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Abstract

Recentresearchadvocatesusing generalmessagepre-
dictors to learn and predict the coherenceactivity in dis-
tributedsharedmemory(DSM). By accuratelypredictinga
messageand timely invoking the necessarycoherence
actions, a DSM can hide much of the remote access
latency. This paperproposesthe Memory Sharing Predic-
tors (MSPs), pattern-basedpredictors that significantly
improve predictionaccuracy andimplementationcostover
generalmessagepredictors.An MSP is basedon the key
observationthatto hidetheremoteaccesslatency, apredic-
tor must accurately predict only the remote memory
accesses(i.e., requestmessages)and not the subsequent
coherencemessagesinvoked by an access.Simulation
results indicate that MSPs improve prediction accuracy
over generalmessagepredictorsfrom 81% to 93% while
requiring less storage overhead.

This paperalsopresentsthe first designandevaluation
for a speculative coherentDSM using pattern-basedpre-
dictors.We identify simpletechniquesandmechanismsto
trigger prediction timely and perform speculation for
remote read accesses.Our speculationhardware readily
workswith a conventionalfull-map write-invalidatecoher-
ence protocol without any modifications. Simulation
resultsindicate that performingspeculative readrequests
alonereducesexecutiontimesby 12%in our shared-mem-
ory applications.

1  Introduction

Distributed sharedmemory(DSM) is emerging as the
architectureof choicefor medium-to large-scaleenterprise
multiprocessorservers.DSMsoffer programmingcompati-
bility with respectto the ubiquitousbus-basedsymmetric
multiprocessors(SMPs) by providing a logical shared
addressspaceover physically distributed memory. DSMs
alsoenhancescalabilityby removing thesharedbusbottle-
neckin SMPs.Performancetuningapplicationson DSMs,
however, can often be difficult due to the non-uniform
natureof memoryaccesses.DSMs suffer from a lack of
performance transparency with respectto SMPsbecause
remoteshared-memoryaccessesinherentlytake up to ten
to a hundred times longer than local memory accesses.

To addressthis issue,aggressive DSM implementations
directly target reducing the remote accesslatency [14].

Thesedesignsrepackageprocessorsinto custommother-
boardswith fully integratedDSM memorycontrollersand
custom interconnects.Requiring custom motherboards,
however, preventstheseDSMs from exploiting the excel-
lent cost-performanceof off-the-shelfdesktopsandserver
motherboards.Moreover, currentaggressive DSMs at best
reducetheremoteaccesslatency to two or threetimeslocal
accesslatency, leaving a large remote-to-localaccessper-
formance gap.

Other proposals for improving DSM performance
include techniquesto reduce remote accessfrequency
[8,10], hide or tolerate remote accesslatency [1,2], or
reducethe coherenceprotocol overhead[11,15,14,7,13].
Many such techniquesare non-transparentand require
eithercarefulannotationby theapplicationprogrammeror
complex compiler analysis.Transparenttechniquesoften
have limited applicability and only work well for regular
memoryaccesspatternsor target specificsharingpatterns
known a priori. Techniquesto reducecoherenceoverhead
also typically rely on complex adaptive coherenceproto-
colswhich directly capturethesharingpatternsin thepro-
tocol states. Such protocols use complex finite-state-
machineswhich are difficult to designand require large
amountsof computationalresourcesto verify [6]. More-
over, capturing sharing patternsin protocol statesoften
limits the protocol to learning one sharing pattern per
memory block at a time.

In a recentpaper [17], Mukherjeeand Hill advocate
usinga generalpattern-basedpredictor—derivedfrom Yeh
andPatt’s two-level adaptivePap branchpredictor[23]—to
learn and predict the coherenceactivity for a memory
block in a DSM. By accuratelypredictingandperforming
the necessary coherence operations speculatively in
advance,a predictor-basedDSM canpotentiallyeliminate
all of thecoherenceoverhead,resultingin remoteaccesses
thatareasfastasa local access.Sucha predictoris based
on thekey observation thatmuchasbranchestendto have
a repetitive nature (e.g., backwards branchesare often
takenbecauseloopsiterate)leadingto accuratepredictabil-
ity, memoryblocks often have a small numberof stable,
repetitive, and predictable sharing patterns [9].

A generalpattern-basedpredictor is in many respects
superior to an adaptive coherenceprotocol. A pattern-
basedpredictor can dynamically learn and adapt to an
applications’s sharingpatternsat runtime.Moreover, apre-
dictor is capableof simultaneouslycapturingmultiple dis-
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tinct sharingpatternsfor a givenmemoryblock.Finally, a
predictor merely provides hints to perform coherence
operationsearly, obviating the needto modify the base
coherence protocol.

This paper proposesnovel pattern-basedpredictors,
Memory Sharing Predictors (MSPs), that dramatically
improvepredictionaccuracy andimplementationcostover
previous proposals.Unlike a generalmessagepredictor
[17], an MSP only predictsmemoryrequestmessages—
i.e., theprimarymessagesthatinvokeasequenceof proto-
col actions.In commonDSM sharingpatterns,multiple
coherencemessagesin a read-sharingphaseoftenarrive in
anarbitraryorderdueto systemcontentionor loadimbal-
ancein the application.By eliminating the acknowledg-
mentmessagesfrom thepatterntables,MSPssubstantially
reduceperturbationin the tablesdueto messagere-order-
ing, reducethe predictor’s memoryoverhead,andsignifi-
cantly increase prediction accuracy.

We presentsimulationresultsrunningshared-memory
applications to indicate that:

• MSP, our basepredictor, improvespredictionaccuracy
in a generalmessagepredictor from 81% to 86% by
eliminating the acknowledgmentmessagesfrom the
pattern tables,

• VMSP, our optimizedpredictor, additionally improves
predictionaccuracy to 93%by usinga compactvector
representationof read sequencestherebyeliminating
read request re-ordering,

• VMSP not only offers thebestpredictionaccuracy but
also reducesimplementationcost in termsof storage
overhead over a general message predictor,
In this paper, we presentthe first designfor a specula-

tive coherentDSM usingpattern-basedpredictors.To suc-
cessfully hide the remote accesslatency, a speculative
coherentDSM mustaccuratelypredictboth“what” mem-
ory requestssubsequentlyarrive and “when” they arrive.
We primarily focus on executing coherenceoperations
speculatively to hide the remotereadlatency. Our MSPs
usetwo techniquesto triggerspeculationfor readrequests
timely. We use a simple Speculative Write Invalidation
(SWI) heuristicwhich predictswhen a produceris done
writing to a memoryblock, invalidatesthe writable copy
speculatively, and forwards the block to the consumers.
WhenSWI fails to invalidatewritableblocksearly, weuse
thereadrequestfrom thefirst consumerto triggerspecula-
tion and forward the block to the rest of the consumers.

