
2

Structured Overlay For Heterogeneous
Environments: Design and Evaluation
of Oscar
ÿSARŪNAS GIRDZIJAUSKAS
Ecole Polytechnique Fédérale de Lausanne (EPFL)
ANWITAMAN DATTA
Nanyang Technological University
and
KARL ABERER
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Recent years have seen advances in building large Internet-scale index structures, generally known

as structured overlays. Early structured overlays realized distributed hash tables (DHTs) which are

ill suited for anything but exact queries. The need to support range queries necessitates systems

that can handle uneven load distributions. However such systems suffer from practical problems—

including poor latency, disproportionate bandwidth usage at participating peers, or unrealistic

assumptions on peers’ homogeneity, in terms of available storage or bandwidth resources. In this

article we consider a system that is not only able to support uneven load distributions but also to

operate in heterogeneous environments, where each peer can autonomously decide how much of

its resources to contribute to the system. We provide the theoretical foundations of realizing such

a network and present a newly proposed system Oscar based on these principles. Oscar can con-

struct efficient overlays given arbitrary load distributions by employing a novel scalable network

sampling technique. The simulations of our system validate the theory and evaluate Oscar’s perfor-

mance under typical challenges, encountered in real-life large-scale networked systems, including

participant heterogeneity, faults, and skewed and dynamic load-distributions. Thus the Oscar dis-

tributed index fills in an important gap in the family of structured overlays, bringing into life a

practical Internet-scale index, which can play a crucial role in enabling data-oriented applications

distributed over wide-area networks.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Net-

work Architecture and Design—Distributed networks, network topology; C.2.4 [Computer-
Communication Networks]: Distributed Systems

The work presented in this article was supported in part by the National Competence Center in

Research on Mobile Information and Communication Systems (NCCR-MICS), a center supported

by the Swiss National Science Foundation under grant number 5005-67322. Part of the work carried

out was funded by A*Star SERC Grant No. 072 134 0055.

Author’s address: S. Girdzijauskas, email: Sarunas.girdzijauskas@epfl.ch.

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1556-4665/2010/02-ART2 $10.00

DOI 10.1145/1671948.1671950 http://doi.acm.org/10.1145/1671948.1671950

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147949170?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2:2 • S. Girdzijauskas et al.

General Terms: Algorithms, Design

Additional Key Words and Phrases: Peer-to-peer systems, routing, structured overlays, small-world

graphs, skewed key distributions

ACM Reference Format:
Girdzijauskas, Š., Datta, A., and Aberer, K. 2010. Structured overlay for heterogeneous environ-

ments: Design and evaluation of Oscar. ACM Trans. Autonom. Adapt. Syst. 5, 1, Article 2 (February

2010), 25 pages.

DOI = 10.1145/1671948.1671950 http://doi.acm.org/10.1145/1671948.1671950

1. INTRODUCTION
This decade has witnessed proliferation of the peer-to-peer paradigm in diverse

application domains, where end users contribute and share various kinds of re-

sources, including data and content. Ability to efficiently find resources in a

large-scale networked and decentralized environment is an important ingre-

dient enabling such systems. Structured overlays, for example, DHTs provide

a distributed indexing mechanism, facilitating search in such environments.

To support portability and modularity, it is also essential to achieve network

data independence [Hellerstein 2003]. This requires ensuring transparency

of network layer issues at the application layer, like node heterogeneity, sys-

tem churn, load balancing issues, and lack of global knowledge at individual

peers.

Numerous structured overlay topologies, often emulating interconnection

networks, have been proposed in the literature. Many of these, despite nu-

merous apparent differences, are essentially special instances of a family of

small-world networks, where decentralized greedy search algorithms can work

efficiently. Kleinberg [2000] identified the family of such small-world networks

that have polylogarithmic search path lengths when individual nodes maintain

a constant amount of network information. Aspnes et al. [2002] and Giakkoupis

and Hadzilacos [2007] introduced tighter lower bounds and showed that such

Kleinbergian construction is indeed optimal for decentralized greedy routing

algorithms.

