
.

This work is supported in part by Wright Laboratory Avionics Director-
ate, Air Force Material Command, USAF, under grant #F33615-94-1-
1525 and ARPA order no. B550, NSF PYI Award CCR-9157366, NSF
Grant MIP-9225097, an A.T.&T. graduate fellowship, and donations
from A.T.&T. Bell Laboratories, Digital Equipment Corporation, Sun
Microsystems, Thinking Machines Corporation, and Xerox Corporation.
Our Thinking Machines CM-5 was purchased through NSF Institutional
Infrastructure Grant No. CDA-9024618 with matching funding from the
University of Wisconsin Graduate School. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon. The views and
conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of the Wright Laboratory Avionics
Directorate or the U.S. Government.

Coherent Network Interfaces for Fine-Grain Communication

Shubhendu S. Mukherjee, Babak Falsafi, Mark D. Hill, and David A. Wood
Computer Sciences Department

University of Wisconsin-Madison
Madison, Wisconsin 53706-1685 USA

{shubu,babak,markhill,david}@cs.wisc.edu

.

This work is supported in part by Wright Laboratory Avionics Directorate,
Air Force Material Command, USAF, under grant #F33615-94-1-1525 and
ARPA order no. B550, NSF PYI Award CCR-9157366, NSF Grant MIP-
9225097, an I.B.M. cooperative fellowship, and donations from A.T.&T.
Bell Laboratories, Digital Equipment Corporation, Sun Microsystems,
Thinking Machines Corporation, and Xerox Corporation. Our Thinking
Machines CM-5 was purchased through NSF Institutional Infrastructure
Grant No. CDA-9024618 with matching funding from the University of
Wisconsin Graduate School. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or
implied, of the Wright Laboratory Avionics Directorate or the U.S. Gov-
ernment.

To appear in theProceedings of the 23rd International Symposium on Computer Architecture (ISCA), 1996

Abstract
Historically, processor accesses to memory-mapped device

registers have been marked uncachable to insure their visibility to
the device. The ubiquity of snooping cache coherence, however,
makes it possible for processors and devices to interact with cach-
able, coherent memory operations. Using coherence can improve
performance by facilitating burst transfers of whole cache blocks
and reducing control overheads (e.g., for polling).

This paper begins an exploration of network interfaces (NIs)
that use coherence—coherent network interfaces (CNIs)—to
improve communication performance. We restrict this study to NI/
CNIs that reside on coherent memory or I/O buses, to NI/CNIs that
are much simpler than processors, and to the performance of fine-
grain messaging from user process to user process.

Our first contribution is to develop and optimize two mecha-
nisms that CNIs use to communicate with processors. A cachable
device register—derived from cachable control registers [39,40]—
is a coherent, cachable block of memory used to transfer status,
control, or data between a device and a processor. Cachable
queues generalize cachable device registers from one cachable,
coherent memory block to a contiguous region of cachable, coher-
ent blocks managed as a circular queue.

Our second contribution is a taxonomy and comparison of four
CNIs with a more conventional NI. Microbenchmark results show
that CNIs can improve the round-trip latency and achievable
bandwidth of a small 64-byte message by 37% and 125% respec-
tively on the memory bus and 74% and 123% respectively on a
coherent I/O bus. Experiments with five macrobenchmarks show
that CNIs can improve the performance by 17-53% on the memory
bus and 30-88% on the I/O bus.

1 Introduction
Most current computer systems do not efficiently support fine-

grain communication. Processors receive data from external
devices, such as high-speed networks, through DMA and uncach-
able device registers. A processor becomes aware of an external
event (e.g., a message arrival) via interrupts or by polling
uncached status registers. Both notification mechanisms are
costly: interrupts have high latency and polling wastes processor
cycles and other system resources. A processor sends data with an
uncachable store, a mechanism that is rarely given first-class sup-
port. Both uncachable loads and stores incur high overhead
because they carry small amounts of data (e.g., 4-16 bytes), which
fails to use the full transfer bandwidth between a processor and a
device. Optimizations such as block copy [42] or special store
buffers [42, 23] can help improve the performance of uncachable
accesses by transferring data in chunks. However, these optimiza-
tions are processor-specific, may require new instructions [42, 23],
and may be restricted in their use [42].

Snooping cache coherence mechanisms, on the other hand, are
supported by almost all current processors and memory buses.
These mechanisms allow a processor to quickly and efficiently
obtain a cache block’s worth of data (e.g., 32-128 bytes) from
another processor or memory.

This paper explores leveraging the first-class support given to
snooping cache coherence to improve communication between
processors and network interfaces (NIs). NIs need attention,
because progress in high-bandwidth, low-latency networks is rap-
idly making NIs a bottleneck. Rather than try to explore the entire
NI design space here, we focus our efforts three ways:

• First, we concentrate on NIs that reside on memory or I/O buses.
In contrast, other research has examined placing NIs in proces-
sor registers [5,15,21], in the level-one cache controller [1], and
on the level-two cache bus [10]. Our NIs promise lower cost
than the other alternatives, given the economics of current
microprocessors and higher integration level we expect in the
future. Nevertheless, closer integration is desirable if it can be
made economically viable.

• Second, we limit ourselves to relatively simple NIs—similar in
complexity to the Thinking Machines CM-5 NI [29] or a DMA
engine. In contrast, other research has examined complex, pow-
erful NIs that integrate an integer processor core [28, 38] to offer
higher performance at higher cost. While both simple and com-
plex NIs are interesting, we concentrate on simple NIs where
coherence has not yet been fully exploited.

• Third, we focus on program-controlled fine-grain communica-
tion between peer user processes, as required by demanding par-
allel computing applications. This includes notifying the
receiving process that data is available without requiring an
interrupt. In contrast, DMA devices send larger messages to
remote memory, and only optionally notify the receiving process
with a relatively heavy-weight interrupt.

We explore a class ofcoherent network interfaces (CNIs) that
reside on a processor node’s memory or coherent I/O bus and par-
ticipate in the cache coherence protocol. CNIs interact with abrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147949665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

coherent bus like Stanford DASH’s RC/PCPU [30], but support
messaging rather than distributed shared memory. CNIs commu-
nicate with the processor through two mechanisms:cachable
device registers (CDRs) andcachable queues (CQs). A CDR—
derived from cachable control registers [39, 40]—is a coherent,
cachable block of memory used to transfer status, control, or data
between a device and a processor. In the common case of
unchanging information, e.g., polling, a CDR removes unneces-
sary bus traffic because repeated accesses hit in the cache. When
changes do occur, CDRs use the underlying coherence protocol to
transfer messages a full cache block at a time. Cachable queues
(CQs) are a new mechanism that generalize CDRs from one cach-
able, coherent memory block to a contiguous region of cachable,
coherent blocks managed as a circular queue to amortize control
overheads. To maximize performance we exploit several critical
optimizations: lazy pointers, message valid bits, and sense-
reverse. Because CQs look, smell, and act like normal cachable
memory, message send and receive overheads are extremely low:
a cache miss plus several cache hits. Furthermore, if the system
supports prefetching or an update-based coherence protocol, even
the cache miss may be eliminated. Because CNIs transfer mes-
sages a cache block at a time, the sustainable bandwidth is much
greater than conventional program-controlled NIs—such as the
CM-5 NI [44]—that rely on slower uncachable loads and stores.
For symmetric multiprocessors (SMPs), which are often limited
by memory bus bandwidth, the reduced bus occupancy for access-
ing the network interface translates into better overall system per-
formance.

An important advantage of CNIs is that they allow main mem-
ory to be thehome for CQ entries. The home of a physical
address is the I/O device or memory module that services requests
to that address (when the address is not cached) and accepts the
data on writebacks (e.g., due to cache replacements). Using main
memory as a home for CQ entries offers several potential advan-
tages. First, it decouples the logical and physical locations of net-
work interface buffers. Logically, these buffers reside in main
memory, a relatively plentiful resource that eases problems of
naming, allocation, and deadlock. Physically, they can be located
in processor or device caches to allow access at maximum speed.
Second, it provides the same interface abstraction for local and
remote communication. The sender cannot distinguish if the
receiver is local, nor can the receiver tell. Third, it can exploit
future processor and system optimizations, such as prefetching,
replacement hints, or update protocols, that can further reduce the
overheads of accessing NI registers or data buffers.

To expose the CNI design space, we develop a taxonomy rem-
iniscent of DiriX [2]. We denote traditional network interface
devices as NIiX and coherent network interface devices as CNIiX.
The subscripti specifies the portion of an NI queue visible to the
processor. The default unit of i is memory/cache blocks, but can
also be specified in 4-byte words by adding the suffix ‘w’. The
placeholder X is either empty, Q, or Qm. X empty represents the
simple case where the NI exposes only part or whole of one mes-
sage to the processor. As a result there are no explicit head or tail
pointers to manage the NI queue. X = Q represents the more com-
plex case where the exposed part of the NI queue is actually man-
aged as a memory-based queue with explicit head and tail
pointers. X = Qm denotes that the home of the explicit memory-
based NI queues is main memory.

