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Abstract

Recentresearchadwcatesusing generalmessagere-
dictorsto learn and predictthe coherenceactvity in dis-
tributedsharednemory(DSM). By accuratelypredictinga
messageand timely invoking the necessarycoherence
actions,a DSM can hide much of the remote access
lateng. This paperproposeghe Memory Sharing Predic-
tors (MSPs), pattern-basedpredictors that significantly
improve predictionaccuray andimplementatiorcostover
generalmessageredictors.An MSP is basedon the key
obsenationthatto hidetheremoteaccessateng, a predic-
tor must accurately predict only the remote memory
accessegi.e., requestmessagesand not the subsequent
coherencemessagesnvoked by an access.Simulation
results indicate that MSPs improve prediction accurag
over generalmessageredictorsfrom 81% to 93% while
requiring less storageverhead.

This paperalsopresentghe first designand evaluation
for a speculatre coherentDSM using pattern-basegbre-
dictors.We identify simpletechniquesand mechanismso
trigger prediction timely and perform speculation for
remote read accessesOur speculationhardware readily
workswith a cornventionalfull-map write-invalidatecoher-
ence protocol without arny modifications. Simulation
resultsindicate that performing speculatre read requests
alonereducesxecutiontimesby 12%in our shared-mem-
ory applications.

1 Introduction

Distributed sharedmemory (DSM) is emepging asthe
architectureof choicefor medium-to large-scaleenterprise
multiprocessoseners.DSMsoffer programmingcompati-
bility with respectto the ubiquitousbus-basedsymmetric
multiprocessors(SMPs) by providing a logical shared
addressspaceover physically distributed memory DSMs
alsoenhancescalabilityby removing the sharedous bottle-
neckin SMPs.Performancéuning applicationson DSMs,
however, can often be difficult due to the non-uniform
natureof memory accessesDSMs suffer from a lack of
performance transparency with respectto SMPsbecause
remoteshared-memoryccesseiherentlytake up to ten

to a hundred times longer than local memory accesses.

To addresghisissue,aggressie DSM implementations
directly target reducing the remote accesslateny [14].

Thesedesignsrepackageprocessorsnto custommother-
boardswith fully integratedDSM memorycontrollersand
custom interconnects.Requiring custom motherboards,
however, preventstheseDSMs from exploiting the excel-
lent cost-performancef off-the-shelfdesktopsand sener
motherboardsMoreover, currentaggressie DSMs at best
reducetheremoteaccessateng to two or threetimeslocal
accesdateng, leaving a large remote-to-locabccesger-
formance gp.

Other proposals for improving DSM performance
include techniguesto reduce remote accessfrequeny
[8,10], hide or tolerate remote accesslateny [1,2], or
reducethe coherenceprotocol overhead[11,15,14,7,13].
Many such techniquesare non-transparentind require
eithercarefulannotatiorby the applicationprogrammeior
complex compiler analysis. Transparentechniquesoften
have limited applicability and only work well for regular
memoryaccesgatternsor target specificsharingpatterns
known a priori. Techniquedo reducecoherenceverhead
also typically rely on complex adaptie coherenceproto-
colswhich directly capturethe sharingpatternsn the pro-
tocol states. Such protocols use comple finite-state-
machineswhich are difficult to designand require large
amountsof computationalresourcego verify [6]. More-
over, capturing sharing patternsin protocol statesoften
limits the protocol to learning one sharing pattern per
memory block at a time.

In a recentpaper[17], Mukherjeeand Hill adwcate
usinga generalpattern-basegredictor—denedfrom Yeh
andPatt’s two-level adaptve Pap branchpredictor[23]—to
learn and predict the coherenceactvity for a memory
block in a DSM. By accuratelypredictingand performing
the necessary coherence operations speculatrely in
adwance,a predictorbasedDSM can potentially eliminate
all of the coherenceverheadyesultingin remoteaccesses
thatareasfastasa local accessSucha predictoris based
on the key obsenationthat muchasbranchegendto have
a repetitve nature (e.g., backwards branchesare often
takenbecausdoopsiterate)leadingto accuratepredictabil-
ity, memoryblocks often have a small numberof stable,
repetitve, and predictable sharing patterns [9].

A generalpattern-basegbredictoris in mary respects
superiorto an adaptve coherenceprotocol. A pattern-
basedpredictor can dynamically learn and adaptto an
applicationss sharingpatternsat runtime.Moreover, a pre-
dictor is capableof simultaneoushcapturingmultiple dis-
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tinct sharingpatternsfor a given memoryblock. Finally, a
predictor merely provides hints to perform coherence
operationsearly, obviating the needto modify the base
coherence protocol.

This paper proposesnovel pattern-basedoredictors,
Memory Sharing Predictors (MSPs), that dramatically
improve predictionaccurag andimplementatiorcostover
previous proposals.Unlike a generalmessagepredictor
[17], an MSP only predictsmemoryrequestmessages—
i.e.,the primarymessagethatinvoke a sequencef proto-
col actions.In commonDSM sharingpatterns,multiple
coherencenessagem aread-sharingphaseoftenarrivein
anarbitraryorderdueto systemcontentionor loadimbal-
ancein the application.By eliminating the acknavledg-
mentmessageBom thepatterntables MSPssubstantially
reduceperturbationin the tablesdueto messagee-order-
ing, reducethe predictors memoryoverhead andsignifi-
cantly increase prediction accuyac

We presentsimulationresultsrunning shared-memory
applications to indicate that:

* MSP, our basepredictor improvespredictionaccurag
in a generalmessagepredictorfrom 81% to 86% by
eliminating the acknavledgmentmessagesrom the
pattern tables,

* VMSP, our optimizedpredictor additionallyimproves
predictionaccurag to 93% by usinga compactvector
representatiorof read sequencesherebyeliminating
read request re-ordering,

¢ VMSP notonly offersthe bestpredictionaccurag but
also reducesimplementationcostin termsof storage
overhead wer a general message predigctor
In this paper we presenthe first designfor a specula-
tive coherenDSM usingpattern-basegredictors.To suc-
cessfully hide the remote accesslateng, a speculatie
coherentDSM mustaccuratelypredictboth “what” mem-
ory requestsubsequentharrive and “when” they arrive.
We primarily focus on executing coherenceoperations
speculatrely to hide the remotereadlateng. Our MSPs
usetwo techniquego trigger speculatiorfor readrequests
timely. We use a simple Speculative Write Invalidation
(SW1) heuristicwhich predictswhen a produceris done
writing to a memoryblock, invalidatesthe writable copy
speculatrely, and forwardsthe block to the consumers.
WhenSWiI fails to invalidatewritable blocksearly, we use
thereadrequesfrom thefirst consumeto triggerspecula-
tion and forvard the block to the rest of the consumers.
Resultsfrom a simpleanalyticmodelandsimulationof
a speculatie coherent DSM indicate that:

* high-accurag predictorsare the key to high perfor-
mance in a speculaé coherent DSM,

* triggeringreadrequestspeculatiorfor areadsequence
basedon the arrival of the first readreducessxecution
time in all applicationson averageby 8% and at best
by 17%,

* triggering speculationusing SWI reducesexecution

time on aerage by 12% and at best by 24%.

