

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EuroSys’09, April 1–3, 2009, Nuremberg, Germany.
Copyright 2009 ACM 978-1-60558-482-9/09/04...$5.00.

Predicting Replicated Database Scalability
from Standalone Database Profiling

Sameh Elnikety
Microsoft Research

Cambridge, UK

Steven Dropsho
Google Inc.

Zurich, Switzerland

Emmanuel Cecchet
University of Massachusetts

Amherst, USA

Willy Zwaenepoel
EPFL

Lausanne, Switzerland

Abstract
This paper develops analytical models to predict the
throughput and the response time of a replicated database
using measurements of the workload on a standalone data-
base. These models allow workload scalability to be esti-
mated before the replicated system is deployed, making the
technique useful for capacity planning and dynamic service
provisioning. The models capture the scalability limits
stemming from update propagation and aborts for both
multi-master and single-master replicated databases that
support snapshot isolation.

We validate the models by comparing their throughput
and response time predictions against experimental mea-
surements on two prototype replicated database systems
running the TPC-W and RUBiS workloads. We show that
the model predictions match the experimental results for
both the multi-master and single-master designs and for the
various workload mixes of TPC-W and RUBiS.

Categories and Subject Descriptors D.4.5. [Reliability]:
Fault-tolerance; D.4.8. [Performance]: Measurements,
Modeling and prediction, Operational analysis, Queuing
theory; H.2.4 [Systems]: Distributed databases, Transaction
processing.

General Terms Measurement, Performance, Design,
Reliability, Experimentation.

Keywords database replication; single-master systems;
multi-master systems; generalized snapshot isolation.

1. Introduction
Predicting the performance of replicated databases is im-
portant for their wide adoption. Performance models are

employed for capacity planning [Lazowska 1984] and for
dynamic service provisioning [Urgaonkar 2005b] as in data
centers that host several e-commerce applications and re-
ceive external loads that vary with the diurnal cycles and
seasonal effects. To the best of our knowledge, it is not
possible yet to know how an application is going to scale
on a replicated database without actually building the repli-
cated system and running the application with a scaled
workload.

In this paper, we develop analytical models that predict
application workload scalability on a replicated database
system. Performance of such replicated systems depends on
the workload parameters. We demonstrate that measure-
ments of the workload running on a standalone system
capture sufficient information for our models to predict the
performance as more replicas are added. The models are
designed for middleware-based replicated systems in a
LAN environment employing snapshot isolation and run-
ning transactional workloads from e-commerce.

Our models borrow from prior work in calculating abort
rates by Gray et al. [Gray 1996] and from modeling update
propagation by Jiménez-Peris et al. [Jiménez-Peris 2001],
but go beyond these works by predicting throughput and
response time estimates that combine update propagation
overhead and conflicts, rather than calculating upper
bounds on system scalability.

We model both multi-master systems (in which each
replica handles both read-only and update transactions) and
single-master systems (in which the master replica executes
update transactions and slave replicas execute read-only
transactions). We validate the models by comparing their
predictions against the measured performance of prototypes
for both the multi-master and single-master systems. While
we are aware of the many complexity and availability tra-
deoffs between single- and multi-master replication, in this
paper we focus only on performance prediction.

The contributions of this work are the following: (1) We
derive analytical models that predict the performance of
multi-master and single-master replicated databases run-
ning snapshot isolation. (2) We show how to use the analyt-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147949318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ical models to predict the performance of the two designs
from workload measurements of a standalone system. (3)
We validate the models by comparing their predictions
against experimental measurements of prototype imple-
mentations.

The remainder of the paper is structured as follows: Sec-
tion 2 presents the necessary background to follow the
analytical models, which are derived in Section 3. Section 4
shows how to estimate model parameters. We describe the
implementation of the prototype systems in Section 5 and
experimentally validate the models against the prototype
systems in Section 6. We discuss related work in Section 7,
and present the conclusions in Section 8.

2. Background
Snapshot isolation (SI). Snapshot isolation (SI) [Berenson
1995] is an optimistic multi-version database concurrency
control model for centralized databases. SI achieves high
concurrency with low conflicts at the cost of using more
space (employing multiple versions of data items) and
aborting (rather than blocking and reordering) few update
transactions. When a transaction begins, it receives a logi-
cal copy, called snapshot, of the database for the duration
of the transaction. This snapshot is the most recent version
of the committed state of the database. Once assigned, the
snapshot is unaffected by (i.e., isolated from) concurrently
running transactions. A read-only transaction can always
commit after reading from its snapshot. An update transac-
tion commits if it does not have a write-write conflict with
any committed update transaction that ran concurrently.
When an update transaction commits, it produces a new
version of the database. The granularity of conflict detec-
tion is typically a row in a database table (i.e., a tuple in a
relation).

SI has attractive performance properties. Most notably,
read-only transactions do not get blocked or aborted, and
they do not cause update transactions to block or abort,
making SI particularly suitable for read-dominated work-
loads with short updates as in e-commerce environments.

Many database vendors use SI, e.g., PostgreSQL, Mi-
crosoft SQL Server and Oracle. SI is weaker than serializa-
bility, but in practice many applications run serializably
under SI [Elnikety 2005, Fekete 2005b, Fekete 1999], in-
cluding the widely used database benchmarks TPC-C,
TPC-W and RUBiS.
Generalized snapshot isolation (GSI). Generalized snap-
shot isolation (GSI) [Elnikety 2005] extends SI to repli-
cated databases such that the performance properties of SI
in a centralized setting are maintained in a replicated set-
ting. In addition, workloads that are serializable under SI
are also serializable under GSI. When a transaction starts, it
receives the most recent snapshot at the replica where it
executes. Although this local snapshot might be slightly

older than the globally latest snapshot, it is available imme-
diately without the need for additional communication. A
read-only transaction executes entirely locally at the receiv-
ing replica. An update transaction executes first locally at
the receiving replica. Then at commit, the writeset of the
transaction is extracted and a certification service is in-
voked. The certification service detects system-wide write-
write conflicts. If no conflict is detected the transaction
commits, otherwise it aborts. The writeset [Kemme 2000]
of an update transaction captures the transaction effects and
is used both in certification and in update propagation.
Multi-master replication. In a multi-master (MM) system
[Elnikety 2006, Elnikety 2007, Kemme 2000, Lin 2005,
Patiño-Martínez 2005], each replica executes both read-
only and update transactions. The replication middleware
resolves conflicts by aborting conflicting update transac-
tions. The MM system consists of a load balancer, several
database replicas and a certifier that certifies update trans-
actions to prevent write-write conflicts.
Single-master replication. In a single-master (SM) system
[Daudjee 2006, Gray 1996, Plattner 2004] (also called
master-slave), the master database executes all update
transactions and several slave replicas execute read-only
transactions. Restricting the execution of update transac-
tions to the master makes SM systems less flexible but
simpler to build compared to MM systems. A SM system is
simpler to build because it does not need a certifier. The
master handles all write operations, and therefore its con-
currency control subsystem can abort transactions that
introduce write-write conflicts.
Conflict window. The conflict window [Elnikety 2005]
captures the time interval during which an update transac-
tion is vulnerable to write-write conflicts, which result in
aborting the update transaction. For a standalone database,
the conflict window of an update transaction is its execu-
tion time on the database. For a single-master system, the
conflict window is the execution time on the master. For a
multi-master system, the conflict window has three compo-
nents: (1) the age (staleness) of the snapshot the transaction
receives, (2) transaction local execution time on the data-
base replica, and (3) time for the certification service to
certify the transaction.