Resultsfrom a simpleanalyticmodelandsimulationof
a speculative coherent DSM indicate that:

• high-accuracy predictorsare the key to high perfor-
mance in a speculative coherent DSM,

• triggeringreadrequestspeculationfor a readsequence
basedon thearrival of thefirst readreducesexecution
time in all applicationson averageby 8% andat best
by 17%,

• triggering speculationusing SWI reducesexecution
time on average by 12% and at best by 24%.
In the following section,we describethe anatomyof

DSM coherenceprotocolsandgeneralmessagepredictors.
In Section3, we introduceour memorysharingpredictors.
Section4 describesour designfor a speculative coherent

DSM. Section5 characterizesthe key factors impacting
performanceandpresentsaqualitativeperformanceanaly-
sisusinga simpleanalyticmodel.Section6 andSection7
presentthe simulationmethodologyand results.Finally,
Section8 presents a summary and concludes the paper.

2  Background

DSM allocatesanddistributesmemorypagesacrossthe
machinenodes.Oneverynode,adirectorymaintainsshar-
ing informationfor thememorypages(alsoreferredto as
homepages)designatedto thatnode.For every fine-grain
(e.g., 32-128 byte) memory block on a home page,the
directorymaintainsa block sharingstateanda list of pro-
cessorids sharingtheblock.A coherenceprotocolcoordi-
nates sharing of memory blocks among the processors.

For every memory block, the protocol implementsa
finite-state-machinein which a statecorrespondsto the
directorystatefor theblock andactionsaremessagessent
over the network to coordinatesharing.In this paper, we
study simple full-map write-invalidate coherenceproto-
colsimplementedin hardwaresuchasthosein SGI Origin
2000 [14], SequentNUMA-Q [16], and Sun WildFire
[10]. Theideaswepresent,however, arealsoapplicableto
otherimplementationssuchasfine-grainsoftware[21] and
firmware [19], as well as page-based DSM [3].

Figure1 (left) illustratesthestatemachinefor a simple
invalidation-basedcoherenceprotocol.A memoryblock is
eitherin theIdle stateindicatingthatthereareno (remote)
processorswith valid copies of the block, in a (read-)
Shared stateindicatingthatoneor moreprocessorshave a
read-onlycopy of theblock,or in theExclusive stateindi-
catingthata singleprocessorownsa writablecopy of the
block.Therearethreetypesof memoryaccessrequests.A
read is a requestto fetch a read-onlycopy of a block. A
write is a requestto obtaina writablecopy of a block. An
upgrade is a requestto write to an alreadycachedread-
only copy of the block.

Figure1 (right) illustrates an example sequenceof
coherenceactionswhena processorrequestsa read-only
copy of a block. The directory first invalidates and
requestsa writebackfor the currentwritable copy of the
block, and subsequentlysendsa read-only copy to the
requestingprocessor. The entirereadtransactionincludes
four network messagesand up to four local memory
accessesmakingremoteaccesslatenciesmuchhigherthan
local memory latencies.

To transparentlyreduce the remote memory access
latency, a speculative coherentDSM mustaccurately pre-

FIGURE 1: Directory protocol transitions (left)
and example sequence of protocol operations on
a remote read request (right).
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dict the remoteaccessand timely perform the necessary
coherenceactions in advance.For instance,in Figure1
(right) if the DSM hardwareat P2 accuratelyand timely
predictsthe readaccessby P1, it can invalidateand for-
ward the block to P1 well in advanceto hide the entire
latency of the remote read.

2.1  Pattern-Based Message Predictors

A pattern-basedcoherencemessagepredictoris derived
from the widely-usedtwo-level adaptive PAp branchpre-
dictor [23]. Figure2 depictsthe anatomyof a two-level
messagepredictorcapturingmessagesequencesfor mem-
ory blocks at the directory. A history table recordsthe
mostrecentsequenceof incomingcoherencemessagesfor
every memoryblock. A patterntablerecordsall observed
sequencesof coherencemessagesfor every memory
block. An entry in the patterntableconsistsof a message
sequenceand a prediction for the subsequentmessage
given thesequence.Thepredictionis theobserved imme-
diate successorof the messagesequencewhen the
sequence last occurred.

Thepredictorin thefigurehasa historydepthof one—
i.e., the predictormaintainsa history of the most recent
coherencemessagefor every block. The figure illustrates
an exampleof possiblemessagesequencesfor a simple
producer/consumersharing among three processors.
Request messages appear capitalized and protocol
acknowledgementmessagesappearin italics. Processor3
(P3)writesto thememoryblockataddress0x100andpro-
cessors1 (P1)and2 (P2)subsequentlyreadtheblock.The
protocolreceivesanupgraderequest(recordedin thehis-
tory table)by P3 andis in the processof invalidatingthe
read-onlycopiesof P1 andP2.The patterntablepredicts
thenext incomingmessagegiven thespecificsequenceto
be an acknowledgmentby P1.The acknowledgmentis in
response to an invalidation sent by the directory to P1.

The predictor’s performanceand cost are both highly
sensitive to the history depth.Much as in branchpredic-
tors, a deeperhistory enablesthe predictor to be more
selective by distinguishing among messagesequences
with commonpatterns.Suchsequencesmay result from
true applicationsharingpatterns.For instance,assumein
our examplethatP3andP2alternateupgradingtheblock.
As before, an upgradefrom P3 would be followed by
readsfrom P1 and P2. Similarly, an upgradefrom P2

would be followed by readsfrom P1 andP3. For sucha
sharingpattern,the predictor in the figure would always
mispredictthe writer becausea history depthof onepre-
ventsthepredictorfrom distinguishingbetweenthewrite-
backs from P3 and P2. A history depth of two would
includebothreadersandallow thepredictorto distinguish
between the writers.

Raceconditionsin messagearrivals also result in dif-
ferent messagesequencesfor the samesharingpattern.
Messagere-orderingin thenetwork or queueingdelaysat
the directory or cachesmay result in race conditions
amongthemessages.For instance,in our example,P2and
P3maysimultaneouslyrequestthememoryblock but the
messagesmayarrive in anarbitraryorderat thedirectory.
A predictorwith a historydepthof onewould fail to pre-
dict accuratelyeither the reador the upgraderequestsif
readrequestmessageswerefrequentlyre-ordered.In con-
trast,a predictorwith a history depthof two would learn
bothpossiblere-orderingsof thereadsandpredictboththe
reads and the upgrade accurately.

Althougha largerhistoryimprovesthepredictionaccu-
racy, it mayprohibitively increasethepredictor’scost[17].
In the limit, thenumberof patterntableentriesis directly
proportional to the history depth. In practice, memory
blocksexhibit a small numberof stableanddistinct shar-
ing patterns[9]. Consequently, in the absenceof message
re-ordering,a memoryblock would requirea small num-
ber of pattern table entries independentof the history
depth. In the worst case,however, messagere-ordering
increasesthe requirednumberof patterntableentriesby
the permutation of all possible re-orderings.

A DSM may directly implement the history table
within the directory becauseof the fixed amount of
requiredstoragefor a history entry. The requiredsize of
the patterntablesdirectly dependson a memoryblock’s
sharingactivity which may largely vary amongblocks.In
thispaper, weassumethesametableallocationandimple-
mentation strategies as discussed in [17].