In the following section,we describethe anatomyof
DSM coherencerotocolsandgeneraimessaggredictors.
In Section3, we introduceour memorysharingpredictors.
Sectiond describesur designfor a speculatie coherent
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FIGURE 1: Directory protocol transitions (left)
and example sequence of protocol operations on
aremote read request (right).

DSM. Section5 characterizeghe key factorsimpacting
performancendpresents& qualitatve performancenaly-
sisusinga simpleanalyticmodel.Section6 and Section7
presentthe simulation methodologyand results.Finally,
Section8 presents a summary and concludes the paper

2 Background

DSM allocatesanddistributesmemorypagesacrosshe
machinenodesOn every node a directorymaintainsshar-
ing informationfor the memorypagegalsoreferredto as
homepages)designatedo thatnode.For every fine-grain
(e.g., 32-128 byte) memory block on a home page, the
directorymaintainsa block sharingstateanda list of pro-
cessolids sharingthe block. A coherencerotocolcoordi-
nates sharing of memory blocks among the processors.

For every memory block, the protocol implementsa
finite-state-machinén which a state correspondgo the
directorystatefor the block andactionsaremessagesent
over the network to coordinatesharing.In this paper we
study simple full-map write-invalidate coherenceproto-
colsimplementedn hardwaresuchasthosein SGI Origin
2000 [14], SequentNUMA-Q [16], and Sun WildFire
[10]. Theideaswe presenthowever, arealsoapplicableto
otherimplementationsuchasfine-grainsoftware[21] and
firmware [19], as well as page-based DSM [3].

Figurel (left) illustratesthe statemachinefor a simple
invalidation-basedoherencerotocol. A memoryblockis
eitherin theldle stateindicatingthatthereareno (remote)
processorawith valid copiesof the block, in a (read-)
Shared stateindicatingthatoneor moreprocessorbave a
read-onlycopy of the block, or in the Exclusive stateindi-
catingthata single processoowns a writable copy of the
block. Therearethreetypesof memoryaccessequestsA
read is a requestto fetch a read-onlycopy of a block. A
write is arequesto obtaina writable copy of ablock. An
upgrade is a requestto write to an alreadycachedread-
only copy of the block.

Figurel (right) illustrates an example sequenceof
coherenceactionswhen a processorequestsa read-only
copy of a block. The directory first invalidates and
requestsa writebackfor the currentwritable copy of the
block, and subsequentlysendsa read-only copy to the
requestingorocessarThe entirereadtransactiorincludes
four network messagesand up to four local memory
accessemakingremoteaccessatenciesnuchhigherthan
local memory latencies.

To transparentlyreduce the remote memory access
lateng, a speculatre coherentDSM mustaccurately pre-
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FIGURE 2: A two-level message predictor.

dict the remoteaccessand timely perform the necessary
coherenceactionsin adwance. For instance,in Figurel
(right) if the DSM hardware at P2 accuratelyand timely
predictsthe readaccessy P1, it caninvalidate and for-
ward the block to P1 well in advanceto hide the entire
lateng of the remote read.

2.1 Pattern-Based Message Predictors

A pattern-basedoherencenessag@redictoris derived
from the widely-usedtwo-level adaptve PAp branchpre-
dictor [23]. Figure2 depictsthe anatomyof a two-level
messag@redictorcapturingmessagesequencefor mem-
ory blocks at the directory A history table recordsthe
mostrecentsequenc®f incomingcoherencenessagefor
every memoryblock. A patterntablerecordsall obsered
sequencesof coherencemessagesfor every memory
block. An entryin the patterntable consistsof a message
sequenceand a prediction for the subsequenmessage
giventhe sequenceThe predictionis the obseredimme-
diate successorof the messagesequencewhen the
sequence last occurred.

The predictorin thefigure hasa history depthof one—
i.e., the predictor maintainsa history of the mostrecent
coherencanessagdor every block. The figure illustrates
an example of possiblemessagesequencesor a simple
producer/consumersharing among three processors.
Request messagesappear capitalized and protocol
acknavledgemenimessageappeatin italics. ProcessoB
(P3)writesto thememoryblock ataddres®x100andpro-
cessord (P1)and2 (P2)subsequentlyeadtheblock. The
protocolreceivesan upgraderequestrecordedn the his-
tory table) by P3 andis in the procesf invalidatingthe
read-onlycopiesof P1 andP2. The patterntable predicts
the next incomingmessageiven the specificsequenceo
be an acknavledgmentby P1. The acknavledgmentis in
response to anvalidation sent by the directory to P1.

The predictors performanceand cost are both highly
sensitve to the history depth.Much asin branchpredic-
tors, a deeperhistory enablesthe predictorto be more
selectve by distinguishing among messagesequences
with commonpatterns.Such sequencesnay result from
true applicationsharingpatterns.For instance assumean
our examplethatP3andP2alternateupgradingthe block.
As before, an upgradefrom P3 would be followed by
readsfrom P1 and P2. Similarly, an upgradefrom P2

would be followed by readsfrom P1 and P3. For sucha
sharingpattern,the predictorin the figure would always
mispredictthe writer becausea history depthof one pre-
ventsthe predictorfrom distinguishingbetweerthe write-
backsfrom P3 and P2. A history depth of two would
includebothreadersandallow the predictorto distinguish
between the writers.

Raceconditionsin messagearrivals also resultin dif-
ferent messagesequencedor the samesharing pattern.
Messagee-orderingin the network or queueingdelaysat
the directory or cachesmay result in race conditions
amongthe messaged-or instancejn our example,P2and
P3 may simultaneouslyequesthe memoryblock but the
messagemay arrive in anarbitraryorderat the directory
A predictorwith a history depthof onewould fail to pre-
dict accuratelyeither the read or the upgraderequestsf
readrequesimessagewerefrequentlyre-orderedin con-
trast,a predictorwith a history depthof two would learn
bothpossiblere-ordering®of thereadsandpredictboththe
reads and the upgrade accurately

Althoughalargerhistoryimprovesthe predictionaccu-
ragy, it mayprohibitively increasehepredictors cost[17].
In the limit, the numberof patterntable entriesis directly
proportional to the history depth. In practice, memory
blocksexhibit a small numberof stableanddistinct shar-
ing patterng9]. Consequentlyin the absenceof message
re-ordering,a memoryblock would requirea small num-
ber of patterntable entries independentof the history
depth. In the worst case,however, messagee-ordering
increaseghe requirednumberof patterntable entriesby
the permutation of all possible re-orderings.

A DSM may directly implement the history table
within the directory becauseof the fixed amount of
requiredstoragefor a history entry The requiredsize of
the patterntablesdirectly dependson a memoryblock’s
sharingactiity which may largely vary amongblocks.In
this paperwe assuméhe sametableallocationandimple-
mentation stratgies as discussed in [17].