3. Analytical Models
The analytical models aim to predict the performance of e-
commerce workloads on replicated snapshot-isolated data-
bases. Our aim is to capture the essential system features,
including update propagation and aborts, while keeping the
models sufficiently simple to be analytically tractable.

3.1 Workload

The transaction workload for a standalone database consists
of R read-only transactions per second and W update trans-

actions per second generated by a fixed number of clients.
Each client submits a transaction, waits for the database
response, examines the response during the think time, and
then submits the next transaction, following a closed-loop
model [Schroeder 2006]. The fraction of read-only transac-
tion is Pr and the fraction of update transactions is Pw,
such that Pr + Pw =1.

We scale the workload with the number of replicas in
the replicated database such that a replicated database sys-
tem that has N replicas receives requests from N times the
number of clients in a standalone database.

3.2 Queuing models

In this section we construct queuing models that compute
the throughput and response time of each replica using
transaction service demands that we derive in Section 3.3.

3.2.1 Multi-master

Figure 1 depicts a separable closed queuing network that
captures the components of the multi-master system. We
model the CPU and disk on the database replica as regular
service centers with queues. We model the delays intro-
duced by the load balancer and local area network as a
single delay center called load balancer delay. The certifi-
cation time is almost constant, insensitive to the number of
concurrent certification requests. We, therefore, approx-
imate the certifier as a delay center rather than a service
center to make the model tractable. We provide more de-
tails in Section 6.3 to justify these assumptions.
Model inputs. The model inputs are the following: service
demands at each service center, DMM for CPU and disk;
delay time at each delay center for think time, load balanc-
er, and certifier delays; number of replicas (N); and number
of clients per replica (C).

Model outputs. The model computes average throughput
and response time. The model produces additional data for
each resource such as utilization and residence time.
Solving the model. We use the mean value analysis
(MVA) algorithm [Lazowska 1984] which is a standard
algorithm to solve closed-loop queuing models. All replicas
are identical and they contribute the same throughput as-
suming perfect load balancing. MVA iterates over the
number of clients, adding N clients (one client per replica)
in each iteration. MVA computes the residence time at each
service center, system throughput and queue lengths.

3.2.2 Single-master

Figure 2 depicts a separable closed queuing network for the
single-master system. The single-master model has similar
inputs and outputs as the multi-master model. Solving the
model, however, requires balancing the load among the
master and the slaves.

Intuitively at steady state when the system is balanced,
the ratio of the slaves throughput : master throughput
should be Pr : Pw. Here the queuing model is not symmet-
ric because updates are handled by the master only, raising
two unbalanced cases: First, the master becomes underuti-
lized if the transaction workload is dominated by read-only
transactions which make the slaves the bottleneck. Since
the master has excess capacity, it should process extra read-
only transactions as well as all update transactions.

Second, when the master is the bottleneck, the total sys-
tem throughput becomes limited by the master, forcing
clients to queue at the master and reducing the load on the
slaves.

Figure 3 presents a load balancing algorithm that bal-
ances the load and accounts for these two cases. If the sys-
tem is balanced, the algorithm terminates immediately and
reports balanced read and update throughputs.

Figure 1. Multi-master queuing model (MM system).

Figure 2. Single-master queuing model (SM system).

If the system is not balanced, the algorithm uses two
properties to rebalance the solution: (1) the constant ratio of
read-only to update transactions Pr : Pw provided as an
input property of the workload, and (2) the fixed number of
clients in system, who are distributed among centers pro-
portional to residence times. We use MVA as a building
block. The system has 1 master and N-1 slaves, and the
total number of clients is N·C. We distribute clients among
the master and slaves, and solve the queuing model. We
compare the ratio of the resulting throughputs (slaves
throughput : master throughput = Pr : Pw).

If the master throughput is too high, indicating there is
excess capacity at the master, we move read-only transac-
tions from the slaves to the master until the ratios are ba-
lanced. If the slaves’ throughput is too high, we reduce the
number of clients on the slaves because more clients queue
on the master. Both cases terminate quickly because they
iterate over a finite number of clients. The system response
time is computed using Little’s law [Kleinrock 1975].

3.3 Service demands

We estimate the CPU and disk service demands at the rep-
licas for executing transactions. We first model resources in
a standalone database system and then extend the discus-
sion to replicated databases. Table 1 lists the symbols used
in the model.

3.3.1 Standalone database

The average service demand of a read-only transaction is rc
(e.g., CPU time or disk time), and the average service de-
mand of an update transaction is wc. Some update transac-
tions are aborted due to write-write conflicts under snap-
shot isolation. Those transactions are retried. Let A1 be the
probability that an update transaction aborts in a standalone
database. To successfully commit W update transactions,
W/(1 – A1) update transactions are submitted, of which W
commit and W· A1/(1 – A1) abort. Therefore, the resources
required for R committed read-only transactions and W
committed update transactions are:

1

(1)
(1)

W
Load R rc wc

A
= ⋅ + ⋅

−
The average the service demand for one transaction is then:

1

(1)
(1)

Pw
D Pr rc wc

A
= ⋅ + ⋅

−
To quantify A1, we run the workload and measure A1 direct-
ly on the standalone database system. However, here we
derive the abort probability for a standalone database be-
cause we later use a similar derivation to relate the abort
rate of a replicated database to that of the standalone data-
base.

Assume the database has DbUpdateSize objects that can
be modified by update transactions. Each update transac-
tion modifies U objects. The probability that an update
operation conflicts with another update operation is p =
1/DbUpdateSize.