3  Memory Sharing Predictors (MSPs)

This paperproposesa new classof pattern-basedpre-
dictorscalledtheMemory Sharing Predictors (MSPs).An
MSPis basedon thekey observation that to eliminatethe
coherenceoverheadon a remoteaccesslatency it is only
necessaryto predictthe memoryrequestmessages(i.e., a
read,write, or an upgrade).A generalmessagepredictor
unnecessarilypredicts the coherenceacknowledgement
messages(i.e., an invalidationresponseor a writeback)as
well, eventhoughthesemessagesarein directresponseto
a coherenceaction and are always expectedto arrive. In
Figure1 (right), the writebackmessageby P3 is in direct
responseto theinvalidationmessageby P2.Thewriteback
is only a responseto thecoherenceactivity invokedby the
read request and is itself part of the coherence overhead.

Becauseit predictsall coherencemessages,a general
messagepredictor has several key shortcomings.First,
sincetheprotocoloverlapstheinvalidationmessagesfor a
block, the acknowledgmentsmay arrive in any arbitrary
order. Predictingacknowledgmentsmayunnecessarilyand
severely perturb prediction of the (more fundamental)
requestmessagesif acknowledgmentsoften arrive out of
order. Second,predictingthe acknowledgmentsunneces-

FIGURE 2: A two-level message predictor.
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sarily increasesthenumberof patterntableentries.Third,
predicting the acknowledgmentsincreasesthe required
numberof bits to encodemessagetypesin boththehistory
and pattern tables.

MSP addressesthe above shortcomingin a general
messagepredictor by only predicting the requestmes-
sages.Figure3 illustrates the anatomyof an MSP. As
comparedto the messagepredictorin Figure2, the MSP
eliminateshalf of the patterntableentriesin our example
of producer/consumersharing.TheMSPwould alsoelim-
inate all the sequencesresulting from the potential re-
orderingsof the acknowledgments(not shown in the fig-
ure). The MSP requirestwo bits to encodethreerequest
messagetypes(i.e., read,write, andupgrade)ascompared
to a messagepredictorrequiringthreebits to encodethree
request types and two acknowledgement types (i.e.,
responses to read-only invalidations and writebacks).

3.1  VMSP: Using Vectors to Encode Reads

We furtherrefinetheMSPdesignandproposetheVec-
tor MSP (VMSP).VMSPis basedon theprimaryobserva-
tion that becausea full-map protocol allows multiple
processorsto simultaneouslycachea read-onlycopy of a
memoryblock, a predictormustsimply identify the read-
ers and neednot maintainthe order in which they read.
Ratherthanrecordandpredictthereadrequestsasindivid-
ual pattern table entries as in MSP, VMSP encodesa
sequenceof readrequestsin a bit-vectormuchasa full-
mapdirectorymaintainstheidentity of multiple readersof
a block. Figure4 illustratesthe anatomyof a two-level
VMSP. Comparedto MSP, VMSP reducesthe numberof
patterntableentriesrequiredto captureour exampleshar-
ing pattern from three to two.

VMSP’s key advantageover MSP is that by not main-
taining the order amongthe reads,VMSP eliminatesthe
negative impactof readrequestre-ordering.For example
in our MSP from Figure3, a re-orderingof readrequests
from P2 andP3 would result in a mispredictionin all the
patterntable entries.MSP requiresa history depthof at
leasttwo to simultaneouslylearnandcapturebothpossible
re-orderingsof the reads.In general,for n readers,MSP
requiresa history depth of n to captureall possiblere-
orderingsof the read requests.As such, the numberof
requiredpatterntable entriescan quickly grow with the
numberof readers.VMSP folds all the readersinto a sin-
gle vector therebysubstantiallyreducingthe numberof
pattern table entries.

VMSP, however, increasestheminimumrequirednum-
berof bits to encodea readsequenceascomparedto MSP.
VMSP usestwo bits to encodethereadrequesttypeandn
bits to encodethelist of readersfor a machinewith n pro-
cessors.In contrast,MSP only requirestwo bits for the
typeandlog(n)bits to encodeaprocessorid for every read
request.Therefore,VMSP only offers a more compact
encodingif the actualnumberof readersis greaterthan
(2+n)/(2+log(n)).To breakevenwith MSPin theencoding
size,VMSP requiresat leasttwo readersper block for a
machinewith eight processorsand at least threereaders
per block for a machinewith sixteenprocessorsrespec-
tively.

4  Mechanisms for a Speculative DSM

A speculative coherentDSM requiresthree primary
mechanismsto hide the remoteaccesslatency success-
fully: (1) a mechanismto predict“what” memoryrequests
subsequentlyarrive, (2) a mechanismto predict “when”
subsequentremoteaccessesarrive,and(3) amechanismto
executethenecessarycoherenceoperationsfor apredicted
remoteaccessspeculatively. While our pattern-basedpre-
dictors only predict what subsequentremote accesses
arrive, they fail to predictwhenthey arrive. In this section,
we identify and proposesimple techniquesto predict
requeststimely, and describemechanismsto executethe
necessarycoherenceactionsspeculatively. In thenext sec-
tion, we presenta qualitative analysisfor theperformance
of a speculative coherentDSM using a simple analytic
model. In Section7, we evaluate performanceusing
empirical results from detailed simulations.

Figure5 illustratestheanatomyof a speculative coher-
entDSM node.Thenodeconsistsof oneor moreproces-
sors with their cache hierarchy. The processorsare
interconnectedeither via a snoopy bus to memoryand a
DSM board[16,10],or throughaswitchtightly integrating
the DSM hardwarewith the memorycontroller [14]. The
DSM hardware implementsthe coherenceprotocol, and
includes a remote cache(i.e., as a large repository for
remotedata)anda directoryto maintainsharinginforma-
tion for the node’s home pages. The hardware also
includesan MSP to predictandexecutecoherenceopera-
tions speculatively.

4.1  Triggering Request Speculation

The successof a speculative coherentDSM relies on
the accuracy of mechanismsto execute the necessary
coherenceactionsfor a remoteaccesstimely. Much like
mispredicting a remote request, premature coherence

FIGURE 3: A Memory Sharing Predictor (MSP).
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speculationcan result in a significant increasein remote
accesslatencies.For instance,earlyspeculationon a write
mayprematurelytakeablockaway from its readers.Simi-
larly, latecoherencespeculationmaylimit aDSM’sability
to hide much of the coherenceoverheadand offset the
gains from speculation.

A requestarrival time, to thefirst order, is a functionof
an application’s memoryaccesspatterns.While a block’s
sharingpatternsat the directorycanbe capturedusingan
MSP, sharingdoesnot provide informationaboutwhen a
processoraccessesa specific block. Proposalsfor hard-
wareprefetchinghaveextensively focusedon learningand
predictinganapplication’s memoryaccesspatterns.These
techniques,however, are either only effective for regular
accessstrides[4], targetirregularaccessesfor specificdata
structuresandhave limited applicability [20], andarenot
aseffective for arbitraryaccesspatterns[12]. Ratherthan
learnandpredictaccesspatterns,a DSM canrely on the
observed coherenceactivity and messagetraffic to esti-
matea request’s arrival time. Messagetraffic, however, is
highly dependenton theamountof systemcontentionand
may lead to high inaccuracies in estimates.