3 Memory Sharing Predictors (M SPs)

This paperproposes new classof pattern-basegbre-
dictorscalledthe Memory Sharing Predictors (MSPs).An
MSPis basedon the key obsenationthatto eliminatethe
coherenceoverheadon a remoteaccesdateny it is only
necessaryo predictthe memoryrequesimessage§.e., a
read,write, or an upgrade).A generalmessageredictor
unnecessarilypredicts the coherenceacknaviedgement
message§.e., aninvalidationresponser a writeback)as
well, eventhoughthesemessagearein directresponseo
a coherenceaction and are always expectedto arrive. In
Figurel (right), the writebackmessagéy P3is in direct
responseo theinvalidationmessagéy P2. Thewriteback
is only aresponséo the coherencectivity invokedby the
read request and is itself part of the cohereneehead.

Becausdt predictsall coherencenessagesa general
messagepredictor has several key shortcomings.First,
sincethe protocoloverlapstheinvalidationmessagefor a
block, the acknavledgmentsmay arrive in ary arbitrary
order Predictingacknavliedgmentsnayunnecessarilgand
severely perturb prediction of the (more fundamental)
requestmessages acknavledgmentsoften arrive out of
order Second predictingthe acknavledgmentsunneces-
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FIGURE 3: A Memory Sharing Predictor (MSP).

sarily increaseshe numberof patterntableentries.Third,
predicting the acknavledgmentsincreasesthe required
numberof bits to encodemessageypesin boththehistory
and pattern tables.

MSP addresseghe above shortcomingin a general
messagepredictor by only predicting the requestmes-
sages.Figure3 illustrates the anatomyof an MSP. As
comparedo the messagepredictorin Figure2, the MSP
eliminateshalf of the patterntable entriesin our example
of producer/consumesharing.The MSPwould alsoelim-
inate all the sequencesesulting from the potential re-
orderingsof the acknavledgmentgnot shown in the fig-
ure). The MSP requirestwo bits to encodethreerequest
messageypes(i.e.,read,write, andupgradelascompared
to amessag@redictorrequiringthreebits to encodethree
request types and two acknavledgementtypes (i.e.,
responses to read-onlyadidations and writebacks).

3.1 VMSP: Using Vectorsto Encode Reads

We furtherrefinethe MSP designandproposethe Veec-
tor MSP (VMSP).VMSP is basedn the primaryobsena-
tion that becausea full-map protocol allows multiple
processorso simultaneouslycachea read-onlycopy of a
memoryblock, a predictormustsimply identify the read-
ers and neednot maintainthe orderin which they read.
Ratherthanrecordandpredictthereadrequestssindivid-
ual patterntable entriesas in MSP, VMSP encodesa
sequencef readrequestsn a bit-vector muchasa full-
mapdirectorymaintainsthe identity of multiple readersof
a block. Figure4 illustratesthe anatomyof a two-level
VMSP. Comparedo MSRE, VMSP reduceshe numberof
patterntableentriesrequiredto captureour exampleshar-
ing pattern from three to tw

VMSP's key advantageover MSP is that by not main-
taining the order amongthe reads,VMSP eliminatesthe
negative impactof readrequestre-ordering.For example
in our MSP from Figure3, a re-orderingof readrequests
from P2 and P3 would resultin a mispredictionin all the
patterntable entries.MSP requiresa history depthof at
leasttwo to simultaneouslyearnandcapturebothpossible
re-orderingsof the reads.In general,for n readersMSP
requiresa history depthof n to captureall possiblere-
orderingsof the read requests As such, the number of
requiredpatterntable entriescan quickly grow with the
numberof readersVMSP folds all the readersnto a sin-
gle vector thereby substantiallyreducingthe number of
pattern table entries.
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FIGURE 4: A Vector MSP (VMSP).

VMSP, however, increaseshe minimumrequirednum-
berof bits to encodeareadsequencascomparedo MSP.
VMSP usestwo bits to encodehereadrequestypeandn
bits to encodethelist of readerdor a machinewith n pro-
cessorsin contrast,MSP only requirestwo bits for the
typeandlog(n) bitsto encodea processoid for every read
request.Therefore, VMSP only offers a more compact
encodingif the actualnumberof readersis greaterthan
(2+n)/(2+log(n)).To breakevenwith MSPin theencoding
size,VMSP requiresat leasttwo readersper block for a
machinewith eight processorand at leastthreereaders
per block for a machinewith sixteenprocessorsespec-
tively.

4 Mechanismsfor a Speculative DSM

A speculatre coherentDSM requiresthree primary
mechanismgo hide the remote accesslateny success-
fully: (1) amechanismio predict“what” memoryrequests
subsequentharrive, (2) a mechanismto predict “when”
subsequentemoteaccessearrive,and(3) amechanisnio
executethe necessargoherenceperationgor a predicted
remoteaccesspeculatrely. While our pattern-basegre-
dictors only predict what subsequentremote accesses
arrive, they fail to predictwhenthey arrive. In this section,
we identify and propose simple techniquesto predict
requestdimely, and describemechanismgo executethe
necessargoherencactionsspeculatrely. In the next sec-
tion, we presenfa qualitative analysisfor the performance
of a speculatre coherentDSM using a simple analytic
model. In Section7, we evaluate performance using
empirical results from detailed simulations.

Figure5 illustratesthe anatomyof a speculatie coher-
entDSM node.The nodeconsistsof oneor moreproces-
sors with their cache hierarcly. The processorsare
interconnecteckither via a snoopy bus to memoryanda
DSM board[16,10],or througha switchtightly integrating
the DSM hardwarewith the memorycontroller[14]. The
DSM hardware implementsthe coherenceprotocol, and
includesa remote cache(i.e., as a large repository for
remotedata)anda directoryto maintainsharinginforma-
tion for the nodes home pages. The hardware also
includesan MSP to predictand executecoherencepera-
tions speculately.

4.1 Triggering Request Speculation

The succesf a speculatie coherentDSM relies on
the accurag of mechanismsto execute the necessary
coherenceactionsfor a remoteaccesgimely. Much like
mispredicting a remote request, premature coherence
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speculationcanresultin a significantincreasein remote
accesdatenciesFor instancegarly speculatioron a write
may prematurelytake a block away from its readersSimi-
larly, latecoherencespeculatiormaylimit aDSM’s ability
to hide much of the coherenceoverheadand offset the
gains from speculation.

A requestarrival time, to thefirst order is a function of
an applications memoryaccesgatterns While a block’s
sharingpatternsat the directory canbe capturedusingan
MSR sharingdoesnot provide informationaboutwhen a
processoraccesses specific block. Proposalsfor hard-
wareprefetchinghave extensiely focusedon learningand
predictinganapplications memoryaccesgatternsThese
technigueshowever, are eitheronly effective for regular
accesstrides[4], tamgetirregularaccessefor specificdata
structuresand have limited applicability [20], andare not
aseffective for arbitraryaccesgatterng12]. Ratherthan
learnand predictaccesgatternsa DSM canrely on the
obsened coherenceactivity and messageraffic to esti-
matea requess arrival time. Messagdraffic, however, is
highly dependenbn the amountof systemcontentionand
may lead to high inaccuracies in estimates.

