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Abstract. We propose a semi-supervised image segmentation method
that relies on a non-local continuous version of the min-cut algorithm
and labels or seeds provided by a user. The segmentation process is
performed via energy minimization. The proposed energy is composed
of three terms. The first term defines labels or seed points assigned to
objects that the user wants to identify and the background. The second
term carries out the diffusion of object and background labels and stops
the diffusion when the interface between the object and the background
is reached. The diffusion process is performed on a graph defined from
image intensity patches. The graph of intensity patches is known to better
deal with textures because this graph uses semi-local and non-local image
information. The last term is the standard TV term that regularizes the
geometry of the interface. We introduce an iterative scheme that provides
a unique minimizer. Promising results are presented on synthetic textures
a nd real-world images.

1 Introduction

Image segmentation is an important problem in image processing. The objec-
tive of segmentation algorithms is to partition an image into a finite number
of semantically important regions such as anatomical or functional structures
in medical images or objects in natural images. Well-posed approaches to solve
the image segmentation problem are energy minimization methods. This pa-
per introduces an energy minimization algorithm to solve the semi-supervised
segmentation problem based on the continuous min cut/max flow model origi-
nally defined by Strang in [1]. Semi-supervised segmentation models defined in
a continuous setting have already been proposed in the literature. Among them,
Protiere and Sapiro proposed in [2] an interactive algorithm for segmentation.
Cremers et al. introduced in [3] an algorithm based on the level set method to
perform interactive image segmentat ion. Appleton and Talbot introduced in
[4] a semi-supervised segmentation model based on the continuous min-cut of
Strang. Unger et al. defined in [5] a segmentation method also based on the
min-cut model of Strang in [1]. The semi-supervised segmentation models using
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the continuous min-cut are based on local image information. These models s.a.
[4, 5] perform very well for the segmentation of smooth regions, but they are
less efficient with textures. In this paper, we extend the continuous min cut to a
non-local formulation along the same line as non-local means defined by Buades,
Coll and Morel in [6] and the variational non-local means model of Gilboa and
Osher [7]. This non-local extension of the continuous min cut can be obtained
in different ways. We used the original discrete min-cut model [8] to define the
non-local continuous min-cut, which turns to be the H1 norm defined on graph
and a term that constraints the labels. The H1 norm carries out the diffusion of
object and background labels on the graph of image patches [9, 6], which holds
semi-local and non-local image information that can better segment textures and
real-world objects. Besides, the continuous formulation of the min-cut algorithm
allows us introducing other regularization processes such as the TV energy. The
TV energy is indeed useful to regularize the boundary between the object and
the background. Besides, the TV energy can smooth out the segmentation of
small sets favored by the min-cut algorithm as noticed by Shi and Malik in [10]
(see Figure 1).

2 Graph, Min-Cut and Diffusion

Graph representation. Let G = (V, E) be a weighted undirected graph, where the
sets V are the graph nodes and E the edges connection nodes. In this paper, each
node Vi represents a pixel i in an image I with support Ω ⊂ Rn where typically
n = {2, 3}. The similarity between two pixels/nodes i and j in Ω is measured by
the edge function on the graph, namely wij . In the case of image segmentation,
two pixels i and j that belong to the same object/class are said to be connected
and define a measure wij close to unity. Inversely, two pixels i and j that do
not belong to the same class are said to be not connected and define a measure
wij close to zero. A standard construction approach for the weight matrix wij

is as follows. Let h(i, j) be some general non-negative distance measure between
nodes i and j, then the weight wij is computed with a Gaussian kernel of 0-mean
and variance σ such that:

wij =
1
Z

exp(−h(i, j)
σ2

),

where σ is the scaling parameter and Z is the normalization factor.

