
This work is supported in part by Wright Laboratory Avionics Directorate,
Air Force Material Command, USAF, under grant #F33615-94-1-1525 and
ARPA order no. B550, NSF PYI Award CCR-9157366, NSF Grants MIP-
9225097 and MIP-9625558, an IBM graduate fellowship, and donations
from A.T.&T. Bell Laboratories, Hewlett Packard, IBM Corporation, and
Sun Microsystems. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copy-
right notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or implied, of the
Wright Laboratory Avionics Directorate or the U.S. Government.

Permission to make digital or hard copies of part or all of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or direct commercial advantage and that cop-
ies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, to redistribute to lists, or to
use any component of this work in other works, requires prior specific per-
mission and/or a fee. Permissions may be requested from Publications
Dept, ACM Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212)
869-0481, orpermissions@acm.org.

Appears inProceedings of the 24th Annual International Symposium on Computer Architecture

Abstract

This paper proposes and evaluates a new approach to directory-
based cache coherence protocols calledReactive NUMA (R-
NUMA). An R-NUMA system combines a conventional CC-
NUMA coherence protocol with a more-recent Simple-COMA (S-
COMA) protocol. What makes R-NUMA novel is the way it
dynamically reacts to program and system behavior to switch
between CC-NUMA and S-COMA and exploit the best aspects of
both protocols. This reactive behavior allows each node in an R-
NUMA system to independently choose the best protocol for a
particular page, thus providing much greater performance stability
than either CC-NUMA or S-COMA alone. Our evaluation is both
qualitative and quantitative. We first show the theoretical result
that R-NUMA’s worst-case performance is bounded within a small
constant factor (i.e., two to three times) of the best of CC-NUMA
and S-COMA. We then use detailed execution-driven simulation to
show that, in practice, R-NUMA usually performs better than
either a pure CC-NUMA or pure S-COMA protocol, and no more
than 57% worse than the best of CC-NUMA and S-COMA, for our
benchmarks and base system assumptions.

1 Introduction

Clusters of symmetric multiprocessors, or SMPs, have emerged as
a promising approach to building large-scale shared-memory par-
allel machines [15,16]. The relatively high volumes of these small-
scale parallel servers make them extremely cost-effective as build-
ing blocks. By connecting these low-cost nodes, system designers
hope to construct large-scale parallel machines with better cost-
performance than has been previously possible [3].

To preserve software compatibility, these clusters use a directory-
based cache coherence protocol to support a shared-memory
abstraction despite having memory physically distributed across
the nodes. Such systems have previously employed either a cache-
coherent non-uniform memory access (CC-NUMA) protocol
[15,16], a Simple-COMA (S-COMA) protocol [11], or provided
support for both [22,8]. In a CC-NUMA system, remote data may
be cached in a CPU’s cache or a per-node cluster cache. Refer-
ences not satisfied by these hardware caches must be sent to the
referenced page’s home node to obtain the requested data (and
enforce any necessary coherence actions). An S-COMA system
uses the exact same coherence protocol, but allocates part of the
local node’s main memory to act as a large cache for remote pages.
S-COMA is much cheaper and simpler to implement than earlier
COMA systems [10,12] because it uses standard address transla-
tion hardware as “tags” for the page cache. Because S-COMA
requires only incrementally more hardware than CC-NUMA,
some systems have proposed providing support for both protocols
[22,8].

A potential disadvantage of DSM clusters is the relatively large
ratio of remote to local miss times. For example, the Sequent
STiNG’s remote misses are roughly ten times slower than local
misses [16]. Conversely, in a full-integrated implementation like
the recently-announced SGI Origin2000 [1], the ratio can be as
small as two to three times. Thus an application’s performance on
a DSM cluster will be very sensitive to the frequency of remote
misses.

S-COMA can potentially perform much better than CC-NUMA on
these machines. This is because the S-COMA page cache is part of
main memory, and can be much larger than a CC-NUMA cluster
cache. Thus, S-COMA potentially results in significantly fewer
remote misses, and achieves better performance. CC-NUMA
machines can reduce this difference by allocating pages on the
same node as the processor that uses them [17], dynamically
migrating pages [4,24], and replicating read-only pages [24].
These techniques have been shown to dramatically reduce the
number of remote misses for some applications. Unfortunately,
they provide no help for read-write shared data, which are quite
frequent in other applications. For example, Verghese, et al., found
that 90% of user data misses in a commercial relational database
application were to read-write shared pages [24]. S-COMA per-
mits replication of these read-write pages, thus eliminating unnec-
essary remote references.

Conversely, S-COMA is not without its costs. Allocating space in
the S-COMA page cache incurs substantial overhead, in the form
of operating system intervention to set up the local translation. The
page cache must eliminate many misses to amortize this initial
overhead (and the subsequent replacement overhead). This is fur-
ther complicated by the large—i.e., page—granularity. Programs
with large sparse data sets may see severe internal fragmentation
and thrash the S-COMA page cache. Thus CC-NUMA may have

Reactive NUMA: A Design for Unifying S-COMA and CC-NUMA
Babak Falsafi and David A. Wood
Computer Sciences Department

University of Wisconsin, Madison
1210 W. Dayton Street
Madison, WI 53706

{babak,david}@cs.wisc.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147949668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Appears inProceedings of the 24th Annual International Symposium on Computer Architecture

substantially better performance for some applications and refer-
ence patterns.

In this paper, we propose a Reactive NUMA (R-NUMA) protocol
that dynamically reacts to program and system behavior to switch
between CC-NUMA and S-COMA protocols. This reactive behav-
ior provides much greater performance stability than either CC-
NUMA or S-COMA alone, by allowing each node in an R-NUMA
system to independently choose the best protocol for a particular
page. The algorithm initially allocates all remote pages as CC-
NUMA, but maintains a per-node, per-page count of the number of
times a block is refetched as a result of a conflict or capacity miss.
When the refetch count exceeds a threshold, the operating system
intervenes and reallocates the page in the S-COMA page cache. R-
NUMA requires very little additional hardware—primarily a set of
per-node, per-page counters—beyond what is needed to support
both CC-NUMA and S-COMA.

We evaluate the protocol both qualitatively and quantitatively. We
first present a simple analytical model indicating that R-NUMA
performs competitively with respect to CC-NUMA and S-COMA.
This result guarantees that R-NUMA never performs much worse
than the best of either S-COMA or CC-NUMA. We then use
detailed execution-driven simulation to show that, in practice, R-
NUMA’s reactive behavior often leads to better performance than
either a pure CC-NUMA or pure S-COMA protocol. Quantitative
results also confirm our theoretical result: R-NUMA performs no
more than 57% worse than the best of the two underlying proto-
cols. Conversely, for one application CC-NUMA was 179% slower
than S-COMA; for another S-COMA was 315% slower than CC-
NUMA. Thus, for our benchmarks and system assumptions, R-
NUMA often achieves the best performance, and is never much
worse than the best possible. This superior performance stability
makes R-NUMA a very attractive alternative for future shared-
memory machines.

The next section describes the basic distributed shared-memory
machine structure that we study in this paper, and provides more
details of the CC-NUMA and S-COMA protocols. Section3 pre-
sents the Reactive NUMA protocol and its qualitative analysis.
Section4 and Section5 describe the simulation methodology we
use to quantitatively evaluate the protocols and the results, respec-
tively. Finally, Section6 summarizes the results and conclusions in
this paper.

2 DSM Hardware Support

Figure1 illustrates the basic distributed shared-memory machine
organization that we study in this paper. Each node is a symmetric
multiprocessor (SMP) workstation with four processors connected
via a coherent bus to an interleaved memory. A Remote Access

Device (RAD) implements a directory-based cache coherence pro-
tocol to extend the shared-memory abstraction across the nodes.
This device implements the same basic coherence protocol in all
systems; CC-NUMA, S-COMA, and R-NUMA simply differ in
where remote data is cached.