Fortunately, thereare commonDSM sharingpatterns
thatgive rise to trigger-readyspeculation—i.e.,a specula-
tion thatmayreadilyinvoke theprotocol.Read-sharingby
morethanoneprocessorresultsin a trigger-readyspecula-
tion. In a predictedsequenceof reads,the arrival of the
first readmayreadilytriggerspeculationfor therestof the
sequence.Similarly, migratorysharingresultsin a trigger-
readyspeculation.Migratory sharingis characterizedby
readandupgraderequestpairsto a block by a given pro-
cessor. Whenpredictingmigratorysharing,the arrival of
the readby the processormay readily trigger speculation
for the upgrade.

Moreover, thereare commonmemoryaccesspatterns
that may be predicted using simple heuristics. For
instance,in many producer/consumersharingscenarios,a
produceroftenwritesto amemoryblockonly onceandno
longeraccessestheblockuntil theconsumersreadthenew
data.Sucha sharingpatternis commonin parallel com-
mercial databaseservers which use messagebuffers to
communicateinformation amongprocesses.Ratherthan
predictwhenthereadrequestsfrom theconsumersarrive,
aDSM canpredictwhentheproducerhascompletedwrit-
ing to the memory block.

In this paper, we proposea simple heuristic, called
Speculative Write-Invalidation (SWI), in which an MSP
predicts that a processoris done writing to a memory

block upon a subsequentwrite (or upgrade)requestto
anotherblock by thesameprocessor. TheMSPmaintains
anearly-write-invalidatetablerecordingtheblock address
of the last write (or upgrade)requestper processor. SWI
not only hides the write invalidation latency, but also
enablestriggering speculationfor the consumers’read
requests.In the bestcase,both the write invalidationand
the readrequestlatency for all the consumersare elimi-
nated.

While SWI is anexcellentsimplemechanismto trigger
speculative read requests,it relies on incoming write
requestsandthesubsequentinvalidationto predictwhento
trigger the reads.As such,SWI precludesspeculatively
executingwrite (or upgrade)requestsanda moregeneral
mechanismis required to trigger timely both read and
write speculation.This paperis a first steptowardsimple-
mentinga speculative coherentDSM. As such,we prima-
rily focus on executing reads speculatively. Our DSM
triggersasequenceof readsuponasuccessfulwrite invali-
dationusingSWI or uponreceiving the first readrequest
in a sequence of reads when SWI fails.

4.2  Speculative Coherence Operations

The final enablingtechnologyfor a speculative coher-
ent DSM are mechanismsto executea coherenceaction
speculatively andupdatethepredictor’s accuracy by veri-
fying the speculation(i.e., verifying that the predicted
accessoccurs).Thekey requirementfor thesemechanisms
is thatthey co-exist with thebasecoherenceprotocolwith-
outany neededprotocolmodifications.Ratherthanrequire
extra functionalityin theprotocol,theMSPsimplyadvises
the protocol to execute (existing) coherenceoperations
early. A misspeculationresultsin additional(base)proto-
col transitionsbut doesnot interferewith the protocol’s
functionality. For instance,a prematurewrite invalidation
simply resultsin anextra subsequentreador write request
by the producer processor.

To executereadrequestsspeculatively, anMSPsimply
advisestheprotocolto sendread-onlyblock copiesto the
predictedrequesters.To verify the speculationaccuracy,
theDSM usesareferencebit in theremotecachefor every
block thatis placedspeculatively. Uponareferencefrom a
processor, theremotecacheclearsthebit verifying thatthe
speculatedaccessoccurs. When blocks are invalidated
from theremotecache,thespeculative bit is piggy-backed
on the invalidation messagesent to the homenode.The
MSP(at thehomenode)determinesthespeculationaccu-
racy using the piggy-back information, and removes
mispredictedrequestsequencesfrom thepatterntables.To
obviate the needfor protocol modification,upon a race
betweena speculatively-sentblock and an in-flight read
requestfor the block, the DSM nodereceiving the block
dropsthespeculatedmessageandawaitsa responseto the
read request message from the protocol.

WhenMSPpredictsasequenceof readsuponreceiving
a write (or upgrade),it usesSWI to simply advisethepro-
tocol to senda write invalidation.A successfulinvalida-
tion triggersspeculationfor thereadsequence.To prevent
frequentprematureinvalidations,SWI usesa bit perwrite
(or upgrade)in thecorrespondingpatterntableentry indi-
catinga previousprematureinvalidationfor thewrite. For
readsequencesthatfollow awrite (or upgrade)whichSWI
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no longer invalidates,the readspeculationcan only pro-
ceed upon receiving the first read request.

5  A Qualitative Performance Analysis

Much like speculative instruction execution using
branchprediction,theperformanceof a speculative coher-
entDSM dependson thespeculation(or prediction)accu-
racy, reductionin latenciesupona successfulspeculation,
andthemisspeculationpenalty. Unlikespeculative instruc-
tion execution,theperformanceof aspeculativecoherence
protocol dependson the opportunity for speculation.A
computation-intensiveapplication,for instance,is unlikely
to benefitfrom hiding remoteaccesslatencies.In this sec-
tion, we presenta simple intuitive model to analyzethe
performance of a speculative coherent DSM.

Our analytic model capturesthe key factorsaffecting
performancein a speculative coherentDSM in a small
numberof parameters.The modelestimatesperformance
improvementby accountingfor thereductionin communi-
cation time on the execution’s critical path. Our model
makes several simplifying assumptions.We assumethat
whenthe DSM successfullyexecutesa speculative mem-
ory request,the entire remotelatency is hidden.We also
assumeamisspeculationonly slows down a remoteaccess
and doesnot increasethe requestfrequency. In general,
however, a speculative coherentDSM canincorrectlytake
a block away from a currentuser, therebyturninga poten-
tial processorcachehit into a muchslower remoteaccess
latency. The model, however, can approximatesuch an
increasein the requestfrequency asa higheroverall mis-
speculation penalty.

Ourperformancemodelincludesthefollowing parame-
ters:c is theapplication’s communicationratio on thecrit-
ical path, f is the fraction of speculatively-executed
memoryrequestsover all the received requests,p is the
requestprediction accuracy, laccess and raccess represent
the local andremotememorylatenciesrespectively, rtl is
the ratio of remoteto local accesslatencies,n is the mis-
speculationpenaltyfactor, andN is thenumberof remote
requests on the critical path.

The modelapproximatesthe communicationtime in a
conventionalDSM by N raccess. In a speculative coherent
DSM, a fraction f of memory requestsexecutespecula-
tively, out of which p succeedand convert the remote
accessinto a local one incurring a latency of laccess
instead.(1-p) of thespeculative accessesfail andresultin
a misspeculationpenaltyof n raccess. Equation1 depicts
the resultingspeedupin communicationtime. Equation2
estimatesthe overall applicationspeedupby reducingthe
communication time by the speedup factor from
Equation1.