Conversely, an update transaction succeeds if it conflicts
with none of the concurrent updates. The probability of
success is (1 – p) to the power of the total number of update
operations by the concurrent transactions. The execution
time of the update transaction is L(1), which is its conflict
window. The number of concurrent updates during the
conflict window of the update transaction is L(1) · W · U.
Since each of the U update operations of an update transac-
tion must succeed for the transaction to commit, the proba-
bility of success is:

2(1)(1) (1)L W USuccess p ⋅ ⋅= −

The probability of abort is A1 =1 – Success(1):
2(1)

1 1 (1)L W UA p ⋅ ⋅
= − −

Sub-routine:
Center.MVA()
 Inputs: readClients, writeClients
 Outputs: readThoughput , writeThoughput

Balancing Algorithm:
masterClients = Pw·C·N
slaveClients = Pr·C·N/(N-1)
(-,writeThput) = Master.MVA(0, masterClients)
(readThput, -) = Slave.MVA(slaveClients, 0)

//is the system balanced?
if(readThput : writeThput ≈ Pr : Pw)
 return (readThput , writeThput)

//the system is not balanced.
//either master has exceess capacity or it is the bottleneck.
if(readThput : writeThput < Pr : Pw) {
 //master has excess capacity: add reads to master
 j = 0;
 loop {
 j++;
 (extraReadThput , writeThput) =
 Master.MVA(j·(N-1) , masterClients)
 (readThput , -) = Slave.MVA(slaveClients - j , 0)
 } until ((extraReadThput +readThput) : writeThput ≈ Pr : Pw)
 return (extraReadThput +readThput , writeThput)
} else {
 //master is the bottleneck, more clients queue at master
 j = 0;
 loop {
 j++;
 (- , writeThput) = Master.MVA(0, masterClients + j·(N-1))
 (readThput, -) = Slave.MVA(slaveClients – j , 0)
 } until (readThput : writeThput ≈ Pr : Pw)
 return (readTh , writeTh)
}

Figure 3. Balancing throughput of master and slaves.

3.3.2 Multi-master replicated database

Each replica in a multi-master (MM) system processes
its local input transactions plus the writesets from remote
update transactions. Depending on the workload, the cost
of a propagated writeset can be less than the cost of fully
processing the original update transaction. We, therefore,
assign it a cost, ws, the average service demand required
to process a propagated writeset. In an N-replica system,
each replica commits R read-only transactions, W update
transactions and (N-1)·W propagated writesets.

The abort probability is AN. Aborts affect only local
update transactions, and do not affect propagated write-
sets, which partially cause higher AN. The resources
needed to process the transaction workload at the replica
are:

(1)
(1)

()
N

MM
W

R rc wc W N ws
A

Load N = ⋅ + ⋅ + ⋅ − ⋅
−

The average service demand for one transaction is:

()
(1)

1)
N

MM
Pw

N Pr rc wc Pw ws
A

D N= ⋅ + ⋅ ⋅(⋅
−

+ −

Next, we relate AN to A1. The same formula used to de-
rive Success(1) in Section 3.3.1 can be used to derive the
success probability SuccessMM(N) for the MM system.
Approximately, the N-replica multi-master system has N
times the throughput and a different conflict window,
CW(N). The total concurrent update operations is
CW(N)·N·W·U, and the success probability is:

2()() (1)N CW N W U

MMSuccess N p ⋅ ⋅ ⋅= −

which can also be written as:

2

()

(1) (1)() (1)
CW N

N
L W U L

MMSuccess N p
⋅

⋅ ⋅= −⎡ ⎤
⎣ ⎦

()

(1)() (1)
CW N

L
N

MMSuccess N Success
⋅

=

Since the probability of success is (1– prob(abort)), then:

1(1) (1)(1) and () N MMA ASuccess Success N− −= =

Therefore,
()

(1)
1(1) (1)

CW N

L
N

NA A
⋅

− = −

The final service demand equation is the following:

()

(1)
1

()

(1)

1)
CW N

N
L

MM
Pw

N Pr rc wc Pw ws

A

D N
⋅

= ⋅ + ⋅ ⋅(⋅

−

+ −

Table 1. Model parameters and symbols.
Symbol Meaning

A’N
Abort rate of an update transaction in single-
master system having 1 master and N-1 slaves
(§ 3.3.3)

A1
Abort rate of an update transaction in a standa-
lone database system (§ 3.3.1)

AN Abort rate of an update transaction in multi-
master system having N replicas (§ 3.3.2)

CW(N)
Conflict window of an update transaction on a
multi-master system having N replicas (§
3.3.2, § 4.1.1)

DbUpdateSize Number of objects in the database that can be
modified by update transactions (§ 3.3.1)

Dmaster (N)
Average service demand to execute one trans-
action on a master in a single-master system
having 1 master and N-1slaves (§ 3.3.3)

DMM(N)
Average service demand to execute one trans-
action in a multi-master system having N
replicas (§ 3.3.2)

Dslave (N)
Average service demand to execute one trans-
action on a slave in a single-master system
having 1 master and N-1slaves (§ 3.3.3)

E

Read-only transactions per second that are
executed on the master of a single-master
system (to balance the load among the master
and slaves) (§ 3.3.3)

GSI Generalized snapshot isolation (§ 2)

L(1) Execution time of an update transaction on a
standalone database (§ 3.3.1)

MM Multi-master (§ 3.3.2)

N Number of replicas in a replicated system (§
3.1)

p
Probability that one update operation in an
transaction conflicts with an update operation
in another concurrent transaction (§ 3.3.1)

Pr Fraction of transactions that are read-only (§
3.1)

Pw Fraction of transactions that are update (§ 3.1)

R Read-only transactions per second in the input
workload (§ 3.1)

rc Service demand of executing a read-only
transaction (§ 3.3.1)

SI Snapshot isolation (§ 2)
SM Single-master (§ 3.3.3)

U Number of update operations in each update
transaction (§ 3.3.1)

W Update transactions per second in the input
workload (§ 3.1)

wc Service demand of executing an update trans-
action (§ 3.3.1)

ws Service demand of applying a writeset (§
3.3.1).

3.3.3 Single-master replicated database

An N-replica SM system has two components, 1 master and
N-1 slaves. We derive the service demand on each compo-
nent, assuming a total system load equivalent to an N-
replica MM system. The SM system commits N·W update
and N·R read-only transactions.
Master Service Demand. The master processes all update
transactions in the system. Aborts increase the number of
submitted update transactions. N·W/(1 – A’N) update trans-
actions are submitted to commit N·W update transactions
under the master abort rate of A’N. The master’s resource
consumption is:

(1 ')
()

N

master
W

N wc
A

Load N = ⋅ ⋅
−

The average service demand per update transaction is:

()
(1 ')N

master
wc

N
A

D =
−

The difference between the MM system abort probability
AN and the master-slave abort probability A’N is that the
master resolves all conflicts locally, like a standalone sys-
tem, but at a higher rate of update transactions than the
standalone system.
Slave service demand. The slaves process N·R read-only
transactions and N·W propagated writesets from the master.
Thus, each of the (N-1) slaves must process N / (N-1) read-
only transactions and all remote writesets. The slaves
process only committed writesets; there are no aborts at the
slaves. The resource consumption at a slave is:

 ()
1slaveLoad

NN R rc N W ws
N

= ⋅ ⋅ + ⋅ ⋅
−

The service demand per transaction is the following:

() (1)slave
Pw

N rc N ws
Pr

D = + ⋅ − ⋅

The performance of the single-master system can be limited
by either the master or the slaves.
Executing extra read-only transactions at master. If the
master has extra capacity, the service demand equations
change. The master processes E extra read-only transac-
tions, while the N-1 slaves process N·R-E read-only trans-
actions. The average service demand per transaction be-
comes:

'()
(1)master

N

E N W
N rc

N W E N W E A

wcD ⋅
= ⋅ + ⋅

⋅ + ⋅ + −

()slave
N N W

N rc ws
N R E

D ⋅ (−1) ⋅
= + ⋅

⋅ −

3.4 Summary of model assumptions

We summarize the main assumptions of the analytical
model.