Image Feature. The distance h(i, j) depends on image feature. The choice of fea-
tures is difficult and critical to get an optimal segmentation result. For piecewise
smooth and constant images, the gray-level value can be enough. For texture im-
ages, a feature vector at each pixel computing from a filter bank (as suggested
in e.g. [11]) can be efficient. A recent promising image feature to represent and
process textures is the image intensity patch around the current pixel. The patch
idea as feature vector was first introduced for texture synthesis [9, 12, 13] then
for image denoising. Buades et al. in [6] proposed to compute the weight matrix



with patch differences and denoise the image with a non-local averaging. Gilboa
and Osher in [7] proposed a variational model for non-local denoising based on
patch differences. Fina lly, Bresson and Chan in [14] proposed a variational un-
supervised segmentation method also based on patch differences. In this paper,
we will use the graph of image patches of Buades et al.

Min-Cut. By definition a binary cut partitions a graph into two subsets. This
partition process for graphs can be used for image segmentation when we want
to find an object and the background. In optimization theory about maximum
flows in flow networks [8], the optimal partition of the graph V into two sets A
and B such that A ∪ B = V and A ∩ B = ∅ can be computed by finding the
minimal cut (min-cut), i.e. the minimization of the inter-similarity between two
sets A and B of V . In other words, given two particular nodes s ∈ A and t ∈ B
in the graph, the min-cut partition can be written as:

min− cut(A,B) = min
x

∑
xi>0,xj<0

−wijxixj , (1)

where x is a N -dimensional indicator vector, with N = card(V ), such that
xi = 1 if node i ∈ A, and xi = −1 otherwise. The min-cut partition gives the
minimal capacity defined as the total weight between the nodes for each subset
A and B. The min-cut approach has been applied to several computer vision
problems, see [15, 16] for image restoration, [17, 18, 4, 5] for image segmentation,
[19] for stereo and motion, and [20] for texture synthesis.

Diffusion. In the case of binary partition of a graph, min-cut partition and
diffusion are equivalent. Indeed, let us denote W the symmetric matrix such that
W (i, j) = w(i, j). Then, the graph partition energy defined in (1) is equivalent
to a Graph Laplacian operator:

cut(A, B) =
1
8

∑
wij(xi − xj)2, (2)

where D is a N × N diagonal matrix with di =
∑

j w(i, j) on its diagonal, the
matrix D −W is called the Graph-Laplacian.

Proof. See e.g. [10]. Let x+1
2 (resp. x−1

2 ) be the indicator function for xi > 0
(resp. xi < 0). Then (1) can be written in the matrix form as follows:

cut(A,B) =
1
4
xT (D −W )x,

which implies:

xT (D −W )x =
1
2

∑

i,j

wij(xi − xj)2.

The weighted Graph Laplacian corresponds to a finite difference approxima-
tion of the continuous Lapacian operator. The graph Laplacian can also be a



non-local operator.

Semi-supervised segmentation. We observe that min-cut partitioning algorithms
are defined as semi-supervised segmentation techniques. The min-cut seeks for
the optimal partition of the graph given particular nodes called the source ”s”
and the sink ”t”. Hence, it is easy to assign some pixels as source and some as
sink if the pixel belongs to the object or the background. Several graph-based
partitioning methods have been proposed in the literature s.a. [17, 21–23, 18]. The
previous papers are based on discrete minimization methods to compute the min-
cut given the labels. In this paper, we propose a continuous minimization method
to solve the min-cut problem with labels and non-local image information.

3 Proposed Segmentation Method

3.1 Continuous Min-Cut

Energy minimization problem. In this section a new non-local semi-supervised
segmentation algorithm is introduced. The algorithm relies on the continuous
formulation of the discrete min-cut problem defined as:

min− cut(A,B) = min
x

∑

i,j

wij(xi − xj)2 (3)

s.t. xk = +1, ∀k ∈ S

xk = −1, ∀k ∈ T,

where S are the labels selected for the object and T are the labels assigned
to the background.