Figure6 examinesthe potential for speedupusing a
speculative coherentDSM. The graphsplot speedupof a
speculative coherentDSM from Equation2 againstappli-
cationcommunicationratio, c. The graphsat the top-left
examinetheimpactof predictionaccuracy on speedupfor
a DSM with a moderateremote-to-locallatency ratio of 4
(characteristicof today’s aggressive DSM clusters[22])
and a misspeculation penalty factor of 2.

The graphs corroboratethe intuition that prediction
accuracy playsa primary role in performance.A low pre-
diction accuracy of 10%-50% consistentlyresults in a
slowdown dueto a high misspeculationoverhead.A pre-
dictionaccuracy of 70%atbestspeedsuptheexecutionby
25%for a fully communication-boundapplication,while a
higherpredictionaccuracy of 90%improvesperformance
evenfor applicationswith moderatecommunicationratios.
In the limit, when all speculationssucceed(p=1.0), all
remote accesses in the speculative coherent DSM turn into
local accessesandtheDSM behaveslike anSMP—i.e.,a
uniform memoryarchitecture.Theseresultsindicatethat
designingaccuratepredictorsis a key first stepin building
speculative coherentDSMs. We presentempirical results
in Section7 that indicatethat our proposedMSPssignifi-
cantly improve prediction accuracy over current predic-
tors.

A misspeculationcanvary from merelysendinga read-
only copy of a block to a non-readerduringthereadphase
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FIGURE 6: Potential speedup in a speculative
coherent DSM.



requiring an extra invalidation, to taking a block incor-
rectly away from a processoractively accessingtheblock,
convertingprocessorcachehits to remoteaccesses.If mis-
speculationsareinfrequent,however, thepenaltydoesnot
have a large impact on performance.Figure6 (top-right)
examinesthe impactof misspeculationpenaltyon perfor-
mance.The graphscorroboratethis intuition andindicate
thatperformanceis not assensitive to misspeculationpen-
alty at a high perditionaccuracy. Speedupsimprove with
increasingcommunicationratio even with a misspecula-
tion penalty factor of 4 times a remote access latency.

Thereareseveralfactorsaffectingthefractionof specu-
latively-executedrequests,f. Thetypeof requestsexecuted
speculatively has a primary impact on f. A predictor’s
learning speed—i.e.,the number of requestmessageit
takes to learnandpredicta messagesequence—isalsoa
key factor affecting f. The higher the history depth, the
longer it takes the predictor to learn a new message
sequence.In otherwords,f is a measureof the reusefre-
quency for patterntableentries.Applicationswith rapidly-
changingsharingpatternsmay frequently introducenew
patterntableentrieswithout reusingthem.Figure6 (bot-
tom-left) plots speedupwith varying values for f. The
graphsindicate that a low fraction of speculatively-exe-
cutedrequests—e.g.,asa resultof rapidly-changingshar-
ing patterns—will fundamentallylimit performanceeven
with high prediction accuracies.

Finally, Figure6 (bottom-right)examinestheimpactof
remote-to-locallatency ratio (rtl) on speedups.Thegraphs
plot speedupsfor minimum rtl values found in recent
designssuchas the tightly-coupledhigh-endSGI Origin
2000 [14] and two more cost-effective cluster-based
DSMs,theHAL Mercury[22] andtheSequentNUMA-Q
[16]. The graphsindicatethat while a speculative coher-
enceprotocolbenefitsOrigin, it benefitstheclustersmost
due to a much higher remote-to-localaccessratios.This
result also indicates that a speculative coherentDSM
architecturemay help eliminate the performancegap
betweentheclustersandthehigh-endsystem,enablingthe
clusters to offer equal performance at a much lower cost.

6  Methodology

To evaluatepracticalimplementationsof a speculative
coherentDSM, we usetheWisconsinWind TunnelII [18]
to simulate a CCNUMA with sixteen nodes intercon-
nectedthrough hardware DSM boardsto a low-latency

switch-basednetwork (Figure5). Table1 depictsthe sys-
tem configuration parametersfor the simulated DSM.
Eachnodecontainsa 600-MHzdual-issueprocessorwith
1-Mbytecachesinterconnectedby a 100MHz split-trans-
actionbusto memoryandtheDSM board.Weassumeper-
fect instruction cachesbut model data cachesand their
contention at the memory bus accurately. We further
assumeapoint-to-pointnetwork with aconstantlatency of
80 cycles but model contention at the network interfaces.

Recentaggressive cachingtechniqueshave proven to
virtually eliminateall of capacityandconflict requesttraf-
fic resultingfrom anode’s inability to simultaneouslyhold
all the necessaryremotedata [8,10]. Ratherthan inflate
results with unnecessarycommunication,we gauge a
speculative coherentDSM’s ability to hidetruecommuni-
cationlatency andassumea remotecachelargeenoughto
hold the remotedata.We model a full-map write-invali-
date protocol using 32-byte coherence blocks.

Table2 presentsthe applicationswe usein this study
andthecorrespondinginputparameters.Appbt is ashared-
memoryimplementationof the NAS benchmark.Barnes
and ocean are from the SPLASH-2 benchmarksuite.
Em3d is a shared-memoryimplementationof the Split-C
benchmark.Moldyn is a shared-memoryimplementation
of aCHARMM-lik emoleculardynamicsapplication(sim-
ilar to theoneusedin [17]). Tomcatv is a shared-memory
implementationof theSPECbenchmark.Unstructured is a
computationalfluid dynamics application that uses an
unstructuredmesh.Our shared-memoryimplementation
of unstructured usesacyclic partitioningalgorithmfor the
meshandis thereforemorecommunication-intensive than
optimizedimplementationsusingthe recursive coordinate
bisection partitioning algorithm [17].

7  Results

Theresultsfrom oursimpleanalyticmodelclearlyindi-
catethat high predictionaccuracy is fundamentalto suc-
cessfully performing coherence speculation. In this
section,we first compareour proposedmemorysharing
predictors(MSP and VMSP) to a previously proposed
coherencemessagepredictor called Cosmos [17]. We
presentsimulationresultsindicatingthatMSPandVMSP
significantly improve prediction accuracy over Cosmos.
Next, weshow thatourpredictorsalsoreduceimplementa-
tion cost as comparedto Cosmos.We also show that
despitethe higher predictionaccuracy, MSP and VMSP
also offer a competitive learning speedas comparedto

Number of nodes 16

Processor speed 600 MHz

Processor cache 1 Mbyte

Memory bus 100 MHz

Local memory/
Remote Cache access time

104 cycles

Network latency 80 cycles

Round-trip miss latency 418 cycles

Remote-to-local access ratio (rtl) ~4

Table 1: System configuration parameter s.

Application Input Data Sets Iterations

appbt 12x12x12 cubes 40

barnes 4K particles 21

em3d 76800 nodes,
15% remote

50

moldyn 2048 particles 60

ocean 130x130 array 12

tomcatv 128x128 array 50

unstructured mesh.2K 50

Table 2: Applications and input data sets.