All systems implement a global physical address space, where the
high-order bits encode the node id. CC-NUMA systems reference
global addresses directly; S-COMA uses a simple SRAM mapping
table to translate local physical addresses to global physical
addresses. R-NUMA does both, since it supports both protocols.
All systems run a single operating system image, but maintain sep-
arate per-node page tables to permit independent allocation deci-
sions and reduce TLB fill latency and contention.

2.1 CC-NUMA
Most previous distributed shared-memory machines have been
CC-NUMA machines [15,2,16,5,18]. Figure2(a) illustrates the
CC-NUMA RAD we consider in this paper. Like the Sequent
STiNG [16], our CC-NUMA RAD is equipped with a remote clus-
ter cache for maintaining recently referenced remote data blocks.
This cache acts as another level in the node’s cache hierarchy, but
unlike the processor caches, only holds remote data. In the remain-
der of this paper, we refer to this CC-NUMA cache as ablock
cache to differentiate it from S-COMA’s page-granularity cache. A
hardware protocol controller manages accesses to the block cache
and directory, services messages from remote nodes, and requests
remote data on the behalf of the node.

Figure2 (b) illustrates the flow of events on a remote reference in
CC-NUMA. The first processor to access a remote page within
each node results in a (soft) page fault. The operating system’s

Memory Remote Access
Device

$

.....
....

Network

FIGURE 1. A distrib uted shared-memor y mac hine .

CPU

$

CPU

$

CPU

$

FIGURE 2. Caching remote data in CC-NUMA:
(a) anatom y of a CC-NUMA RAD , (b) flo w of a
remote miss.

(a)

(b)

Remote
Reference

pa
ge

 fa
ult

Map a remote
page

Cache

1. Request data
2. Flush block frame

miss

MEMORY BUS

B
lo

c
k

D
ire

ct
or

y

P
ro

to
co

l
F

S
M

DATA Suspend
Processor

Physical
Address

Access Block

cache fill

NETWORK

C
ac

he

Appears inProceedings of the 24th Annual International Symposium on Computer Architecture

page fault handler maps the page to a CC-NUMA global physical
address, updating the node’s page table. Subsequent references to
the same page by any processor within the SMP node result in
cache block fills on the memory bus. The CC-NUMA RAD snoops
for global physical addresses on the bus and satisfies the cache fill
requests if the data resides in the block cache. Upon a miss in the
block cache, the RAD allocates a block frame, writing back a dirty
block if necessary, and sends a request for the data to the remote
node.

The block cache improves CC-NUMA’s performance by reducing
the number of remote misses. Block caches can either be small,
fast, and built with SRAM, or large, slow, and built with DRAM.
The latter reduces the number of remote misses, but at the expense
of increasing the remote miss latency and controller occupancy. To
keep latencies and occupancies comparable between CC-NUMA
and S-COMA we consider only relatively small, fast block caches
in this paper.

Because the block cache is still relatively small, CC-NUMA’s per-
formance is very sensitive to data allocation and placement.
LaRowe, et al. [14] have shown that a good initial allocation works
well for many scientific applications. We use a first-touch migra-
tion policy which is both simple and has been shown to substan-
tially eliminate unnecessary traffic [17]. In this policy, a user-
invoked directive on every node initiates page migration at the start
of the parallel phase of the program. Upon the first request for each
page, the home node migrates the page to the requester, assuming
the first requester is likely to prove a frequent requester. This is
especially true for some regular scientific applications that specifi-
cally “touch” pages to ensure their proper placement [26].
Dynamic replication/migration can further improve performance
by replicating code and read-only data pages, and migrating pages
that are mostly accessed by a single processor [24]. Unfortunately,
these techniques fail for data pages that are actively shared among
multiple processors.

2.2 S-COMA
Cache-Only Memory Architectures (COMA) allow remote data to
reside in both the node’s cache hierarchy and main memory. For
example, the SICS DDM [10] and Kendall Square Research KSR1
[19] replicate and migrate data at cache block granularities among
the node’s memories. Because data is allocated at subpage granu-
larities, these machines require the use of significant additional
hardware to determine the physical location of a datum.

Simple COMA (S-COMA) [11,21] greatly simplifies the original
COMA approach by decoupling data allocation and naming from
coherence. Remote data is allocated and mapped at page granular-
ity using standard virtual address translation hardware, much like
page-based DSMs [7]. A region of main memory is set aside as a
page cache for remote data pages. An S-COMA remote access
device (RAD), Figure3 (a), maintains coherence using the same
basic coherence protocol as the CC-NUMA RAD. The essential
extra hardware is a set of fine-grain access control tags—two bits
per block to detect when the RAD must inhibit memory and inter-
vene—and an auxiliary SRAM translation table with one entry per
page—to convert between local physical addresses (i.e., the page
cache) and global physical addresses (i.e., the home address).
Because operating system software handles the more complex
operations of allocation and migration, S-COMA is much simpler
than “full” COMA implementations.

Figure3 (b) illustrates the S-COMA algorithm. On a node’s first
reference to a remote page, a page fault occurs and is handled by

the operating system. If there are no free page frames available in
the page cache, the operating system selects a victim, unmaps and
flushes all dirty blocks back to home node, and shoots down the
TLBs on thelocal node. When a page frame is available, the oper-
ating system initializes the page table, the RAD’s auxiliary transla-
tion table, and fine-grain access control tags. Subsequent
references find the page mapped, and hits and misses are detected
by the fine-grain access control tags. Hits are serviced by local
memory. Misses are detected by the RAD, which inhibits memory,
translates to the corresponding global physical address, and com-
municates with the home node to obtain the requesting block.

S-COMA can potentially outperform CC-NUMA because it can
exploit the node’s large main memory to cache remote data. S-
COMA can dynamically tailor the fraction of memory used to
cache remote data, in response to an application’s needs. S-
COMA’s remote cache is also fully-associative, because S-COMA
uses the standard virtual address translation hardware to locate
remote pages.

S-COMA’s simplicity and fully-associative page cache come at a
cost, however. Many parallel applications do not have sufficient
spatial locality to fully utilize remote pages, leading to internal
fragmentation. Irregular applications and regular applications with
large strides are particularly susceptible to this problem. These
applications may incur significant internal fragmentation, and

MEMORY BUS

D
ire

ct
or

y

P
ro

to
co

l
F

S
M

NETWORK

Inhibit
Memor y

Physical
Address

F
in

e-
gr

ai
n

Ta
gs

DATA

M
E

M
O

R
Y

(P
ag

e
C

ac
he

)

FIGURE 3. Caching remote data in S-COMA:
(a) anatom y of an S-COMA RAD , (b) flo w of a
remote miss.

Translation T able

(a)

(b)

Remote
Reference

page fault

no

Are there free
page frames?

Map a remote
page

yes

miss

1. Select a page
2. Flush blocks on page
3. Unmap page
4. Invalidate TLBs

cac
he

 fill

1. Inhibit memory
2. Request data

1. Access S-COMA
fine-grain tags

2.Translate LPA to GPA

Suspend
Processor

Appears inProceedings of the 24th Annual International Symposium on Computer Architecture

require a prohibitively large page cache to fit their remote working
sets. If the page cache is not sufficiently large, the result is frequent
S-COMA page replacement (i.e., thrashing) and a rapid decrease
in performance.