We propose the continuous min-cut (CMC) problem as follows (which is a con-
strained minimization problem w.r.t. a real-valued function u):

CMC(u) = min
u

1
2

∫∫

Ω×Ω

w(x, y)(u(x)− u(y))2dxdy

s.t. u(x) = 1, ∀x ∈ S

u(x) = 0, ∀x ∈ T,

which is equivalent to this unconstrained minimization problem for u:

CMC(u) = min
u

1
2

∫∫

Ω×Ω

w(x, y)(u(x)− u(y))2dxdy +
∫

Ω

λ(x)(u− u0)2dx, (4)

where u0(x) =
{

1 if x ∈ S
0 if x ∈ T

and λ(x) =
{∞ if x ∈ S ∪ T

0 otherwise ,



where function λ provides the degree of confidence with respect to the labels.

Non-local H1 energy. The first term of (4) is deduced from (3) using the change
of variable ui = xi+1

2 ∈ {0, 1} then relaxing ui to [0, 1]. This term is also known
as the non-local H1 energy ([24, 7]) defined as:

H1
G(u) =

1
2

∫∫

Ω×Ω

w(x, y)(u(x)− u(y))2dxdy =
1
2

∫

Ω

|∇Gu|2dx = ||u||H1
G
, (5)

where |∇Gu|2 :=
∫

Ω
w(x, y)(u(x) − u(y))2dy is the square norm of the con-

tinuous graph gradient of u. The optimality condition for (5) is:

∫

Ω

w(x, y)(u(x)− u(y))dy = ∆Gu = 0,

where ∆Gu is the continuous graph Laplacian of u.

Labels. The second term of (4) introduces the hard constraint of labels in the
energy minimization approach. This term comes from Unger et al. in [25], which
incorporates seed points (assigned either to the object or to the background) in
the geodesic active contour/snake model [26]. This term constrains function u
to be equal to u0 for x ∈ S ∪ T and being equal to anything else for x 6∈ S ∪ T .
Function λ is highly discontinuous, which requires some regularization process
to handle it. Unger et al. proposed a splitting operation to solve this problem.
A new function v is introduced s.t.:

min
u

∫

Ω

λ(x)(v − u0)2dx +
1
2θ
||u− v||22,

where the term ||u − v||22 forces v ≈ u as θ → 0. The optimality solution
w.r.t. v leads to:

v =
2λ(x)θu0 − u

2λ(x)θ − 1
=

{
u if λ → 0
u0 if λ →∞ .

3.2 Proposed Semi-Supervised Segmentation Algorithm:
Continuous Min-Cut + TV

Final model. The previous section introduced the continuous formulation of the
min cut problem. In this section, we proposed to merge the continuous min-cut
with the Total Variation (TV) energy. The TV term offers two advantages. First,



TV regularizes the geometry of the contour between classes (object and back-
ground). Experiments showed that the continuous min-cut can provide irregular-
ities along the contour. Second, Shi and Malik in [10] observed that the min-cut
algorithm tends to favor misclassification of small sets, which are smoothed out
with the TV regularization process.

Finally, we propose the following energy minimization model for semi-supervised
segmentation:

E(u) = ||u||H1
G

+
∫

Ω

λ(x)(u− u0)2dx + β||u||TV , (6)

where ||u||TV =
∫

Ω
|∇u|dx.

Minimization process. A direct use of the calculus of variation to (6) will produce
a very slow minimization process. We propose to use a splitting operation to
minimize E more efficiently. We introduce two new functions v, s s.t.:

E(u, v, s) = ||u||H1
G

+
∫

Ω

λ(x)(v − u0)2dx + β||s||TV

+
1

2θv
||u− v||22 +

1
2θs

||s− v||22. (7)

Then, v, s being fixed, we search for u as the solution of minu ||u||H1
G

+
1

2θv
||u− v||22, which is given by a fixed

point method as u = θv

∫
Ω

w(x,y)u(y)dy+v(x)

θv

∫
Ω

w(x,y)dy+1
. Functions u, s being fixed, we

search for v as the solution of minv

∫
Ω

λ(x)(v−u0)2dx+ 1
2θv
||u−v||22+ 1

2θs
||s−v||22,

which is given by v = θsv+θvs
θs+θv

if λ = 0 and v = u0 if λ = ∞. Functions u, v be-
ing fixed, we search for s as the solution of mins β||s||TV + 1

2θs
||s− v||22, which

solution is given e.g. the Projection algorithm of Chambolle [27].