The Kleinberg model is based on a multidimensional lattice space that has

a notion of distance between two points in the lattice. The summary conclu-

sion of Kleinberg’s seminal work is that the family of graphs on which greedy

decentralized routing could be used efficiently were those where each node es-

tablished a link to another node with a probability inversely proportional to the

distance between these two nodes raised to the power equal to the dimension

of the lattice space. This network construction model is extremely relevant in

the context of peer-to-peer overlay index structures. Most structured overlays

have an underlying identifier space and rely only on local decisions for navi-

gating the overlay based on the distance metric of the identifier space, thus a

greedy algorithm is feasible and easy to implement without global knowledge

or coordination.

To ease the network construction task and to effectively balance the data

load, most structured peer-to-peer systems use uniform hash functions (like

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

Structured Overlay for Heterogeneous Environments • 2:3

SHA-11) for assigning identifers to peers and resources (e.g., Chord [Stoica

et al. 2001], Symphony [Manku et al. 2003], etc). The usage of uniform hash

functions ensures that load is uniformly randomly distributed over the key-

space, and thus by dividing the key-space and the associated load uniformly,

randomly among the peers, load balancing among the peers can be achieved.

Furthermore, it enables the utilization of simple and unambiguous neighbor

selection protocols, which guarantee a balanced node degree at all peers.

The use of uniform hash functions, however, limits the use of data-oriented

overlays to simple exact identifer lookup capabilities. More complex queries

like, for example, similarity or range queries become extensively ineffective

since uniform hash functions disperse otherwise correlated data over many dif-

ferent peers, thus making the access highly inefficient if not infeasible. There-

fore, semantic data processing cannot be successfully tackled by conventional

uniform hash function-based peer-to-peer systems.

Furthermore, practical scalable peer-to-peer systems need to take hetero-

geneity into account explicitly in the system’s design. For data-oriented over-

lays, heterogeneity is encountered both because of the peculiarities of the

environment as well as the application characteristics. Measurement stud-

ies [Stutzbach et al. 2005] of deployed peer-to-peer systems show heterogeneity

arising because of either diverse availability of resources like storage, band-

width, computation, and content at peers, or variation in individual willingness

to contribute resources to the system, as well as software artifacts like default

configurations. Thus, it becomes evident that uniform hash functions are ren-

dered to be ineffective, facing the consequences of heterogeneous environments

since under such circumstances data-oriented applications are inevitably char-

acterized by a nonuniform distribution of keys over the key-space as well as

skewed query or access patterns.

This implies that overlay networks have to be able to handle hash functions

that produce nonuniform key distributions (e.g., order-preserving hashing). The

design of such overlay networks has to take into account the resulting skewed

key distributions and adapt the construction mechanisms accordingly, to dis-

tribute the load among peers in a judicious manner. That is not a straight-

forward task, particularly in the absence of global knowledge and coordina-

tion. Most contemporary structured peer-to-peer approaches avoid addressing

these issues, instead wrongly relying on unrealistic uniformity assumptions

on peers’ capacity in terms of bandwidth consumption and storage capacities,

which limits the practicality for realistic peer-to-peer environments. In this

article we suggest the algorithms for constructing a routing-efficient overlay

network based on scalable sampling strategy. We call the resulting system

Oscar, which stands for overlay network built using scalable sampling of re-

alistic distributions. The novelty in our approach is both in the fact that we

explicitly account for peers’ heterogeneity, as well as a scalable sampling mech-

anism, which provides adequate information with low overheads to create an

efficient structured overlay.

1http://csrc.nist.gov/groups/ST/toolkit/secure hashing.html

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

2:4 • S. Girdzijauskas et al.

We provide a full analysis for the Oscar algorithms with analytical guar-

antees for the performance of the resulting networks. The analytical results

are validated with simulations with realistic skewed workloads, heterogeneous

peers, and network dynamics (churn). To our knowledge this is the first scalable

sampling approach that has been proposed for construction and maintenance

of structured overlay networks for nonuniform key distributions while coping

with and exploiting peer heterogeneity.

The rest of the article is organized as follows. In Section 2 we overview the

main design principles of Oscar and its conceptual differences with the Mer-

cury system [Bharambe et al. 2004]. In Section 3 we discuss the other related

techniques and how Oscar compares to them. In Section 4 we recapitulate es-

sential ideas from our previous work [Girdzijauskas et al. 2005]—namely the

problem of dealing with skewed key spaces. We present the concept and the

algorithms of the proposed Oscar system in Section 5. We evaluate the Oscar

system in Section 6 based on rigorous simulations. We draw our conclusions

in Section 7. We analyze the proposed mechanisms and algorithms in online

Appendix A.