Cosmos.Finally, we presentnumbersevaluatingthe per-
formanceof the first proposalfor a speculative coherent
DSM.

7.1  Predictor Accuracy

Figure7 comparesthe predictionaccuracy in Cosmos,
MSP, and VMSP, for a history depthof one. The figure
plots thenumberof correctlypredictedmessagesover the
total numberof predictedmessages.The figure indicates
thatpredictionaccuracy in Cosmosis higherthan90%in
only two out of the seven applications.Furthermore,in
anotherthreeapplicationstheaccuracy is lower than80%,
andin theworstcasetheaccuracy is aslow as60%.MSP
and VMSP increaseprediction accuracy to significantly
higher levels as comparedto Cosmosby eliminating the
perturbation in the pattern tables due to the protocol
acknowledgements.MSP’s accuraciesareeithercompara-
ble to or much higher (by an additional15%-20%)than
Cosmos.VMSP alsoeliminatesthe readrequestre-order-
ing, performsbest,andincreasesaccuracy to over 87%in
all but one application, and over 79% in all applications.

Em3d exhibits producer/consumersharingwith a small
read-sharingdegree, and reachesa 99% accuracy with
MSP alone as compared to Cosmos.

Moldyn and unstructured exhibit both producer/con-
sumerand migratory sharing. In moldyn, the producer/
consumerphaseexhibits a small read-sharingdegreeand
is highly predictableeven with MSP. The migratoryshar-
ing patternsremainstatic throughoutthe applicationand
are also highly predictable.As a result, both MSP and
VMSP significantly improve prediction accuracy over
Cosmos and reach an accuracy of 98%-99%.

Unstructured exhibits wide read-sharingin a producer/
consumerphase.In this phase,all the processorsreada
block resulting in high readrequestre-orderingin MSP
andan accuracy of under65%. VMSP removes the read
re-ordering and substantially improves the prediction
accuracy in the producer/consumerphase.The migratory
sharingin unstructured occursin a sumreductionphase.
To optimizecommunication,processorsrefrainfrom read-
ing/writing memoryblocksif their contribution to thesum
is a zero.Someprocessorscomputea zeroin every other
visit to the reduction,andthereforealternateparticipating
in themigratorysharing.As such,with a historydepthof
one, the predictorsboth mispredictthe processorsin the
migratory sharingand the subsequentconsumers(in the
producer/consumerphase)upon leaving the reduction.

The resulting mispredictionslimit VMSP’s accuracy to
87%.

Ocean and tomcatv are both stencil computationsin
which processorsonly communicatewith their immediate
neighborsandthereis only a singleconsumerper block.
All threepredictorsreacha 100% accuracy for tomcatv.
Ocean, however, usesa lock to implementa reductionand
suma valueover all processorsat the endof every itera-
tion. Theorderin which processorsenterthelock changes
every iteration reducingVMSP’s prediction accuracy to
slightly below 100%.

Appbt implementsagaussianeliminationoveracubein
which processorsareallocatedsubcubesandsharebound-
ary valueson the subcubesurfaces.Becausethe gaussian
eliminationproceedsin all threecubedimensionsin sub-
sequentsteps,the memory blocks locatedat a subcube
edgeareconsumedby two differentprocessorsalongtwo
differentdimensions[5]. With a history depthof one,all
predictorsfail to distinguishsharingalong the different
cube dimensionsfor the blocks at the subcubeedges
resultingin a predictionaccuracy of at best90%.Cosmos
slightly improves accuracy over MSP becauseacknowl-
edgementmessagesin appbt actually help distinguish
between read sharing along the different dimensions.

Barnes simulatesthe forcesamongthebodiesin a gal-
axy. In eachiteration,processorstraverseanoctreerepre-
sentingthegalaxy to calculateforcesbetweenthebodies.
Most of the time a processoronly partially traversesthe
octreeto computethe forces for a given body. In every
iteration,thetreeis rebuilt to reflectthemovementof bod-
ies in thegalaxyandthis resultsin rapidchangesin read-
sharingpatterns.While thereis read-sharingby morethan
oneprocessorontheoctree,it doesnot resultin are-order-
ing of acknowledgmentsbecausetheread-sharingis asyn-
chronous,andthereis minimalqueueingin thesystem.As
such,theacknowledgmentsarrive in thesameorderevery
time, andMSP doesnot improve accuracy over Cosmos.
The readers,however, do not arrive in the sameorder in
every iterationbecausea processor’s workloadduring the
treetraversalchangeswith achangein theoctreestructure.
VMSP eliminatesthe re-orderingof readsin the pattern
tables and increases accuracy to slightly less than 80%.

7.2  History Depth

A key advantageof pattern-basedpredictorsover adap-
tive protocolsis thepredictors’ability to capturesimulta-
neously multiple sharing patternsfor a given memory

FIGURE 7: Base predictor accuracy comparison.
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history depth (d).
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block. Moreover, unlike adaptive protocols,the extent to
which a predictor can capturemultiple sharingpatterns
dependson the history depthand not the protocol com-
plexity. A higherhistorydepthenablesthepredictorto dis-
tinguish among distinct sharing patternswith common
messagesequencesandincreasesthe predictionaccuracy.
A higherhistorydepthalsochangesthebalanceamongthe
threepredictorsby allowing apredictorto capturemultiple
re-orderingsof messagessimultaneouslytherebyreducing
the negative impact of re-ordering.

Figure8 comparesthe predictionaccuracy in Cosmos,
MSP, andVMSP for historydepthsof one,two, andfour.
ThegraphsindicatethatVMSPachieveshigheraccuracies
for the applicationswhich exhibit multiple sharingpat-
ternswith commonmessagesequences,suchasappbt and
unstructured. A historydepthof two enablesthepredictor
to capturesimultaneouslythe alternatingsharingpatterns
in appbt for blocksatsubcubeedges,improving prediction
accuracy to 100%.Similarly, with a larger history depth,
thepredictorscandistinguishbetweenthemigratoryshar-
ing patternsin alternatereductionphasesin unstructured,
improving accuracy to up to 99%.

Becausethe structureof the octreein barnes rapidly
changes,many blockshave messagesequenceswith little
or no reusefrequency. With a lowerhistorydepth,rapidly-
changingsharingpatternswill result in frequentmispre-
dictionsanda lower predictionaccuracy. A higherhistory
depth allows a larger numberof sharingpatternsto co-
exist, increasesthe learningtime for the rapidly-changing
sharingpatterns,and reducesthe overall prediction fre-
quency. As such,only frequentlyoccurringandmoresta-
ble sharingpatternsresult in actual predictions,thereby
increasing the prediction accuracy.

A key performancemetricfor apredictor, besidesaccu-
racy, is thespeedatwhich it canlearnandpredictmessage
sequences.For a given history depth,VMSP by natureis
slower thanCosmosandMSP becausethe readsequence
encodedin a single vector in VMSP may correspondto
many patterntable entriesin Cosmosand MSP. On the
otherhand,becauseVMSP significantlyimprovespredic-
tion accuracy over CosmosandMSP, it may result in an
overall larger number of correctly predicted messages.