We then evaluate four CNIs—CNI4, CNI16Q, CNI512Q, and
CNI16Qm—and compare them with NI2w—an NI that uses
uncached accesses to its data buffers and device registers, derived
from the Thinking Machines CM-5 NI. We consider placing the
NIs on both a coherent memory bus and a slower coherent I/O
bus. Microbenchmark results show that compared to NI2w, CNIs
can improve the round-trip latency and achievable bandwidth of a

small 64-byte message by 37% and 125% respectively on a mem-
ory bus and 74% and 123% respectively on a coherent I/O bus.
Experiments with five macrobenchmarks show that a CNI can
improve the performance by 17-53% on the memory bus and 30-
88% on the I/O bus.

We see our paper having two main contributions. First, we
develop cachable queues, including using lazy pointers, message
valid bits, and sense-reverse. Second, we do the first micro- and
macro-benchmarks comparison of alternative CNIs—exposed by
our taxonomy—with a conventional NI.

A weakness of this paper, however, is that we do not do an in-
depth comparison of our proposals with DMA. The magnitude of
this deficiency depends on how important one expects DMA to be
compared to fine-grain communication in future systems. Some
argue that DMA will become more important as techniques like
User-level DMA [3] reduce DMA initiation overheads. Others
argue DMA will become less important as processors add block
copy instructions [42] (making the breakeven size for DMA
larger) and as the marginal cost of adding another processor
diminishes [48] (making it less expensive to temporarily waste a
processor).

The rest of this paper describes CDRs and CQs in detail
(Section2), presents CNI taxonomy and implementations,
(Section3), describes evaluation methodology (Section4), ana-
lyzes results (Section5), reviews related work (Section6), and
concludes (Section7).

2 Coherent Network Interface Techniques
In this section, we describe two techniques for implementing

CNIs: Cachable Device Registers (CDRs) and Cachable Queues
(CQs). A CDR is a single coherent cache block used by a proces-
sor to communicate information to or from a CNI device. A CQ
generalizes this concept into a contiguous region of coherent
cache blocks. We describe the major issues in successfully
exploiting CDRs and CQs. We describe their operation assuming
write-allocate caches kept consistent by a MOESI write-invalidate
coherence protocol [43].

2.1 Cachable Device Registers
Cachable Device Registers (CDRs) combine the traditional

notion of memory-mapped device registers with the now-ubiqui-
tous bus-based cache-coherence protocols supported by all major
microprocessors. Reinhardt, et al., [39, 40] first proposed CDRs to
communicate status information from a special-purpose hardware
device to a processor. We extend their work to use coherence to
efficiently communicate control information and data both to and
from a network interface.

A CDR is a coherent, cachable memory block shared between
a processor and a coherent network interface (CNI) device. The
CNI sends information to the processor—i.e., to initiate a
request or update status—by writing to the block. The CNI must
first obtain write permission to the block in accordance with the
underlying coherence protocol. The processor receives the infor-
mation by polling the block. Unlike existing polling schemes,
the CDR block is cachable, so in the common case of unchang-
ing information, the processor’s unsuccessful polls normally hit
in the local cache.1 Bus traffic only occurs when a device
updates the information. Figure1 illustrates this case under a
write-invalidation based MOESI coherence protocol, assuming
both the CNI and processor caches start with a read-only copy of

1. Cache conflicts can cause replacements, which affect performance but
not correctness.

3

the CDR. The CNI generates an invalidation to obtain write per-
mission (arc 1), and the processor incurs a cache miss to fetch the
CDR on its next poll attempt (arcs 2–5). Because a CDR consists
of a whole cache block, an entire small message can be commu-
nicated between processor and CNI in a single bus transaction,
amortizing the fixed overheads across multiple words.

A CDR can also transfer information from the processor to the
device, in a logically symmetric way. Processor writes to the CDR
are treated just like for a normal coherent cache block, obtained
using the standard coherence mechanisms. The CNI device
receives the information by reading the block, in a manner equiva-
lent to polling. However, because the device observes the coher-
ence protocol directly, it knows when the processor requests write
permission to the block. Thus it need not poll periodically, but can
read the block back immediately after the processor requests write
permission. The device can provide a system programmable back-
off interval to reduce the likelihood of “stealing” the block back
before the processor completes its writes to the CDR. This tech-
nique, calledvirtual polling, is necessary because few processors
can efficiently “push” data out of their caches. For processors (e.g.,
PowerPC [47]) that do support user-level cache flush instructions,
the CDR can be directly flushed out of the cache.

CDRs allow a processor to efficiently transfer a full cache
block (e.g., 32–128 bytes) of information to or from a CNI. For
smaller amounts of data, e.g., a 4-byte word, CDRs are less effi-
cient. For most processors, fetching a single word from an
uncached device register takes roughly the same time as from a
CDR; this is because the CNI responds with the requested word
first which is then bypassed to the processor. However, the CDR
still has higher overhead since it will displace another block from
the cache, potentially causing a later miss. CDRs do even less well
for small transfers to a device. Because most modern processors
have store buffers, a single uncached store is more efficient than
transferring that word via a CDR. For most processors and buses
the breakeven point typically occurs at two or three double words.
Hence, our CNI designs still use uncached stores to transfer single
words of control information from the processor to the device.

For messages larger than a cache block, we require some
method to reuse the CDR. For example, after the processor has
read the first block of a message, it may want to read the second
block using the same CDR. Conventional device registers often
solve this problem using implicitclear-on-read semantics, where
the register is cleared after an uncached read. For example, the
CM-5 network interface treats the read of the hardware receive
queue as an implicit “pop” operation. Clear-on-read works because
processors guarantee the atomicity of individual load instructions;
that is, the value returned by the device is guaranteed to be written
to a register.

Clear-on-read does not work well for CDRs, since most pro-
cessors do not provide the same atomicity guarantees for cache
blocks. The load that causes the cache miss should be atomic (to
close the “window of vulnerability” [27]); however, there are no
guarantees for the remaining words in the block. Before subse-
quent loads complete, a cache conflict (e.g., resulting from an
interrupt) could replace the block. With clear-on-read semantics,
the remainder of the data in the CDR would be lost forever.

Instead, CDRs require an explicit clear operation by the
receiver to enable reuse of the block. Under a MOESI protocol
even this clear operation requires a slow three-cycle handshake
between the processor and CNI to make sure that the processor
sees new data when it re-reads the CDR. In the first step of this
handshake, the processor issues an explicit clear operation by per-
forming an uncached store to a traditional device register. In the
second step, the processor must ensure that the CNI has seen the
clear request. Since most modern processors employ store buffers,
this step may incur additional stalls while a memory barrier
instruction flushes the store out to the bus. When the CNI observes
the explicit clear operation, it invalidates the CDR by arbitrating
for and acquiring the memory bus. The third step of the handshake
is for the processor to ensure that the invalidation has completed. It
does this by reading, potentially repeatedly, a traditional uncached
device status register.1 Consequently, while CDRs efficiently
transfer a single block of information, they perform much less well
for multiple blocks. We address this problem by introducing cach-
able queues.

2.2 Cachable Queues
Cachable Queues (CQs) generalize the concept of CDRs from

one coherent memory block to a contiguous region of coherent
memory blocks managed as a queue. CQs are a general mecha-
nism that can be used to communicate messages between two pro-
cessor caches or a processor cache and a device cache. A key
advantage of CQs is that they simplify the reuse handshake and
amortize its overhead over the entire queue of blocks. Liu and
Culler [31] used cachable queues to communicate small messages
and control information between the compute processor and mes-
sage processor in the Intel Paragon. We show how CQs can be
used to communicate directly between a processor and a network
interface device. We first describe the basic queue operation, and
then introduce three important performance optimizations.

Cachable queues follow the familiar enqueue-dequeue abstrac-
tion and employ the usual array implementation, illustrated in
Figure2. The head pointer (head) identifies the next item to be
dequeued, and the tail pointer (tail) identifies the next free
entry. The queue is empty ifhead andtail are equal, and full if
tail is one item2 less thanhead (modulo queue size). If there is
a single sender and single receiver for this queue, the case we con-
sider in this paper, then no locking is required since only the
sender updatestail and only the receiver updateshead3.

A processor sends a message by simply enqueuing it in the
appropriate out-bound message queue. That is, it first checks for
overflow, then writes the message to the next free queue location
and incrementstail, relying on the underlying coherence proto-

1. A somewhat more efficient handshake is possible if the processor pro-
vides a user-accessible cache-invalidate operation. Issue clear operation,
flush store buffer, and invalidate cache entry.

2. We assume fixed size network messages in this paper, but CQs can be
generalized to variable length messages in a straight-forward manner.

3. Memory barrier operations may be necessary to preserve ordering under
weaker memory models.

CPU

CACHE

Interface Hardware

CACHE

1

2

3

5

4 Memory Bus

Coherent
Network
Interface

FIGURE 1. Coherent Network Interface with Cachable Device
Register

4

col to bring the block(s) local to the cache. A processor receives a
message by first checking for an empty queue, then reading the
queue entry pointed to by thehead. The message remains in the
queue until the receiver explicitly incrementshead. The head
and tail pointers reside in separate cache blocks.