3 Reactive NUMA

Reactive NUMA (R-NUMA) tries to combine the best aspects of
both CC-NUMA and S-COMA. R-NUMA is based on the obser-
vation that remote data pages can be classified into two groups.
Reuse pages contain data structures that are accessed many times
within the same node, and thus exhibit substantial remote traffic
due to capacity and conflict misses in the node’s cache hierarchy.
Conversely, communication pages are used primarily to exchange
data between nodes, and thus mainly exhibit coherence misses. R-
NUMA attempts to distinguish between these two types of pages,
and store reuse pages in an S-COMA-like page cache, while limit-
ing communication pages to the node’s cache hierarchy and CC-
NUMA-lik e block cache. R-NUMA dynamically detects when
communication pages become reuse pages, and vice versa.

3.1 Mechanisms for R-NUMA
An R-NUMA machine must provide mechanisms for caching
remote data pages both as CC-NUMA and S-COMA pages. The
operating system maps CC-NUMA pages directly to a remote glo-
bal physical address and S-COMA pages to a local physical
address in the page cache. The R-NUMA RAD snoops for both
CC-NUMA global physical addresses and (local) physical
addresses in the S-COMA page cache. Note that R-NUMA need
not require any additional hardware. For example, s3.mp [18] and
the Stanford FLASH [13] already provide sufficient mechanisms
to implement both CC-NUMA and S-COMA. Because they use
programmable controllers, implementing R-NUMA should just be
a software change.

Figure4 (a) illustrates that an R-NUMA RAD looks like a combi-
nation of an S-COMA RAD and a CC-NUMA RAD. A block
cache serves as a backup device for CC-NUMA-mapped pages, a
set of S-COMA fine-grain tags provide access control for S-
COMA-mapped pages, a simple SRAM mapping table translates
local S-COMA physical addresses to the corresponding global
physical addresses, and a directory maintains coherence informa-
tion for each page for which a node is the designated home.

The R-NUMA protocol separates data allocation from coherence.
Coherence is aglobal operation, where all nodes cooperate to
enforce the shared-memory abstraction. Data allocation is alocal
decision, which determines whether a particular cache block
(page) should be replicated in the S-COMA page cache or CC-
NUMA block cache. This separation allows each node to indepen-
dently decide whether to manage a particular shared page as CC-
NUMA or S-COMA.

R-NUMA requires a mechanism to decide when to switch between
CC-NUMA and S-COMA. The key difference between reuse and
communication pages is the number of remote capacity and con-
flict misses a page incurs in the block cache. When a block gets
evicted from the block cache due to its limited capacity or a set
conflict, the next subsequent reference to that block will miss,
causing arefetch from the home node. The directory can detect
refetches by simply keeping track of when a node requests a block
that the directory state indicates it already has. Assuming a non-
notifying protocol, this is trivial for read-only blocks. Handling

read-write blocks generally requires adding an additional state to
indicate that a processor previously held an exclusive block, but
voluntarily wrote it back. The system then keeps track of the num-
ber of refetches on a per-node, per-page basis. The directory can
either maintain the counts itself, similar to the page migration
counts in the SGI Origin2000 [1], or communicate the information
back to the requester on the reply message. We assume that each
R-NUMA RAD maintains a set of per-page counters for its node
and generates an interrupt when the count exceeds a preset thresh-
old.

Figure4 (b) illustrates the flow of events for caching remote data
in R-NUMA. The first reference to an unmapped page results in a
page fault. The operating system initially maps the page CC-
NUMA. Further references are handled by the R-NUMA RAD,
either supplying them from the block cache or fetching them from
the home node. The RAD uses the per-page counters to detect
when the number of refetches exceeds the threshold. When this

Are there free
page frames?

1. Select a page
2. Flush blocks
3. Unmap page
4. Invalidate TLBs

Cache

1. Request data
2. Flush block frame

Remote
Reference

Switch to
S-COMA?

1. Flush blocks
2. Unmap page
3. Invalidate TLBs

miss

yes

CC-NUMA
cache fill

(a)

Access Block

Map an S-COMA
page

Map a CC-NUMA
page

DATA

MEMORY BUS

D
ire

ct
or

y

P
ro

to
co

l
F

S
M

NETWORK

Inhibit
Memor y

Physical
Address

B
lo

c
k

C
ou

nt
er

s
R

ea
ct

iv
e

Fine-grain
Tags

M
E

M
O

R
Y

(P
ag

e
C

ac
he

)

2. Request data
1. Inhibit memory

Tr
an

sl
at

io
n

Ta
b

le

1. Access S-COMA
fine-g rain tags

2.Translate LPA to GPA

page fault

S-COMA
cache fill

no

no yes

(b)

FIGURE 4. Caching remote data in R-NUMA:
(a) anatom y of an R-NUMA RAD , (b) flo w of a
remote miss.

miss

C
ac

he

Suspend
Processor

Appears inProceedings of the 24th Annual International Symposium on Computer Architecture

occurs, the operating system is invoked to relocate the page from
CC-NUMA to S-COMA. Relocation requires unmapping the CC-
NUMA page, flushing all locally cached blocks from that page,
and allocating and mapping a new S-COMA page (possibly clean-
ing a page, if no free ones exist).

3.2 Qualitative Performance
R-NUMA’s performance depends upon how well it selects the
appropriate mapping for a given page. If an off-line oracle selects
the mapping, then the R-NUMA protocol always performs at least
as well as either CC-NUMA or S-COMA, since it combines the
hardware resources of both. Unfortunately, real systems must rely
on on-line algorithms.

Instead, we present a simple intuitive model to analyze the worst-
case behavior of R-NUMA. Our model shows that an application’s
execution time under R-NUMA is always within a small constant
factor of the execution time under the best of CC-NUMA and S-
COMA.

In the interest of brevity and clarity, we make several simplifying
assumptions about the behavior of the system. We compare perfor-
mance relative to an “ideal” CC-NUMA machine with an infinite
capacity block cache. The finite capacities of the actual block and
page caches result in extra overheads due to refetches in the block
cache, replacements in the page cache, and relocation of pages
between the block and page caches. We limit our analysis to these
extra overheads for a single remote page. The results generalize to
multiple pages because they hold for worst-case reference patterns.

Assume a CC-NUMA with a block cache of a given size, an S-
COMA with a page cache of a given size, and an R-NUMA with
block and page caches equal in size to their counterparts in the CC-
NUMA and S-COMA. Also assume that the cost of fetching a
block from a remote node is much higher than a local memory
access. Our results remain qualitatively valid for systems that vio-
late these assumptions, however, a further discussion is beyond the
scope of this paper.

Table1 depicts the parameters we use in our performance model.
Crefetch is the cost of refetching a block from a remote node;Callo-

cate is the cost of allocating and later replacing a page;Crelocate is
the cost of relocating a page from CC-NUMA to S-COMA;T is
the number of refetches before R-NUMA relocates a CC-NUMA
page to an S-COMA page. Our model uses these parameters to
computeOCC-NUMA, OS-COMA andOR-NUMA, which represent the
additional per-page overheads of the three machines as compared
to our ideal machine respectively.

R-NUMA’s per-page behavior digresses from CC-NUMA’s when a
page incurs more refetches than specified by the thresholdT. R-
NUMA relocates such a page to the page cache in order to convert
remote block fetches to local memory accesses. R-NUMA per-
forms worst when a page relocates from the block cache to the
page cache and is not referenced again before being replaced. In
this case, CC-NUMA’s overhead (OCC-NUMA) is only TCrefetch
whereas R-NUMA would incur additional overheads of relocating
the blocks on the CC-NUMA page, and allocating and subse-
quently replacing an S-COMA page for a total ofOR-NUMA =
TCrefetch + Crelocate + Callocate. Therefore, R-NUMA’s perfor-
mance is worse than CC-NUMA by at most

. (EQ 1)

R-NUMA’s worst-case performance with respect to S-COMA also
occurs for the same case. S-COMA’s per-page overhead (OS-

COMA) would be simplyCallocate whereas R-NUMA’s overhead
(OR-NUMA) would include the additional overheads of refetchingT
blocks and relocating a page, i.e.,TCrefetch + Crelocate + Callocate.
Hence, S-COMA will outperform R-NUMA by at most

. (EQ 2)

Our goal is to minimize the worst-case performance of R-NUMA
with respect to both CC-NUMA and S-COMA. The right hand
sides of the above two equations are intersecting functions ofT. At
the point of intersection, R-NUMA’s relative worst-case perfor-
mance is equal to

(EQ 3)

at the threshold value of .