2. DEALING WITH A MULTITUDE OF HETEROGENEITY:
THE DESIGN LANDSCAPE

Most structured overlay networks are instances of a Kleinbergian small-world

graph. In such networks searches are usually performed by greedy routing,

though other navigation techniques can also be implemented; for instance rout-

ing with “lookahead” [Manku et al. 2004] or “cautious greedy-routing” [Barbella

et al. 2007]. In our previous work [Girdzijauskas et al. 2005] we showed how

to build routing-efficient network topologies in the presence of nonuniform key

distributions assuming the whole key distribution is known at every peer. Mer-

cury [Bharambe et al. 2004] based its heuristic approach on a similar obser-

vation and proposed a structured overlay network that balances load among

peers and attempts to construct a small-world graph-based overlay. For proper

choice of long-range links Mercury needs to know about the key distribution. A

simple sampling mechanism is employed in Mercury to approximately learn the

global key distribution. However, the sampling technique that Mercury uses to

determine the candidates for long-range links does not scale, given arbitrary

load distributions that typically occur in practice.

Mercury can deal with simple monotonous skewed distributions but the sam-

pling technique is inadequate for real-world distributions, which are typically

arbitrary and nonmonotonous (see Section 4). In our initial work on the Oscar

system [Girdzijauskas et al. 2006] we showed that under realistic workloads,

Mercury nodes suffer a large imbalance in in-degree, which results in both poor

search performance as well as load-imbalance and congestion.

The problem of in-degree imbalance in Mercury arises because it uses an

approximation of the global key distribution for constructing the network from

a limited set of samples done uniformly on the key-space. Since it is not possible

to achieve a good approximation of an arbitrary distribution with a limited

number of samples, the resulting P2P networks have poor performance.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

Structured Overlay for Heterogeneous Environments • 2:5

Our proposed Oscar overlay, however, enjoys all the benefits of systems that

support complex nonuniform key distributions (like Mercury or P-Grid [Aberer

2001]) and hence nonexact queries (e.g., range or similarity queries) but does

not suffer from node in-degree imbalance, while exhibiting lookup performance

comparable to traditional DHTs (which can only support exact queries).

Since Oscar builds the underlying network according to Kleinberg’s small-

world construction principles, it gives peers complete autonomy to determine

the size of the key-space partition it would be responsible for, based on either

its storage or bandwidth constraints. The in and out-degrees of a peer can vary

depending on peers’ local and autonomous decisions, while still providing guar-

antees of efficient search globally. Because the links are chosen randomly, there

are multiple options to choose from, so that the in-degree of a peer can also be

easily adjusted, where individual peers refuse further connections based on a

local decision. Such features of small-world approaches enable accommodat-

ing and exploiting peer heterogeneity—storage as well as bandwidth, while

also dealing with heterogeneous workloads—skew in key distribution over the

key-space as well as query frequency for the keys. Peers are free to choose the

maximum amount of outgoing and incoming links locally, depending on their

bandwidth budget to maintain the links as well as to cater to the query traf-

fic, based on their locally perceived bandwidth or other constraints. Similarly,

peers are free to choose the key-space to be responsible for. This may be based on

their storage capacity and bandwidth constraints to answer the corresponding

queries. Thus, the Oscar overlay is capable of dealing with both the hetero-

geneity observed in the network, particularly bandwidth and storage resource

heterogeneity at peers, as well as nonuniformity observed in the workloads

in data-oriented applications, particularly skewed key distributions as well as

skewed access loads.

3. RELATED WORK
Distributed Hash Tables (DHTs), for example Chord [Stoica et al. 2001] and

Pastry [Rowstron and Druschel 2001] were originally proposed for efficient

decentralized search and address-independent routing. Uniform hashing was

used to generate keys, and a hash table distributed among the peers was used

to store and efficiently locate these keys. One of the motivations to use uniform

hashing in these early approaches was that load was distributed relatively uni-

formly on the key/identifier-space. Subsequent works [Manku et al. 2003; Hui

et al. 2006] followed the same paradigm and provide only limited support for

data-oriented applications, since uniform hashing prevented nonexact queries.

Such limitations of DHTs in supporting data-oriented applications spurred

research on a next generation of order-preserving structured overlay networks.