Table3 comparesthe predictors’ learningspeed.The
table depictsthe fraction of messagespredictedby each
predictorfor a history depthof one.The tabledepictsthe

fraction of the messagescorrectlypredictedasa product
of predictionaccuracy and the fraction of messagespre-
dicted.Besidesbarnes andocean, the restof the applica-
tionsexhibit a high predictionfrequency dueto thehighly
iterative natureof the computationresulting in frequent
reuseof the patterntableentriesin the predictors.More-
over, MSPpredictsthesamenumberof messagesasCos-
mos whereasVMSP requiresa slightly longer learning
time. Nevertheless,VMSP’s slower speedis offset by its
much higher prediction accuracy resulting in an overall
much larger number of correctly predicted messages.

7.3  Predictor Cost

A predictor’s implementationcost is a direct function
of thenumberof learnedmessagesequencesandtheover-
headof storing a messagesequencein the patterntable.
MSP and VMSP reducethe requirednumberof pattern
tableentriesby eliminatingtheacknowledgmentsfrom the
patterntables.VMSP further reducesoverheadby elimi-
natingthe multiple re-orderingsof a readsequence.On a
per-entry basisVMSP, however, requiresa higherstorage
overheadas comparedto Cosmosand MSP becauseit
stores reads in a vector.

Table4 comparesthe implementationoverheadof the
threepredictors.For every predictor, the leftmosttwo col-
umnscorrespondto the(rounded)averagenumberof pat-
tern tableentries(pte) for every allocatedmemoryblock
for a historydepthof one(d=1) andfour (d=4).The third

Application Cosmos (%) MSP (%) VMSP (%)

appbt 97 (87) 97 (83) 96 (85)

barnes 88 (53) 87 (52) 81 (63)

em3d 98 (77) 97 (97) 96 (96)

moldyn 97 (86) 97 (96) 97 (97)

ocean 89 (80) 86 (79) 83 (80)

tomcatv 97 (97) 97 (97) 95 (95)

unstructured 99 (63) 99 (65) 99 (87)

Table 3: Messages predicted (and correctly
predicted) for a history depth of one.

Application

Cosmos MSP VMSP

d=1 d=4 d=1 d=1 d=4 d=1 d=1 d=4 d=1

pte pte ovh pte pte ovh pte pte ovh

appbt 5 8 10 3 5 6 2 3 9

barnes 11 42 21 7 25 11 5 12 18

em3d 5 21 10 4 4 6 2 2 8

moldyn 4 14 8 2 3 4 2 2 7

ocean 1 2 3 < 1 < 1 2 < 1 < 1 4

tomcatv 3 3 7 2 2 4 2 2 7

unstructured 9 168 17 5 8 8 4 4 14

Table 4: Predictor storage overhead.



columnindicatesoverhead(ovh) in termsof thenumberof
byteswith a historydepthof one(d=1).All predictorsuse
4 bits to encodethe processorids. Cosmosuses3 bits to
encodethe messagetype resultingin 7 bits for a history
tableentryand14 bits perpteanda total of (7 + 14 pte)/8
bytesperblock.MSPandVMSPonly use2 bits to encode
therequesttype,andVMSP uses16 bits to encodea read
vector. ThereforeMSP’s overheadis (6 + 12 pte)/8bytes.
VMSP requires18 bits for thehistory tableentrybut only
18 + 6 bits for a pte becausein VMSP a readvector is
always followed by a write or upgradeand a pte will at
most containa single vector. VMSP’s overheadis there-
fore (18 + 24 pte)/8 bytes.

Not surprisingly, the table indicates that MSP and
VMSP significantlyreducethenumberof requiredpattern
table entriesas comparedto Cosmos.On average,for a
history depthof one,Cosmosrequiresfive entrieswhile
MSPandVMSPonly requirethreeandtwo entriesrespec-
tively. MSP reducesthe storagerequirementin termsof
numberof bytesto abouthalf of thatin Cosmos.Although
VMSPusesa lesscompactencoding,it reducestheoverall
storagerequirementin all but oneapplicationascompared
to Cosmos.For a history depthof one,however, VMSP
significantly improves the predictionaccuracy over both
MSP and Cosmos and is therefore most cost-effective.

The table also indicates that using a higher history
depthto achieveabetteraccuracy maybeimpractical.The
numberof patterntableentriesresultingfrom messagere-
orderingbecomesprohibitively high in Cosmosspecially
for barnes andunstructured.

7.4  Performance of a Speculative DSM

This papertakesa first stepin designingandevaluating
a speculative coherentDSM using pattern-basedpredic-
tors.We usea VMSP with a historydepthof oneasa pre-
dictor for our DSMs. Our DSMs primarily rely on two
techniquesto execute read requestsspeculatively: (1)
Speculative Write-Invalidation (SWI) invalidates writes
(or upgrades)early to trigger speculation for a read
sequence,and (2) First-Read(FR) usesthe arrival of the
first read to trigger a read sequence when SWI fails.

Figure9 illustratesthe performanceof two speculative
coherentDSMsagainsta Base-DSMsystemwith no spec-
ulation. The speculative coherentDSMs arean FR-DSM
systemonly using FR to trigger read sequencesand an
SWI-DSM using both SWI and FR to trigger read
sequences.The graphsplot executiontime normalizedto
those in Base-DSM.The graphsbreak down execution
time into computationtime (including barrier synchroni-
zation and spinning on locks) and the overall remote
requestwaiting time. The latter indicatesan application’s
potential for performanceimprovementusing a specula-
tive coherent DSM.

The graphs indicate that triggering read sequences
usingFR alonehasthe highestimpacton executiontime
andreducesrequestwaiting time in Base-DSMby 10%to
50%.TogetherSWI andFRreducerequestwaiting time in
four of theapplicationsto 30%-65%of thatin Base-DSM.
The overall reductionis executiontime in SWI-DSM and
FR-DSMis on average12%and8%,andat best24%and
17% respectively.

Table5 depictsthe total numberof readandwrite (or
upgrades)requests(in thousands)in Base-DSMfor all the

applications.Thetablealsodepictsa breakdown of specu-
lationandmisspeculationfor readsandwrite invalidatesas
apercentageof thenumberrequestsin FR-DSMandSWI-
DSM. Em3d, moldyn, tomcatv, andunstructured all benefit
from both FR andSWI. Em3d exhibits a staticproducer/
consumersharingpattern.The produceronly writes once
to a memoryblock in every iteration and thereforeSWI
successfullyinvalidates98% of the writes and triggers
95%of thereadsin SWI-DSM. In FR-DSM,FR canonly
execute58%of thereadsspeculatively becauseit usesthe
first readto triggertherestof thesequence.Overall,SWI-
DSM and FR-DSM reducerequestwaiting time by 70%
and 50% as compared to Base-DSM respectively.