Equation3 indicates that the bound on worst-case performance of
R-NUMA depends on the cost of relocation relative to the cost of
page allocation/replacement. Relocation includes generating an
interrupt when the number of refetches reaches the threshold, and
moving the blocks from the block cache to the page cache. In a
high-performance implementation with support for fast interrupts
and mechanisms for (locally) relocating blocks,Crelocate will be
small compared toCallocate, and the worst-case performance bound
will be close to 2. In a less aggressive implementation, the cost of
relocation will be dominated by interrupt overhead and flushing
the blocks from the block cache,Crelocate will be approximately
equal toCallocate, and the worst-case performance will be close to
3.

Equation3 also indicates that the threshold value at the point of
intersection simply depends on the per-page overheads of CC-
NUMA and S-COMA. As such, the value is a function of the cost
of page allocation/replacement and the cost of a remote block
fetch, and is independent of the cost of relocation.

In practical terms, the worst-case performance analysis proves that
R-NUMA performs no more than three times worse than either a
vanilla CC-NUMA or S-COMA system. In fact, since block
refetch, page allocation/replacement, and page relocation over-

Parameter Description

Crefetch Cost of refetching a remote block

Callocate Cost of allocating/replacing a page

Crelocate Cost of relocating a page

T Relocation threshold value

OCC-NUMA Per-page overhead of CC-NUMA

OS-COMA Per-page overhead of S-COMA

OR-NUMA Per-page overhead of R-NUMA

TABLE 1. Parameters for the performance model.

OR-NUMA

OCC-NUMA

T Crefetch Crelocate Callocate+ +

T Crefetch
--=

OR-NUMA

OS-COMA

T Crefetch Crelocate Callocate+ +

Callocate
--=

OR-NUMA

OCC-NUMA

OR-NUMA

OS-COMA
---------------------- 2

Crelocate

Callocate
----------------------+= =

T
Callocate

Crefetch
---------------------=

Appears inProceedings of the 24th Annual International Symposium on Computer Architecture

heads are only a few out of many components of execution time,
the practical “bound” is much less than three. However, while
bounding worst-case performance is important for some applica-
tions, e.g., on-line transaction processing and process control, most
users focus on average performance. Moreover, the threshold value
that maximizes R-NUMA’s performance in practice may be differ-
ent from the one that minimizes worst-case performance. In the
remainder of this paper, we show that R-NUMA’s ability to
dynamically allocate some pages to the S-COMA page cache and
others to the CC-NUMA block cache can significantly improve
performance. We also show that R-NUMA performs well even
with a much smaller block cache than CC-NUMA. Finally, we
present results on the sensitivity of R-NUMA’s performance on
relocation threshold value and overhead.

4 Methodology

To compare practical implementations of R-NUMA, CC-NUMA,
and S-COMA, we simulate a distributed shared-memory machine
consisting of a network of eight SMP nodes (Figure1). Each node
is a 4-way multiprocessor with 400 MHz dual-issue statically
scheduled processors—modeled after the Ross HyperSparc—
interconnected by a 100 MHz split-transaction bus. A snoopy
MOESI coherence protocol—modeled after Sparc’s MBus proto-
col—keeps the caches within each node consistent. We assume
perfect instruction caches1 but model data caches and their conten-
tion at the memory bus accurately. We further assume a point-to-
point network with a constant latency of 100 cycles but model con-
tention at the network interfaces.

Our block cache is a writeback direct-mapped SRAM cache. The
cache maintains inclusion—with respect to the node’s cache hier-
archy—for remote blocks cached in the read-write state but not for
those cached in the read-only state. Cache inclusion for read-write
blocks greatly simplifies the interaction between the DSM CC-
NUMA protocol and the commodity workstation MOESI protocol.
Maintaining inclusion for the remote blocks in the read-only state
would require a very large block cache. Instead we opted for not

1. The scientific codes we study have low instruction cache miss ratios.
This assumption may not hold for all applications.

maintaining inclusion for read-only blocks. However, since MBus
does not implement cache-to-cache transfer for blocks that are not
owned by a processor, read requests to read-only remote blocks
that miss in the block cache are forwarded to the home node even
if there are copies of the block in other processor caches on the
node.

Both S-COMA and R-NUMA implement a simpleLeast Recently
Missed page replacement policy. This policy is similar to classical
LRU, but the page frame list is re-ordered only on remote misses
rather than on each reference. This can be approximated in practice
by maintaining per-page hardware miss counters which the operat-
ing system periodically samples. However, since page replacement
policies are beyond the scope of this paper, our model of S-COMA
hardware simply maintains the necessary information and commu-
nicates it to the operating system at the time of a page fault.

Table2 presents the costs of block and page operations in proces-
sor cycles for our base system assumptions. SRAM devices
include the block cache, S-COMA fine-grain tags and translation
table, and R-NUMA reactive counters. DRAM accesses corre-
spond to accesses to the page cache. Soft traps include page faults
and R-NUMA relocation interrupts. Page allocation/replacement
involves taking a soft trap, invalidating the (local) TLBs, and flush-
ing the blocks back to the home node. The overhead varies depend-

Operation Cost (processor cycles)

block operations

SRAM access
DRAM access
local cache fill
remote fetch

8
56
69

376

page operations

soft traps
TLB shootdown
allocation/replacement or
relocation

2000
200

3000∼11500

TABLE 2. Base line system assumptions.

Application Problem Input Data Set

barnes Barnes-Hut N-body simulation [26] 16K particles

cholesky Blocked sparse Cholesky factorization [26] tk16.O

em3d 3-D electromagnetic wave propagation [9] 76800 nodes, 15% remote, 5 iters

fft Complex 1-D radix- six-step FFT [26] 64K points

fmm Fast Multipole N-body simulation [26] 16K particles

lu Blocked dense LU factorization [26] 512x512 matrix, 16x16 blocks

moldyn Molecular dynamics simulation [6] 2048 particles, 15 iters

ocean Ocean simulation [26] 258x258 ocean

radix Integer radix sort [26] 1M integers, radix 1024

raytrace 3-D scene rendering using ray-tracing [26] car

TABLE 3. Applications and input parameters.

n

Appears inProceedings of the 24th Annual International Symposium on Computer Architecture

ing on the number of blocks flushed. Page relocation uses similar
mechanisms as page allocation/replacement and incurs the same
overheads.

Table3 presents the applications we use in this study and the cor-
responding input parameters.Barnes, cholesky, fft, fmm, lu, ocean,
radix andraytrace are from the SPLASH-2 [26] benchmark suite.
Em3d is a shared-memory implementation of the Split-C bench-
mark [9]. Moldyn is a shared-memory implementation of a
CHARMM-lik e [6] molecular dynamics application.

Our application data set sizes are selected to be small enough so as
to not require prohibitive simulation cycles, while being large
enough to maintain the intrinsic communication and computation
characteristics of the parallel application. Woo, et al., characterize
the behavior of SPLASH-2 applications in terms of working sets
and show that for most of the applications, the data sets provided
have a primary working set that fits in an 8-Kbyte cache [26]. We,
therefore, assume 8-Kbyte (direct-mapped) processor caches to
compensate for the small size of the data sets.