Preserving ordering relationships among keys is essential for data-oriented

queries like approximate, range, similarity, and sky-line queries.

Preserving ordering relations can lead to skewed load distributions, in turn

causing load imbalance at the peers. This led to a number of research efforts

addressing this problem in various ways. Systems like CAN [Ratnasamy et al.

2001], Mercury [Bharambe et al. 2004], M-Chord [Novak and Zezula 2006],

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

2:6 • S. Girdzijauskas et al.

P-Grid [Aberer et al. 2005], skip graphs [Aspnes and Shah 2003; Harvey et al.

2003] and derivatives [Aspnes et al. 2004; Ganesan et al. 2004; Guerraoui

et al. 2006] looked into some subproblems, like addressing load-balance under

nonuniform key distributions. These approaches usually assume uniformity of

peers’ capacity in terms of bandwidth consumption and storage capacity, which

limits their practicality for realistic peer-to-peer environments. Most of these

approaches also suffer from shortcomings with respect to essential properties of

operation, for example, the search efficiency in terms of the number of overlay

hops cannot be guaranteed in CAN for an arbitrary partitioning of the key-

space (zones). Storage-load balanced P-Grid may have highly imbalanced peer

degrees. Skip graphs need to have O(log N) level rings at each peer, where level

ring neighbors are determined by a peer’s membership vector and the existing

skew in the system. Such a design omits the possibility of choosing routing

table entries in a randomized manner. Therefore Skip graphs lack the flexibil-

ity provided by the truly randomized approaches (e.g., based on small-world

construction principles like Mercury) and cannot address some of the hetero-

geneity issues, for example, different constraints on storage and bandwidth

at each peer. M-Chord utilizes Chord [Stoica et al. 2001] structure as the un-

derlying overlay and, similarly to Mercury, uses uniform sampling to discover

the resource (object) distribution for the correct assignment of the peer keys.

As we discussed, uniform sampling is inadequate in the presence of complex

key distributions, and inevitable wrong estimates from such approaches lead

to overlays with relatively poor performance. Oscar’s strength is its scalable

sampling technique even in the presence of arbitrary load skews, and using

small-world principles to leverage the heterogeneity of available resources—

leading to the design of a system with superior performance under realistic

workloads compared to all other existing systems.

4. PRELIMINARIES

Basic Concepts for Structured P2P. A structured overlay network consists of

set of peers P (N = |P|) and set of resources R. There exists an identifier

space I (usually on the unit interval I ∈ [0..1), e.g., Chord [Stoica et al. 2001],

Symphony [Manku et al. 2003]) and two mapping functions FP : P → I and

FR : R → I (e.g., SHA-1). Thus, each peer p ∈ P and each resource r ∈ R is

associated with some identifiers FP (p) ∈ I and FR(r) ∈ I, respectively. There

exists a distance function dI (u, v), which indicates the distance between a peer

u and a peer v in I. Each peer p has some short-range links ρs(p) ⊂ P and long-

range links ρl (p) ⊂ P, which form a peer’s routing table ρ(p) = ρs(p) ∪ ρl (p).

There exists a global probability density function f characterizing how peer

identifiers are distributed in I. Any resource r ∈ R in the P2P system can be

located by issuing a query for FR(r). In structured P2P systems queries are

usually routed in a greedy fashion—always choosing the link ρ ∈ ρ(p) that

minimizes the distance to the target’s identifier.

Complex Distributions. Using a uniform hash function FR (e.g., SHA-1) in

data-oriented P2P applications is not adequate. It is necessary to deal with

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

Structured Overlay for Heterogeneous Environments • 2:7

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Identifier (key) space

Gnutella filename distribution
Zipf distribution

Fig. 1. Probability density functions: Monotonous Zipf with parameter α = 1 (solid) vs Gnutella

filename (dotted).

order-preserving hash functions, which produce skewed key distributions if the

corresponding data distributions are skewed.