Because CQs are simply memory, they have the property that
the message sender and receiver have the same interface abstrac-
tion whether the other end is local or remote. A local CQ, illus-
trated in Figure2, is simply a conventional circular queue between
two processors. A remote CQ consists of two local CQs, each
between a processor and CNI device, as illustrated in Figure3.
The head and tail pointers are also managed as cachable memory.
A CNI that uses CQs simply acts like another processor manipu-
lating the queue.

The head and tail pointers of the CQs are a much simpler way
to manage reuse than the complex handshake required by CDRs. If
there is room in the CQ, then the tail entry can be reused; if the CQ
is non-empty, then the head entry is valid. However, even though
no locking is required to access the head and tail pointers, a
straight-forward implementation induces significant communica-
tion between sender and receiver. This occurs because the sender
must check (i.e., read) the head pointer, to detect a full queue, and
the receiver must check the tail pointer, to detect an empty queue.
Because the queue pointers are kept in coherent memory, cache
blocks may ping-pong with each check.

We can greatly reduce this overhead using three techniques:
lazy pointers, message valid bits, andsense reverse. Lazy pointers
exploit the observation that the sender need not know exactly how
much room is left in the queue, but only whether there is enough
room. The sender maintains a (potentially stale) copy of the head
pointer, shadow_head, which it checks before each send.
Shadow_head is conservative, so if it indicates there is enough
room, then there is. Only whenshadow_head indicates a full
queue does the sender readhead and updateshadow_head. If
the queue is no more than half full on average, then the sender
needs to checkhead—and incur a cache miss—only twice each
time around the array.

Lazy pointers work much less well for the tail pointer. The
receiver must checktail on every poll attempt, to see if the
queue is empty. Whenever a message arrives, the receiver’s cached
copy of tail gets invalidated. Thus in the worst case, each mes-
sage arrival causes a cache miss ontail. Instead, we use mes-
sage valid bits—stored either as a single bit in the message header
or in a separate word—to allow the receiver to detect message
arrivals withoutever checking the tail pointer [10, 31]. The valid
bits indicate whether a cache block contains a valid message, or
not. On a poll attempt, the receiver simply examines the first mes-
sage in the queue (i.e., the one pointed to byhead); if it’ s invalid,
the queue is empty. Thus no bus traffic normally occurs in this
case. When a valid message is written to the queue, the sender will
invalidate the receiver’s cached copy, causing a cache miss when
the receiver polls again. To complete the handshake, the receiver
must clear the message valid bit when it advanceshead.

Clearing the message valid bit requires the receiver to write the
queue entry; thus under a MOESI protocol, the receiver becomes
owner of the queue entry’s cache block, rather than simply having
a shared copy. This normally requires an additional bus transac-

tion. We can avoid this transaction (and avoid clearing the valid
bit) using a technique known assense reverse. The key idea is to
alternate the encoding of the valid bit on each pass through the
queue. Valid is encoded as 1 on odd passes, and encoded as 0 on
even passes. The sender and receiver both have an additional state
bit, stored in the same cache blocks as their respective pointers,
indicating the sense of their current pass. Figures4 and5 present
pseudo-code for the simple case where the valid bit is stored in a
separate word in the header. The sender first checks if the CQ has
space and then writes the message followed by its current sense as
the message valid bit. The receiver compares its current sense to
the valid bit in the message, with a match indicating a valid mes-
sage. Sense reverse has been previously used for barriers [34] and
asynchronous logic, but to our knowledge has never been used for
messaging.

Combining all three optimizations minimizes the bus traffic
required by CQs. Under a write-invalidation based MOESI proto-
col, each block of a message requires one invalidation, to obtain
write permission for the sender, and one read miss, to fetch the
block for the receiver. The head pointer requires only two invalida-
tion-miss pairs for each pass around the circular queue, assuming
the queues are no more than half full on average. The tail pointer is
private to the sender and generates no coherence actions.

2.3 Home for CQ entries
In most computer systems, all legal physical addresses map to

a home device or memory module. If a block is cachable, for
example, then the home is where data are written on cache
replacement. Should the home for CDRs or CQ entries be at the
CNI, as with a regular device register, or in main memory?

Since CDRs are each a single block and most devices will
employ only a few, the logical choice is to provide the home
within the device itself. This can also simplify the implementation
for some memory buses, because the device may not have to
implement all cases in the coherence protocol [36].

CQs, on the other hand, will benefit from being large. For
example, Brewer, et al., have demonstrated that remote queues can
significantly improve performance by preventing contention on
the network fabric [6]. If the CQ’s home is main memory—a less
precious resource than hardware FIFOs—then its capacity is
essentially infinite. Large queues help simplify protocol deadlock
avoidance, at least for moderate-scale parallel machines. Having
the CQ home in memory also helps tolerate unreliable network
fabrics, since messages need not be removed from the send queue
until delivery is confirmed.

To place the CQ home in main memory, we must address three
operating system issues. First, a CNI needs a translation scheme to
translate the CQ virtual addresses to physical addresses in main
memory. In this paper, we assume that the operating system allo-

Send
Process

Receive
Process

tail head

Send
Process

Receive
Process

CNI

Network

tail

head

CNI

tail

head

FIGURE 2. Local Cachable Queue

FIGURE 3. Remote Cachable Queue

5

cates CQ pages contiguously, allowing CNIs to use a simple base-
and-bounds virtual-to-physical address translation. If the operating
system cannot guarantee this, then a more complicated translation
mechanism may be necessary [19]. Second, a CNI must ensure
that CQ pages always reside in main memory, or be prepared to
fetch them from the swap device. For our implementations we
assume that CQ pages are “pinned,” so that the operating system
does not attempt to page them out. Alternatively, we could adopt a
more flexible scheme [3, 19] at the expense of a more general
address translation mechanism (e.g., a TLB). Finally, there must
be some mechanism for the rare case in which even the large
amount of memory allocated for a CQ fills up. The simplest option
is to block the sender; however, this may lead to deadlock. Alter-
natively, as proposed for MIT Fugu [32], the CNI device can inter-
rupt the processor, causing it to allocate free virtual memory
frames and drain the CQ.

Making main memory the home is generally infeasible with a
coherent I/O bus. Coherent I/O buses [18] allow memory residing
on the I/O bus to be cached by the processor. However, they do not
allow an I/O device to coherently cache data from the regular pro-
cessor memory space. It is difficult to change this in the near
future because the speed mismatch makes it hard for the I/O
devices to respond to memory bus snoop requests in a timely fash-
ion.

2.4 Multiprogramming
The demands of multiprogramming require additional support

from a network interface. In traditional networking, an NI is a sin-
gle shared resource virtualized by the operating system. For exam-
ple, in TCP/IP the operating system multiplexes the hardware
device to send and receive network messages to and from many
processes. Unfortunately, the operating system’s overheads
severely limit performance, especially for small messages.

Many multicomputers reduce or eliminate this overhead by
mapping the NI directly into the user’s address space [1,15,29].
Thus the operating system normally need not get involved when
messages are sent and received. However, user-mapped NIs signif-
icantly complicate support for multiprogramming. Possible solu-
tions range from disallowing multiprogramming [15], to taking
special actions at context switch time (to context switch the NI and
network state) [44], to optimistically assuming a message is des-
tined for the current process (reverting to operating system buffer-
ing if it is not) [32]. Furthermore, these solutions do not easily
generalize to symmetric multiprocessing (SMP) nodes, where
multiple processes may concurrently access the NI.

CNIs vastly simplify the multiprogramming problem by using
memory-based queues as the interface abstraction, rather than
memory-mapped device registers. Each process communicates

with a CNI using itsown data queues and treats them like regular
cachable memory. The CNI device need only maintain a small
amount of state for each queue, e.g., base and bound translations,
head and tail pointers, and a process identifier. The process identi-
fier is used to ensure that messages sent from one node are placed
on the appropriate queue on the receiving node. Since this state is
typically much smaller than the data queues, a CNI can support
more active processes than a memory-mapped NI with comparable
hardware. If there are more active queues than the CNI state can
support, two options have potential. First, the operating system
can unmap additional queues and accept faults when they are
accessed. Second, the operating system can allocate a memory-
based data structure that CNI hardware can use to find the state for
all active queues (like page tables for a TLB fill).

3 CNI Taxonomy and Implementations
This section proposes a taxonomy of network interfaces (NIs)

and describes the implementation of five NIs that we evaluated in
this paper. We use the NI queue structure as the main component
to enumerate a taxonomy of network interfaces. NI queues are the
primary carriers of messages between a processor and its NI. A
processor sends messages to the NI through thesend queue and
receives messages from the NI through thereceive queue. For our
taxonomy of CNIs we assume that both the NI queues have the
same structure.

Our taxonomy is modelled after Agarwal et al.’s classification
of directory protocols [2]. We use the notation NIiX for traditional
NIs and CNIiX for coherent network interfaces that cache the NI
queues. The subscripti denotes the size of the NI queue exposed to
the processor. The default unit of i is memory/cache blocks, but
can also be specified in 4-byte words by adding the suffix ‘w’. The
placeholder X could either be empty, Q, or Qm. X empty repre-
sents the simple case where a network interface exposes only part
or whole of one network message. For CNIs a network message is
exposed via CDRs. CDR reuse is managed by the explicit hand-
shake described in Section2.1. X = Q represents the more com-
plex case where the exposed portion of the NI queue is managed as
a memory queue with explicit head and tail pointers. X = Qm
denotes that the home of the explicit memory-based NI queues are
in main memory. The absence of an ‘m’ implies that the device
serves as the home for the NI queues.