In this study, our base system assumes a CC-NUMA block cache
equal in size to the sum of all the processor cache sizes. This
assumption helps mitigate any adverse effects due to the inclusion
requirement of read-write blocks. Consequently, a four-processor
node will have a 32-Kbyte CC-NUMA block cache. To compen-
sate for the lower cost of DRAM as compared to SRAM, our base
system assumes an S-COMA page cache of 320 Kbytes, a factor of
10 larger than our CC-NUMA block cache. We further assume a
much smaller 128-byte block cache in R-NUMA than that in CC-
NUMA. We present results in Section5 that indicate that R-
NUMA performs well even with such a small block cache.

5 Results

In this section, we present results from our simulation experiments.
We first motivate the results by presenting a characterization of
remote pages in a CC-NUMA machine. Next, we present numbers
comparing the performance of CC-NUMA, S-COMA, and R-
NUMA. In the rest of the section, we study the sensitivity of R-

NUMA’s performance to block cache size, relocation threshold
value and overhead.

5.1 Characterizing Pages in CC-NUMA
R-NUMA offers a performance advantage over CC-NUMA if an
application incurs a large number of capacity and conflict misses
on remote data in a CC-NUMA machine. R-NUMA also outper-
forms S-COMA when the majority of the capacity and conflict
misses in CC-NUMA are due to a small fraction of remote pages
that can fit in the page cache. Conversely, R-NUMA can perform
worse, if the page cache is too small to accommodate the set of
remote pages that account for most of the capacity and conflict
misses in CC-NUMA. Therefore, R-NUMA’s performance relative
to CC-NUMA and S-COMA depends on the fraction of reuse and
communication remote pages in the application.

Figure5 illustrates the fraction of remote pages that are responsi-
ble for a given percentage of block refetches in CC-NUMA—due
to capacity and conflict misses. The graphs indicate that in four of
the applications, less than 10% of the remote pages account for
over 80% of the capacity and conflict misses in CC-NUMA. With
the exception ofradix, an additional 20% of remote pages (for a
total of 30%) account for just under 70% of the refetches in all of
the applications.Radix performs an all-to-all communication,
where processors march through a large number of remote pages
writing to small number of blocks. As such, the remote pages for
the most part exhibit similar behavior, and the capacity and conflict
misses are evenly distributed among the pages.

Table4 (second column from left) presents the fraction of block
refetches in CC-NUMA due to pages that incur both read and write
sharing traffic. The table indicates that with the exception of some
of the kernels andraytrace, read-write remote pages account for
over 80% of the block refetches in all of the applications. This
result indicates that our first-touch migration is very effective in

0 10 20 30 40 50 60 70 80 90 100
Percentage of Remote Pages

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e
 o

f
R

e
fe

tc
h
e
s
 i
n
 C

C
−

N
U

M
A barnes

cholesky
em3d
fmm
lu
moldyn
ocean
radix
raytrace

FIGURE 5. Characterizing remote pages.
The figure plots the cumulative distribution of refetches as a function of the
fraction of remote pages in a CC-NUMA machine with a 32-Kbyte block
cache. The figure omitsfft, because it fits in the node’s cache hierarchy and
incurs no capacity or conflict misses.

Application

CC-NUMA

RW pages

R-NUMA

refetches replacements

barnes 97% 21% 2%

cholesky 28% 30% 15%

em3d 100% 0% 0%

fmm 99% 142% 2%

lu 82% 21% 70%

moldyn 98% 0% 0%

ocean 96% 36% 4%

radix 15% 125% 1%

raytrace 5% 41% 5%

TABLE 4. Characterizing block refetches and
page replacements in CC-NUMA and R-NUMA.
The table presents the fraction of block refetches due to pages that incur
both read and write coherence misses in CC-NUMA, and block refetches
and page replacements in R-NUMA as a percentage of those in CC-
NUMA and S-COMA. The table omitsfft because it incurs no capacity or
conflict misses in CC-NUMA and only a small number of page replace-
ments in S-COMA. The numbers correspond to a CC-NUMA with a 32-
Kbyte block cache, an S-COMA with 320-Kbyte page cache, and an R-
NUMA with 128-byte block cache and a 320-Kbyte page cache and
threshold value of 64.

Appears inProceedings of the 24th Annual International Symposium on Computer Architecture

eliminating block refetch traffic due to pages that are not shared—
i.e., pages that are always used by one node but initially allocated
on another node. Moreover, simple replication of (read-only)
remote pages which has been shown to be effective in mulitiproga-
mmed workloads [24], will not help pages with read-write traffic.
Raytrace, is the only application that proves to be a good candidate
for replication schemes because most of the remote pages contain
read-only data structures.

Not surprisingly, two of the kernels (cholesky and radix) also
exhibit a large fraction of remote pages with read-only traffic. The
kernels are representative of common computations that are typi-
cally found in larger applications. As such, much of the data struc-
tures that appear as read-only remote data in the kernel, are in fact
the results of other intermediate stages of computation. Depending
on the read-write sharing behavior of the data throughout the appli-
cation, dynamic read-only replication schemes may or may not be
effective. R-NUMA’s relocation overheads are relatively small—
only referenced blocks are replicated—and as such R-NUMA can
help reduce read-only traffic even in small kernel computations.

5.2 Base System Results
R-NUMA’s performance depends on the relative frequency of
block refetches in the R-NUMA and CC-NUMA block caches, as
well as page replacements in the R-NUMA and S-COMA page
caches. Table4 also presents the number of block refetches and
page replacements in R-NUMA as a fraction of those in CC-
NUMA and S-COMA. The numbers compare a CC-NUMA with a
32-Kbyte block cache, an S-COMA with a 320-Kbyte page cache,
and an R-NUMA with a 128-byte block cache, a 320-Kbyte page
cache, and a relocation threshold value of 64.

The table indicates that R-NUMA substantially reduces the block
refetch traffic relative to CC-NUMA in all but two of the applica-
tions. R-NUMA also virtually eliminates the page replacement
traffic relative to S-COMA in most of the applications. R-NUMA
increases block refetches infmm andradix relative to CC-NUMA
because of its small block cache. Moreover, R-NUMA’s page
cache is too small to accommodate all the reuse pages, causing the
pages to bounce between the block and page caches. The com-
bined effect of a small block cache and page cache too small to
contain all the reuse pages increases the overall number of
refetches in these applications.

Figure6 compares the performance of CC-NUMA, S-COMA, and
R-NUMA. The graphs present the execution times on a CC-
NUMA with a 32-Kbyte block cache, an S-COMA with a 320-
Kbyte page cache, and an R-NUMA with 128-byte block cache, a
320-Kbyte page cache and a relocation threshold value of 64. The
graphs are normalized to a CC-NUMA with an infinite block
cache—i.e., one in which the block cache is large enough to hold
all of the remote data.

Not surprisingly, the performance of CC-NUMA and S-COMA
varies across applications. Applications whose sharing occurs in a
small number of localized regions fit well in the node’s cache hier-
archy and the block cache. In contrast, a page cache favors applica-
tions with dense sharing patterns, because the overhead of
allocation/replacement of a page can be amortized over a large
number of blocks per page. Dense sharing patterns also result in
lower page fragmentation, and thus place less pressure on the page
cache.

The graphs corroborate our intuition (from Section3.2) that R-
NUMA either outperforms or is competitive with CC-NUMA and
S-COMA. In the best case, R-NUMA reduces execution time by

37% in the best of CC-NUMA and S-COMA. In the worst case, R-
NUMA increases execution time by only 57% in the best of the
two protocols. In comparison, CC-NUMA performs as much as
179% worse than S-COMA, and S-COMA performs as much as
315% worse than CC-NUMA. Thus, R-NUMA exhibits much less
sensitivity to a particular application’s behavior and provides supe-
rior performance stability over either CC-NUMA or S-COMA
alone.

