gated-ground enables a selective sub-
blocking cache to virtually eliminate the leakage in disabled
sub-blocks while preserving the data values. By preserving
the data, mispredictions of selective sub-blocking do not
incur additional lower-level cache accesses; if the words
within a disabled sub-block are referenced, the request can
be serviced after the sub-block is enabled. Using SPICE
simulation tools, we measured the leakage energy reduction
and performance impact of the data retention gated-ground
with an assumption of 70nm CMOS technology and a 1V
supply voltage [1]. When the gated-ground transistor is off
and the leakage path between the supply voltage and ground
is cut off, the leakage energy dissipation of the SRAM cell
falls by a factor of 19. The transition delay of turning on a
gated-ground transistor shared by a 16-byte sub-block is
only 0.20ns, or one clock cycle in a 5-GHz microprocessor.

5.1.2 Impact on Energy and Processor Performance.
Mispredictions and predictor training have implications on
the total energy dissipation and performance. Overpredic-
tion and underprediction in the case of mispredictions have
different impacts on energy and performance. Overpredic-
tion (mistakenly enabled unreferenced sub-blocks) de-
creases the effectiveness of the predictor and reduces
energy savings. Underprediction (mistakenly disabled
referenced sub-blocks) incurs an access delay, impacting
processor performance. Accesses on underpredicted sub-
blocks must be delayed until the gated-ground transistor of
the sub-blocks turns on. Those delayed memory accesses
affect the performance in two ways: (1) the data acquired
from the memory instruction is ready after a cycle delay,
and (2) instruction scheduling is complicated due to an
increased variation in load latency (modern processors
speculate on load latency to enable aggressive scheduling of
dependent instructions).

In training, the predictor enables all sub-blocks in the
cache line. Although this strategy reduces the energy
savings, it minimizes the performance degradation from
accessing disabled sub-blocks. The high coverage and
accuracy of the predictor (see Section 6 for evaluation)
ensures that the opportunity for energy savings is closely
tracked without incurring significant performance degrada-
tion.

The predictor’s own hardware structures also consume
energy. The energy overhead of the CPT is minimal, as the
table is essentially just a few bits added in the tag array of
the cache. The number of extra bits is the size of the spatial
pattern, which is between 4 and 16 bits. The added bits
increase the overall switching energy of a 64-Kbyte 2-way
set-associative L1 data cache by approximately 2%. The
PHT’s energy overhead is also minimal. Our study shows
(see Section 6.3) that the PHT can be designed as a 256-

entry tag-less RAM table with each entry containing one
spatial pattern. Although such a structure has a per access
power consumption that is approximately equal to 12% of
that of the L1 data cache, the table is accessed infrequently,
only on cache misses. Simulation results show that the
PHT increases the overall L1 data cache switching energy
by only 1% on average and up to 4%, in the case of art.
The effectiveness of using SPP to reduce leakage energy
will be evaluated in Section 6.4.

5.2 Spatial Group Prefetchers (SGP)

Increasing processor clock speeds and microarchitec-
tural innovations have led to a growing disparity between
processor and memory performance. Many chip designers
have resorted to prefetching techniques to mitigate the
shortcomings of the conventional memory hierarchy or-
ganization. Prefetching uses predictions based on past
memory usage patterns to fetch data in advance of its use to
hide the memory latency. In this section, we present the
Spatial Group Prefetcher (SGP) as an application of the
SPP for improving processor performance. An SGP pre-
dicts neighboring data items to be fetched with the data
requested on a cache miss. The key observations behind an
SGP are that: (1) data reference streams exhibit spatial
locality, and (2) the utilized fraction of a cache line tends to
decrease as the cache line size increases. Although larger
cache lines may help exploit high spatial locality and im-
prove miss rates, they also impose higher bus bandwidth
requirements and greater miss penalties. As a result, a
processor with larger cache lines may spend much time
stalled due to increased bus bandwidth demands, offsetting
the benefit of reduced miss ratios. With its high accuracy
and coverage, the SGP enables building a data cache that
has the high hit rate benefits of a cache with larger lines and
the bandwidth efficiency of smaller cache lines [7].