Several existing NIs can be classified with this taxonomy. The
Thinking Machines’ CM-5 [44] NI is NI2w since it exposes two
words of a message to the receiver. Similarly, the Alewife [1] NI is
NI16w [26]. The network interface in *T-NG [10], which devotes 8
KB for an NI queue and consists of 64-byte cache blocks, is
NI128Q.

We examine five different network interface devices in this
paper, summarized in Table1, to send 256-byte network messages.
The first is a conventional network interface modelled after the

if (tail == head &&
sender’s sense != receiver’s sense)

{
Queue is full, stall or return error

}
else
{

enqueue message at tail + 1;
*tail = sender’s sense;
advance tail modulo CQ size;
if (tail == 0)
{

/* reverse the sense */
sender’s sense = sender’s sense xor 1;

}
}

FIGURE 4. Pseudo code for enqueue with sense reverse

if (*head != receiver’s sense)
{

Queue is empty, stall or return null
}
else
{

dequeue message at head + 1;
advance head modulo CQ size;
if (head == 0)
{

/* reverse the sense */
receiver’s sense = receiver’s sense xor 1

}
}
FIGURE 5. Pseudo code for dequeue with sense reverse

6

Thinking Machines CM-5 NI. Messages are sent by first checking
an uncachable status register, to ensure there is room to inject the
message, then the message is written to an uncachable device reg-
ister backed by a hardware queue. Similarly, receives check an
uncached status register to see if a message is available, then read
the message from an uncachable device register. Because all
accesses to the NI queues are non-cachable, and two four-byte
words of the message are exposed, we classify this device as NI2w.

The second NI extends this baseline device by using four CDRs
to expose a 256-byte network message. This device, denoted by
CNI4, exploits the memory bus’s block transfer capability to move
a message between the processor and the device. However, the sta-
tus and control registers are uncached. After receiving a message,
the processor issues an uncached store to explicitly pop the mes-
sage off the queue. By always checking the uncached status regis-
ter—which does not indicate message ready again until the cached
copy has been invalidated—the processor and CNI4 device per-
form a three-cycle handshake that prevents false hits.

The three-cycle handshake limits the bandwidth achievable by
CNI4. The third and fourth NIs solve this problem by employing
CQs for message data and regular memory for control and status
information (head and tail pointers). CNI16Q and CNI512Q cache
up to 16 and 512 blocks, respectively. The memory that backs up
the caches resides on the devices themselves. The larger capacity
of CNI512Q reduces the number of flow control stalls, increasing
performance for applications with many messages in flight.

Sending messages to a CNIiQ device involves three steps:
checking for space in the CQ, writing the message, and increment-
ing the tail pointer. The send is further optimized by sending a
message ready signal to the CNI device through an uncached store.
As discussed in Section2.1, uncached stores are more efficient
than cache block operations for small control operations. Hence
for the send queue, the CNI device does not use virtual polling.
Instead, the CNIiQ uses the message ready signal to keep a count
of pending messages. This count is incremented on each message
ready signal and decremented when the device injects a message
into the network. As long as this counter is greater than zero, the
CNIiQ device pulls messages out of the processor cache (unless
the blocks have already been flushed to their home in the device)
and increments the head pointer. On the receive side, the processor
polls the head of the queue, reads the message when valid, then
increments the head pointer. Both sender and receiver toggle their
sense bits when they wrap-around the end of the CQ.

The last device, CNI16Qm, caches up to 16 cache blocks on the
network interface device, and overflows to main memory as neces-
sary. The total size of the memory-based queue is 512 cache/mem-
ory blocks. Having main memory as home for the CQ simplifies
software flow control. Specifically, for the other NIs, whenever the
sender cannot inject a message it must explicitly extract any
incoming messages and buffer them in memory [6]. Conversely,
the CNI16Qm does this buffering automatically when the CNI
cache cannot contain all the messages. The CNI16Qm taxonomy
allows for memory overflow to occur on both the sending and
receiving CNIs. However, for simplicity, this paper only examines
memory buffering at the receiver.

The CNI devices implement a variant of virtual polling to min-
imize the number of bus transactions on the critical path. Specifi-
cally, under the bus’s write-invalidation based MOESI protocol,
the processor must generate an invalidation signal to acquire own-
ership of a cache block before it can write to it. Since our CQs are
filled in FIFO order, an invalidation signal for all blocks other than
the first block of a multi-block message implies that the processor
is done writing the previous cache block. When the CNI device
detects an invalidation signal it issues a coherent read on the previ-
ous cache block of the same message. Thus part of the message is
transferred to the CNI cache before the processor has completed
writing all the cache blocks of the message.

4 Methodology

This section describes the system assumptions and benchmarks
used to evaluate the five network interface designs. Section5 pre-
sents results from the evaluation.

4.1 System Assumptions

Our simulations model a parallel machine with 16 nodes, each
with a 200 MHz dual-issue SPARC processor modelled after the
ROSS HyperSPARC, 100 MHz multiplexed, coherent memory
bus, 50 MHz multiplexed, coherent I/O bus, and a network inter-
face (NI2w or one of the four CNIiXs). Both buses support only
one outstanding transaction. The memory bus’s coherence proto-
col is modelled after the MBus Level-2 coherence protocol [24].
Coherence on the I/O bus resembles that of the coherent extension
to PCI [18]. An I/O bridge connects the memory and I/O buses.
The bridge buffers writes and coherent invalidations, but blocks on
reads. When transactions are simultaneously initiated on the two
buses, the I/O bridge NACKs the I/O bus transaction to prevent
deadlock. Fairness is preserved by ensuring that the next I/O bus
transaction succeeds.

The single-level processor cache is 256 KB direct-mapped,
with duplicated tags to facilitate snooping and 64-byte address and
transfer blocks. The CNI caches are also direct-mapped with 64-
byte address and transfer blocks. The CNI cache sizes vary
according to the subscripti in the CNIiX nomenclature. Table2
shows the bus occupancy for our network interface and memory
accesses in processor cycles. Since the I/O bus is connected to the
processor via the memory bus, the bus occupancy numbers for the
I/O bus includes the corresponding memory bus occupancy cycles.

Network topology is ignored and network message size is fixed
at 256 bytes. All messages take 100 processor cycles to traverse
the network from injection of the last byte at the source to arrival
of the first at the destination. We model hardware flow control at
the end points using a hardware sliding window protocol. A pro-
cessor can send up to four network messages per destination
before it blocks waiting for acknowledgments. To avoid dead-

NI/CNI Exposed Queue Size Queue Pointers Home

NI2w 2 words

CNI4 4 cache blocks device

CNI16Q 16 cache blocks explicit device

CNI512Q 512 cache blocks explicit device

CNI16Qm 16 cache blocks explicit main memory

TABLE 1. Summary of Network Interface Devices

Operation Cache
Bus

Memory
Bus

I/O Bus

Uncached 8-byte load from NI 4 28 48

Uncached 8-byte store to NI 4 12 32

Cache-to-cache transfer from
CNI to processor (64 bytes)

42 76

Cache-to-cache-transfer from
processor to CNI (64 bytes)

42 62

Memory-to-cache transfer (64
bytes)

42

TABLE 2. Bus Occupancy for Network Interface and Memory
Access in Processor Cycles

7

locks, if a processor blocks on a message send, it reads messages
from the NI and buffers them in user space (except for CNI16Qm in
which messages automatically overflow to main memory from the
CNI cache).

All benchmarks are run on the Tempest parallel programming
interface [22]. Message-passing benchmarks use only Tempest’s
active messages [37]. Shared-memory codes on Tempest also use
active messages, but assume hardware support for fine-grain
access control [39]. Codes with custom protocols use a combina-
tion of the two.

4.2 Macrobenchmarks

Table3 depicts five macrobenchmarks used in this study.
Spsolve [12] is a very fine-grained iterative sparse-matrix solver in
which active messages propagate down the edges of a directed
acyclic graph (DAG). All computation happen at nodes of the
DAG within active message handlers. The messaging overhead is
critical because each active message carries only a 12 byte payload
and the total computation per message is only one double-word
addition. Several active messages can be in flight, which can create
bursty traffic patterns.

Gauss is a message-passing benchmark that solves a linear sys-
tem of equations using Gaussian elimination [9]. The key commu-
nication pattern is a one-to-all broadcast of a pivot row (two
kilobytes for our matrix size).

Em3d models three-dimensional electromagnetic wave propa-
gation [13]. It iterates over a bipartite graph consisting of directed
edges between nodes. Each node sends two integers to its neigh-
boring nodes through a custom update protocol [16].Several
update messages (with 12 byte payload) can be in flight, which
like spsolve, can create bursty traffic patterns.

Moldyn is a molecular dynamics application, whose computa-
tional structure resembles the non-bonded force calculation in
CHARMM [7]. The main communication occurs in a custom bulk
reduction protocol [35], which constitutes roughly 40% of the
application’s total time with NI2w as the network interface. One
execution of the reduction protocol iterates as many times as there
are processors. In each of these iterations, a processor sends 1.5
kilobytes of data to the same neighboring processor through Tem-
pest’s virtual channels.