Fortunately there are commonDSM sharingpatterns
thatgive riseto triggerreadyspeculation—i.e.a specula-
tion thatmayreadilyinvoke the protocol.Read-sharindpy
morethanoneprocessoresultsin atriggerreadyspecula-
tion. In a predictedsequenceof reads,the arrival of the
first readmayreadilytrigger speculatiorfor therestof the
sequenceSimilarly, migratorysharingresultsin atrigger
ready speculation Migratory sharingis characterizedy
readandupgraderequestpairsto a block by a given pro-
cessor When predictingmigratory sharing,the arrival of
the readby the processomay readily trigger speculation
for the upgrade.

Moreover, thereare commonmemory accessatterns
that may be predicted using simple heuristics. For
instancejn mary producer/consumesharingscenariosa
produceroftenwritesto amemoryblock only onceandno
longeraccessetheblock until theconsumerseadthe new
data.Sucha sharingpatternis commonin parallel com-
mercial databaseseners which use messagebuffers to
communicateinformation among processesRatherthan
predictwhenthe readrequestdrom the consumersrrive,
aDSM canpredictwhenthe producethascompletedwrit-
ing to the memory block.

In this paper we proposea simple heuristic, called
Seculative Write-Invalidation (SWI), in which an MSP
predictsthat a processoris done writing to a memory

block upon a subsequentvrite (or upgrade)requestto

anotherblock by the sameprocessarThe MSP maintains
an early-write-irvalidatetablerecordingthe block address
of the last write (or upgrade)requestper processarSWI

not only hides the write invalidation lateng, but also
enablestriggering speculationfor the consumers’read
requestsin the bestcase,both the write invalidationand

the readrequestlateng for all the consumersare elimi-

nated.

While SWI is anexcellentsimplemechanisnto trigger
speculatie read requests,it relies on incoming write
requestandthe subsequenihvalidationto predictwhento
trigger the reads.As such, SWI precludesspeculatiely
executingwrite (or upgradeyequestsanda more general
mechanismis requiredto trigger timely both read and
write speculationThis paperis afirst steptowardsimple-
mentinga speculatie coherentDSM. As such,we prima-
rily focus on executing reads speculatiely. Our DSM
triggersa sequencef readsupona successfulvrite invali-
dationusing SWI or uponreceving the first readrequest
in a sequence of reads when S\l

4.2 Speculative Coherence Operations

The final enablingtechnologyfor a speculatie coher-
ent DSM are mechanismgo executea coherenceaction
speculatrely and updatethe predictors accurag by veri-
fying the speculation(i.e., verifying that the predicted
acces®ccurs).Thekey requiremenfor thesemechanisms
is thatthey co-exist with thebasecoherencerotocolwith-
outary neededgrotocolmodificationsRatherthanrequire
extrafunctionalityin theprotocol,the MSP simply advises
the protocol to execute (existing) coherenceoperations
early. A misspeculatiorresultsin additional(base)proto-
col transitionsbut doesnot interfere with the protocols
functionality For instancea prematurewrite invalidation
simply resultsin anextra subsequenteador write request
by the producer processor

To executereadrequestspeculatrely, an MSP simply
advisesthe protocolto sendread-onlyblock copiesto the
predictedrequestersTo verify the speculationaccuray,
the DSM usesareferencebit in theremotecachefor every
block thatis placedspeculatrely. Uponareferencdrom a
processqrtheremotecacheclearsthebit verifying thatthe
speculatedaccessoccurs. When blocks are invalidated
from the remotecache the speculatie bit is piggy-bacled
on the invalidation messagesentto the homenode.The
MSP (atthe homenode)determineghe speculatioraccu-
ragy using the piggy-back information, and removes
mispredictedequessequencefom the patterntables.To
obviate the needfor protocol modification, upon a race
betweena speculatiely-sentblock and an in-flight read
requestfor the block, the DSM nodereceving the block
dropsthe speculatednessagandawaits a responseo the
read request message from the protocol.

WhenMSP predictsa sequencef readsuponreceving
awrite (or upgrade)jt usesSWI to simply advisethe pro-
tocol to senda write invalidation. A successfuinvalida-
tion triggersspeculatiorfor the readsequenceTo prevent
frequentprematurdnvalidations,SWI usesa bit perwrite
(or upgrade)n the correspondingpatterntableentry indi-
catinga previous prematurenvalidationfor the write. For
readsequencethatfollow awrite (or upgrade)which SWI



no longerinvalidates,the read speculationcan only pro-
ceed upon receing the first read request.

5 A Qualitative Performance Analysis

Much like speculatre instruction execution using
branchprediction,the performanceof a speculatre coher-
entDSM depend®n the speculatior(or prediction)accu-
ragy, reductionin latenciesupona successfuspeculation,
andthemisspeculatiopenalty Unlike speculatre instruc-
tion execution,the performancef a speculatie coherence
protocol dependson the opportunity for speculation.A
computation-intense application for instanceijs unlikely
to benefitfrom hiding remoteaccesdatenciesin this sec-
tion, we presenta simple intuitive modelto analyzethe
performance of a specubati coherent DSM.

Our analytic model capturesthe key factorsaffecting
performancein a speculatie coherentDSM in a small
numberof parametersThe modelestimategperformance
improvementby accountingor thereductionin communi-
cation time on the executions critical path. Our model
males several simplifying assumptionsWe assumethat
whenthe DSM successfullyexecutesa speculatie mem-
ory requestthe entireremotelateng is hidden.We also
assume misspeculatiomnly slovs down aremoteaccess
and doesnot increasethe requestfrequeng. In general,
however, a speculatie coherenDSM canincorrectlytake
ablock away from a currentuser therebyturninga poten-
tial processorcachehit into a muchslower remoteaccess
lateny. The model, however, can approximatesuch an
increasan the requestrequeny asa higheroverall mis-
speculation penalty

Our performancenodelincludesthefollowing parame-
ters:cis theapplications communicatiorratio on the crit-
ical path, f is the fraction of speculatiely-executed
memoryrequestsover all the receved requestsp is the
requestprediction accurag, |l ccess aNd Iyecess rEPresent
thelocal and remotememory?atenciesrespect'yely, rtl is
the ratio of remoteto local accesdatenciesn is the mis-
speculatiorpenaltyfactor andN is the numberof remote
requests on the critical path.
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FIGURE 6: Potential speedup in a speculative
coherent DSM.

The modelapproximategshe communicatiortime in a
conventionalDSM by N 1o IN @ speculatie coherent
DSM, a fraction f of memory requestsexecute specula-
tively, out of which p succeedand corvert the remote
accessinto a local one incurring a lateny of I,
instead(1-p) of the speculatie accessefail andresultin
a misspeculatiorpenalty of n r,.ee Equationl depicts
the resultingspeedugn communicatiorntime. Equation2
estimateghe overall applicationspeedugby reducingthe
communication time by the speedup factor from
Equationl.

