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Abstract— The article presents two different torque measure-
ment methods for very high speed synchronous motors: one uses
an eddy current brake, and the other is an inertial method. The
article also presents a ball bearings friction torque measurement
method designed for very high speeds.
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I. INTRODUCTION

The increasing need for low weight, high efficiency and

high power density motors or generators has led to an intense

research and development in the field of very high speed

(VHS) motor or generators [1], [2].

The measuring process is inherently linked with the target

speed and power of the machine. Our goal is the measurement

of a 200’000 rpm, 2 kW synchronous machine [3]. Traditional

measurement tools are not compatible with such high speeds.

It is then necessary to develop new ones. In this article we

present different aspects which need to be considered for

torque measurement, and two measurement methods.

At a very high speed, it is highly recommended not to make

a mechanical connection between the motor and the measuring

device, as it would add normal modes. If a measuring device

is mechanically connected and held through bearings, then

the whole design would be hyperstatic. If the device is not

held through bearings, then the shaft is longer and the normal

modes are lower. Since at high speeds the normal modes are

at the order of magnitude of the target speed, such lengthening

can be fatal.

The goal was then to develop contactless torque measure-

ment methods. Using some of the concepts developed in one

of these methods, a second part of the article will present a

method for ball bearings friction torque measurements.

II. PROCTECTION

The first question to consider in design of high speed

measurement tools is the safety. In our prototype, the rotor

at 200 krpm has 350 J of kinetic energy. It is then necessary

to build a housing which can stand defects. In our case, the

protection is made of two polycarbonate shells of 6 mm each,

one inside the other. A moving protective cover made of 5

mm thick steel is added to the protection. The advantage of

this design is to have transparency and security.
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Fig. 1. Position of the rotor.
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Fig. 2. Rotor speed obtained by numerical differentiation.

III. MOTOR TORQUE MEASUREMENT: INERTIAL METHOD

A. Method

This basic method is based only on the inertia of the motor

rotor. A coder measures the position α of the rotor. The

acceleration α̈ of the rotor is related to the frequency fc of

the coder with resolution n as:

α̈ =
2π

n
ḟc (1)

Knowing the inertia I we obtain the torque T that needs to

be applied to produce the acceleration α̈:

T = Iα̈ (2)

In our case the inertia of the rotor I = 1.5951× 10−6 kg m2.
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Fig. 3. Motor torque obtained by numerical differentiation. The useful
information is hidden in the noise.

The value of n needs to be compatible with low and high

speeds. Fig. 1 shows the angle α measured by the coder with

n = 1. A numerical differentiation allows us to obtain the rotor

speed (Fig. 2). Using a numerical differentiation once again,

the torque is computed (Fig 3). The noise in the measurements

makes a numerical differentiation useless. In Figs 1 to 6, the

applied voltage is 70 V. The current is limited from 0 to ∼ 220
ms.
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Fig. 4. Speed as the function of time obtained by analytical differentiation.
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Fig. 5. Torque as a function of time obtained by analytical differentiation.

The solution for eliminating this noise is to do first a

polynomial fitting (of order 40 for example) of the curve
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Fig. 6. The torque as a function of speed.

representing the rotor position as a function of the time and

then differentiate analytically. Fig. 4 represents the speed as a

function of time. A second analytical derivative is calculated

to obtain the torque (Fig. 5). This method is powerful to cancel

the noise.

Before the fitting, a resampling can be done, because there

are more points per unit of time at high speed than at low

speed.

B. Results

The combination of the speed and the torque functions

(Figs 4 and 5) gives us the torque vs. speed curve. The result

obtained with our motor prototype driven at 70 V is shown in

Fig. 6. We see the current limitation from 0 krpm to ∼ 140
krpm.

IV. MOTOR TORQUE MEASUREMENT: EDDY CURRENTS

BRAKE METHOD

A. Brake design

In this method, a braking torque is created and measured.

Because of the high power density, temperatures in the motor

are critical. The braking torque dissipates losses. It is important

that the heat is created in a piece which is not in contact with

the motor. This is why a the following eddy current brake is

made.