We now examine the individual applications in more detail. In
em3d and fft communication is of producer-consumer nature,
where remote pages primarily exchange recently produced data.
These applications incur minimal number of capacity and conflict
misses in the 32-Kbyte block cache and hence perform well in CC-
NUMA. S-COMA fails to provide enough page frames to hold all
the remote pages for either of these applications, thus resulting in
lower performance. Much like CC-NUMA, R-NUMA’s block
cache provides enough (temporary) storage for the remote data,
and thus R-NUMA performs as well as CC-NUMA.

Moldyn performs well in S-COMA because the page cache can
capture the complete set of remote pages in this application. In
moldyn, a small number of reuse pages account for most of the
capacity and conflict misses in CC-NUMA. R-NUMA simply relo-
cates these pages into the page cache and performs much like S-
COMA.

Cholesky, fmm, lu, ocean and radix are examples of applications in
which a large fraction of remote pages are responsible for the
capacity and conflict misses in CC-NUMA’s block cache. S-
COMA’s (R-NUMA’s) page cache is large enough to accommo-
date a large fraction of the remote pages incholesky and lu. R-
NUMA reduces most of the refetches in these applications and
therefore outperforms CC-NUMA. R-NUMA also reduces most of
the page replacements forcholesky. However, because of load-
imbalance inlu [26], page replacements occur more frequently on
the critical path, so the decrease is not as great as might be
expected. Likewise, a small fraction oflu’s remote pages bounce
between R-NUMA’s block cache and page cache. Page replace-

FIGURE 6. Comparing performance of CC-NUMA,
S-COMA and R-NUMA.
The figure plots execution times on a CC-NUMA with a 32-Kbyte block
cache, S-COMA with 320-Kbyte page cache, and R-NUMA with a 128-
byte block cache, a 320-Kbyte page cache, and a relocation threshold
value of 64. The numbers are normalized to a CC-NUMA with an infinite
block cache, i.e., a block cache that can hold all of the referenced remote
data.

ba
rn

es

ch
ol

es
ky

em
3d fft

fm
m lu

m
ol

dy
n

oc
ea

n

ra
di

x

ra
yt

ra
ce

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

CC-NUMA
S-COMA
R-NUMA

5.42 6.21

Appears inProceedings of the 24th Annual International Symposium on Computer Architecture

ments incur larger overheads in R-NUMA than in S-COMA
because a page must reach the threshold value before relocation.
Nevertheless, R-NUMA improves performance up to a factor of
two over CC-NUMA and stays competitive with S-COMA in these
applications.

Remotedata infmm, ocean andradix are too large to fit in the page
cache. S-COMA’s performance suffers for these applications
because of frequent replacements in the page cache. Infmm and
radix, CC-NUMA improves performance over S-COMA by up to
a factor of 4 because the remote working sets of these applications
fit in the 32-Kbyte block cache. R-NUMA eliminates much of the
page replacements in S-COMA (Table4), but increases the num-
ber of refetches in CC-NUMA because the 320-Kbyte page cache
cannot contain the large number of reuse pages in these applica-
tions. R-NUMA remains competitive with CC-NUMA, increasing
execution time by at most 57% in these applications.Ocean exhib-
its a large remote working set which does not even fit in CC-
NUMA’s block cache. Although R-NUMA outperforms both CC-
NUMA and S-COMA for this application, block and page traffic
remain high.

R-NUMA performs best when an application exhibits a small
number of reuse remote pages that frequently miss in CC-NUMA’s
block cache, but the application’s overall set of remote pages is too
large to fit in S-COMA’s page cache. R-NUMA can detect and
relocate the reuse pages into the page cache, thereby eliminating
much of the capacity and conflict misses in the block cache. This is
the case forbarnes andraytrace. In these applications, R-NUMA
virtually eliminates all of the refetches and replacements in CC-
NUMA and S-COMA and outperforms both.

5.3 Cache Size Sensitivity
CC-NUMA’s performance lies in its ability to cache the (remote)
working set of data in the node’s processors caches and the block
cache. Many classes of applications exhibit large temporal locali-
ties and small primary working set sizes [26,20]. Small CC-
NUMA caches typically result in high performance because they
are adequate to hold the primary working set of these applications.

Unfortunately, there are classes of applications that exhibit poor
temporal locality and large primary working sets—e.g., commer-
cial databases [16]. CC-NUMA’s inability to cache these applica-
tion’s working sets severely degrades performance. R-NUMA can
mitigate this problem by allowing portions of the working set with
small temporal but large spatial localities to relocate to a large
page cache. R-NUMA’s performance, like S-COMA’s, lies in its
ability to cache these application’s large working sets. In this sec-
tion we study the sensitivity of CC-NUMA’s and R-NUMA’s per-
formance to cache sizes.

Figure7 plots CC-NUMA and R-NUMA execution times normal-
ized to a system with an infinite block cache. We present CC-
NUMA numbers for a small 1-Kbyte block cache and a 32-Kbyte
block cache large enough to hold the primary working sets of most
of the applications. R-NUMA numbers correspond to our base sys-
tem assumptions of a 128-byte block cache with a 320-Kbyte page
cache, a system with a larger 32-Kbyte block cache and a 320-
Kbyte page cache, and a system with a 128-byte block cache and
40-Mbyte page cache, which is large enough to hold the working
sets of all of the applications.

The graphs indicate that the applications can be grouped into three
categories based on their working set sizes of reuse pages.Em3d
andfft are examples of applications with small reuse working sets.
In these applications, communication primarily consists of

exchanging data between a producer and a consumer. The graphs
indicate that these applications achieve high performance even
with a 1-Kbyte block cache. Similarly, barnes, moldyn, andray-
trace all have primary reuse working sets that fit in a very small
block cache but require a much larger (> 32 Kbytes) cache to cap-
ture the complete set of remote data. R-NUMA achieves high per-
formance in these applications even with a small (128-byte) block
cache by moving the large portions of the reuse working sets into
the page cache.

In the second category are those applications whose primary reuse
working sets do not fit in a small 1-Kbyte cache, but do fit in a
larger 32-Kbyte cache.Cholesky, fmm, andradix fall in this cate-
gory. A small block cache severely impacts CC-NUMA’s perfor-
mance in these applications and increases execution time by up to
a factor of 2. R-NUMA exhibits performance sensitivity to block
cache size only when the reuse working set does not fit in the page
cache.Fmm andradix have large and sparse working sets which
result in fragmentation in the page cache. R-NUMA’s performance
improves up to 90% with either a large 32-Kbyte block cache or a
large 40-Mbyte page cache. R-NUMA manages to capture
cholesky’s reuse working set in a 320-Kbyte page cache, and hence
shows no sensitivity to block cache size.

Lu andocean comprise the third category of applications. In these
applications, the primary reuse working set does not fit even in the
larger 32-Kbyte block cache. In these applications, CC-NUMA’s
performance exhibits very high sensitivity to block cache size; exe-
cution times in CC-NUMA increase by up to a factor of 7 com-
pared to a machine with an infinite size block cache. Much as in
the second category of applications, R-NUMA’s performance
becomes sensitive to block cache size for applications whose reuse
working set does not fit in the page cache, as inocean.

FIGURE 7. Performance sensitivity of CC-NUMA
and R-NUMA to cache size.
The figure compares the performance sensitivity of CC-NUMA and R-
NUMA to cache sizes. The figures plot execution times normalized to a
CC-NUMA with an infinite block cache. CC-NUMA numbers correspond
to a 1-Kbyte block cache (b=1K) and a 32-Kbyte block cache (b=32K). R-
NUMA numbers correspond to a 128-byte block cache with a 320-Kbyte
page cache (b=128, p=320K), a 32-Kbyte block cache with a 320-Kbyte
page cache (b=32K, p=320K), and a 128-byte block cache with a 40-
Mbyte page cache (b=128, p=40M). R-NUMA uses a relocation threshold
value of 64.