Figure6 examinesthe potential for speedupusing a
speculatie coherentDSM. The graphsplot speedupof a
speculatre coherentDSM from Equation2 againstappli-
cationcommunicatiorratio, c. The graphsat the top-left
examinethe impactof predictionaccurag on speedugor
a DSM with a moderataemote-to-localateng ratio of 4
(characteristicof todays aggressie DSM clusters[22])
and a misspeculation penalgctor of 2.

The graphs corroboratethe intuition that prediction
accurag playsa primaryrole in performanceA low pre-
diction accurag of 10%-50% consistentlyresultsin a
slovdown dueto a high misspeculatioroverhead A pre-
dictionaccurag of 70%atbestspeedsip theexecutionby
25%for afully communication-boundpplicationwhile a
higherpredictionaccurag of 90% improvesperformance
evenfor applicationsvith moderateeommunicatiomratios.
In the limit, when all speculationssucceed(p=1.0), all
remote accesses in the specutatioherent DSM turn into
local accesseandthe DSM behaeslike an SMP—i.e.,a
uniform memoryarchitecture Theseresultsindicate that
designingaccuratepredictorss a key first stepin building
speculatie coherentDSMs. We presentempirical results
in Section? thatindicatethat our proposedMSPssignifi-
cantly improve prediction accurag over current predic-
tors.

A misspeculatiorranvary from merelysendingaread-
only copy of ablockto anon-readeduringthereadphase



Table 1: System configuration parameter  s.

requiring an extra invalidation, to taking a block incor-
rectly away from a processogctively accessinghe block,
convertingprocessocachehits to remoteaccessesf mis-
speculationgreinfrequenthowever, the penaltydoesnot
have a large impacton performanceFigure6 (top-right)
examinesthe impactof misspeculatiorpenaltyon perfor-
mance.The graphscorroboratethis intuition andindicate
thatperformances not assensitve to misspeculationpen-
alty at a high perditionaccurag. Speedupsmprove with
increasingcommunicationratio even with a misspecula-
tion penalty &ctor of 4 times a remote access layenc

Thereareseveralfactorsaffectingthefractionof specu-
latively-executedrequestsf. Thetypeof requestexecuted
speculatrely has a primary impact on f. A predictors
learning speed—i.e.the number of requestmessageit
takesto learnand predicta messageequence—iglsoa
key factor affecting f. The higher the history depth, the
longer it takes the predictor to learn a new message
sequenceln otherwords,f is a measureof the reusefre-
queng for patterntableentries Applicationswith rapidly-
changingsharingpatternsmay frequently introducenew
patterntable entrieswithout reusingthem. Figure6 (bot-
tom-left) plots speedupwith varying valuesfor f. The
graphsindicate that a low fraction of speculatrely-exe-
cutedrequests—e.gasa resultof rapidly-changingshar-
ing patterns—willfundamentallylimit performancesven
with high prediction accuracies.

Finally, Figure6 (bottom-right)examinestheimpactof
remote-to-localateng ratio (rtl) on speedupsThegraphs
plot speedupsfor minimum rtl values found in recent
designssuchas the tightly-coupledhigh-end SGI Origin
2000 [14] and two more cost-efective clusterbased
DSMs,the HAL Mercury[22] andthe SequentNUMA-Q
[16]. The graphsindicatethat while a speculatre coher-
enceprotocolbenefitsOrigin, it benefitsthe clustersmost
dueto a much higher remote-to-localaccessatios. This
result also indicatesthat a speculatre coherentDSM
architecturemay help eliminate the performancegap
betweerthe clustersandthe high-endsystemgnablingthe
clusters to der equal performance at a muckvér cost.

6 Methodology

To evaluatepracticalimplementationf a speculatre
coherenDSM, we usethe WisconsinWind Tunnelll [18]
to simulate a CCNUMA with sixteen nodesintercon-
nectedthrough hardware DSM boardsto a low-lateny

Number of nodes 16 Application Input Data Sets Iterations
Processor speed 600 MHz appbt 12x12x12 cubes 40
Processor cache 1 Mbyte barnes 4K particles 21
Memory tus 100 MHz em3d 76800 nodes, 50
Local memory/ 104 g/cles 15% remote

Remote Cache access time moldyn 2048 particles 60
Network latengy 80 g/cles ocean 130x130 array 12
Round-trip miss lateryc 418 gcles tomcatv 128x128 array 50
Remote-to-local access ratio (rtl) ~4 unstructured mesh.2K 50

Table 2: Applications and input data sets.

switch-basedetwork (Figure5). Tablel depictsthe sys-
tem configuration parametersfor the simulated DSM.
Eachnodecontainsa 600-MHz dual-issugprocessowith
1-Mbyte cachednterconnectedby a 100 MHz split-trans-
actionbusto memoryandthe DSM board.We assumeer-
fect instruction cachesbut model data cachesand their
contention at the memory bus accurately We further
assume point-to-pointnetwork with a constantateng of
80 g/cles lut model contention at the neivk interfaces.

Recentaggressie cachingtechniqueshave proven to
virtually eliminateall of capacityandconflictrequestraf-
fic resultingfrom a nodes inability to simultaneoushhold
all the necessaryemotedata[8,10]. Ratherthan inflate
results with unnecessarycommunication,we gauge a
speculatre coherenDSM's ability to hide true communi-
cationlateny andassumea remotecachelarge enoughto
hold the remotedata. We model a full-map write-invali-
date protocol using 32-byte coherence blocks.

Table2 presentghe applicationswe usein this study
andthecorrespondingnput parametersAppbt is ashared-
memoryimplementationof the NAS benchmarkBarnes
and ocean are from the SPLASH-2 benchmarksuite.
Em3d is a shared-memorymplementationof the Split-C
benchmarkMoldyn is a shared-memorymplementation
of aCHARMM-lik e moleculardynamicsapplication(sim-
ilar to the oneusedin [17]). Tomcatv is a shared-memory
implementatiorof the SPECbenchmarkUnstructured is a
computationalfluid dynamics application that uses an
unstructuredmesh. Our shared-memorymplementation
of unstructured usesa cyclic partitioningalgorithmfor the
meshandis thereforemorecommunication-intense than
optimizedimplementationsisingthe recursve coordinate
bisection partitioning algorithm [17].

7 Results

Theresultsfrom our simpleanalyticmodelclearlyindi-
catethat high predictionaccuray is fundamentato suc-
cessfully performing coherence speculation. In this
section,we first compareour proposedmemory sharing
predictors (MSP and VMSP) to a previously proposed
coherencemessagepredictor called Cosmos[17]. We
presensimulationresultsindicatingthat MSP andVMSP
significantly improve prediction accurag over Cosmos.
Next, we shav thatour predictorsalsoreducemplementa-
tion cost as comparedto Cosmos.We also shawv that
despitethe higher predictionaccurag, MSP and VMSP
also offer a competitve learning speedas comparedto



[ cosmos [0 MSP B VMSP

=
o
o

S (o] (o]
o o o
]

N
o

Prediction Accuracy (%)

o

barnes moldyn tomcatv
appbt em3d ocean unstructured

FIGURE 7: Base predictor accuracy comparison.