1. The workload is based on e-commerce applica-
tions; i.e., high volume of relatively short lived
transactions that can be effectively distributed
across replicas. E-commerce workloads are typi-
cally read dominated.

2. The concurrency protocol is based on snapshot
isolation; therefore, only write-write conflicts oc-
cur.

3. Since (generalized) snapshot isolation is a multi-
version concurrency control algorithm, the bottle-
neck is much more likely to be a physical resource
rather than a logical resource. GSI trades space (as
it maintains multiple versions) to achieve fewer
conflicts; readers never block writers and writers
never have to wait for readers. The model assumes
that the bottleneck is a physical resource rather
than a logical resource. The model, therefore, does
not directly capture logical resources such as se-
maphores and lock contention. However, their ef-
fects are partially reflected on the physical re-
sources.

4. The abort probability of update transactions in the
standalone database as well as in the replicated da-
tabase is small. Updatable data items are updated
uniformly, i.e., the database does not have a hots-
pot.

5. The database server is scalable; resource con-
sumption is linear with the server throughput.
Modern server operating systems are unlikely to
thrash because they employ mechanisms that pre-
vent over-subscription of physical resources, such
as the O(1) thread scheduler and admission control
policies. The model does not apply in overload re-
gions that are not linear if they exist.

6. The model uses perfect load balancing among
identical machines and inherits the assumptions
employed by the MVA algorithm [Lazowska
1984], such as having exponential distributions of
the service demands.

7. The database is replicated in a LAN environment
rather than a WAN or geographically distributed
environment.

When these assumptions are not valid, the model in general
predicts an upper bound on performance. This is the case
for example, when the abort probabilities are high. We
investigate the sensitivity of the model to some of these
assumptions in Section 6.3.

4. Estimating model parameters
We use standard workload characterization techniques
[Menasce 1998] to estimate model parameters. These tech-
niques gather information using measurement on an offline
system. Online methods can, however, be employed if the
underlying live database system provides the required re-
source utilization for each transaction.

4.1.1 Multi-master parameters

We take a backup of the database and capture the transac-
tion workload from the standalone database system using
the database log file. The log must contain the full SQL
statements, a client or session identifier and a start time-
stamp at which the statement was executed. Our experience
is that these values can be generated by most database
logging facilities. For example, in PostgreSQL 7, this in-
formation is generated by turning on log_statement,
log_pid, log_connection and log_timestamp. In Post-
greSQL 8, a log line prefix string such as ‘%r %p %m %c
%x’ captures the necessary information.

Additionally, we need to generate the writesets corre-
sponding to the update transactions. This is done by defin-
ing triggers on all tables to extract and record the transac-
tion writeset.

The service demand equation DMM(N) in Section 3.3.2
requires the following parameters: Pr, Pw, A1, CW(N), L(1)
as well as rc, wc, ws for the CPU and disk.
Pr, Pw, and A1. We count the number of read-only and
update transactions in the captured log to determine the
fractions Pr and Pw. We count the number of aborted up-
date transactions to calculate the abort probability A1.
rc, wc, ws and L(1). We instrument a standalone database
with triggers and play the log to capture the writesets. We
play read-only transactions from the log against the data-
base and collect CPU and disk utilization to compute the
service demands rcCPU and rcdisk using the Utilization Law
[Lazowska 1984]. The average service demand at a re-
source is the resource utilization divided by the throughput.
Next we play update transactions against the database to
compute wcCPU and wcdisk. We also play the writesets to
compute wsCPU and wsdisk in a separate run. We finally
replay both read-only and update transactions to measure
L(1), the average response time for update transactions in a
standalone system.
AN, CW(N). We can derive AN from A1 using the formula
below, but this requires CW(N), the conflict window, which
is not available from standalone measurements.

()

(1)
1(1) (1)

CW N

L
N

NA A
⋅

− = −

We approximate the conflict window by the sum of CPU
residence time, disk residence time and certification time

for update transactions [Elnikety 2005]. However, to com-
pute the latter three terms we still need CW(N). Since the
MVA algorithm iterates over the number of clients, we
approximate CW(N) at iteration i+1 by the sum of CPU,
disk residence time and certification time at iteration i. This
slightly underestimates the abort probability. We investi-
gate higher abort rates in Section 6.3.3.

Finally, the model requires the think time (Z) and the
number of clients (N). In the experimental validation sec-
tion these values are inputs. However in a practical dep-
loyment, well-known approaches [Jain 1991, Urgaonkar
2005] can be used to estimate the think time and predict the
number of clients. The certifier delay time is 12 ms as dis-
cussed in Section 6.3.2.

4.1.2 Single-master parameters

We estimate the model parameters for SM in the same way
as for MM, except for A’N.
A’N (Master-Slave Abort Rate). Because all updates are
processed at the master, the abort rate for any level of repli-
cation can be measured directly by loading a database with
a scaled update transaction workload.

5. Implemented Systems
5.1 Multi-master system

The MM system is based on Tashkent [Elnikety 2006].
Each replica has two main components: a database system
and a proxy which intercepts all incoming requests to the
database, as shown in Figure 4.
Transaction processing. When the load balancer receives
a transaction T, it forwards T to the proxy of the least
loaded replica. The proxy executes T on the database. All
T’s read and write operations, e.g., the SELECT, UPDATE,
INSERT and DELETE SQL commands, are executed local-
ly on the replica. The proxy intercepts the SQL commit
command at which point the proxy examines the writeset of
T. If the writeset is empty (T is read-only), the proxy com-
mits T immediately. Otherwise, the proxy invokes the certi-
fication service, sending the writeset of T and the version of
its snapshot to the certifier. The certifier decides whether to
commit or abort the update transaction and performs the
update propagation functionality. When the proxy receives
the certifier response, it either commits or aborts T, and
forwards the outcome to the client.
Replica database. We use a database engine on each repli-
ca that processes client read-only and update transactions.
Replica proxy. The proxy performs two main functions.
First, it applies incoming writesets to the database. Second,
it intercepts all requests to the database to prevent interfe-
rence between local update transactions and propagated
writesets. The proxy eagerly extracts the writeset of each
transaction to perform early certification on partial write-

sets, obviating the hidden deadlock problem [Lin 2005]. It
aborts local update transactions whenever they conflict
with a propagated writeset [Elnikety 2006].
Certifier. Certification is a lightweight stateful service that
maintains committed writesets and their versions. The
request to certify a transaction contains its writeset and
version. The certifier detects write-write conflicts by com-
paring the writeset of the transaction to be certified to the
writesets of the transactions that committed after the ver-
sion supplied in the request. An update transaction is com-
mitted when its writeset is made persistent by the certifier.
Certification is deterministic and the certifier is replicated
using Paxos [Lamport 1998] for fault-tolerance.