To apply an SPP to data prefetching, we group adjacent
cache lines into a spatial group. Each of the cache lines
within a group has its own tag, and therefore a cache line is
still the smallest replacement unit. To facilitate the feed-
back mechanism, each spatial group is assigned a logical
tag that is used as if the group were one large cache line.
The logical tag of a spatial group is obtained by masking
out the least significant bits from the address tag that are
required to index the cache lines within the group.

Unlike selective sub-blocking caches, the spatial group
generation for an SGP starts with a request to a logical tag
that differs from the tag whose spatial pattern is being
recorded. Note that such a request does not necessarily
occur during a miss because the requested data may already
reside in one of the member cache lines in the group. The
spatial group generation is chosen to exploit spatial locality
where items whose addresses are close in space are likely to
be accessed close in time. A request to a different tag can

indicate that the reference stream in the vicinity of the
current recording tag has terminated.

An SGP predicts which lines within the group should be
fetched upon each cache miss. Because the SGP does not
store data addresses, the addresses to prefetch are obtained
from the requested address, based on the spatial pattern
prediction. In training, the predictor fetches only the re-
quested data to avoid data pollution and bus bandwidth
waste commonly seen in overly-aggressive prefetching
schemes [6]. The effectiveness of the SGP on improving
processor performance will be evaluated in Section 6.5.

6. Evaluation

We conduct a sensitivity study over the design space of
the SPP to find the best practical configuration. The effec-
tiveness of using the SPP for reducing leakage energy of an
on-chip cache memory and for data prefetching to improve
processor performance is also evaluated using an optimally
configured predictor. In Section 6.1 and 6.2, we investigate
the impact of various prediction indices and spatial group
sizes on the predictor's accuracy and coverage. In both sub-
sections, we assume a PHT with an unlimited number of
entries to filter out artifacts introduced by having an insuffi-
cient predictor memory. In Section 6.3, we consider a
variety of practical PHT implementations and organiza-
tions. In Section 6.4 and 6.5, the predictor configured with
attributes chosen in the sensitivity study will be used to
evaluate the effectiveness of an SPP in the example applica-
tions.

In the sensitivity study, we simulate each benchmark to
completion. In the interest of simulation turnaround with
our timing simulator, we elect to skip the first 10 billion
instructions and simulate the next 500 million instructions
for each benchmark. The configuration parameters for the
simulated processor are in Table 1.

6.1 Prediction Index

The prediction index selection can have a profound im-
pact on the predictor’s accuracy. We consider several
prediction indices that are based on the program counter
(PC) of faulting memory instructions. Figure 6 presents
the prediction accuracy and coverage of a spatial group
predictor for a 64-Kbyte 2-way set associative L1 data
cache. The graph shows the percentage of correct spatial
pattern predictions, the fraction of underpredictions, and the
fraction of overpredictions. Figure 6 also shows the frac-
tion of spatial patterns not predicted due to predictor train-
ing with respect to a perfect predictor that always knows
exactly what fetch units will be referenced, given an index
for prediction. Since we assume a PHT with unlimited
capacity, few spatial patterns are not predicted due to
training.

As indicated by the graph, using the PC (program
counter of the faulting memory instruction or the memory
instruction accessing a different logical tag) concatenated
with the data address as the prediction index produces the
best overall prediction accuracy. On the other hand, using
just the PC as the prediction index yields the poorest pre-
diction accuracy among all considered indices for predic-
tion. Our observation is in agreement with Kumar and
Wilkerson [17]. The reason why the index based on PC has
low prediction accuracy is that, although the same memory
instructions always access the same field of a particular data
structure, different instances of the data structure may have
different alignments with respect to a spatial group. Simi-
larly, using a PC concatenated with a spatial group tag
yields low prediction accuracy because spatial group tags
do not contain the data structure alignments. With bzip2
and mcf, in particular, indices that do not pertain to align-
ments within a spatial group have noticeably lower predic-
tion accuracy than other candidates because the benchmarks
perform computations on sets of arrays whose elements
tend to have different spatial group alignments. The results
also show that using a PC concatenated with the spatial

ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD

am
m

p ar
t

bz
ip

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
p

gc
c

lu
ca

s

m
cf

m
gr

id

vo
rte

x

P
e

rc
e

n
ta

g
e

 o
f

P
e

rf
e

c
t

P
re

d
ic

ti
o

n
s

Correct Prediction Underprediction Overprediction Training

0%

20%

40%

60%

80%

100%

120%

140%

160%

A: PC-only
B: PC+ SPG ID
C: PC+SPG OFFSET
D: PC+ADDR

Figure 6. Prediction accuracy and coverage of various
prediction indices with infinite large predictor memory.