Appbt is a parallel three-dimensional computational fluid
dynamics application [8] from the NAS benchmark suite. It con-
sists of a cube divided into subcubes among processors. Commu-
nication occurs between neighboring processors along the
boundaries of the subcubes through Tempest’s default invalida-
tion-based shared memory protocol [38].

5 Results

This section examines the network interfaces’ performance
with two microbenchmarks and five macrobenchmarks. On the
memory bus we simulated all four CNIs plus NI2w. On the I/O bus
we simulated all but CNI16Qm, since CNI16Qm cannot be imple-
mented with current coherent I/O buses (Section2.3). Since coher-
ence is usually not an option on cache buses, we did not simulate
CNIs there. For each microbenchmark and macrobenchmark we
compare the performance of NI2w on the cache bus with the best
of the CNI alternatives—CNI16Qm on the memory bus and
CNI512Q on the I/O bus. Since NI2w on the cache bus is closest to
the processor, it provides a rough upper bound to the performance
achievable with different coherent network interfaces.1

5.1 Microbenchmarks

This section examinesprocess-to-process round-trip message
latency (Figure6) and bandwidth (Figure7) for our five network
interface implementations.2 These numbers include the messaging
layer overhead for copying a message from the network interface

1. Raw data at URLhttp://www.cs.wisc.edu/~wwt/cni96.

2. Each message is broken into one or more 256-byte network message(s).
Each network message has a 12-byte overhead for header information. The
message sizes in both Figure6 and Figure7 do not include this header.

Benchmark Key Communication Input Data Set

spsolve Fine-Grain Messages3720 elements

gauss One-To-All Broadcast 512x512 matrix

em3d Fine-Grain Messages1K nodes, degree 5, 10%
remote, span 6, 10 iter

moldyn Bulk Reduction 2048 particles, 30 iter

appbt Near neighbor 24x24x24 cubes, 4 iter

TABLE 3. Summary of macrobenchmarks

8 16 32 64 128 256
Message Length (bytes)

0

5

10

15

20

25
I/O Bus

NI2w
CNIs

I/O
 Bus

Memory Bus

Cache Bus

8 16 32 64 128 256
Message Length (bytes)

0

5

10

15

20

25
M

ic
ro

se
co

nd
s

Memory Bus

NI2w
CNIs

(a) (b) (c)

8 16 32 64 128 256
Message Length (bytes)

0

5

10

15

20

25
Alternate Buses

NI2w
CNIs

FIGURE 6. This figure shows the process-to-process round-trip message latency (vertical axis) for differ ent message sizes
(horizontal axis). (a) shows the round-trip message latency for NI 2w, CNI4, CNI16Q, CNI512Q, andCNI16Qm on the memory bus. (b)
shows the same (except CNI16Qm) on the I/O bus. (c) compares CNI512Q, CNI16Qm, and NI2w on the I/O, memory, and cache buses
respectively. [■ = CNI4, ◆ = CNI16Q, + = CNI512Q, ● = CNI16Qm]

8

to a user-level buffer, and vice versa. Thus data begins in the send-
ing processor’s cache and ends in the receiving processor’s cache,
rather than simply moving from memory to memory.

5.1.1 Round-Trip Latency

Figure6 shows the round-trip latency of a message for each of
NI2w and the four CNIiXs. It shows two important results. First,
CNIs reduce messaging overheads significantly. For small mes-
sages, between 8 and 256 bytes, CNI16Qm is 20-84% better than
NI2w on the memory bus (Figure6a) and CNI512Q is 29-141%
better than NI2w on the I/O bus (Figure6b). Second, CNI16Qm on
the memory bus increases the latency over NI2w on the cache bus
by only 43% (Figure6c). This is significant, because the CNIs do
not require modifications to the processor or processor board.

The four CNIs have similar latencies with minor variations
among them. CNI4 performs worst because it polls an uncached
status register and must use the expensive three-cycle handshake
to invalidate the previous message from the processor cache.
CNI16Q and CNI512Q consistently have the lowest latency due to
efficiently polling the cached message valid bit and by using
explicit head and tail pointers to amortize the reuse overhead
across the entire queue of messages. CNI16Qm’s latency is slightly
worse (on the memory bus) because when its cache overflows, it
must flush (i.e., writeback) messages to main memory. A better
replacement policy and/or a writeback buffer can help take these
flushes off the critical path. However, as we will see later with the
macrobenchmarks, CNI16Qm consistently outperforms the other
three CNIs on the memory bus due to its ability to overflow mes-
sages to main memory instead of backing up the network.

5.1.2 Bandwidth
Figure7 graphs the bandwidth provided by the five network

interfaces. The vertical axes are normalized to the maximum
bandwidth two processors on the same coherent memory bus can
sustain while transfering data from one cache to the other. For our
simulation parameters (Table2), this bandwidth is 144 MB/s. This
is the maximum bandwidth the four CNIs can hope to achieve
with our simulation parameters.

Figure7 shows two interesting results. First, CNIs improve the
bandwidth over NI2w significantly, even for very small messages.
On the memory bus, CNI16Qm is 59-169% better than NI2w for 8-
4096 byte messages (Figure7a). For the same message sizes,

CNI512Q is 51-287% better than NI2w on the I/O bus (Figure7b).
Second, NI2w’s bandwidth on the cache bus is only 50% more
than CNI16Qm’s on the memory bus (Figure7c).

As in the round-trip microbenchmark, all four CNIs have simi-
lar bandwidth with minor variations among them. CNI4 performs
worst of the four CNIs because of its high overhead for polling
uncached registers and the three-cycle handshake in the critical
path of message reception. CNI4 shows two different knees on the
memory and I/O buses respectively. The knee on the memory bus
appears when a message crosses the first cache block boundary
and writes to the second cache block. The second cache block is
partially empty resulting in wasted work by CNI4, which must
still read the entire block. Since CNI4 reuses CDRs, the processor
must wait for CNI4 to complete the entire read (and the three-
cycle handshake) before it can write another message. The CQ-
based CNIs do not have this problem because instead of blocking,
a processor simply writes to the next queue location. This same
knee does not show up on the I/O bus because the higher I/O bus
access latencies dominate over the pipelined transfer time for the
cache block. On the I/O bus a different knee appears when CNI4
saturates the I/O bus.

CNI16Q and CNI512Q perform the best due to their low poll
overhead and ability to cache multiple messages (a network mes-
sage fits in four cache blocks). However, when the message size
reaches two kilobytes, CNI16Q’s performance on the I/O bus dips
slightly. This is because the small queue size forces frequent
updates to the shadow head pointer on the receive queue, which in
turn creates contention at the I/O bridge. CNI512Q does not
exhibit this problem because its larger queue requires less fre-
quent updates to the shadow head.

CNI16Qm achieves slightly lower bandwidth than CNI512Q.
This is because the message send rate is significantly higher than
the message reception rate, causing the receiving CNI16Qm’s
cache to overflow. The resulting writebacks to main memory
induce moderate bus contention which decreases the maximum
communication bandwidth. Unfortunately, because the problem is
bandwidth not latency, a writeback buffer will not help with this
microbenchmark as it would for the round-trip microbenchmark.

However, an alternative technique, calleddata snarfing[17,
14], can potentially improve both latency and bandwidth. In data
snarfing, a cache controller reads data in from the bus whenever it
has a tag match (i.e., space allocated) for a block in the invalid
state. Thus in our microbenchmark, the processor cache on the

(a) (b) (c)

Cache Bus

Memory Bus

I/O
 Bus

8 64 512 4096
Message Length (bytes)

0.0

0.2

0.4

0.6

0.8

1.0
R

el
at

iv
e

B
an

dw
id

th
Memory Bus

CNIs
NI2w

8 64 512 4096
Message Length (bytes)

0.0

0.2

0.4

0.6

0.8

1.0
I/O Bus

CNIs
NI2w

8 64 512 4096
Message Length (bytes)

0.0

0.2

0.4

0.6

0.8

1.0
Alternate Buses

CNIs
NI2w

FIGURE 7. This figure shows theprocess-to-process message bandwidth (vertical axis) for differ ent message sizes (horizontal axis).
The message bandwidth is expressed as a fraction of the maximum bandwidth two processors on the same coherent memory bus can
sustain using a local memory queue (Figure2). (a) shows the message bandwidth for NI 2w, CNI4, CNI16Q, CNI512Q, and CNI16Qm
(with and without snarfing) on the memory bus. (b) shows the same (except CNI16Qm) on the I/O bus. (c) compares CNI512Q,
CNI16Qm, and NI2w on the I/O, memory, and cache buses respectively. [■ = CNI4, ◆ = CNI16Q, + = CNI512Q, ● = CNI16Qm, ✽ =
CNI16Qm with snarfing]

9

receive side simply snarfs in the cache blocks that CNI16Qm writes
back to memory. This eliminates many of the invalidation misses
on the receive cachable queue and improves the bandwidth by as
much as 45% (Figure7a). We also expect that an update-based
coherence protocol would have similar behavior. However, while
data snarfing significantly improves microbenchmark perfor-
mance, we found it had little effect on macrobenchmark perfor-
mance and do not examine it further.