Let us assume a data-oriented P2P system, where the resources are identified

and looked up by filenames. A widely used technique in P2P systems is the

following: each peer p and each resource r has identifiers FP (p) and FR(r) on a

1-dimensional ring I ∈ [0..1). Each peer is responsible for all the resources that

map to the identifier range D(p) ∈ [FP (p), FP (psucc)), where the peer psucc is the

successor of the peer p on the identifier ring I. We cannot use a uniform hash

function such as SHA-1, since we want the function FR to preserve ordering

relationships among the resource keys (e.g., enabling the straightforward use of

range queries), FR(ri) > FR(r j) if and only if ri > r j . Such an order-preserving

hash function will lead to a very skewed distribution of resource identifiers

over the identifier ring I. For example, in Figure 1 we can see a distribution

function of filename identifiers in I extracted from a Gnutella trace (dotted line)

of 20,000 filenames crawled in 2002 versus a monotonous Zipf distribution with

parameter α = 1 [Breslau et al. 1999; Zipf 1929]. Despite the complex skew of

key distributions, we would like each peer p to be responsible for a fair (or equal)

amount of resources and be storage-load balanced: |Rpi | ≈ |Rpj | for any i and j ,

where Rp ⊂ R and ∀r ∈ Rp FR(r) ∈ D(p). In this case the peer identifiers will

have to reflect the distribution of resource identifiers. Hence the peer identifier

distribution will have a similar shape as the resource identifier distribution.

Since in general the resource identifier distributions are usually nonuniform

and exhibit complex skews, the resulting peer identifier distribution will have

to have a complex skew as well.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

2:8 • S. Girdzijauskas et al.

Dealing with Skewed Spaces. The seminal work of Kleinberg [2000] proposes

a “routing efficient” network on a uniform d -dimensional mesh. The follow-up

works [Barrière et al. 2001; Manku et al. 2003] showed how to adapt the

Kleinbergian network construction principles for P2P systems with uniform

key distribution. In our previous work [Girdzijauskas et al. 2005] we showed

that it is indeed possible to construct routing-efficient small-world networks in

the 1-dimensional space even if the peers are nonuniformly distributed on the

unit interval. For doing so, it was shown that a peer u has to choose a peer v as

its long-range neighbor with a probability that is inversely proportional to the

integral of the probability density function f between these two nodes,

P [v ∈ ρl (u)] ∝ 1∣∣∣∫ FP (v)

FP (u)
f (x)d x

∣∣∣ . (1)

However, it is nontrivial to apply this technique in practice because it re-

quires at each peer, global knowledge about the data load in the system, hence

the key distribution f . A simple approach to obtain the distribution is to ran-

domly sample the network and get an approximation of the key distribution,

for example, Mercury [Bharambe et al. 2004]. However, the real-world distribu-

tions can be totally arbitrary and the only sufficient approximation of the distri-

bution would be gathering in a sample set the complete set of values which, of

course, does not scale. In this article we show that Mercury (which uses random

sampling) fails to build routing-efficient networks given arbitrary distribution

functions. Moreover, we also show that it is not necessary to know the distri-

bution function over the entire identifier space with uniform resolution—it is

sufficient to learn well the distribution for only some regions of the identifier

space while leaving other regions vaguely explored, making this the base idea

of Oscar algorithms.

5. OSCAR OVERLAY

The Insight. According to the continuous Kleinberg approach [Barrière et al.

2001; Manku et al. 2003; Girdzijauskas et al. 2005] for construction of a routing-

efficient network in 1-dimensional space, each node u has to choose two short-

range neighbors and one or more long-range neighbors. Short-range neighbors

of u are its immediate successor and predecessor on the unit ring. A peer u
chooses its long-range neighbor v in the unit interval with the pdf g (x) = 1

x ln N
on the range [1

N , 1], where x = dI (u, v). It has been proven that a network

constructed in such a way is routing-efficient: a greedy routing algorithm on

expectation requires O(
log2

2 N
l) hops, where l is the number of long-range links at

every peer. This means that a node u will tend to choose a long-range neighbor

v from its close neighborhood, rether than from the farther away regions. The

pdf g (x) according to which the neighbors are chosen also has one nice prop-

erty when partitioned into equally spaced segments on the logarithmic scale

(logarithmic partitions). That is, if we partition the identifier space into log2 N
partitions A1, A2, ..Alog N , such that the distance between the peer u and any

other peer v in Ai is bounded by 2−i ≤ dI (u, v) < 2−i+1, the peer v will have

equal probability to be chosen from each of the resulting partitions (Figure 2).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

Structured Overlay for Heterogeneous Environments • 2:9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Identifier (key) space

Fig. 2. pdf g (x) (solid bars) and the A1, A2, . . . , Alog2 N partitions separated by the dotted lines.