ABCDE ABCDE ABCDE ABCDE ABCDE ABCDE ABCDE ABCDE ABCDE ABCDE ABCDE ABCDE

am
m

p ar
t

bz
ip

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
p

gc
c

lu
ca

s

m
cf

m
gr

id

vo
rte

x

P
er

ce
n

ta
g

e
o

f
P

er
fe

ct
 P

re
d

ic
ti

on
s

Correct Prediction Underprediction Overprediction Training

0%

20%

40%

60%

80%

100%

120%

140%

160%

A: 16B Spatial Group 8B Fetch Unit
B: 32B Spatial Group 8B Fetch Unit
C: 64B Spatial Group 8B Fetch Unit
D: 128B Spatial Group 8B Fetch Unit
E: 256B Spatial Group 8B Fetch Unit

Figure 7. Prediction accuracy and coverage of various
spatial group sizes with constant fetch unit size.

group offset produces a prediction accuracy that is compa-
rable with the PC-data-address based prediction index.

6.2 Spatial Group and Fetch Unit Size

Spatial group size can affect the prediction accuracy of
an SGP as well. Figure 7 presents the prediction accuracy
and coverage of a spatial group predictor with various
spatial group and fetch unit sizes. As indicated by the
graph, the predictor's accuracy degrades as the size of the
spatial group increases. The key intuition behind why
prediction accuracy decreases as the spatial group size
increases is that memory instructions within a basic block
tend to access data in close vicinity; as the size of a spatial
group increases it might cover data accessed by multiple
basic blocks with different memory behaviors. Since the
predictor uses only the program counter and spatial group
offset as the prediction index, different instruction se-
quences that share the same faulting memory instruction
and spatial group offset are not uniquely tracked. There-
fore, the spatial patterns corresponding to a particular
prediction index from previous generations may not be the
same. Prediction accuracy with larger spatial group sizes
may also decrease if the spatial groups span across a data
set accessed from multiple basic blocks.

Modern out-of-order superscalar engines can issue mul-
tiple accesses in parallel. This further increases the likeli-
hood that spatial patterns captured for a particular index
may be polluted by instruction sequences from other basic
blocks whose data sets are contained in the same spatial
group. The effect is especially profound with integer appli-
cations such as bzip2, gap, and vortex. Floating point
applications tend to be less sensitive to the spatial group
size, with the exception of ammp. To contain the effect of
aliasing instruction sequences, one can combine multiple
spatial pattern histories from different spatial group genera-
tions to generate a prediction for each index. This may bias
the predictor towards overprediction. Alternatively, one

can increase coarseness of the prediction by using a larger
fetch unit size, as indicated by Figure 8.

6.3 Predictor Memory Capacity and Organiza-
tion

Figure 9 shows the prediction accuracy and coverage of
the SPP for a selective sub-blocking cache with various
PHT sizes. In a selective sub-blocking cache, the predictor
conservatively enables all sub-blocks in a cache line when
given an index and no corresponding spatial pattern is
found. Thus, the predictor may cause additional overpre-
dictions when in training. Figure 10 presents the prediction
accuracy and coverage of an SPP for an SGP with various
PHT sizes. In an SGP, the predictor fetches only the re-
quested data if the requested spatial pattern is not found in
the PHT. Therefore, the predictor may cause additional
underpredictions when in training.