A multipolar axially magnetized permanent magnet is

mounted at the end of the motor shaft (Fig. 7). A copper

plate is placed in front of the magnet. As the plate is placed

in a varying field, eddy currents appear in it and a braking

torque appears. A torquemeter measures the torque applied on

the plate.

B. The finite element model

A finite element model (FEM) of the eddy current brake

(Fig. 8) was based on the following simplifying assumptions,

shown in Fig. 7:

1) The multipolar moving magnet is replaced by static

multiphase windings with a phase shift between the
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Fig. 7. Eddy current brake design and assumptions for eddy current brake
FEM model.

Fig. 8. Model of the magnetic field and the magnitude of the current density
at 200’000 rpm. We see the skin effect in the copper plate.

currents in the phases. The problem becomes a static

time-harmonic problem.

2) We look at the field along the circumference which is

midway in-between the inner and the outer radius. The

circumference is ”opened” and the rotating configuration

is approximated by a linear one. This allows us to use

FEMM which is a 2D FEM software.

3) The current value is chosen so that the first harmonic of

the flux density due to the currents is equal to the first

harmonic of the flux density due to the brake permanent

magnet.

C. Prototype

Different brake prototypes were made. In this article the

brake has 5 pole pairs. The amplitude of the magnetic flux

density is measured using a hall probe at different distances

from the magnet. The value of the amplitude of magnetic flux

density at the surface of the magnet is estimated to be 0.512 T

by extrapolation. The brake dimensions are presented in Tab. I.

TABLE I

BRAKE DIMENSIONS AND MATERIALS.

Magnet inner radius 4 mm
Magnet outer radius 6.225 mm
Axial magnet thickness 2.3 mm
Yoke material (behind the magnet) Nickel-iron
Magnet material NdFeB (Vacodym 677 HR)

D. Results

Other articles give a better accuracy of results [4], but the

merit of our model (the results are shown in Fig. 9) is to give

a good insight into the problem, given the simplicity of the

model which is static and 2D. The model and the prototypes

allowed us to conclude the following about the design of the

brake:

1) The number of pole pairs is an important factor at low

speeds, but not at high speeds because of the skin effect.

2) Variations around the given value of the magnet thick-

ness do not change the braking torque significantly.

3) The remanent field of the magnet is critical, it increases

the torque in a non linear way.

4) The resistivity of the plate is an important factor. The

same torque can be created with two plates of different

resistivity, but a given torque is obtained at higher speeds

with a plate of higher resistivity.

5) The thickness of the plate is important. The thinner the

plate, the higher the maximum torque. The maximum

torque will also be at higher speeds.

6) The distance between the plate and the rotor magnet is

critical.

The results obtained are equivalent to slip curves of asyn-

chronous motors. The difference between the measures and

the FEM model (Fig. 9) can be explained by the simplifying

assumptions, by an uncertainty on the magnetic flux den-

sity amplitude measurement, and by a mechanical coupling

through the air between the brake and the plate.

To make a motor torque measurement with this method, one

needs to vary the distance between the magnet and the plate

to vary the measured braking torque.
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Fig. 9. Comparison between the torque measured with the eddy current
brake (dots) and the simulation using the finite element software (squares).
The distance between the plate and the brake is 0.25 mm.

V. MOTOR TORQUE MEASUREMENT: METHOD

COMPARISON

The inertial method (indirect) presented in the section III

is validated (Fig. 10) through the eddy current brake method

(direct). Since the maximum braking torque of the eddy cur-

rent braking device is 11.6 mNm, the validation measurements

were done only at low torque.
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Fig. 10. Validation of the inertial method using the eddy current brake
method. The applied voltage is 30 V, 60 V, 68 V. A pulse width modulation
limits the current and hence the torque in the first part of the 3 curves. The 3
points represents 3 torque measurements using the eddy current brake method.

VI. BALL BEARINGS TORQUE MEASUREMENT: DIRECT

METHOD

In a ball bearing, there are many parameters which influence

the friction torque: the dimensions, the rolling paths materi-

als, the balls materials, the contact angles, the construction

precision, the speed, the preload and the lubrification.