The absolute bandwidth offered by CNIs can improve signifi-
cantly with a more aggressive system. With our simulation param-
eters—200 MHz processor, 100 MHz memory bus, 64 byte cache
blocks, and 230 ns cache-to-cache transfer—the maximum band-
width achieved by CNI512Q on the memory bus is 107 MB/s. This
represents over 73% of the bandwidth achievable between two
processors on the same coherent memory bus. More aggressive
system assumptions, such as non-blocking caches, bigger cache
blocks, prefetch instructions, support for update protocols, and a
pipelined or packet-switched bus, would significantly improve this
absolute performance.

5.2 Macrobenchmarks
Figure8 shows the performance gains from CNIs for the five

macrobenchmarks described in Section4.2.
CNI4, CNI16Q, CNI512Q, and CNI16Qm offer a progression of

incremental benefits over NI2w. Unlike NI2w, which can only be
accessed through uncached loads and stores, CNI4 effectively uti-
lizes the memory bus’s high-bandwidth block transfer mechanism
by transferring messages in full cache block units. CNI16Q and
CNI512Q further reduce overhead by amortizing the three-cycle
handshake over an entire queue of messages. The larger capacity
of the CQs also helps prevent bursty traffic from backing up into
the network. CNI16Qm further simplifies software flow control in
the messaging layer by allowing messages to smoothly overflow to
main memory when the device cache fills. This avoids processor
intervention for message buffering, which, otherwise, could signif-
icantly degrade performance [25].

Block Transfer. The increase in bandwidth obtained by trans-
ferring messages in whole cache block units has a major impact on
performance.Gauss andmoldyn do bulk transfers andappbt com-
municates with moderately large (128-byte) shared-memory
blocks.Gauss performs a one-to-all broadcast of a 2KB row, while
moldyn’s reduction protocol transfers 1.5KB of data between
neighboring processors. CNI4 improves gauss’s performance by
39% and 46%,moldyn’s performance by 42% and 20%, and
appbt’s performance by 10% and 11% on the memory and I/O
buses respectively. Even for spsolve and em3d that send small
messages (12-byte payload), CNI4’s performance improvement
over NI2w is significant (between 13-21%).

CNI4’s performance improvement formoldyn on the I/O bus is
not as high as on the memory bus because of contention at the I/O
bridge. The NI2w device never tries to acquire the memory or I/O
bus because it is always a bus slave. However, the CNI4 cache
competes with the processor cache to acquire the memory and I/O
buses. Simultaneous bus acquisition requests at the I/O bridge
from the processor cache and CNI4 cache creates contention. This
effect is severe in moldyn because message sends, message
receives, and polls on uncached device registers are partially over-
lapped inmoldyn’s bulk reduction phase. Thus, the memory bus
occupancy for a system with CNI4 on the I/O bus compared to a
system with NI2w on the I/O bus decreases by 41% ingauss, but
by only 15% inmoldyn.

Overall, for the five macrobenchmarks, CNI4 improves the per-
formance over NI2w between 10-42% on the memory bus and 11-
46% on the I/O bus. This amounts to 28-92% of the total gain

achieved by our CNIs on the memory bus and 25-52% of that on
the I/O bus.

Extra Buffering . The CQ-based CNIs provide extra buffering
that helps smooth out bursts in message traffic. However, CNI16Q
and CNI512Q cannot always take advantage of this feature. The
problem is that once a sender blocks, the flow control software
aggressively buffers received messages in memory. This results in
messages being pulled out of the CNI’s cache, even when there
was still room for additional messages. Further, because of its

spsolve gauss em3d moldyn appbt
0.0

0.5

1.0

1.6

S
pe

ed
up

/N
I 2

w
,m

em
or

y
bu

s

NI2w
CNI4
CNI16Q
CNI512Q
CNI16Qm

MEMORY BUS

I/O BUS

spsolve gauss em3d moldyn appbt
0.0

0.5

1.0

1.6

S
pe

ed
up

/N
I 2

w
,m

em
or

y
bu

s

NI2w, Cache Bus
CNI16Qm,Memory Bus
CNI512Q, I/O Bus

ALTERNATE BUSES

spsolve gauss em3d moldyn appbt
0.0

0.5

1.0

1.6

S
pe

ed
up

/N
I 2

w
,m

em
or

y
bu

s

NI2w
CNI4
CNI16Q
CNI512Q

FIGURE 8. This figure compares our five network interface
implementations on the memory, I/O, and cache buses for five
benchmarks. The vertical axes of the graphs show the speedup
over NI2w on the memory bus. (a) compares NI2w, CNI4,
CNI16Q, CNI512Q, and CNI16Qm on the memory bus. (b)
compares NI2w, CNI4, CNI16Q, and CNI512Q on the I/O bus. (c)
compares NI2w on the cache bus, CNI16Qm on the memory bus,
and CNI512Q on the I/O bus.

10

small queue size, CNI16Q frequently updates its shadow head by
reading the processor’s head pointer, which creates bus contention.
Because of these effects, CNI16Q and CNI4 achieve roughly the
same performance on the memory bus. CNI512Q’s larger queue
reduces the frequency of shadow head updates. For em3d this
improves CNI512Q’s performance over CNI16Q by 29% on the
memory bus.

On the I/O bus, the higher latencies mitigate the effects of over
aggressive buffering, by slowing down the rate at which messages
are extracted and buffered. This allows CQ-based CNIs to exploit
their buffering and smooth out the bursty traffic of all five mac-
robenchmarks. Inspsolve andem3d, several small active messages
(with 12-byte payload) can be in flight simultaneously causing
bursts in the message arrival. In gauss andmoldyn, periodic bulk
transfers cause the bursts. Request-response protocols normally do
not cause bursts. However, appbt exhibits a hot spot in which one
processor receives twice as many messages as other processors.
Thus, CNI16Q improves the performance ofspsolve, gauss, em3d,
andappbt over CNI4 on the I/O bus by 15%, 26%, 11%, and 16%
respectively. For moldyn, frequent updates of the shadow head
causes contention at the I/O bridge and actually slightly reduces
CNI16Q’s performance. But the extra buffering and infrequent
updates of the shadow head result in CNI512Q improving perfor-
mance by 13%, 31%, and 51%, respectively, over CNI16Q for
spsolve, em3d, andmoldyn.

Overflow to Memory. CNI16Qm allows messages to smoothly
overflow to memory when the device cache fills up. This elimi-
nates the over aggressive message buffering that was a problem for
CNI16Q and CNI512Q. This automatic buffering improves
spsolve’s performance over CNI512Q by 20%. For the other four
macrobenchmarks, CNI16Qm is slightly better than CNI512Q.
Thus, CNI16Qm consistently outperforms CNI512Q on the memory
buseven with significantly less memory (i.e., cache) on the device.

On the memory bus, CNI16Qm shows the best overall perfor-
mance improvement (between 17-53%), while CNI512Q shows the
best improvement (between 30-88%) on the I/O bus. Also
CNI16Qm on the memory bus comes within 4% of NI2w’s perfor-
mance on the cache bus forspsolve, gauss, andmoldyn, and within
17% forappbt (Figure8). For em3d, CNI16Qm on the memory bus
slightly outperforms the cache bus NI2w because NI2w has limited
buffering in the device and the processor must explicitly buffer
messages in memory. These indicate that CNI16Qm is an attractive
alternative because it is feasible with most commodity processors
and requires no change to the processor core or board.

Finally, CNIs significantly reduce the memory bus occupancy.
By polling on cached registers and transferring messages in full
cache block units, CQ-based CNIs on the memory bus reduce the
memory bus occupancy by as much as 66% (averaged over five
macrobenchmarks) compared to NI2w. In comparison, CNI4
reduces the memory bus occupancy by only 23% because it still
requires the processor to poll across the memory bus.

6 Related Work

Coherent Network Interfaces differ from most previous work
on program-controlled network I/O in three important respects.
First, unlike other NIs, CNIs interact with processor caches and
main memory primarily through the node’s coherence protocol.
Second, CNIs separate the logical and physical locations of NI
registers and queues allowing processors to cache them like mem-
ory. Third, CNIs provide a uniform memory-based interface for
both local and remote communication. Table4 compares network
interfaces of different machines with respect to these three issues.
The Thinking Machines’ CM-5 [44], the Wisconsin Typhoon [38],
the Stanford FLASH [28], and the Meiko CS2 [33] multiproces-
sors provide high latency uncached access to their NIs on the

memory bus. Since both Typhoon and FLASH have a coherent
cache in their network interfaces, they could both support CQs.
The Meiko CS2 network interface supports the memory bus’s
coherence protocol, but does not contain a cache. The MIT Ale-
wife [1] and FUGU [32] machines provide uncached access to
their NIs under control of a custom CMMU unit. The StarT-NG NI
[10] is not coherent because it is a slave device on the non-coher-
ent L2 coprocessor interface. StarT-NG NI queues can be cached
in the L1 cache, but the processor must explicitly self-invalidate or
flush stale copies of the NI queues. Wisconsin T-Zero [39] caches
device registers, but not queues, and only uses them to send infor-
mation from the device to the processor. AP1000 [41] directly
DMA’s messages from the processor’s cache to the NI, but does
not receive messages directly into the cache.Princeton SHRIMP’s
memory bus NI [4] allows coherent caching on the processor, but
requires processors to use the higher traffic write-through mode.
The DI multicomputer’s on-chip NI [11] neither supports coher-
ence nor allows its registers or queues to be cached. The processor
chip interfaces with the rest of the system through the NI. Unlike
other machines, the DI-multicomputer supports a uniform mes-
sage-based interface for both memory and the network, whereas
CNI uses the samememory interface for both memory and net-
work.