To gauge the full potential of each capacity, the tables
are assumed to be fully associative. Practical implementa-
tion for the table sizes that produce the best prediction
accuracy and coverage will be considered later in this
section. Ideally, the number of PHT entries is the product
of the unique active memory instruction sequences and the

0%

20%

40%

60%

80%

100%

120%

140%

160%

ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF

am
m

p ar
t

bz
ip

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
p

gc
c

lu
ca

s

m
cf

m
gr

id

vo
rte

x

P
e

rc
e

n
ta

g
e

 o
f

P
e

rf
e

c
t

P
re

d
ic

ti
o

n
s

Correct Prediction Underprediction Overprediction Training

A: 32B Spatial Group 8B Fetch Unit
B: 64B Spatial Group 8B Fetch Unit
C: 128B Spatial Group 8B Fetch Unit
D: 128B Spatial Group 64B Fetch Unit
E: 256B Spatial Group 64B Fetch Unit
F: 512B Spatial Group 64B Fetch Unit

Figure 8. Prediction accuracy and coverage of various
spatial-group-fetch-unit ratios.

0%

20%

40%

60%

80%

100%

120%

140%

160%

A
B
C
D
E
F
G A

B
C
D
E
F
G A

B
C
D

E
F
G A

B
C
D

E
F
G A

B
C
D

E
F
G A

B
C
D
E
F
G A

B
C
D
E
F
G A

B
C
D
E
F
G A

B
C
D

E
F
G A

B
C
D
E
F
G A

B
C
D

E
F
G A

B
C
D

E
F
G

am
m

p ar
t

bz
ip

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
p

gc
c

lu
ca

s

m
cf

m
gr

id

vo
rte

x

P
e

rc
e

n
ta

g
e

 o
f

P
e

rf
e

c
t

P
re

d
ic

ti
o

n
s

Correct Prediction Underprediction Overprediction Training Overprediction

A: 8-entry
B: 16-entry
C: 32-entry
D: 64-entry
E: 128-entry
F: 256-entry
G: INF

Figure 9. Prediction accuracy and coverage of various
PHT sizes for selective sub-blocking.

am
m

p ar
t

bz
ip

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
p

gc
c

lu
ca

s

m
cf

m
gr

id

vo
rte

x

P
e

rc
e

n
ta

g
e

 o
f

P
re

d
ic

ti
o

n
s

Correct Prediction Training Underprediction Underprediction Overprediction

A
B
C
D

E
F
G A

B
C
D
E
F
G A

B
C
D

E
F
G A

B
C
D

E
F
G A

B
C
D
E
F
G A

B
C
D

E
F
G A

B
C
D
E
F
G A

B
C
D
E
F
G A

B
C
D
E
F
G A

B
C
D

E
F
G A

B
C
D
E
F
G A

B
C
D

E
F
G

0%

20%

40%

60%

80%

100%

120%

140%

160%

A: 8-entry
B: 16-entry
C: 32-entry
D: 64-entry
E: 128-entry
F: 256-entry
G: INF

Figure 10. Prediction accuracy and coverage of various
PHT sizes for the Spatial Group Prefetcher.

different spatial data structure offsets referenced in a given
program phase.

As indicated by the graphs, the capacity of the PHT has
a profound impact on the prediction coverage of the predic-
tor. The results show that, while a PHT with 128 and 256
entries yields prediction accuracy and coverage that is
comparable to that of an infinite table. In general the pre-
diction coverage of an SPP degrades as the capacity of the
PHT decreases. Bzip2 and vortex, in particular, show little
tolerance for tables with insufficient capacity. Although
bzip2, a lossless, block-sorting data compressor, has a small
code base, its algorithm performs multiple transformations
that have a large number of concurrent memory instruction
sequences. Similarly, vortex, a single-user object-oriented
database, performs a mix of database operations, and there-
fore has many memory instructions that cause cache misses
to data with different alignments within spatial groups.

Figure 11 presents the prediction accuracy and coverage
of 128- and 256-entry PHTs with various organizations for
selective sub-blocking caches. In the interest of space, the
results of the predictor for the data prefetching application
are omitted because they display similar behavior. We
consider a 16-way set associative and a direct-mapped tag
less implementation for each capacity. The results show
that while the 16-way set associative tables produce a
prediction accuracy comparable to an ideal fully-associative
table, they incur a severe prediction coverage degradation.
The impact on prediction coverage is especially noticeable
in art and vortex. On the other hand, direct-mapped tables
have a lower prediction accuracy, but they yield perform-
ance closer to an ideal fully associative table.