Indeed, the probability that v will be chosen by u in some interval Ai is exactly
1

log N and does not depend on i:

P (FP (v) ∈ Ai) =
∫ 2i−log N

2i−log N−1

1

x ln N
dx = 1

log N
. (2)

In practice choosing nonuniformly at random, but according to some con-

tinuous pdf, is complicated. Thus, Equation (2) gives us an insight into how

to modify a network construction algorithm, in which the neighbors will be

chosen not directly by some continuous pdf g (x), but uniformly at random in

certain regions derived from g (x). That is, if each peer u first chooses uniformly

at random one logarithmic partition and then within that partition uniformly

at random one peer v as a long-neighbor, then none of the pdf characteristics

will be violated and all the desirable properties of the routing-efficient network

will be preserved. Of course, this approach perfectly fits the case with uniform

key-distributions. In such cases the partitions can be recalculated in advance

at each peer. However, when assuming skewed key-spaces, it is not straightfor-

ward how to define logarithmic partitions, hence how to choose the long-range

link.

5.1 Space Partitioning
In the case of uniformly distributed peer identifiers, the expected number of

peers within some range of length d is actually equal to d · N , assuming a unit

length identifier space. Thus the division of such an identifier space into a log-

arithmic (base-2) number of partitions is nothing but recursively halving the

peer population. That means a peer u with identifier 0 (FP (u) = 0) will define

the partition A1 that will contain half of the peer population: all the peers with

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

2:10 • S. Girdzijauskas et al.

identifiers bigger than 1
2
, A2 – all the peers with identifiers bigger than 1

4
and

smaller than 1
2
, and so on. This technique can be easily adapted to a case with

any identifier skew, so Oscar uses this intuition in order to build its routing

network in a simple and efficient manner. Instead of using the predefined bor-

derlines between the logarithmic partitions we will use the median values of

the exponentially decreasing peer populations. That is, an Oscar node u with

an identifier uid has to partition the identifier space into logarithmic partitions

A1, A2, ..Alog2 N . Each border between neighboring partitions is determined by

a median value of the peer identifiers in the exponentially decreasing subsets

of peer population—the border between A1 and A2 will be the median m1 of the

peer identifiers from the whole peer population P, the border between A2 and

A3 will be the median m2 of the identifiers from the subpopulation P \ A1 and

so on. In general the border value between Ai and Ai+1 will be the median mi of

peer identifiers from the subpopulation P \ Bi, where Bi = ∪i−1
j=1 Aj . Ideally the

first partition A1 has to contain 1
2

of the initial population, A2 has to contain 1
4

and so on. Since in practice it is not possible to know the precise members of all

the partitions, an Oscar node has to approximate the key range for each par-

tition. For finding the median values, an Oscar node has to uniformly sample

each subpopulation Bi and determine the current median mi from the acquired

sample set. The random sampling technique proposed by Mercury for sampling

the whole population is employed. To sample the subsets of the population Bi
the Oscar nodes use random walkers that do not visit nodes with identifiers

not belonging to the current population Bi. Our simulation experiments show

that such a technique yields very good results in practice even with very low

sample sizes.

5.2 Oscar Technique
Here we introduce the basis of Oscar’s technique—the long-range link ac-

quiring procedure: each peer u first chooses uniformly at random one loga-

rithmic partition Ai and then within that partition uniformly at random one

peer v. This peer v will become a long-range neighbor of u. Thus, for suc-

cessful building of an overlay we only require each peer to have a snapshot

of the current key distribution by acquiring the knowledge of the positions

and sizes of the corresponding partitions A1, A2, ..Aloga N —a list of peer keys

FP (pm1), FP (pm2), . . . , FP (pmloga N), where peers pm1 , pm1 , . . . , ploga N represent

the boundaries between the partitions. Such knowledge can be gained either

by actively sampling the network (see Section 5.3) or by copying a snapshot of

a global view from a ring neighbor. The sampling and long-range link creation

process is illustrated in Figure 3. In case of copying the snapshot has to be ad-

justed accordingly by contacting the peers pm1 , pm1 , . . . , ploga N and requesting

the keys of their ring neighbors FP (pm1
succ), FP (pm2

succ), . . . , FP (p
mloga N
succ), which are

then included in the snapshot. Such copying incurs contacting only O(log N)

peers and is very suitable for the propagation of the latest knowledge of the key

distribution.