Unlike many other NIs, ourimplementation of CNIs does not
require changes to an SMP board or other standard components.
Yet they enable processors and network interfaces to communicate
through the cachable memory accesses, for which most processors
and buses are optimized. Henry and Joerg [21] and Dally, et al.
[15] advocate changes to a processor’s registers. MIT Alewife [1]
and Fugu [32] rely on a custom cache controller. MIT StarT-NG
[10] requires a co-processor interface at the same level as the L2
cache. AP1000 [41] requires integrated cache and DMA control-
lers. Stanford FLASH [28, 20] uses a custom memory controller
with an embedded processor. Other efforts, such as the TMC CM-
5 or SHRIMP, use standards components, but settle for lower per-
formance by using loads and stores to either uncachable or write-
through memory, instead of using the full functionality of write-
back caches.

Three efforts that appear very similar to our work are FLASH
messaging [19], UDMA/SHRIMP-II [3], and Remote Queues [6].
We differ from FLASH, because we do not have a processor core
in the network interface, we allow commands to use cachable
loads and stores, and we can notify the receiving process without
an interrupt. We differ from the UDMA/SHRIMP-II, because we
use the same mechanisms when the destination is local and remote
(whereas SHRIMP-II’s UDMA does not handle local memory to

Network Interface Coherence Caching Uniform Interface

CNI Yes Yes Memory Interface

TMC CM-5 [44] No No No

Typhoon [38] Possible Possible Possible

FLASH [28] Possible Possible Possible

Meiko CS2 [33] Possible No Possible

Alewife [1] No No No

FUGU [32] No No No

StarT-NG [10] No Maybe No

AP1000 [41] No Sender No

T-Zero [39] Partial Partial No

SHRIMP [4] Yes Write Through No

DI Multicomputer[11] No No Network Interface

TABLE 4. Comparison of CNI with other network interfaces

11

local memory copies), we use only virtual addresses (where
SHRIMP-II requires that the sender knows the receiver’s physical
addresses), we allow device registers to use writeback caching,
and we focus on fine-grain user-to-user communication in which
the receiving process may be notified without an interrupt. We dif-
fer from Remote Queues by being at a lower-level of abstraction.
Remote Queues provide a communication model similar to Active
Messages [45], except extracting a message from the network and
invoking the receive handler can be decoupled. Implementing
Remote Queues with CNIs is straightforward and offers advan-
tages over CM-5, Intel Paragon, MIT Alewife, and Cray T3D net-
work interfaces. CNIs support cachable device registers for low-
overhead polling (unlike the others), allow network buffers to
gracefully overflow to memory (unlike the CM-5), and do not
require a second processor (Paragon), custom cache controller
(Alewife), or hardware support for globally shared memory
(T3D).

Finally, our results conservatively estimate the rate at which
processors can move data, given trends toward block move
instructions, prefetch support, and non-blocking caches. UltraS-
PARC-I [42], for example, has instructions that copy a cache
block (64 bytes) to or from floating-point registers, SPARC V9
[46] has four prefetch instructions that indicate expected locality
(e.g., that a block will be written once and not accessed again),
and numerous processors do not stall on the first cache miss.
These optimizations can further increase the relative benefits of
using CNIs.

7 Conclusions

This paper explored using snooping cache coherence to
improve communication performance between processors and
network interfaces (NIs). We call NIs that use coherencecoherent
network interfaces (CNIs). We restricted our study to NI/CNIs
that reside on memory or I/O buses, to NI/CNIs that are much
simpler than processors, and to the performance of fine-grain mes-
saging from user process to user process.

We developed two mechanisms that CNIs use to communicate
with processors. Acachable device register allows information to
be exchanged in whole cache blocks and permits efficient polling
where cache misses (and bus transfers) occur only when status
changes.Cachable queues reduce re-use overhead by using array
of cachable, coherent blocks managed as a circular queue and
(optionally) optimized with lazy pointers, message valid bits, and
sense-reverse.

We then compared four alternative CNIs—CNI4, CNI16Q,
CNI512Q, and CNI16Qm—with a CM-5-like NI. Microbenchmark
results showed that CNIs significantly improved the round-trip
latency and bandwidth of small and moderately large messages.
For small message sizes, between 8 and 256 bytes, CNIs
improved the round-trip latency by 20-84% compared to NI2w on
a coherent memory bus and 29-141% on a coherent I/O bus. For
moderately large messages, between 8 and 4096 bytes, CNIs
improved bandwidth by 59-169% over NI2w on a coherent mem-
ory bus and 51-287% on a coherent I/O bus. Macrobenchmark
results showed that CNI16Qm performed the best on the coherent
memory bus and CNI512Q on the coherent I/O bus. CNI16Qm was
17-53% better than NI2w on the memory bus, while CNI512Q was
better than NI2w by 30-88% on the I/O bus. Also, CNI16Qm on the
memory bus came within 17% of NI2w’s performance on the
cache bus. This indicates that CNI16Qm is an attractive alternative
because it is feasible with most current commodity microproces-
sors and requires no change to the processor core or board.

Our experiments use assumptions that are reasonable for com-
modity parts in the present and near future. In the medium term,
our quantitative results will likely be obviated by better memory

interconnects that pipeline requests, allow out-of-order responses,
or even abandon physical buses. Nevertheless, we expect our qual-
itative results in favor of CNIs to continue to hold as CNIs con-
tinue to exercise memory interconnects with the operations the
interconnects are optimized for, namely, coherent block transfers.
In the longer term, caches, memory bus, NIs, and memory may
move onto processor chips (or, in another view, everything moves
onto memory chips). To manage complexity, however, these super
chips may resemble boards of old systems with die area devoted
to a custom mix of relatively-standard, optimized components
(e.g., processors and DRAM) interconnected through well-defined
interfaces. While integrating an NI into a processor is possible,
CNIs will be interesting as a less expensive (in terms of design
and verification costs) way to deliver competitive performance.

Acknowledgements
This work developed in the supportive environment provided

by members of the Wisconsin Wind Tunnel Project (http://
www.cs.wisc.edu/~wwt). Steve Reinhardt and Rob Pfile were
instrumental in ideas leading to CDRs. Fred Chong and Shamik
Sharma provided us with spsolve. Erik Hagersten, Steve Rein-
hardt, Jon Wade, Bob Zak, and anonymous referees provided
excellent feedback on various drafts of this manuscript. Special
thanks to Steve Reinhardt for his generous help with debugging
the simulator.

References
[1] Anant Agarwal, Ricardo Bianchini, David Chaiken, KirkL. Johnson, David

Kranz, John Kubiatowicz, Beng-Hong Lim, Kenneth Mackenzie, and Donald
Yeung. The MIT Alewife Machine: Architecture and Performance. In
Proceedings of the 22nd Annual International Symposium on Computer
Architecture, pages 2–13, June 1995.

[2] Anant Agarwal, Richard Simoni, Mark Horowitz, and John Hennessy. An
Evaluation of Directory Schemes for Cache Coherence. InProceedings of the
15th Annual International Symposium on Computer Architecture, pages 280–
289, 1988.

[3] MatthiasA. Blumrich, Cesary Dubnicki, EdwardW. Felten, and Kai Li.
Protected User-level DMA for the SHRIMP Network Interface. InSecond IEEE
Symposium on High-Performance Computer Architecture, February 1996.

[4] MatthiasA. Blumrich, Kai Li, Richard Alpert, Cezary Dubnicki, EdwardW.
Felten, and Jonathon Sandberg. Virtual Memory Mapped Network Interface for
the SHRIMP Multicomputer. InProceedings of the 21st Annual International
Symposium on Computer Architecture, pages 142–153, April 1994.

[5] Shekhar Borkar, Robert Cohn, Geroge Cox, Thomas Gross, H.T. Kung, Monica
Lam, Margie Levine, Brian Moore, Wire Moore, Craig Peterson, Jim Susman,
Jim Sutton, John Urbanski, and Jon Webb. Supporting Systolic and Memory
Communication in iWarp. InProceedings of the 17th Annual International
Symposium on Computer Architecture, pages 70–81, 1990.

[6] Eric A. Brewer, FredericT. Chong, LokT. Liu, ShamikD. Sharma, and John
Kubiatowicz. Remote Queues: Exposing Message Queues or Optimization and
Atomicity. In Proceedings of the Sixth ACM Symposium on Parallel Algorithms
and Architectures (SPAA), pages 42–53, 1995.

[7] B. R. Brooks, R.E. Bruccoleri, B.D. Olafson, D. J. States, S.Swamintathan,
and M.Karplus. Charmm: A program for macromolecular energy,
minimization, and dynamics calculation.Journal of Computational Chemistry,
4(187), 1983.

[8] Doug Burger and Sanjay Mehta. Parallelizing Appbt for a Shared-Memory
Multiprocessor. Technical Report 1286, Computer Sciences Department,
University of Wisconsin–Madison, September 1995.