6.4 Energy Reduction Effectiveness

Figure 12 shows the leakage energy dissipation in a 64-
Kbyte, 2-way set associative L1 data cache (upper bars) and
the increase in execution time of the programs (lower bars).
The leakage energy dissipation and execution time are
normalized to a processor with a conventional data cache.

The graph does not account for the predictor energy dissi-
pation overhead because the leakage energy dissipated by
the CPT and the PHT is negligible, as explained in Section
5.1. The graph indicates that selective sub-blocking is
effective in reducing leakage energy dissipation; on average
the technique reduces the leakage energy dissipation by
41%, with less than a 1% performance impact. The most
notable benchmarks are art, bzip2, and mcf, where selective
sub-blocking achieves a leakage energy reduction of 73%,
64%, and 68%, respectively, thanks to the programs' sparse
spatial patterns.

We compare SGP against conventional data caches with
cache line sizes equal to that of the predictor's spatial
group. In order to measure the impact of a longer cache fill
time and L1/L2 bus contention incurred by larger cache line

0%

20%

40%

60%

80%

100%

am
m

p ar
t

bz
ip

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
p

gc
c

lu
ca

s

m
cf

m
gr

id

vo
rte

x

AV
G

 Execution Time Increase

 Fraction of Baseline Leakage Dissipation

5%

Figure 12. Normalized leakage energy dissipation in a 64-
Kbyte, 2-way set associative L1 data cache and program
execution time increase for selective sub-blocking.

0%

20%

40%

60%

80%

100%

120%

140%

160%

ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF

am
m

p ar
t

bz
ip

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
p

gc
c

lu
ca

s

m
cf

m
gr

id

vo
rte

x

P
er

c
e

n
ta

g
e

o
f

P
e

rf
e

c
t

P
re

d
ic

ti
o

n
s

Correct Prediction Underprediction Overprediction Training Overprediction

A: 128-entry 16-way set associative
B: 128-entry direct-mapped
C: 128-entry fully associative
D: 256-entry 16-way
E: 256-entry direct-mapped
F: 256-entry fully associative

set associative

Figure 11. Prediction accuracy and coverage of various
PHT organizations for selective sub-blocking.

Table 2. Performance comparison of SGP against de-
mand-fetched systems with various cache line sizes.

 25
6B

51
2B

10
24

B

SG
P

25

6B

SG
P

51

2B

SG
P

10

24
B

ammp -9 -41 -63 7 10 -25

art 4 32 96 15 121 305

bzip -10 -43 -49 3 6 8

equake -2 -34 -41 14 59 99

facerec -4 -13 -3 9 58 103

fma3d -2 -9 -9 -2 0 0

gap 7 20 31 9 31 47

gcc 0 -2 -2 0 1 1

lucas 0 -23 -67 8 34 51

mcf -6 -27 -32 6 38 67

mgrid 10 6 12 14 36 53

vortex -4 -27 -43 0 1 1

AVG -1 -13 -14 7 33 59

sizes, the simulator is augmented to model a realistic bus
implementation. The bus between L1 and L2 cache is 256
bits wide. On a cache miss, the critical word is serviced
first. The remaining words are transferred in round-robin
fashion with each word taking 2 additional cycles. The
transaction completes when the last word of the cache line
is filled. The bus always gives priority to processor re-
quests over SGP prefetch requests.

Table 2 presents percent speedup of an SGP with 256-,
512-, and 1024-byte spatial groups and demand-fetched L1
data caches with various cache line sizes over a demand-
fetched data cache with 64-byte cache lines. Our first
observation is that although larger cache lines can help
exploit high spatial locality and improve miss rates, they
might cause performance degradation as a result of longer
cache fill time and increased bus traffic. As indicated by
the results, many benchmarks see their execution time
increase as the processor spends more time stalled due to
limited bus bandwidth. For benchmarks that march through
arrays of data structures such as art, gap, and mgrid, larger
cache lines indeed help eliminate misses caused by under-
sized cache lines and improve performance. For the rest of
benchmarks, the performance degrades as the cache line
size increases, due either to increased bus contention or
data conflicts, or both.