Theoretical models are available in the literature [5], [6] to

estimate this torque. However, due to the very high speeds, the

uncertainties of many model parameter values, the accuracy of

such models may be poor [7].

Among articles about the use of ceramic ball bearings for

high speed applications [8], there are not many ones about

friction torque: we can cite [9], which gives an empirical

model for a given design and speed range.

Therefore, a setup was done to do an experimental model

for the ball bearings considered for our prototype.

Fig. 11. Bearings friction torque measurement setup: the conductive shaft
driven from the left, the two ball bearings, a hole on the right is for the
torquemeter.

Fig. 12. Picture of the bearing friction torque measurement setup.

TABLE II

DIMENSIONS AND PROPERTIES OF THE MEASURED BALL BEARINGS.

Inner diameter 6 mm
Outer diameter 17 mm
Axial length 6 mm
Contact angle 15◦

Ball type Ceramic

A. The setup

As shown in Fig. 11, two ball bearings are mounted on a

conductive shaft, which is in our case made of aluminium.

As in the case of the eddy current brake, a multipolar axially

magnetized permanent magnet is mounted at the end of the

shaft of the motor and drives the conductive shaft. Eddy

currents are created in the conductive shaft, so the coupling is

contactless. The reaction torque T2 is measured on the fixed

part which surrounds the bearings.

Two toric shape elastic pieces stand at the two sides of the

bearings. The preload is adjusted on the bearings through a

screwed piece (on the left, in Figs 11 and 12).

The data of the tested bearings are shown in Tab. II.

B. Measurement procedure

As the coupling between the motor shaft and the conductive

shaft is done by the mean of eddy currents, there is a speed

difference between the two shafts. Let f be the conductive

shaft rotation frequency, fm the motor rotor rotation frequency

and ∆f the frequency difference between them:

∆f = fm − f (3)

First we need to relate ∆f to the torque applied on the

conductive shaft. We fix the conductive shaft (f = 0) and

run the motor. We measure the torque T1 as a function of

∆f = fm, which gives us the slip curve:

T1 = g1(∆f) (4)

Then we let the conductive shaft rotate freely. We drive the

motor at different speeds. The reaction torque T2 is measured

as a function of fm:

T2 = g2(fm) (5)
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TABLE III

MEASURED PARAMETERS OF THE BALL BEARINGS TORQUE MODEL.

Preload 17 mNm 35 mNm

c1 5.23× 10
−9 mNm 1.16× 10

−8 mNm
c2 1.59 1.51

c3 2.28× 10
−4 mNm 4.28× 10

−4 mNm

As there is no speed sensor on the conductive shaft, its

rotation frequency is deduced using the slip curve:

f = fm − g−1

1
(T2) (6)

C. The results

The results are shown in Fig. 13. The friction torque of the

ball bearings is dependent on the speed and on the preload.

The measurements include the mechanical coupling through

the air. Since the torque is quite small, the measurements were

difficult to realize.

The results are fitted using the following model:

T2 = c1

(

f

[hz]

)

c2

+ c3 (7)

The results are shown in Tab. III.
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Fig. 13. Brake torque as a function of speed of a pair of ball bearings, for
different preloads.

VII. CONCLUSION

A. Motor torque measurement: Eddy current brake

The FEM model gave us an understanding of the brake.

The eddy current brake torque measurement method is good

for continuous torque measurements. For mechanical stress

reasons, the high speeds limit the outer diameter of the brake,

which limits the maximum braking torque. It was possible to

test the motor up to 238 W and not the needed 2 kW. The

measurements are time consuming. The problem is also the

dissipation of the heat.

B. Motor torque measurement: Inertial method

The inertial method allows making measurements that keeps

the temperature of the motor homogeneous; it allows to

make very high torque measurement; the measurement is very

fast (0.380 s to do the measurement for a range from 0

to 200 krpm); it is not possible to make continuous torque

measurement using it.

C. Ball bearings torque measurement: Direct method

The model which is derived from these measurements is

very useful for the global modeling of the motor [3].
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