5.2 Single-master system

Figure 5 depicts the architecture of a single-master system.
The master database executes both read-only and update
transactions. The slaves execute read-only transactions and
the propagated updates from the master.
Load balancer. The load balancer dispatches all update
transactions to the master. When the load balancer receives
a read-only transaction, it selects the least loaded replica
(among the master and slaves) and forwards the transaction
to that replica. When the load balancer receives a writeset
from the master, it relays the writeset to the slaves.
Transaction processing. The master executes update
transactions and either commits or aborts them. On a com-
mit, the master proxy extracts the transaction’s writeset
from the master database. This information is forwarded to
the load balancer, which forwards the commit to the client.
Read-only transactions can execute on master or slaves.
Master database. The master database processes all update
transactions. We define triggers on all replicated tables to
capture the transaction writeset in main memory.

Master proxy. The master proxy intercepts incoming re-
quests to the master database. When the proxy intercepts
the SQL COMMIT, it invokes a trigger to retrieve the wri-
teset of the transaction and then forwards the commit
command to the database.
Slave database. The slave database is effectively a cache
against which read-only transactions are executed.
Slave proxy. The slave proxy applies incoming writesets to
the database. It is the only source of updates to the data-
base.

6. Experimental Validation
6.1 Experimental setup

TPC-W Benchmark. TPC-W is a benchmark from the
Transaction Processing Council designed to evaluate e-
commerce systems. It implements an on-line bookstore and
has three workload mixes that differ in the relative frequen-
cy of each of the transaction types. The browsing mix
workload has 5% updates, the shopping mix workload has
20% updates, and the ordering mix workload has 50%
updates. The shopping mix is the main workload but we
report results from all three mixes. The average size of a
propagated writeset is 275 bytes. The TPC-W database
standard scaling parameters are 100 EBS (emulated brows-
ers) and 10,000 items. The database size is 700 MB.
RUBiS Benchmark. RUBiS [Amza 2002] is a popular e-
commerce benchmark. It models an auction site like eBay
and has two workloads: the browsing mix (entirely read-
only) and the bidding mix (20% update transactions). The
average size of a propagated writeset is 272 bytes. The
scaling parameters are 1M users, 10,000 active items, and
500,000 old items. The database size is 2.2 GB.

Figure 4. Multi-master (MM) system.

Figure 5. Single-master (SM) system.

Hardware and Software Environment. Each machine in
the database cluster runs the 2.6.11 Linux kernel on a single
Intel Xeon 2.4GHz CPU with 1GB ECC SDRAM, and a
120GB 7200pm disk drive. The machines are intercon-
nected using gigabit Ethernet. We monitor the system load
with a modified version of the Mercury server management
system [Heath 2006]. For the certifier, we use a leader and
two backups for fault tolerance. We use the PostgreSQL
8.0.3 database configured to run transactions at the snap-
shot isolation level (which is the strictest isolation level in
PostgreSQL and called the “serializable transaction isola-
tion level”). Both TPC-W and RUBiS are serializable un-
der GSI [Elnikety 2005].

To drive the replicated database system, we use many
client machines. Each client machine runs Tomcat 5.5 and
a remote terminal emulator (RTE) for TPC-W or RUBiS.
The RTE is a multithreaded Java program in which each
thread represents one client and the application server
(Tomcat) executes the requested Java Servlets which access
the database using JDBC. If an update transaction is
aborted, the Java Servlet retries the transaction.

The client machines are lightly loaded and the process-
ing delay is less than 100 ms per transaction. Client think
time follows an exponential distribution with an average of
900 ms. For the analytical models we use 1000 ms as the
effective think time to account for processing times on the
client machines, think time, load balancer delay and net-
working delay. Each point in the graphs below represents
the result of one experiment. We report sustained average
throughput and response time during 15 minutes after a
warm-up period of 10 minutes. These intervals are selected
such that the measurements are performed while the system
performance is in steady state.

6.2 Comparing prediction and measurement

6.2.1 Validation using TPC-W

To evaluate the accuracy of the models, we compare the
measured performance of the TPC-W benchmark to the
predicted performance across the three workload mixes.

TPC-W parameters are summarized in Table 2. The pa-
rameters needed for modeling CPU and disk service de-
mands per transaction are listed in Table 3. The abort rate
of TPC-W in the standalone database, A1, is very small for
all mixes below 0.023%. We address the topic of prediction
under higher abort rates in Section 6.3.3.

Figure 6 plots the throughput in transactions per second
(tps) on the y-axis for TPC-W browsing, shopping and
ordering mixes as a function of the number of replicas on
the x-axis for the MM system using solid lines. The corre-
sponding throughput curves predicted by the model are
shown using dotted lines. The browsing mix scales almost
linearly: Its throughput curve starts at 22 tps at one replica
and increases to 347 tps at 16 replicas, which is a speedup

of 15.7 times. The browsing mix has excellent scalability
because it is dominated by read-only transactions.

In contrast, the ordering mix increases from 45 tps at
one replica up to 304 tps at 16 replicas yielding a speedup
of 6.7 times due to the high ratio of update transactions in
the workload. Notice that read-only transactions are in
general more expensive than update transaction. For this
reason, the browsing mix starts at 22 tps on one replica,
whereas the ordering mix starts at 45 tps. As more replicas
are added the cost of processing writesets (during update
propagation) limits the scalability in the ordering mix.

The predicted throughput curves from the model match
the measured throughputs. We find that the model captures
the overhead of processing update transactions in the repli-
cated system.

Figure 7 depicts the average response times for the three
TPC-W mixes. The x-axis is the number of replicas and y-
axis is the average response time in millisecond (ms). The
response time curve for the browsing mix remains almost
flat because there are a few update transactions. We see an
increase in the response time curve for the ordering mix.
The model predicts response times well for the three mixes.

In summary, the multi-master performance estimates
match well with the measured results for all workload
mixes with an error margin below 15%. Next, we analyze
performance measurements and predictions for the single-
master system.

Figure 8 plots the throughput of TPC-W browsing,
shopping and ordering mixes as a function of the number of
replicas for the single-master (SM) replicated database
system. In contrast to MM, update transactions are exe-
cuted on the master only and the system saturates as soon
as the master becomes the bottleneck. Both the real system
and the model scale linearly with the browsing mix since it
is dominated by read-only transactions and the extra capac

Table 2. TPC-W parameters.

Mix Read
(Pr)

Write
(Pw)

Clients per
Replica (C)

Think Time
(Z)

Browsing 95% 5% 30 1000 ms
Shopping 80% 20% 40 1000 ms
Ordering 50% 50% 50 1000 ms

Table 3. Measured service demands (in ms) for TPC-W.