We propose the following iterative scheme for minimizing energy (7):





un+1 = θv

∫
Ω

w(x,y)un(y)dy+vn(x)

θv

∫
Ω

w(x,y)dy+1

vn+1 =

{
θsun+1+θvsn

θs+θv
if λ = 0

u0 if λ = ∞
sn+1 = vn+1 − θdivpn

pn+1 = β(pn+1/8∇(divpn−vn+1/θs))
β+1/8|∇(divpn−vn+1/θs)|

, n ≥ 0 (8)

3.3 Some Properties of the Models (6) and (7)

Convexity. Both energy minimization models (6) and (7) are strictly convex
(since the H1

G term is strictly convex), which implies the existence of a unique



minimizing solution independently of the initial condition. Hence, even using gra-
dient descent approaches, the algorithm does not get stuck in a local minimum.
Thus, as far as the labels are correctly defined, the results will be independent
of the initialization.

Relation with the original min-cut problem (1) or equivalently (3). The continu-
ous min-cut problem (4) has the same solution as the discrete min-cut problem
when considering characteristic/indicator functions of sets, i.e.:

min
1A

{ECMC(u = 1A)} = min
A

{cut(A,Ω\A)}. (9)

We remind that we relax function u to be between [0, 1] to define a continu-
ous version of the min-cut algorithm, which can be minimized with continuous
minimization tools. Then, the segmentation result is given by thresholding the
minimizer u of (6) with any value in (0, 1).

Non-trivial steady state solution of (6). The final steady state solution of (6) is
not the mean value of the initial function. Call ut=0 =

∫
ut=0 the mean value

function. It is easy to show by contraction that ut=0 is not solution to (6). If
ut=∞ = ut=0 then E(ut=∞) =

∫
Ω

λ(x)(ut=0 − u0)2dx > 0, and the minimizer
is thus given by ut=0 = u0. However, u0(x) = 1 ∀x ∈ S, 0 ∀x ∈ T . Thus,
ut=0 6= u0.

We notice that Gilboa and Osher in [7] also use the energy ||u||H1
G

to perform
semi-supervised segmentation. However, they did not use a term to constraint
the labels as in this work. They minimized energy ||u||H1

G
starting with a trinary

initial function ut=0 = {−1, 0, 1} (labelled pixels for the object are assigned to
the value 1 and those for the background to the value −1). However, the mini-
mizing solution is the mean value function ut=∞ = ut=0. Hence, this algorithm
requires to stop the diffusion process.

4 Results

This section presents some results of the proposed semi-supervised segmentation
algorithm. The graph is defined from local and non-local image information:

w(i, j) =

{ |i−j|2
σ2
1

+ |F (i)−F (j)|2
σ2
2

if i, j ∈ Na×a(i)
0 otherwise

, (10)

where Na×a(i) is a square window of size a×a around i. The computational cost
of the similarity between pixel on the whole image is very expensive, however we
chose to simply select points in a close neighborhood. This implies the supposi-
tion that if two points are far away, they are not connected. From a2 neighbors
only the cl = 8 closest points are selected. The feature vector F is a square patch
of size f×f centered on each pixel. The segmentation is driven by (8). The initial



condition for u, v and s are given by the label S, i.e. u = v = s = 1 if x ∈ S
and u = v = s = 0 otherwise. With an unoptimized Matlab implementation,
the graph computation lasts approximatively 15 seconds and the segmentation
is performed in approximatively 1 minute. The image size is 128× 128.