7.19

ba
rn

es

ch
ol

es
ky

em
3d fft

fm
m lu

m
ol

dy
n

oc
ea

n

ra
di

x

ra
yt

ra
ce

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

CC-NUMA b=1K
CC-NUMA b=32K
R-NUMA b=128, p=320K
R-NUMA b=32K, p=320K
R-NUMA b=128, p=40M

Appears inProceedings of the 24th Annual International Symposium on Computer Architecture

5.4 Threshold Sensitivity
Worst-case performance analysis (Section3.2) dictates that the
relocation threshold be determined so as to bound the performance
of the worst-case reference stream by a small constant. However,
real applications rarely exhibit such worst-case behavior, so the
threshold that gives the best performance in practice may be differ-
ent. We would like to select a relocation threshold value which is
low enough to allow reuse pages to relocate as quickly as possible,
while high enough to prevent pages with low capacity and conflict
miss rates from relocation. Performance sensitivity of R-NUMA to
the threshold value is therefore directly related to the fraction of
reuse pages in the remote working set of an application; a large
fraction of reuse pages can benefit from low threshold values and
vice versa.

Figure8 plots R-NUMA’s performance for various relocation
threshold values. The R-NUMA configuration is a 128-byte block
cache and 320-Kbyte page cache. The numbers are normalized to
execution times on an R-NUMA with threshold value of 64—i.e., a
page is selected for relocation when it incurs 64 capacity or con-
flict misses in the block cache. The graphs indicate that in all but
three of the applications, R-NUMA’s performance varies by at
most 27%.

The figure also corroborates our intuition that a larger fraction of
reuse pages in an application favor a smaller threshold value.
Cholesky, fmm, lu andocean all exhibit a large fraction of remote
pages with high capacity and conflict miss rates in CC-NUMA
(Figure5). A threshold value of 16 can improve performance by
up to 25% over a threshold value of 64 in these applications.

5.5 Relocation Overhead Sensitivity
Another factor that has a first order effect on the performance of a
reactive protocol is the page relocation overhead: a larger overhead

requires a higher threshold to keep R-NUMA competitive with
CC-NUMA and S-COMA. Relocation of remote data from the
block cache to the page cache involves taking a page fault (when
the number capacity and conflict misses on a page reaches the
threshold), allocating/replacing a page frame, and relocating the
blocks to it. Page fault handling times can vary depending on the
implementation and can take thousands of cycles on many com-
modity workstations [23]. Replacement requires invalidating the
TLBs on a node, which may involve (slow) inter-processor inter-
rupts if the processors are not equipped with the necessary hard-
ware support—such as TLB invalidate transactions on the memory
bus [25]. In this section we study the sensitivity of R-NUMA’s per-
formance to page fault and TLB invalidation overheads.

Figure9 compares the sensitivity of S-COMA’s and R-NUMA’s
performance to page fault and TLB invalidation overheads. S-
COMA and R-NUMA correspond to our base case assumptions of
5 µs for page fault handling and 0.5µs for (fast) TLB hardware
invalidation. S-COMA-SOFT and R-NUMA-SOFT correspond to
our slower systems with a 10µs page fault handling time and a
much higher 5µs for a TLB software invalidation using inter-pro-
cessor interrupts. The per-page allocation/replacement and reloca-
tion overheads are therefore approximately 3 times higher in the
slower systems. The page caches are all of size 320 Kbytes, and R-
NUMA’s block cache is 128 bytes.

The graphs indicate that the performance of S-COMA is highly
sensitive to page fault and TLB invalidation overheads. This is not
surprising, because applications whose remote working sets are
larger than the page cache exhibit high page replacement rates. In
these cases, an increase in replacement overhead directly impacts
performance; the execution time in more than half of the applica-
tions increases by up to a factor of 3 with a 3-fold increase in per-
page relocation overhead.

FIGURE 8. Performance sensitivity of R-NUMA to
relocation threshold value.
The figure plots R-NUMA’s performance sensitivity to relocation thresh-
old value. R-NUMA relocates a page from the block cache into the page
cache when it incurs as many capacity and conflict misses as specified by
the threshold value. The numbers correspond to execution times on an R-
NUMA with a 128-byte block cache and a 320-Kbyte page cache. The
numbers are normalized to an R-NUMA with a relocation threshold value
of 64.

ba
rn

es

ch
ol

es
ky

em
3d fft

fm
m lu

m
ol

dy
n

oc
ea

n

ra
di

x

ra
yt

ra
ce

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

16
64
256
1024

FIGURE 9. Performance sensitivity of S-COMA
and R-NUMA to page-fault and TLB invalidation
overheads.
The figure compares the sensitivity of S-COMA’s and R-NUMA’s perfor-
mance to TLB invalidation and page fault overheads. Our base systems, S-
COMA and R-NUMA, assume page fault handling times of 5µs, and
TLB hardware invalidation times of 0.5µs. The slower systems, S-
COMA-SOFT and R-NUMA-SOFT, assume a higher page fault handling
time of 10µs, and TLB software invalidation times of 5µs. The page
caches are of size 320 Kbytes. R-NUMA uses a 128-byte block cache and
a relocation threshold value of 64. The numbers are normalized to execu-
tion times on a CC-NUMA with an infinite block cache.

ba
rn

es

ch
ol

es
ky

em
3d fft

fm
m lu

m
ol

dy
n

oc
ea

n

ra
di

x

ra
yt

ra
ce

0.0

1.0

2.0

3.0

4.0

5.0

6.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

S-COMA
S-COMA-SOFT
R-NUMA
R-NUMA-SOFT

18.848.4710.41

Appears inProceedings of the 24th Annual International Symposium on Computer Architecture

R-NUMA’s performance, however, is much less sensitive to page
fault and TLB invalidation overheads. The execution time in R-
NUMA-SOFT increases by at most 25% for all of but one of our
applications. Because R-NUMA substantially reduces the replace-
ment rate in the page cache (Table4), its performance is not as sen-
sitive to an increase in overhead.

Lu is our only application whose execution time on R-NUMA-
SOFT increases by 40%.Lu’s working set of remote data primarily
consist of reuse pages. Working set sizes significantly vary across
nodes because of load-imbalance inherent to the blocking algo-
rithm in this application for small data sets [26]; inlu, two nodes
are responsible for more than 50% of the page replacements in the
system. Because these slow nodes are on the critical path of the
execution, an increase in the relocation overhead directly impacts
execution time.

6 Conclusions

In this paper, we proposed and evaluated R-NUMA, a design for
combining a conventional CC-NUMA with a more recent Simple-
COMA in a single distributed shared-memory machine. R-
NUMA’s novelty lies in its ability to dynamically react to program
and system behavior and select between CC-NUMA and S-COMA
to exploit the best remote caching strategy on a per-page basis.
CC-NUMA capitalizes on short-term temporal locality and small-
scale spatial locality. Conversely, S-COMA’s large page cache can
exploit longer-term temporal localities, but only for applications
with large-granularity spatial localities. R-NUMA monitors per-
page miss behavior to determine when a page should be switched
to the other protocol. R-NUMA’s reactive behavior provides much
greater performance stability than either CC-NUMA or S-COMA
alone.

We presented a simple qualitative result that R-NUMA’s worst-
case performance is bounded within a small constant factor of the
best of CC-NUMA and S-COMA. We then presented quantitative
results based on execution-driven simulation of a distributed
shared-memory system. Our results indicated that in practice: (i)
R-NUMA usually outperforms or performs as well as the best of
either CC-NUMA or S-COMA, (ii) when R-NUMA performs
worse than the best protocol, the performance gap is much smaller
than that predicted by our qualitative analysis, and (iii) R-NUMA
never performs worse than both CC-NUMA and S-COMA. For the
shared-memory applications we studied, R-NUMA was either best
or within a few percent of best for seven of the ten; for the others it
performed worst than the best protocol by at most 57%. In compar-
ison CC-NUMA’s and S-COMA’s performance differed by as
much as 315%.