Cosmos Finally, we presentnumbersevaluatingthe per-
formanceof the first proposalfor a speculatre coherent
DSM.

7.1 Predictor Accuracy

Figure7 compareshe predictionaccurag in Cosmos,
MSP, and VMSP, for a history depthof one. The figure
plots the numberof correctlypredictedmessagesver the
total numberof predictedmessagesThe figure indicates
that predictionaccurag in Cosmosis higherthan90%in
only two out of the seven applications.Furthermore,in
anotherthreeapplicationghe accurag is lowerthan80%,
andin theworst casethe accurag is aslow as60%. MSP
and VMSP increaseprediction accurag to significantly
higher levels as comparedto Cosmosby eliminating the
perturbationin the pattern tables due to the protocol
acknavledgementsMSP’s accuraciesreeithercompara-
ble to or much higher (by an additional 15%-20%)than
CosmosVMSP alsoeliminatesthe readrequestre-order-
ing, performsbest,andincreasesccurag to over 87%in
all but one application, andrer 79% in all applications.

Em3d exhibits producer/consumesharingwith a small
read-sharingdegree, and reachesa 99% accurag with
MSP alone as compared to Cosmos.

Moldyn and unstructured exhibit both producer/con-
sumer and migratory sharing.In moldyn, the producer/
consumelphaseexhibits a small read-sharinglegreeand
is highly predictableavenwith MSP. The migratory shar-
ing patternsremainstatic throughoutthe applicationand
are also highly predictable.As a result, both MSP and
VMSP significantly improve prediction accurag over
Cosmos and reach an accyrat 98%-99%.

Unstructured exhibits wide read-sharingn a producer/
consumerphase.In this phase,all the processorseada
block resultingin high readrequestre-orderingin MSP
andan accuray of under65%. VMSP removes the read
re-ordering and substantially improves the prediction
accurag in the producer/consumegrhase.The migratory
sharingin unstructured occursin a sumreductionphase.
To optimizecommunicationprocessorsefrainfrom read-
ing/writing memoryblocksif their contribution to the sum
is a zero.Someprocessorgomputea zeroin every other
visit to the reduction,andthereforealternateparticipating
in the migratorysharing.As such,with a history depthof
one, the predictorsboth mispredictthe processorsn the
migratory sharingand the subsequentonsumergin the
producer/consumephase) upon leaving the reduction.
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FIGURE 8: Predictor accuracy with varying
history depth (d).

The resulting mispredictionslimit VMSP’s accurag to
87%.

Ocean and tomcatv are both stencil computationsin
which processorenly communicatewith theirimmediate
neighborsandthereis only a single consumeiper block.
All three predictorsreacha 100% accurayg for tomcatv.
Ocean, hawever, usesalock to implementareductionand
suma value over all processorst the end of every itera-
tion. The orderin which processorgnterthelock changes
every iteration reducing VMSP’s prediction accurag to
slightly belav 100%.

Appbt implementsa gaussiareliminationover acubein
which processorareallocatedsubcubesndsharebound-
ary valueson the subcubesurfaces.Becausehe gaussian
elimination proceedsn all threecubedimensionsn sub-
sequentsteps,the memory blocks locatedat a subcube
edgeareconsumedy two differentprocessoralongtwo
differentdimensiong5]. With a history depthof one, all
predictorsfail to distinguishsharingalong the different
cube dimensionsfor the blocks at the subcubeedges
resultingin a predictionaccurag of at best90%. Cosmos
slightly improves accurag over MSP becauseacknawl-
edgementmessagedn appbt actually help distinguish
between read sharing along thdetiént dimensions.

Barnes simulateshe forcesamongthe bodiesin a gal-
axy. In eachiteration,processorsraversean octreerepre-
sentingthe galaxy to calculateforcesbetweernthe bodies.
Most of the time a processomonly partially traversesthe
octreeto computethe forcesfor a given body In every
iteration,thetreeis reluilt to reflectthe movementof bod-
iesin the galaxy andthis resultsin rapid changesn read-
sharingpatternsWhile thereis read-sharindpy morethan
oneprocessobntheoctree,jt doesnotresultin are-order-
ing of acknavledgmentdecausehe read-sharings asyn-
chronousandthereis minimal queueingn the systemAs
such,the acknavledgmentsarrive in the sameorderevery
time, and MSP doesnot improve accurag over Cosmos.
The readershowever, do not arrive in the sameorderin
every iterationbecause processos workloadduring the
treetraversalchangesvith achangen theoctreestructure.
VMSP eliminatesthe re-orderingof readsin the pattern
tables and increases accwyrée slightly less than 80%.

7.2 History Depth
A key adwantageof pattern-basegredictorsover adap-

tive protocolsis the predictors’ability to capturesimulta-
neously multiple sharing patternsfor a given memory



Cosmos MSP VMSP
d=1 | d=4 d=1 d=1 | d=4 d=1 d=1 | d=4 d=1

Application pte pte ovh pte pte ovh pte pte ovh

appbt 5 8 10 3 5 6 2 3 9

barnes 11 42 21 7 25 11 5 12 18

em3d 5 21 10 4 6 2

moldyn 4 14 2 4 2

ocean 1 2 3 <1 <1 2 <1 <1

tomcatv 3 3 2 4 2 2

unstructured 9 168 17 5 8 4 14

Table 4: Predictor storage overhead.
block. Moreover, unlike adaptie protocols,the extent to —
which a predictor can capturemultiple sharing patterns Application || Cosmos (%) | MSP (%) | VMSP (%)
dependson the history depthand not the protocol com-
plexity. A higherhistorydepthenableghe predictorto dis- appb o7 (87) o7 (83) 96 (85)
tinguish among distinct sharing patternswith common barnes 88 (53) 87 (52) 81 (63)
messagesequenceandincreaseghe predictionaccurag.
A higherhistorydepthalsochangeshebalanceamongthe emsd %8 (77) o7 (97) 96 (96)
threepredictorsby allowing apredictorto capturemultiple moldyn 97 (86) 97 (96) 97 (97)
re-orderingof messagesimultaneouslyherebyreducing ocean 89 (80) 86 (79) 83 (80)
the n@ative impact of re-ordering.
Figure8 compareghe predictionaccurayg in Cosmos, tomeatv 97 (97) 97 (97) 95 (95)

MSRE andVMSP for history depthsof one,two, andfour.
ThegraphsndicatethatVMSP achiezeshigheraccuracies unstructured 99 (63) 99 (65) 99 (87)

for the applicationswhich exhibit multiple sharing pat-
ternswith commonmessagsequencesuchasappbt and
unstructured. A history depthof two enableghe predictor
to capturesimultaneouslythe alternatingsharingpatterns
in appbt for blocksat subcubeedgesjmproving prediction
accurag to 100%. Similarly, with a larger history depth,
the predictorscandistinguishbetweerthe migratoryshar-
ing patternsin alternatereductionphasesn unstructured,

improving accurag to up to 99%.