Unlike in em3d, SWI fails to invalidatesuccessfullyall
the writes in moldyn and tomcatv. Moldyn exhibits both
producer/consumerand migratory sharing. In the pro-
ducer/consumerphase, the producer reads the blocks
shortly after writing to them.As suchSWI misspeculates
wheninvalidating the writes. SWI, however, successfully
invalidatesthe writes in the migratory phaseaccounting
for 68% of all the writes (and upgrades)and triggering
40%of thereads.FR capturesanadditional39%of all the
readsin theproducer/consumersharingphase.Theresult-
ing reductionin requestwaiting time is 50%and30%for
SWI-DSM and FR-DSM as compared to Base-DSM
respectively.

Tomcatv is primarily a stencil computationin which
processorsown andcomputesetsof rows in matricesand
shareat thesetboundaries.In every iteration,theproduc-
erscomputeandwrite oncein the main phase.However,
producerswrite again to half of boundaryblocksin a cor-
rection phasebefore the start of a subsequentiteration.
Therefore,SWI only succeedsin invalidating half of the
writes and triggering half of the readsreducingrequest
waiting time by a total of 50%.Becausetheproducerfirst
readsthen writes, every block has two readers,the pro-
ducerandthe consumer. FR additionallytriggersthe pro-
ducer’s copy of the read when the consumer’s read request
arrivesandthereforethetotal of speculative readsaddsup
to 70%in SWI-DSM.In FR-DSM,all blocksaretriggered
throughFR and only 46% of the readsare speculatively
executed reducing request waiting time by only 25%.

Unstructured exhibits a very high degreeof read-shar-
ing (i.e., thereare on averagetwelve readsper write or
upgrade)in the producer/consumerphase.About half of
thereadsin theentireapplicationarefrom this phase.For
every read sequence,FR uses one read to trigger a

FIGURE 9: Performance improvement in
speculative coherent DSMs.

requestcomp

appbt
barnes

em3d
moldyn

ocean
tomcatv

unstructured

Base-DSM FR-DSM SWI-DSM

E
xe

cu
tio

n 
T

im
e 

(%
)

0

20

40

60

80

100



sequenceof twelve. The otherhalf of the readsare from
the reductionphasewith migratory sharingpatterns.FR
can not benefit migratory sharing since the latter only
involves read/write pairs. Therefore,FR executes46%
(i.e., elevenout of twelve) of all thereadsspeculatively in
FR-DSM. SWI successfullyinvalidates90% of the writ-
able copiesof the blocks in unstructured. Togetherwith
FR, SWI executes92% of all readsspeculatively, and
reducesrequestwaiting time by 50% in SWI-DSM as
compared to Base-DSM.

SWI doesnot benefitany of appbt, barnes, andocean
becausethe simple early-invalidation heuristic for the
writesfails in theseapplications;theproducereitherreads
theblock uponwriting to it or writesmultiple timesto the
block.Theseapplicationsall benefitfrom FR andbetween
41% and 58% of all readsexecutespeculatively. Barnes
exhibits low communicationratiosandthereforedoesnot
benefit from a reduction in request waiting time.

In appbt, much of the requestwaiting time is in the
gaussianeliminationphasein whichprocessorsproceedin
a pipeline and data are passedin a strict producer/con-
sumermanner. FR usesthe consumer’s read requestto
executetheproducer’s readrequestspeculatively. Muchof
the pipeline’s critical path, however, is due to the read
requestfrom the consumerandthe write/upgraderequest
from theproducerlimiting theimpactof speculative reads
to a reductionof 25%in requestwaiting time. Ocean pri-
marily exhibits near-neighborsharing.FR usesthe con-
sumer’s readrequestto executetheproducer’s readrequest
(41%of all reads)speculatively. Theresultingreductionin
request waiting time is about 18%.

The tablealso indicatesthat misspeculationfrequency
is minimal for write invalidatesandis only high for specu-
lative readsin applicationswith low predictionaccuracy.
Thenumberof write invalidatemisspeculationsis minimal
becauseMSP preventsfurther speculative write invalida-
tions upon a misspeculation.Moreover, misspeculated
read requestsdo not impact execution time becausethe
misspeculationsprimarily result in extra read-onlycopies
of blockssentto processorswhich do not actively readthe
blocks.Becauseall read-onlycopiesof a block are sent
and subsequentlyinvalidatedin parallel, the misspecula-
tion penalty is minimal.

8  Conclusions

In thispaper, weproposedtheMemorySharingPredic-
tors (MSPs), novel pattern-basedpredictors—derived
from Yeh and Patt’s two-level Pap branchpredictor—to
predictandexecutecoherenceprotocolsspeculatively. An
MSPis basedon thekey observation that in orderto hide
theremoteaccesslatency, a predictormustaccuratelypre-
dict only a remotememoryaccess(i.e.,a requestmessage)
andnot thesubsequentcoherencemessagesinvokedby the
access.By eliminating unnecessarycoherencemessages
from the pattern tables,an MSP significantly improves
predictionaccuracy and implementationcost over previ-
ously-proposed general message predictors.

We presentedsimulationresultsrunning shared-mem-
ory applicationsto indicatethat: (1) our baseMSP elimi-
natesthe acknowledgmentmessagesin the patterntables
and increasesprediction accuracy in a generalmessage
predictorfrom 81%to 86%,(2) anoptimizedVectorMSP
(VMSP) improvespredictionaccuracy to 93% by usinga
compactvector representationof readrequestsequences
andeliminatingperturbationdueto readrequestre-order-
ing, and (3) VMSP not only offers the best prediction
accuracy but also reducesimplementationstorageover-
head over a general message predictor.

This paperalsotook the first steptowardsdesigninga
speculative coherentDSM usingpattern-basedpredictors.
To hidetheremoteaccesslatency successfully, a predictor
mustnotonly predict“what” subsequentmemoryaccesses
arrive but also “when” they arrive. We identified simple
techniquesand mechanisms(that are readily implement-
able without modifying the baseprotocol) to trigger and
perform speculationfor remote read accesses.We pre-
sentedresultsfrom a simple analyticmodel anddetailed
simulationof shared-memoryapplicationsto indicatethat:
(1) high-accuracy predictorsare the key to high perfor-
mancein a speculative coherentDSM, (2) triggeringread
requestspeculationfor a read sequencebasedon the
arrival of thefirst readreducesexecutiontime in all appli-
cationsonaverageby 8%andatbestby 17%,and(3) trig-
geringspeculationfor readsby speculatively invalidatinga
writable copy reducesexecutiontime on averageby 12%
and at best by 24%.

Application

Base-DSM

(x1000)

FR-DSM SWI-DSM

FR read (%) FR read (%) SWI read (%) write invalidate (%)

read write sent miss sent miss sent miss sent miss

appbt 832 432 52 14 48 13 10 <1 10 < 1

barnes 1169 458 58 12 52 12 7 1 10 3

em3d 4731 1799 58 0 0 0 95 0 98 0

moldyn 1034 618 39 < 1 39 < 1 40 0 68 < 1

ocean 589 316 41 2 40 2 2 <1 4 2

tomcatv 187 96 46 0 24 0 45 0 48 < 1

unstructured 28461 15985 46 21 23 12 69 10 90 < 1

Table 5: Frequency of requests, speculations, and misspeculations.
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