Because the SGP only fetches cache lines that will
probably be referenced, it can eliminate bus traffic wasted
by fetching unused data. On average, the SGP achieves a
33% and 59% speedup with 512- and 1024-byte spatial
group sizes, respectively. For benchmarks with high, yet
sparse, spatial locality such as art, equake, and gap, the
SGP further improves upon larger cache lines by prefetch-
ing only the data that will be referenced and reducing bus
contention, and achieves a 305%, 99%, and 47% speedup
respectively. For benchmarks that have high and dense
spatial locality such as gcc, the SGP does not improve
performance because SGP prefetches approximately the
same amount of data as a conventional cache with a cache
line size equal to its spatial group. In ammp, the SGP with
1024-byte spatial groups causes a performance degradation
of 25% due to untimely prefetching; the prefetcher fetches
data too early and causes replacements of data items that
are later referenced again. Such an effect can be avoided
by either using a prefetch buffer where the prefetched cache
lines are stored until they are referenced or employing
confidence counters. Design and evaluation of such buffers
and confidence counters is beyond the scope of this work.

7. Conclusion

We described the Spatial Pattern Predictor (SPP), a cost-
effective table-based hardware mechanism that accurately
predicts the reference patterns within a spatial group at
runtime. The key observation enabling the accurate, low-
cost SPP design is that spatial patterns correlate well with

instruction addresses and data reference offsets within a
line, requiring a small number of table entries to store the
predicted patterns. We presented two cache optimizations
using an SPP: (1) selective sub-blocking, in which the
predicted as to-be-referenced sub-blocks are fetched simul-
taneously to eliminate subsequent misses and predicted as
unreferenced sub-blocks are disabled to save leakage en-
ergy, and (2) spatial group prefetching, in which predicted
cache lines are simultaneously fetched and placed in the
cache.

Using cycle-accurate simulation of an aggressive out-of-
order processor and circuit modeling for a 64-Kbyte 2-way
set-associative L1 data cache with 64-byte lines, we showed
that: (1) a 256-entry tag-less direct-mapped SPP can
achieve, on average, a prediction coverage of 95%, over-
predicting the patterns only by 8%, (2) assuming a 70nm
process technology, our SPP reduces leakage energy in the
base cache by 41% on average, incurring less than 1%
performance degradation, and (3) prefetching spatial groups
of up to 512 bytes improves execution time by 33% on
average and up to a factor of two.

8. Acknowledgments

We would like to thank Jared Smolens, Deepti
Srivastava, Roland Wunderlich, and the anonymous re-
viewers for their insightful comments on earlier drafts of
this paper. This work is supported in part by the SRC
contracts 2003-HJ-1086 and 2001-HJ-901, the DARPA
PAC/C contract F336150214004-AF, an IBM faculty
partnership award, and donations from Intel. Andreas
Moshovos is also supported by grants from the National
Sciences and Engineering Research Council of Canada, and
the University of Toronto.

9. References

[1] http://www-device.eecs.berkeley.edu/ptm/.

[2] S. G. Abraham, R. A. Sugumar, D. Windheiser, B. R. Rau,
and R. Gupta. Predictability of Load/Store Instruction La-
tencies. In Proceedings of the 26th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO 26),
Dec. 1993.
http://www.acm.org/sigs/pubs/proceed/template.html.

[3] A. Agarwal, H. Li, and K. Roy. DRG-Cache: A Data Reten-
tion Gated-Ground Cache for Low Power. In Design Auto-
mation Conference, June 2002.

[4] Navid Azizi, Andreas Moshovos, Farid N. Najm. Low-
leakage asymmetric-cell SRAM. In Proceedings of the 2002
International Symposium on Low Power Electronics and De-
sign (ISLPED), pages 90–95, July 2002.

[5] S. Borkar. Design Challenges of Technology Scaling. IEEE
Micro, 19(4):23–29, July 1999.

[6] D. Burger and T. M. Austin. The SimpleScalar Tool Set,
version 2.0. Technical Report 1342, Computer Sciences De-
partment, University of Wisconsin–Madison, June 1997.

[7] D. Burger, J. R. Goodman, and A. Kagi. Memory Band-
width Limitations of Future Microprocessors. In Proceed-
ings of the 21st Annual International Symposium on
Computer Architecture, May 1994.