Becausethe structureof the octreein barnes rapidly
changesmary blockshave messagesequencewvith little
or noreusefrequeng. With alower historydepth,rapidly-
changingsharingpatternswill resultin frequentmispre-
dictionsanda lower predictionaccurag. A higherhistory
depthallows a larger numberof sharingpatternsto co-
exist, increaseghe learningtime for the rapidly-changing
sharing patterns,and reducesthe overall prediction fre-
queng. As such,only frequentlyoccurringand more sta-
ble sharingpatternsresultin actual predictions,thereby
increasing the prediction accuyac

A key performancenetricfor a predictor besidesaccu-
ragy, is thespeedatwhichit canlearnandpredictmessage
sequenced-or a given history depth, VMSP by natureis
slower than Cosmosand MSP becausdhe readsequence
encodedin a single vectorin VMSP may correspondo
mary patterntable entriesin Cosmosand MSP. On the
otherhand,becaus&/MSP significantlyimproves predic-
tion accuray over Cosmosand MSR it may resultin an
overall lager number of correctly predicted messages.

Table3 compareshe predictors’ learning speed.The
table depictsthe fraction of messagegpredictedby each
predictorfor a history depthof one.The tabledepictsthe

Table 3: Messages predicted (and correctly
predicted) for a history depth of one.

fraction of the messagesorrectly predictedas a product
of predictionaccurag andthe fraction of messagegre-
dicted.Besidesharnes and ocean, the restof the applica-
tions exhibit a high predictionfrequeng dueto the highly
iterative natureof the computationresultingin frequent
reuseof the patterntable entriesin the predictors.More-
over, MSP predictsthe samenumberof messageasCos-
mos whereasVMSP requiresa slightly longer learning
time. NeverthelessVMSP's slower speedis offset by its
much higher prediction accurag resultingin an overall
much lager number of correctly predicted messages.

7.3 Predictor Cost

A predictors implementationcostis a direct function
of thenumberof learnedmessagsequenceandthe over-
headof storing a messagesequencen the patterntable.
MSP and VMSP reducethe requirednumberof pattern
tableentriesby eliminatingtheacknavledgmentgrom the
patterntables.VMSP further reducesoverheadby elimi-
natingthe multiple re-orderingsof a readsequenceOn a
perentry basisVMSP, however, requiresa higherstorage
overheadas comparedto Cosmosand MSP becauseit
stores reads in seetor

Table4 compareghe implementationoverheadof the
threepredictors.For every predictor the leftmosttwo col-
umnscorrespondo the (rounded)averagenumberof pat-
tern table entries(pte) for every allocatedmemoryblock
for a history depthof one(d=1) andfour (d=4). The third



columnindicatesoverheadovh) in termsof thenumberof

byteswith a history depthof one(d=1). All predictorsuse
4 bits to encodethe processoids. Cosmosuses3 bits to

encodethe messageype resultingin 7 bits for a history
tableentryand14 bits per pte anda total of (7 + 14 pte)/8
bytesperblock. MSPandVMSP only use2 bitsto encode
therequestype,andVMSP useslé6 bits to encodea read
vector ThereforeMSP’s overheads (6 + 12 pte)/8bytes.
VMSP requiresl8 bits for the history tableentry but only

18 + 6 bits for a pte becausdn VMSP a readvectoris

always followed by a write or upgradeand a pte will at

most containa single vector VMSP’s overheadis there-
fore (18 + 24 pte)/8 bytes.

Not surprisingly the table indicates that MSP and
VMSP significantlyreducethe numberof requiredpattern
table entriesas comparedto Cosmos.On average,for a
history depthof one, Cosmosrequiresfive entrieswhile
MSPandVMSP only requirethreeandtwo entriesrespec-
tively. MSP reducesthe storagerequirementin terms of
numberof bytesto abouthalf of thatin CosmosAlthough
VMSP usesalesscompactncodingjt reducegheoverall
storagerequirementn all but oneapplicationascompared
to Cosmos.For a history depthof one, however, VMSP
significantly improves the predictionaccurag over both
MSP and Cosmos and is therefore most cdstife.

The table also indicatesthat using a higher history
depthto achieve abetteraccurag maybeimpractical.The
numberof patterntableentriesresultingfrom messagee-
orderingbecomegrohibitively high in Cosmosspecially
for barnes andunstructured.

7.4 Performance of a Speculative DSM

This papertakesa first stepin designingandevaluating
a speculatie coherentDSM using pattern-basegbredic-
tors.We usea VMSP with a history depthof oneasa pre-
dictor for our DSMs. Our DSMs primarily rely on two
techniquesto execute read requestsspeculatiely: (1)
Speculatrte Write-Invalidation (SWI) invalidates writes
(or upgrades)early to trigger speculationfor a read
sequenceand (2) First-Read(FR) usesthe arrival of the
first read to trigger a read sequence when S\4.f

Figure9 illustratesthe performanceof two speculatie
coherenDSMsagpinsta Base-DSMsystemwith no spec-
ulation. The speculatre coherentDSMs are an FR-DSM
systemonly using FR to trigger read sequencesnd an
SWI-DSM using both SWI and FR to trigger read
sequencesThe graphsplot executiontime normalizedto
thosein Base-DSM.The graphsbreak down execution
time into computationtime (including barrier synchroni-
zation and spinning on locks) and the overall remote
requestwaiting time. The latter indicatesan applications
potential for performanceémprovementusing a specula-
tive coherent DSM.

The graphs indicate that triggering read sequences
using FR alonehasthe highestimpacton executiontime
andreducegequestvaiting time in Base-DSMby 10%to
50%. TogetherSWI andFR reducerequestvaiting timein
four of theapplicationgo 30%-65%0f thatin Base-DSM.
The overall reductionis executiontime in SWI-DSM and
FR-DSMis on averagel2% and8%, andat best24%and
17% respectiely.

Table5 depictsthe total numberof readand write (or
upgradesjequestgin thousandsin Base-DSMfor all the
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FIGURE 9: Performance improvement in
speculative coherent DSMs.

applicationsThetablealsodepictsa breakdevn of specu-
lation andmisspeculatiofior readsandwrite invalidatesas
apercentagef thenumbemrequestsn FR-DSMandSWI-

DSM. Em3d, moldyn, tomcatv, andunstructured all benefit
from both FR and SWI. Em3d exhibits a static producer/
consumeirsharingpattern.The produceronly writes once
to a memoryblock in every iteration and thereforeSWI

successfullyinvalidates98% of the writes and triggers
95% of thereadsin SWI-DSM. In FR-DSM, FR canonly

execute58% of thereadsspeculatrely becauset usesthe
first readto triggertherestof the sequenceOverall, SWI-

DSM and FR-DSM reducerequestwaiting time by 70%
and 50% as compared to Base-DSM respelgti

Unlike in em3d, SWI fails to invalidatesuccessfullyall
the writes in moldyn and tomcatv. Moldyn exhibits both
producer/consumeand migratory sharing. In the pro-
ducer/consumemphase, the producer reads the blocks
shortly after writing to them.As suchSWI misspeculates
wheninvalidating the writes. SWI, hawever, successfully
invalidatesthe writes in the migratory phaseaccounting
for 68% of all the writes (and upgrades)and triggering
40% of thereads FR capturesanadditional39%of all the
readsin the producer/consumesharingphaseTheresult-
ing reductionin requestwvaiting time is 50% and 30% for
SWI-DSM and FR-DSM as comparedto Base-DSM
respectiely.