TV Regularization Effect The importance of the TV-Regularization effect is
emphasized in this paragraph. A salt-and-pepper noise is added on a two-phase
image with different means 1(a). The inside and outside labels are presented on
Figure 1(a). The results show that if the TV regularization is not performed then
the segmentation fails (Fig 1(b)). When the TV regularization is used, then the
segmentation succeeds.

(a) (b) (c)

Fig. 1. Application of our algorithm on a image with a salt-and-pepper noise.
(a)Initialization (b)The segmentation result without TV-regularization.(c)The segmen-
tation result with TV-regularization.

Texture Images We apply our algorithm to a synthetic texture image composed
of five different patterns. Figures 2(a) and 2(c) show the initializations and Fig-
ures 2(b) and 2(d) the corresponded results. The patch size is chosen to be 9×9
which correspond to the pattern size for the two selected textures.

(a) (b) (c) (d)

Fig. 2. Results on synthetic textures. (a) and (c) Initializations. (b) and (d) results.



Natural Images We apply now our algorithm to a set of natural
images taken from the Berkeley segmentation dataset [28]. In the fist column

of Figure 3, the inside and outside labels are shown and in the second column
the segmentation results.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Results on real-world images from the Berkeley dataset. Left column: Initial
labels. Right column: Segmentation Result

Color Images We consider the simple case of Red-Green-Blue (RGB) channels.
The first step consists of computing the graph by taking into account each chan-
nel, i.e. F = (Fr, Fg, Fb), where respectively the red, green and blue feature
channel. Images are also taken from the Berkeley segmentation dataset [28].

In the fist column of Figure 3,
the inside and outside labels are shown and in the second column the seg-

mentation results.

Medical Images We apply our segmentation algorithm on 2-D medical images of
CT scans of the abdomen and the head and neck. Figures 5(a) and 5(c) present
the inside and outside initial labels. Figures 5(b) and 5(d) show the segmentation
results. For the liver segmentation, the label on the background (black) prevents
the diffusion from capturing as well the heart. The segmentation of the structures
in the neck are challenging and the result that we obtain are promising.



5 Discussion and Conclusion

In this paper, a non-local semi-supervised segmentation method has been pro-
posed. The success of graph partitioning algorithms for image segmentation has
motivated this work. Our objective was to translate the discrete min-cut al-
gorithm into a non-local continuous min-cut algorithm. The addition of hard
constraints with the source and sink labels has been done naturally in the pro-
posed continuous framework. Besides, it has also been easy to introduce new
terms such as the TV term that regularizes the geometry of the boundary be-
tween the object and the background. The non-local continuous min-cut is also
equivalent to a diffusion process. The diffusion is done on the graph of image
intensity patches, which holds semi-local and non-local image information useful
to segment textures and complex patterns. Our semi-supervised segmentation
has provided promising segmentation results for textures and real-world objects.

Future work will focus on comparing the efficiency of our segmentation al-
gorithm with other related semi-supervised segmentation algorithms. We would
like also to extend our method to 3-D medical images.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Results on real world color images from the Berkeley dataset. Left column:
Initial labels. Right column: Segmentation Result

6 Acknowledgements

Nawal Houhou was supported by Swiss National Science Foundation #205320-
101621, Xavier Bresson was supported by ONR N00014-03-1-0071 and ONR
MURI subcontract from Stanford University and Arthur Szlam was supported
by NSF DMS-0811203. The authors would like also to thank the referees for
their constructive comments.



Fig. 5. First row, Segmentation of the liver. (a)Initial labels. (b)Segmentation Re-
sult. Second row, Segmentation of the lateral muscles on the neck. (c)Initial labels.
(d)Segmentation Result. (e)Zoom on the segmentation of the muscles
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