Mix Resource Read(rc) Write(wc) Writeset(ws)

Browsing
CPU 41.62 17.47 3.48
Disk 14.56 8.74 2.62

Shopping
CPU 41.43 12.51 3.18
Disk 15.11 6.05 1.81

Ordering
CPU 22.46 13.48 4.04
Disk 12.62 8.34 1.67

F

F

F

Figure 6. TPC-

Figure 8. TPC-

Figure 10. RUB

-W throughput

-W throughput

BiS Throughpu

t on MM system

t on SM system

ut on MM syst

m.

m.

tem.

Figure 7

Figure 9

Figure 1

7. TPC-W Resp

9. TPC-W Resp

11. RUBiS resp

ponse time on M

ponse time on

ponse time on M

MM system.

SM system.

MM system.

it
ti

in
b
e
a

s
a
r
n
d
m

6

T
li
N
tr

a
T
H
a
b
r
ti
d
T
th
in
b

p
ti

F

ty at the maste
ions when ther

With the gre
ng mix, SM

becomes the bo
erful machine a
and improve sy

Response tim
sponse time cu
are almost flat
rapidly after 4
neck due to pr
dicted throughp
measure values

6.2.2 Validat

Table 4 summa
ists the measu

Note that the b
ransactions.

Figure 10 s
ance of the RU
The browsing m
Hence, the mea
arly with the
bidding mix is
reached at 6 rep
ions update a

due to enforcin
Therefore the c
han the cost o
n the disk serv

bidding mix in
Figure 11 de

predicts well b
ime for RUBiS

Figure 12. RUB

er is employed
re are one or m
eater ratio of up
saturates at 4
ottleneck, indic
as the master w

ystem scalabilit
me graphs are
urves for the b
. The ordering
replicas as th

rocessing all u
put and respo

s.

tion using RU

arizes RUBiS s
ured service d
browsing mix

hows the mea
UBiS benchmar
mix consists of
asured and pre
number of rep
much more mo
plicas. In this p
small amount

ng integrity con
cost of applying
f the original u
vice demands f
Table 5.

epicts the avera
oth the averag
S in the multi-m

BiS throughpu

d to handle rea
more slaves.

pdate transactio
replicas. The

cating that usin
would mitigate
ty.
depicted in F

browsing and
g mix response
he master beco
update transac

onse times for

BiS

system parame
demands for
does not con

asured and pre
rk on the multi
f 100% read-on
edicted through
plicas. The sc
odest with the p
particular mix,
of data but in

nstraints and up
g writesets is o
update transac
for writes and

age response ti
ge throughput a
master system.

ut on SM system

ad-only transa

ons in the orde
e master’s CP
ng a more pow
e this bottlenec

igure 9. The r
shopping mix
e time increas
omes the bottl
ctions. The pr
r SM match th

eters and Table
the benchmar

ntain any upda

edicted perform
i-master system
nly transaction
hput scales lin
calability of th
peak throughp
, update transa
ncur a high co
pdating indexe
only slightly le
tion as reflecte
writesets of th

imes. The mod
and the respon

m.

ac-

er-
PU
w-
ck

re-
es
es
le-
re-
he

e 5
rk.
ate

m-
m.
ns.
ne-
he
ut

ac-
ost
es.
ss
ed
he

del
se

Nex
Figure
sponse
scales
among
by the
base is
system
throug

6.3 S

6.3.1

The m
and ne
mation
introdu
LAN e
links s
byte p
bandw
is less
availab
tion is

6.3.2

The se
to the
sets ar
lel at t
disks.
disks.
certific

Wh
averag
time))
12 ms

Figure 1

xt we turn to
e 12 and Figu
e time for the

linearly since
g all replicas. T
 master’s perfo
s saturated and

m performance
ghputs that mat

Sensitivity ana

Load balanc

model assumes
etwork delay a
n since the lo
ucing sub-mill
environment. A
support nearly
packets (write

width to/from th
s than 1 Mbit/
ble bandwidth.
observed.

Certifier

ervice time at t
disk, which ta

re batched in o
the leader cert
The write is co
Waiting for th
cation time.
hen a request a
ge (0.5 * 8 (w
. We therefore
. Prior work [E

13. RUBiS resp

the single-ma
ure 13 present

two RUBiS m
e the load ca
The bidding m
ormance. The
d adding more
e. For both mi
tch the measure

alysis

cer and networ

that the comb
are 1 ms. This
oad balancer a
lisecond delay
A netperf test
y the full 1 G
eset size). In
he certifier in
s, orders of m
. Thus, no que

the certifier is
akes 6-8 ms on
one disk write t
tifier disk and
ommitted as so
hese first two d

rrives at the ce
waiting half se

 model the cer
Elnikety 2006

ponse time on S

aster replicated
the throughp

mixes. The bro
an be distribut

mix scalability i
CPU on the m
slaves does no

ixes, the mod
ed throughputs

rk delays

bined load bala
is a reasonabl

acts mainly as
ys. Our system
verifies that th

Gbit/s while se
contrast, the
the most dema

magnitude lowe
euing or netwo

dominated by
n average. Sev
that is execute
the two backu

oon as it compl
disk writes dom

ertifier, it waits
rvice time) +

rtifier as a dela
] shows that th

SM system.

d database.
put and re-
wsing mix
ted evenly
is bounded

master data-
ot improve
el predicts
s.

ancer delay
le approxi-
s a router,

ms run in a
he network
ending 275

maximum
anding run
er than the
ork conges-

y the writes
veral write-
ed in paral-
up certifier
letes at two
minates the

s 12 ms on
8 (service

ay center of
he certifier

i
m
th
(
th
d
c

6

T
r
u
o
d
in

th
a
a
p

m
to
W
o

th
m
s

f
T
b
A
n
th
p
a
p
a
a
T
f
d

7
P
w
d
d
c
s
m

s lightweight
much higher th
his work, the
from TPC-W
han 5% of cer

do not develop
center.