We also investigated the sensitivity of R-NUMA’s performance to
cache sizes, relocation threshold, and relocation overhead. The
results indicated that R-NUMA performs well with a very small
block cache unless the working set of reuse pages is too large to fit
in the page cache, which was the case in three of the applications
we studied. In comparison, CC-NUMA exhibited very high sensi-
tivity in seven of the applications when the primary working set
was too large to fit in the block cache. R-NUMA did not exhibit
significant sensitivity to relocation threshold or relocation—i.e.,
page allocation/replacement—overhead. In contrast, S-COMA’s
performance in half of the applications was highly sensitive to an
increase in page allocation/replacement overhead.

The quantitative results we presented in this paper are closely tied
to the application workload and system characteristics we studied.

Many of the applications were extensively tuned to take advantage
of locality in small caches. The relative performance of a reactive
system may vary with both application (e.g., working set size) and
system (e.g., cache sizes) characteristics. Our qualitative result on
the reactive system’s competitiveness, however, holds across a
wide range of applications and systems.

Acknowledgements

We would like to thank Steve Reinhardt for helping with the devel-
opment of our simulator, Beng-Hong Lim and Sandra Irani for
their comments on our performance models, and Scott Breach,
Erik Hagersten, Mark Hill, Andreas Moshovos, Jon Wade, and
Bob Zack for their comments on earlier drafts of this paper.

References

[1] Silicon Graphics Origin Technology. http://www.sgi.com/
Products/hardware/servers/technology/index.html.

[2] Anant Agarwal, Ricardo Bianchini, David Chaiken, KirkL.
Johnson, David Kranz, John Kubiatowicz, Beng-Hong Lim,
Kenneth Mackenzie, and Donald Yeung. The MIT Alewife
Machine: Architecture and Performance. InProceedings of
the 22nd Annual International Symposium on Computer Ar-
chitecture, pages 2–13, June 1995.

[3] Tom Anderson, David Culler, and David Patterson. A Case for
NOW (Networks of Workstations).IEEE Micro, 15(1):54–64,
February 1995.

[4] David Black, Anoop Gupta, and Wolf-Dietrich Weber. Com-
petitive management of distributed shared memory. InPro-
ceedings of COMPCON, March 1989.

[5] Tony Brewer. A Highly Scalable System Utilizing up to 128
PA-RISC Processors. http://www.convex.com/tech_cache/ps/
SPP_Arch.times.ps.

[6] B. R. Brooks, R.E. Bruccoleri, B.D. Olafson, D. J. States,
S.Swamintathan, and M.Karplus. Charmm: A program for
macromolecular energy, minimization, and dynamics calcula-
tion. Journal of Computational Chemistry, 4(187), 1983.

[7] JohnB. Carter, JohnK. Bennett, and Willy Zwaenepoel. Im-
plementation and Performance of Munin. InProceedings of
the 13th ACM Symposium on Operating System Principles
(SOSP), pages 152–164, October 1991.

[8] JohnB. Carter, AlDavis, Ravindra Kuramkote, Chei-Chi
Kuo, LeighB. Stoller, and Mark Swanson. Avalanche: A
Communication and Memory Architecture for Scalable Paral-
lel Computing. InWorkshop on Scalable Shared-Memory
Multiprocessors, 1995. http://www.cs.utah.edu:80/projects/
avalanche/.

[9] D. E. Culler, A.Dusseau, S.C. Goldstein, A.Krishnamurthy,
S.Lumetta, T.von Eicken, and K.Yelick. Parallel Program-
ming in Split-C. InProceedings of Supercomputing ’93, pages
262–273, November 1993.

[10] Erik Hagersten, Anders Landin, and Seif Haridi. DDM–A
Cache-Only Memory Architecture. IEEE Computer,
25(9):44–54, September 1992.

[11] Erik Hagersten, Ashley Saulsbury, and Anders Landin. Simple
COMA Node Implementations. InProceedings of the 27th
Hawaii International Conference on System Sciences, January
1994.

[12] Kendall Square Research. Kendall Square Research Technical

Appears inProceedings of the 24th Annual International Symposium on Computer Architecture

Summary, 1992.
[13] Jeffrey Kuskin etal. The Stanford FLASH Multiprocessor. In

Proceedings of the 21st Annual International Symposium on
Computer Architecture, pages 302–313, April 1994.

[14] Rick LaRowe and Carla Ellis. Experimental Comparison of
Memory Management Policies for NUMA multiprcessors.
ACM Transactions on Computer Systems, 9(4):319–363, No-
vember 1991.

[15] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-
Dietrich Weber, Anoop Gupta, John Hennessy, Mark Horow-
itz, and Monica Lam. The Stanford DASH Multiprocessor.
IEEE Computer, 25(3):63–79, March 1992.

[16] Tom Lovett and Russel Clapp. STiNG: A CC-NUMA Com-
pute System for the Commercial Marketplace. InProceedings
of the 23rd Annual International Symposium on Computer Ar-
chitecture, May 1996.

[17] Michael Marchetti, Leonidas Kontothanassis, Ricardo Bian-
chini, and MichaelL. Scott. Using Simple Page Placement
Policies to Reduce the Cost of Cache Fills in Coherent Shared-
Memory Systems. InProceedings of the Nineth International
Parallel Processing Symposium, April 1995.

[18] A. Nowatzyk, M.Monger, M.Parkin, E.Kelly, M. Borwne,
G. Aybay, and D.Lee. S3.mp: A Multiprocessor in a Match-
box. InProc. PASA, 1993.

[19] E. Rosti, E.Smirni, T.D. Wagner, A.W. Apon, and L.W.
Dowdy. The KSR1: Experimentation and Modeling of Post-
store. InProceedings of the 1993 ACM Sigmetrics Conference
on Measurement and Modeling of Computer Systems, pages
74–85, May 1993.

[20] Edward Rothberg, JaswinderPal Singh, and Anoop Gupta.
Working Sets, Cache Sizes, and Node Granularity Issues for
Large-Scale Multiprocessors. InProceedings of the 20th An-
nual International Symposium on Computer Architecture,
pages 14–25, June 1993.

[21] Ashley Saulasbury, Tim Wilkinson, John Carter, and Anders
Landin. An Argument for Simple COMA. InProceedings of
the First IEEE Symposium on High-Performance Computer
Architecture, pages 276–285, January 1995.

[22] Ashley Saulsbury and Andreas Nowatzyk. Simple COMA on
S3.MP. http://playground.Sun.COM/pub/S3.mp/simple-
coma/isca-95/present.html.

[23] ChandramohanA. Thekkath and HenryM. Levy. Hardware
and Software Support for Efficient Exception Handling. In
Proceedings of the Sixth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, pages 110–119, San Jose, California, 1994.

[24] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel
Rosenblum. Operating System Support for Improving Data
Locality on CC-NUMA Compute Servers. InProceedings of
the Seventh International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS VII), October 1996.

[25] Shlomo Weiss and JamesE. Smith. Power and PowerPC.
Morgan Kaufmann Publishers, Inc., 1994.

[26] StevenCameron Woo, Moriyoshi Ohara, Evan Torrie,
JaswinderPal Singh, and Anoop Gupta. The SPLASH-2 Pro-
grams: Characterization and Methodological Considerations.
In Proceedings of the 22nd Annual International Symposium
on Computer Architecture, pages 24–36, July 1995.