The network remains correctly wired if the global key distribution remains

stable over time. However, even if the key distribution is changing, the peers

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

Structured Overlay for Heterogeneous Environments • 2:11

Samples gathered by random walkers

Median peer of the 1st sample set

Pu

Pu

Pu

Pu

Partition representing ½
of the population

Samples gathered by random walkers
on a subset of the peer population

Median peer of the 2nd sample set

Medians of all the sample sets representing logarithmic partitions of the key space

(a)

(b)

(c)

(d)

¼ of the population

Pu chooses one partition u.a.r and u.a.r. a peer within the partition.

Fig. 3. Sampling and long-range link creation in Oscar. Peer Pu samples the entire population

with the help of random walkers and chooses a median peer from the sample set (part (a)). The

chosen median will represent the boundary in the key space by halving the space into two equal

population regions. The 2nd wave of random walkers is issued on the subpopulation for which Pu
belongs to, and the 2nd median peer is determined, representing a boundary of a new partition

(part (b)). Recursively the boundaries of all O(log N) partitions are found (part (c)). To select a

long-range neighbor peer, Pu first chooses u.a.r. one partition and u.a.r. a peer within that partition

(part (d)).

can rewire only on demand when a network’s performance starts to deterio-

rate. One of the indications that a network is not healthy is high in-degree

Girdzijauskas et al. [2006] of some peers. This is an indication that a majority

of the peers pointing to an overloaded peer have an outdated global view and

wrong distribution estimation. Another indication for outdated knowledge is

an increased average routing time. Therefore, the thresholds for the expected

long-range link connectivity requests and the expected routing path lengths

can be set for triggering the resampling and rewiring processes at every peer

once these thresholds are exceeded. Such actions bring the connectivity of the

network to the optimal state. Alternatively, if the network is required to be opti-

mal at all times, a periodic resampling and rewiring strategy can be employed,

which would always keep the network in a healthy condition. We show in our

simulations that the Oscar sampling technique is not expensive and adapts

the network well to the dynamic environments where peer-key distribution is

not stable and changes continuously over time. Moreover, in our analysis (see

online Appendix A) we prove that the error within the partitions can be rela-

tively large without inflicting considerable damage on the search efficiency—a

network can support quite high variation in the distribution without actively

sampling the network.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

2:12 • S. Girdzijauskas et al.

Since Oscar is an instance of randomized small world networks—the num-

ber of long-range links in Oscar is not restricted and can be assigned individ-

ually according to the needs of a particular peer, as long as there exists at

least one such link per peer. By allowing different in/out degree at each peer,

Oscar can easily adapt to heterogeneous environments (workload of a peer or

local available resources) still guaranteeing efficient global search as long as

there is at least one long-range link maintained per peer. Our simulations show

(Section 6) that Oscar performs in heterogeneous environments as good as in

homogeneous.

As for the correctness of the system, we rely on the already devised self-

stabilizing algorithms (e.g., Ghodsi [2006], Angluin et al. [2005], Li et al. [2004],

Liben-Nowell et al. [2002], Shaker and Reeves [2005], and Stoica et al. [2001]),

which maintain the virtual ring (short-range links) under churn. The establish-

ment of short-range links ensures correctness of the greedy routing algorithm,2

while long-range links are peculiar to different approaches and serve as routing-

optimization links. Thus, we will focus mainly on the algorithms for establishing

long-range links.

5.3 Oscar Algorithms
Here we will formally describe the Oscar network construction and mainte-

nance algorithms.

The Join Algorithm. In Oscar, as in many other P2P approaches, to join the

network a peer u has to know at least one peer already present in the system and

to contact it. The joining peer is assigned some identifier FP (u), which is usually

based on the distribution of the global data in the peer-to-peer system (see the

discussion in Section 4) and depends on load balancing algorithms which are

orthogonal to our work, for example, in Ganesan et al. [2004], Karger and Ruhl

[2004], Rao et al. [2003], Godfrey et al. [2004], and Giakkoupis and Hadzilacos

[2005]. A naive approach for FP (u) acquisition could be the following: a newly

joined peer contacts several randomly selected peers, requests the information

on their load, and joins as a ring neighbor (acquires FP (u)) next to the most

overloaded peer. In such a way, the newcomer relieves the overloaded peer by

taking over part of the identifier space it had to manage.