[9] Satish Chandra, JamesR. Larus, and Anne Rogers. Where is Time Spent in
Message-Passing and Shared-Memory Programs? InProceedings of the Sixth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS VI), pages 61–75, October 1994.

[10] Derek Chiou, BoonS. Ang, Arvind, MichaelJ. Becherle, Andy Boughton,
Robert Greiner, JamesE. Hicks, and JamesC. Hoe. StartT-ng: Delivering
Seamless Parallel Computing. InProceedings of EURO-PAR ’95, Stockholm,
Sweden, 1995.

[11] Lynn Choi and AndrewA. Chien. Integrating Networks and Memory
Hierarchies in a Multicomputer Node Architecture. InProceedings of the Eighth
International Parallel Processing Symposium, 1994.

12

[12] Fred Chong, Shamik Sharma, Eric Brewer, and Joel Saltz. Multiprocessor
Runtime Support for Irregular DAGs. In R.Kalia and P.Vashishta, editors,
Toward Teraflop Computing and New Grand Challenge Applications. Nova
Science Pulishers, Inc., 1995.

[13] D. E. Culler, A.Dusseau, S.C. Goldstein, A.Krishnamurthy, S.Lumetta,
T. von Eicken, and K.Yelick. Parallel Programming in Split-C. InProceedings
of Supercomputing ’93, pages 262–273, November 1993.

[14] Fredrik Dahlgren. Boosting the Performance of Hybrid Snooping Cache
Protocols. InProceedings of the 22nd Annual International Symposium on
Computer Architecture, pages 60–69, 1995.

[15] William J. Dally, Andrew Chien, Stuart Fiske, Waldemar Horwat, John Keen,
Michael Larivee, Rich Nuth, Scott Wills, Paul Carrick, and Greg Flyer. The J-
Machine: A Fine-Grain Concurrent Computer. In G.X. Ritter, editor,Proc.
Information Processing 89. Elsevier North-Holland, Inc., 1989.

[16] Babak Falsafi, Alvin Lebeck, Steven Reinhardt, Ioannis Schoinas, MarkD. Hill,
James Larus, Anne Rogers, and David Wood. Application-Specific Protocols for
User-Level Shared Memory. InProceedings of Supercomputing ’94, pages 380–
389, November 1994.

[17] JamesR. Goodman and PhilipJ. Woest. The Wisconsin Multicube: A New
Large-Scale Cache-Coherent Multiprocessor. InProceedings of the 15th Annual
International Symposium on Computer Architecture, pages 422–431, 1988.

[18] PCI SpecialInterest Group.PCI Local Bus Specification, Revision 2.1, 1995.

[19] John Heinlein, Kourosh Gharachorloo, ScottA. Dresser, and Anoop Gupta.
Integration of Message Passing and Shared Memory in the Stanford FLASH
Multiprocessor. InProceedings of the Sixth International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS VI), pages 38–50, 1994.

[20] Mark Heinrich, Jeffrey Kuskin, David Ofelt, John Heinlein, Joel Baxter,
JaswinderPal Singh, Richard Simoni, Kourosh Gharachorloo, David Nakahira,
Mark Horowitz, Anoop Gupta, Mendel Rosenblum, and John Hennessy. The
Performance Impact of Flexibility in the Stanford FLASH Multiprocessor. In
Proceedings of the Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS VI), pages 274–285,
1994.

[21] DanaS. Henry and ChristopherF. Joerg. A Tightly-Coupled Processor-Network
Interface. InProceedings of the Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS V),
pages 111–122, October 1992.

[22] Mark D. Hill, JamesR. Larus, and DavidA. Wood. Tempest: A Substrate for
Portable Parallel Programs. InCOMPCON ’95, pages 327–332, San Francisco,
California, March 1995. IEEE Computer Society.

[23] MIPS Technologies Inc.MIPS R10000 Microprocessor User’s Manual, 1995.

[24] SunMicrosystems Inc.SPARC MBus Interface Specification, April 1991.

[25] Vijay Karamcheti and AndrewA. Chien. A Comparison of Architectural
Support for Messaging in the TMC CM-5 and the Cray T3D. InProceedings of
the 22nd Annual International Symposium on Computer Architecture, pages
298–307, 1995.

[26] John Kubiatowicz and Anant Agarwal. Anatomy of a Message in the Alewife
Multiprocessor. InProceedings of the 1993 ACM International Conference on
Supercomputing, 1993.

[27] John Kubiatowicz, David Chaiken, and Anant Agarwal. Closing the Window of
Vulnerability in Multiphase Memory Transactions. InProceedings of the Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS V), pages 274–284, 1992.

[28] Jeffrey Kuskin etal. The Stanford FLASH Multiprocessor. InProceedings of the
21st Annual International Symposium on Computer Architecture, pages 302–
313, April 1994.

[29] CharlesE. Leiserson, ZahiS. Abuhamdeh, DavidC. Douglas, CarlR. Feynman,
MaheshN. Ganmukhi, JeffreyV. Hill, W. Daniel Hillis, BradleyC. Kuszmaul,
Margaret A.St. Pierre, DavidS. Wells, MonicaC. Wong, Shaw-Wen Yang, and
Robert Zak. The Network Architecture of the Connection Machine CM-5. In
Proceedings of the Fifth ACM Symposium on Parallel Algorithms and
Architectures (SPAA), July 1992.

[30] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber,
Anoop Gupta, John Hennessy, Mark Horowitz, and Monica Lam. The Stanford
DASH Multiprocessor.IEEE Computer, 25(3):63–79, March 1992.

[31] Lok Tin Liu and DavidE. Culler. Evaluation of the Intel Paragon on Active
Message Communication. InProceedings of Intel Supercomputer Users Group
Conference, June 1995.

[32] Kenneth Mackenzie, John Kubiatowicz, Anant Agarwal, and Frans Kaashoek.
Fugu: Implementing Translation and Protection in a Multiuser, Multimodel
Multiprocessor. Technical Memo MIT/LCS/TM-503, MIT Laboratory for
Computer Science, October 1994.

[33] Meiko World Inc. Computing Surface 2: Overview Documentation Set, 1993.

[34] JohnM. Mellor-Crummey and MichaelL. Scott. Algorithms for Scalable
Synchronization on Shared-Memory Multiprocessors.ACM Transactions on
Computer Systems, 9(1):21–65, February 1991.

[35] ShubhenduS. Mukherjee, ShamikD. Sharma, MarkD. Hill, JamesR. Larus,
Anne Rogers, and Joel Saltz. Efficient Support for Irregular Applications on
Distributed-Memory Machines. InFifth ACM SIGPLAN Symposium on
Principles & Practice of Parallel Programming (PPOPP), pages 68–79, July
1995.

[36] RobertW. Pfile. Typhoon-Zero Implementation: The Vortex Module. Technical
report, Computer Sciences Department, University of Wisconsin–Madison,
1995.

[37] StevenK. Reinhardt. Tempest Interface Specification (Revision 1.2.1).
Technical Report 1267, Computer Sciences Department, University of
Wisconsin–Madison, February 1995.

[38] StevenK. Reinhardt, JamesR. Larus, and DavidA. Wood. Tempest and
Typhoon: User-Level Shared Memory. InProceedings of the 21st Annual
International Symposium on Computer Architecture, pages 325–337, April
1994.

[39] StevenK. Reinhardt, RobertW. Pfile, and David Wood. Typhoon-0: Hardware
Support for Distributed Shared on a Network of Workstations Memory. In
Workshop on Scalable Shared-Memory Multiprocessors, 1995.

[40] StevenK. Reinhardt, RobertW. Pfile, and DavidA. Wood. Decoupled
Hardware Support for Distributed Shared Memory. InProceedings of the 23rd
International Symposium on Computer Architecture, May 1996.

[41] Toshiyuki Shimizu, Takeshi Horie, and Hiroaki Ishihata. Low-Latency Message
Communication Support for AP1000. InProceedings of the 19th Annual
International Symposium on Computer Architecture, pages 288–297, 1992.

[42] SPARC Technology Business.UltraSPARC-I User’s Manual, Revision 1.0,
September 1995.

[43] Paul Sweazey and AlanJay Smith. A Class of Compatible Cache Consistency
Protocols and their Support by the IEEE Futurebus. InProceedings of the 13th
Annual International Symposium on Computer Architecture, pages 414–423,
1986.

[44] Thinking Machines Corporation. The Connection Machine CM-5 Technical
Summary, 1991.

[45] Thorsten von Eicken, DavidE. Culler, SethCopen Goldstein, and KlausErik
Schauser. Active Messages: a Mechanism for Integrating Communication and
Computation. InProceedings of the 19th Annual International Symposium on
Computer Architecture, pages 256–266, May 1992.

[46] DavidL. Weaver and Tom Germond, editors.SPARC Architecture Manual
(Version 9). PTR Prentice Hall, 1994.

[47] Shlomo Weiss and JamesE. Smith.Power and PowerPC. Morgan Kaufmann
Publishers, Inc., 1994.

[48] DavidA. Wood and MarkD. Hill. Cost-Effective Parallel Computing.IEEE
Computer, 28(2):69–72, February 1995.