Tomcatv is primarily a stencil computationin which
processorewn andcomputesetsof rows in matricesand
shareat the setboundariesln every iteration,the produc-
erscomputeand write oncein the main phase However,
producersnrite again to half of boundaryblocksin a cor-
rection phasebefore the start of a subsequentiteration.
Therefore,SWI only succeedsn invalidating half of the
writes and triggering half of the readsreducingrequest
waiting time by a total of 50%. Becauséhe producerfirst
readsthen writes, every block hastwo readersthe pro-
ducerandthe consumerFR additionallytriggersthe pro-
ducers copy of the read when the consunseréad request
arrivesandthereforethe total of speculatre readsaddsup
to 70%in SWI-DSM. In FR-DSM,all blocksaretriggered
throughFR and only 46% of the readsare speculatrely
executed reducing requeshiting time by only 25%.

Unstructured exhibits a very high degreeof read-shar-
ing (i.e., thereare on averagetwelve readsper write or
upgrade)in the producer/consumegphase.About half of
thereadsin the entireapplicationarefrom this phase For
every read sequence,FR usesone read to trigger a



Base-DSM FR-DSM SWI-DSM

(x1000) FR read (%) FRread (%) | SWIread (%)| write invalidate (%)
Application read | write sent miss sent miss | sent | miss sent miss
appbt 832 432 52 14 48 13 10 <1l 10 <1
barnes 1169 458 58 12 52 12 7 1 10 3
em3d 4731 1799 58 0 0 95 0 98 0
moldyn 1034 618 39 <1 39 <1 40 0 68 <1
ocean 589 316 41 40 2 2 <1l 4 2
tomcatv 187 96 46 24 0 45 0 48 <1
unstructured 28461 | 15985 46 21 23 12 69 10 90 <1

Table 5: Frequency of requests, speculations, and misspeculations.

sequencef twelve. The otherhalf of the readsare from
the reductionphasewith migratory sharingpatterns.FR
can not benefit migratory sharing since the latter only
involves read/write pairs. Therefore, FR executes46%
(i.e., elevenout of twelve) of all thereadsspeculatiely in
FR-DSM. SWI successfullyinvalidates90% of the writ-
able copiesof the blocksin unstructured. Togetherwith
FR, SWI executes92% of all readsspeculatiely, and
reducesrequestwaiting time by 50% in SWI-DSM as
compared to Base-DSM.

SWI doesnot benefitany of appbt, barnes, and ocean
becausethe simple early-invalidation heuristic for the
writesfails in theseapplicationsthe producereitherreads
theblock uponwriting to it or writesmultiple timesto the
block. Theseapplicationsall benefitfrom FR andbetween
41% and 58% of all readsexecutespeculatiely. Barnes
exhibits low communicatiorratiosandthereforedoesnot
benefit from a reduction in requesaiing time.

In appbt, much of the requestwaiting time is in the
gaussiareliminationphasen which processorproceedn
a pipeline and data are passedn a strict producer/con-
sumermanner FR usesthe consumes read requestto
executethe producers readrequesspeculatiely. Much of
the pipelines critical path, however, is due to the read
requestfrom the consumerand the write/upgraderequest
from the produceidimiting theimpactof speculatie reads
to areductionof 25%in requestwaiting time. Ocean pri-
marily exhibits nearneighborsharing.FR usesthe con-
sumersreadrequesto executethe producers readrequest
(41%of all reads)speculatrely. Theresultingreductionin
request witing time is about 18%.

The table alsoindicatesthat misspeculatiorfrequeny
is minimal for write invalidatesandis only high for specu-
lative readsin applicationswith low predictionaccurag.
Thenumberof write invalidatemisspeculations minimal
becauseMSP preventsfurther speculatre write invalida-
tions upon a misspeculation.Moreover, misspeculated
read requestsdo not impact executiontime becausehe
misspeculationprimarily resultin extra read-onlycopies
of blockssentto processorsvhich do not actively readthe
blocks. Becauseall read-onlycopiesof a block are sent
and subsequentlynvalidatedin parallel, the misspecula-
tion penalty is minimal.

8 Conclusions

In this paperwe proposedhe Memory SharingPredic-
tors (MSPs), novel pattern-basedpredictors—derxied
from Yeh and Patt’s two-level Pap branchpredictor—to
predictandexecutecoherenceorotocolsspeculatiely. An
MSP is basedon the key obsenationthatin orderto hide
theremoteaccessateng, a predictormustaccuratelypre-
dict only aremotememoryaccesgi.e.,arequesimessage)
andnotthesubsequentoherencenessagemvokedby the
accessBy eliminating unnecessargoherencemessages
from the patterntables,an MSP significantly improves
predictionaccurag and implementationcost over previ-
ously-proposed general message predictors.

We presentedsimulationresultsrunning shared-mem-
ory applicationsto indicatethat: (1) our baseMSP elimi-
natesthe acknavledgmentmessage# the patterntables
and increasesrediction accurag in a generalmessage
predictorfrom 81%to 86%, (2) an optimizedVectorMSP
(VMSP) improvespredictionaccurag to 93% by usinga
compactvector representatiorof read requestsequences
andeliminating perturbationdueto readrequestre-order-
ing, and (3) VMSP not only offers the best prediction
accurag but also reducesimplementationstorageover-
head oer a general message predictor

This paperalsotook the first steptowardsdesigninga
speculatie coherentDSM using pattern-basegredictors.
To hidetheremoteaccessateny successfullya predictor
mustnotonly predict“what” subsequenhemoryaccesses
arrive but also “when” they arrive. We identified simple
techniqguesand mechanismgthat are readily implement-
able without modifying the baseprotocol) to trigger and
perform speculationfor remote read accessesWe pre-
sentedresultsfrom a simple analytic model and detailed
simulationof shared-memorgpplicationgo indicatethat:
(1) high-accurag predictorsare the key to high perfor-
mancein a speculatie coherentDSM, (2) triggeringread
requestspeculationfor a read sequencebasedon the
arrival of thefirst readreducessxecutiontime in all appli-
cationson averageby 8% andat bestby 17%,and(3) trig-
geringspeculatiorfor readshy speculatiely invalidatinga
writable copy reducesexecutiontime on averageby 12%
and at best by 24%.
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