6.3.3 Predict

The TPC-W an
rates. We show
under those con
of the models u
duce aborts in
ncrease with th

Here we foc
han on accurac

are low. We co
abort rates are
predicted by th

We introduc
main memory o
o include an u

We increase th
orts, by control

We increase
hree values, A

measured abor
system are A16=

Figure 14 de
for three startin
The predictions
but consistent
A1=0.90%. The
noticeable. The
han the model

pounding effec
approximations
posefully high
abort rates (e.g
application des
The model cap
flict window g
dictions are bet

7. Relate
Performance
work, “Danger
develop a mod
deadlocks in a
currency contro
subject to a cu
model captures

and can handl
han TPC-W an
e certifier rece
ordering mix o
rtifier capacity
p, allowing mo

tions with high

nd RUBiS ben
w in Section 6.
nditions. To ex
under higher ab
n the TPC-W
he system load
cus on the tren
cy, since the m
onsider only th
e directly mea
e model.
ce a replicated
only). We instr
update operati
he probability
lling the numbe
e the abort pr

A1=0.24%, 0.53
rt rates at 16
=10%, 17%, 29
epicts the meas
ng values of A1
s closely matc
tly under-esti
e predicted tren
e real abort rat
l predicts at la
t not accurately
s. The abort ra

in an attempt
g., 29% at 16 r
signers and a

ptures the essen
grows as the sy
tter at lower ab

ed work
of replicated

rs of Replicati
del to capture
a replicated da
ol. They show
ubic increase i
s the effects

le more than 3
nd RUBiS tran
eives at most
on MM system

y and therefore
odeling the cer

h abort rates

nchmarks have
2 that the mod

xplore the pred
bort rates, we a

benchmark s
d.
ds of abort pro

model assumes
he MM design
asured on the

heap table (w
rument each up
on to randoml
that an update
er of rows in th
robability A1 t
3%, 0.90%. Th

replicas for t
9%, respectivel
sured MM abor
1 and the predi
ch for both A1=
imate the pr
nd is good but
tes appear to a

arge abort rate
y accounted fo

ates used in Fig
t to stress the

replicas) are w
administrators
ntial behavior
ystem scales, t

bort rates.

d databases. I
ion” [Gray 199

the probabilit
atabase under p
w that replicate
in deadlocks.
of conflicts u

3500 tps, a ra
nsaction rates.

150 requests
m), which is le
e queuing delay
rtifier as a dela

e very low abo
dels predict we
diction capabili
artificially intr
such that abor

obabilities rath
s that abort rat
n, as for SM th
master and n

hich is stored
pdate transactio
ly selected row
e transaction ab
he heap table.
o the followin

he correspondin
he multi-mast
ly.
rt probability A
icted abort rate
=0.24%, 0.53%
robabilities f
the difference
accelerate fast
s, likely a com

or in the model
gure 14 are pu
e models. The
ell beyond wh
would tolerat
of how the con
though, the pr

In the classic
96], the autho
ty of waits an
pessimistic con
ed databases a
In contrast, ou

under optimist

ate
In
s/s
ess
ys
ay

ort
ell
ity
o-
rts

her
es
he

not

in
on
w.
b-

ng
ng
ter

AN
es.
%,
for
is

ter
m-
l’s
ur-
se

hat
te.
n-

re-

cal
ors
nd
n-

are
ur
tic

concur
apply
we stu
gated
due to

Prio
captur
model
upper
rather
use an
and w
riment

Mo
conflic
few m
been d
bases.
system

Ana
2005]
times
with t

Table 4

Mix

Brows
Biddin

Table 5

Mix

Browsin

Bidding

Figure

rrency control
the propagate

udy in this pape
updates is rea
conflicts.

or work [Jimé
e the overhead
does not capt
bound on th
than to predic

nalytical model
we validate thei

tally.
odeling the gro
ct windows [E

models [DeWitt
developed to c

They are used
m, rather than a
alytical models
have been dev
for multi-tier d

the purpose of

4. RUBiS param
Read
(Pr)

ing 100%
ng 80%

5. Measured se
Resource

ng
CPU
Disk

g
CPU
Disk

14. TPC-W sh

l as well as t
d updates. For
er, the overhea
ached first bef

énez-Peris 200
d of propagatin
ture aborts and

he scalability
ct their perform
ls that capture
ir ability to pr

owth of abort
lnikety 2005]

t 1992, Gray 19
capture the spe
d to derive a

a priori.
s [Ferrari 2006
veloped to pre
distributed app
f enabling dyn

meters.
Write
(Pw)
0%
20%

ervice demands
Read(rc)
25.29
11.36
25.29
11.36

hopping MM A

the resources
r the class of
ad of applying
fore the scalab

01] develops a
ng updates. Ho
d is used to e
of replicated
mance. In this
both updates a

redict performa

t rates [Gray
appears in prio
991, Gunther 1
eedup of replic
model after bu

6, Kelly 2006,
dict throughpu
plications in d
namic provisio

Clients per
Replica (C)

T
T

50 1
50 1

s (in ms) for RU
Write(wc) W
- -
- -
41.51 9.
48.61 35

AN abort probab

needed to
workloads
the propa-

bility limit

a model to
owever, the
stablish an
databases,
paper, we

and aborts,
ance expe-

1996] and
or work. A
1994] have
cated data-
uilding the

Urgaonkar
ut response
ata centers
oning. Our

Think
Time (Z)
1000 ms
1000 ms

UBiS.
Writeset(ws)

.83
5.28

bilities.

models are complementary to these models. Combining
those models enables modeling all tiers, including the data-
base tier, for Web services.
Replication in SI databases. The implemented systems
used in this paper represent some of the most recent works
in replicated database literature [Cecchet 2008], matching
recent research prototypes. The single-master system is
similar to Ganymed [Plattner 2004], but improved to per-
form group commits at the master. The multi-master sys-
tem is similar to replicated PostgreSQL prototypes
[Elnikety 2006, Lin 2005, Wu 2005] as they propagate
updates using writesets.

8. Conclusions
We present analytical models to predict the performance of
two middleware-based database replication designs, multi-
master and single-master. The analytical models capture the
characteristics of these systems in terms of update propaga-
tion overheads and abort rates. We describe how to meas-
ure the system performance metrics on a standalone data-
base and use these measurements as inputs to the analytical
models. For experimental validation, we use prototypes of
both systems and show that the models match well with the
measured system performance. Performance predictions are
within 15%.

Acknowledgments
We thank our shepherd, Fernando Pedone (University of
Lugano), for his feedback and suggestions. We also thank
Tim Harris, Alexandre Proutiere, Bozidar Radunovic, Eno
Thereska, and Milan Vojnovic (Microsoft Research in
Cambridge), and the anonymous reviewers for their con-
structive comments.

This research was partially supported by the Swiss Na-
tional Science Foundation grant number 200021-121931
and by the Hasler Foundation grant number 2316.

References
[Amza 2002] Cristiana Amza, Emmanuel Cecchet, Anupam

Chanda, Alan L. Cox, Sameh Elnikety, Romer Gil, Julie
Marguerite, Karthick Rajamani, and Willy Zwaenepoel.
Specification and implementation of dynamic Web site
benchmarks. The 5th Annual IEEE Workshop on Workload
Characterization, 2002.

[Berenson 1995] Hal Berenson, Phil Bernstein, Jim Gray, Jim
Melton, Elizabeth O’Neil, and Patrick O’Neil. A critique of
ANSI SQL isolation levels. In proceedings of the 1995 ACM
SIGMOD international conference on management of data,
1995.

[Bernstein1987] Philip Bernstein, Vassos Hadzilacos, and Nathan
Goodman. Concurrency control and recovery in database sys-
tems. Addison-Wesley, 1987.

[Cahill 2008] Michael J. Cahill, Uwe Roehm, and Alan Fekete.
Serializable isolation for snapshot databases. In proceedings
of the 2008 ACM SIGMOD international conference on
management of data, 2008.