[8] S. P. E. Corporation. SPEC CPU2000. In
http://www.spec.org, 2000.

[9] B. Davari, R. Dennard, and G. Shahidi. CMOS Scaling for
High Performance and Low Power- the Next Ten Years.
Proceedings of the IEEE, 83(4):595, June 1995.

[10] C. Dubnicki and T. J. LeBlanc. Adjustable Block Size
Coherence Caches. In Proceedings of the 19th Annual In-
ternational Symposium on Computer Architecture, pages
170–179, June 1992.

[11] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge.
Drowsy Caches: Simple Techniques for Reducing Leakage
Power. In Proceedings of the 29th Annual International
Symposium on Computer Architecture, May 2002.

[12] A. Gonzalez, C. Aliagas, and M. Valero. A Data Cache with
Multiple Caching Strategies Tuned to Different Types of Lo-
cality. In International Conference on Supercomputing, July
1995.

[13] T. Johnson, M. Merten and W.-M. Hwu. Run-Time Spatial
Locality Detection and Optimization. In Proceedings of the
31st Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO 31), 1998.

[14] S. Kaxiras and J. R. Goodman. Improving CC-NUMA
Performance Using Instruction-Based Prediction. In Pro-
ceedings of the Fifth IEEE Symposium on High-Performance
Computer Architecture, pages 161–170, Feb. 1999.

[15] S. Kaxiras, Z. Hu, and M. Martonosi. Cache Decay: Exploit-
ing Generational Behavior to Reduce Cache Leakage Power.
In Proceedings of the 27th Annual International Symposium
on Computer Architecture, July 2000.

[16] K. Krewell. Itanium 2 Arrives with a Benchmarking Bang.
In Microprocessor Report, Aug. 2002.

[17] S. Kumar and C. Wilkerson. Exploiting Spatial Locality in
Data Caches Using Spatial Footprints. In Proceedings of the
25th Annual International Symposium on Computer Archi-
tecture, June 1998.

[18] W.-F. Lin, S. K. Reinhardt, D. Burger, and T. R. Puzak.
Filtering Superfluous Prefetches Using Density Vectors. In
International Conference on Computer Design, 2001.

[19] S. Manne, A. Klauser, and D. Grunwald. Pipeline Gating:
Speculation Control for Energy Reduction. In Proceedings
of the 25th Annual International Symposium on Computer
Architecture, pages 132–141, June 1998.

[20] D. A. Patterson and J. L. Hennessy. Computer Organization
and Design: The Hardware/Software Interface. Morgan
Kaufmann, 1994.

[21] M. D. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N.
Vijaykumar. Gated-Vdd: A Circuit Technique to Reduce
Leakage in Cache Memories. In Proceedings of the 2000 In-
ternational Symposium on Low Power Electronics and De-
sign (ISLPED), pages 90–95, July 2000.

[22] O. Temam and Y. Jegou. Using Virtual Lines to Enhance
Locality Exploitation. In International Conference on Su-
percomputing, July 1994.

[23] A. V. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X.
Ji. Adapting Cache Line Size to Application Behavior. In
International Conference on Supercomputing, July 1999.

[24] P. V. Vleet, E. Anderson, L. Brown, J.-L. Bear, and A.
Karlin. Pursuing the Performance Potential of Dynamic
Cache Line Sizes. In International Conference on Computer
Design, Oct. 1999.

[25] D. A. Wood, M. D. Hill, and R. E. Kessler. A Model for
Estimating Trace-Sample Miss Ratios. In Proceedings of the
1991 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 79–89, May 1991.

[26] S.-H. Yang, M. D. Powell, B. Falsafi, K. Roy, and T. N.
Vijaykumar. An Integrated Circuit/Architecture Approach to
Reducing Leakage in Deep-Submicron High-Performance I-
Caches. In Proceedings of the Seventh IEEE Symposium on
High-Performance Computer Architecture, Jan. 2001.

[27] S.-H. Yang and B. Falsafi. Near-Optimal Precharging in
High-Performance Nanoscale CMOS Caches. In Proceed-
ings of the 36th ACM/IEEE International Symposium on Mi-
croarchitecture (MICRO-36), December 2003.