[Cecchet 2008] Emmanuel Cecchet, George Candea, and Aansta-
sia Ailamaki. Middleware-based database replication: the
gaps between theory and practice. In proceedings of the 2008
ACM SIGMOD international conference on management of
data, 2008.

[Daudjee 2006] Khuzaima Daudjee, and Kenneth Salem. Lazy
database replication with snapshot isolation. In proceedings
of the 32nd international conference on very large data bases,
2006.

[DeWitt 1992] David J. DeWitt, and Jim Gray. Parallel database
systems: the future of high performance database systems.
Communications of the ACM, 35(6):85-98, 1992.

[Elnikety 2005] Sameh Elnikety, Fernando Pedone, and Willy
Zwaenepoel. Database replication using generalized snapshot
isolation. In proceedings of the 24th IEEE symposium on re-
liable distributed systems (SRDS), 2005.

[Elnikety 2006] Sameh Elnikety, Steven Dropsho, and Fernando
Pedone. Tashkent: uniting durability with transaction order-
ing for high-performance scalable database replication. In
proceedings of the 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems (EuroSys), 2006.

[Elnikety 2007] Sameh Elnikety, Steven Dropsho, and Willy
Zwaenepoel. Tashkent+: memory-aware load balancing and
update filtering in database replication. In proceedings of the
2nd ACM SIGOPS/EuroSys European Conference on Com-
puter Systems (EuroSys), 2007.

[Fekete 1999] Alan Fekete. Serialisability and snapshot isolation.
In proceedings of the Australian Database Conference 1999.

[Fekete 2005a] Alan Fekete, Dimitrios Liarokapis, Elizabeth
O’Neil, Patrick O’Neil, and Dennis Shasha. Making snapshot
isolation serializable. ACM Transactions on Database Sys-
tems (TODS), 30(2):492-528, 2005.

[Fekete 2005b] Alan Fekete. Allocating isolation levels to transac-
tions. In proceedings of the twenty-fourth ACM SIGMOD-
SIGACT-SIGART symposium on principles of database sys-
tems (PODS), 2005.

[Ferrari 2006] Giovanna Ferrari, Paul Ezhilchelvan, and Isi Mi-
trani. Performance modeling and evaluation of e-business
systems. Annual Simulation Symposium 2006.

[Gray 1991] The Performance Handbook for database and trans-
action processing systems, Jim Gray editor. Morgan Kauf-
mann, 1991.

[Gray 1996] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis
Shasha. The dangers of replication and a solution. In pro-
ceedings of the 1996 ACM SIGMOD international confer-
ence on management of data, 1996.

[Gunther 1994] Neil J. Gunther. Issues facing commercial OLTP
applications on MPP platforms, Compcon Spring '94, Digest
of Papers, 1994.

[Heath 2006] Taliver Heath, Ana Paula Centeno, Pradeep George,
Luiz Ramos, Yogesh Jaluria, and Ricardo Bianchini. Mercury
and Freon: temperature emulation and management for server
systems. In proceedings of the 12th international conference
on architectural support for programming languages and op-
erating systems (ASPLOS), 2006.

[Jain 1991] R. K. Jain. The art of computer systems performance
analysis: techniques for experimental design, measurement,
simulation, and modeling. Wiley- Interscience, 1991.

[Jiménez-Peris 2001] Ricardo Jiménez-Peris, Marta Patiño-
Martínez, Gustavo Alonso, and Bettina Kemme. How to se-
lect a replication protocol according to scalability, availabil-
ity, and communication overhead. In proceedings of the 20th
IEEE international conference on reliable distributed systems
(SRDS), 2001.

[Kelly 2006] Terence Kelly, and Alex Zhang. Predicting perform-
ance in distributed enterprise applications. HP Tech. report
#HPL-2006-76.

[Kemme 2000] Bettina Kemme, and Gustavo Alonso. Don’t be
lazy, be consistent: Postgres-R, a new way to implement da-
tabase replication. In proceedings of the 26th international
conference on very large data bases (VLDB), 2000.

[Kleinrock 1975] Leonard Kleinrock. Queueing systems, Volume
1: Theory. John Wiley and Sons, Inc., 1975.

[Lamport 1998] Leslie Lamport. The part-time parliament. ACM
Transactions on Computer Systems (TOCS), 16(2):133-169,
1998.

[Lazowska 1984] Edward Lazowska, John Zahorjan, G. Scott
Graham, and Kenneth C. Sevcik. Quantitative system per-
formance. Prentice Hall, 1984.

[Lin 2005] Yi Lin, Bettina Kemme, Marta Patiño-Martínez, and
Ricardo Jiménez-Peris. Middleware based data replication
providing snapshot isolation. In proceedings of the 2005
ACM SIGMOD international conference on management of
data, 2005.

[Menasce 1998] Daniel Menasce, and Virgilio A. F. Almeida.
Capacity planning for Web performance: metrics, models and
methods. Prentice Hall, 1998.

[Patiño-Martínez 2005] Marta Patiño-Martínez, Ricardo Jiménez-
Peris, Bettina Kemme, and Gustavo Alonso. Middle-R: Con-
sistent database replication at the middleware level. ACM
Transactions on Computer Systems (TOCS), 23(4):1-49,
2005.

[Plattner 2004] Christian Plattner, and Gustavo Alonso. Ganymed:
Scalable replication for transactional Web applications. In
proceedings of the 5th ACM/IFIP/USENIX international con-
ference on middleware, 2004.

[Schroeder 2006] Bianca Schroeder, Adam Wierman, and Mor
Harchol-Balter. Open versus closed: a cautionary tale. In pro-
ceedings of the 3rd conference on networked systems design
& implementation (NSDI), 2006.

[Urgaonkar 2005a] Bhuvan Urgaonkar, Giovanni Pacifici,
Prashant Shenoy, Mike Spreitzer, and Asser Tantawi. An
analytical model for multi-tier internet services and its appli-
cations. In proceedings of the 2005 ACM SIGMETRICS in-
ternational conference on measurement and modeling of
computer systems, 2005.

[Urgaonkar 2005b] Bhuvan Urgaonkar, Prashant Shenoy, Ab-
hishek Chandra, and Pawan Goyal. Dynamic provisioning of
multi-tier Internet applications. In proceedings of the second
international conference on automatic computing (ICAC),
2005.

[Wiesmann 2000] Matthias Wiesmann, Fernando Pedone, André
Schiper, Bettina Kemme, and Gustavo Alonso. Understand-
ing replication in databases and distributed systems. In pro-
ceedings of the 20th international conference on distributed
computing systems (ICDCS), 2000.

[Wu 2005] Shuqing Wu, and Bettina Kemme. Postgres-R(SI):
combining replica control with concurrency control based on
snapshot isolation. In proceedings of the 21st international
conference on data engineering (ICDE), 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