Upon joining the network, u issues a query with its identifer FP (u) and

it inserts itself into the unit ring between the responsible peer for peer u’s

key FP (u) peer and its successor. Every peer keeps an estimated state of the

global view as a set of pointers to the peers that mark the boundaries of the

logarithmic partitions (see Subsection 5.1). A peer u learns about the current

key distribution in the network from its immediate neighbor usuccessor by copying

its snapshot set of the global-view pointers. Afterwards peer u establishes l
long-range links using the longRangeLink algorithm (Algorithm 3).

2Establishment of short-range links results in a virtual ring topology, which ensures the correctness

of the greedy routing algorithm (a message always can be forwarded closer to a target).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

Structured Overlay for Heterogeneous Environments • 2:13

Algorithm 1. Scalable sampling algorithm for learning the key distribution scalable
Sampling(u).

1: ρ(u) = �; i = 0;

2: range =
[
FP (usuccessor); FP (u)

)
;

3: notEnoughPartitions = true;
4: while notEnoughPartitions do
5: i = i + 1; Psample = �;

6: for j=1 to k do
7: Psample = Psample ∪ randomBoundedWalk(u, range, TTL)

8: end for
9: m(i) = medianByFP (Psample)

10: if m(i) = FP (usuccessor) then
11: notEnoughPartitions = false;
12: end if
13: if i=1 then
14: partitionsStart(u, i) = m(i); partitionsEnd(u, i) = u;
15: else
16: partitionsStart(u, i) = m(i); partitionsEnd(u, i) = m(i − 1)
17: end if
18: range =

[
FP (usuccessor); FP (m(i))

)
;

19: end while

The ScalableSampling Algorithm. In case a peer u has an outdated snap-

shot of the key distribution it can acquire an up-to-date one by using Oscar’s

scalable sampling technique. It has to determine O(log2 N) logarithmic par-

titions (ranges) in the identifier space using the scalableSampling algorithm

(Algorithm 1). To find the first partition the algorithm starts by issuing k ran-

dom walkers within the defined range of the identifer space using the ran-
domBoundedWalk algorithm (Algorithm 2). Initially the defined range spans

the whole identifier space starting from the identifier of peer u’s successor

on the identifier ring up to the peer u’s identifier itself (Algorithm 1, line 2).

After the collection of the random samples in the set Psample the peer u finds

the median value of all the peer identifiers of the set Psample (line 9). Having

the median value the peer u can define the first, furthest, partition A1, which

will span the identifier space from the found median value up to the peer u’s

identifer value (line 14). The range value for performing the next random walk

within the subgraph P \ A1 is reduced (line 18) and the algorithm continues by

repeating the same steps (lines 4–19) to find the successive partitions A2, A3, . . .

and so on. The algorithm stops finding the partitions when the median value is

equal to the identifier of the u’s successor FP (usuccessor) (line 10). In such a way

the algorithm acquires on expectation, log2 N partitions.

The RandomBoundedWalk Algorithm. For successful usage of the scalable-
Sampling algorithm it is necessary to be able to sample not only the whole

population of peers P but also some subpopulation of peers B. Therefore, a

specific random walk algorithm is needed. The algorithm will produce random

walkers that would be able to walk only within a subpopulation of peers B ⊂ P

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

2:14 • S. Girdzijauskas et al.

Algorithm 2. Bounded Random Walk Algorithm [r] = randomBoundedWalk(u, range,
TTL).

1: if TTL > 0 and R �= � then
2: TTL = TTL − 1
3: R = {p ∈ ρ(u)|FP (p) ∈ range};
4: next = chooseRandomly(R)
5: [r] = randomBoundedWalk(next, range, TTL)
6: else
7: r = u
8: end if

Algorithm 3. Long range link construction algorithm [longRangeNeighbors] =
longRangeLink(u, outdegree).

1: for i=1 to outdegree do
2: randPartition =

[
FP (partitionsStart(u,rand)); FP (partitionsEnd(u,rand))

)
;

3: [longRangeNeighbors(i)] = queryToRange(u,randPartition)
4: end for

restricted by a predefined scope variable range, such that pB ∈ B if and only

if FP (pB) ∈ range. Such a randomBoundedWalk algorithm (Algorithm 2) is a

modified random walker, where the message is forwarded not to any random

link of the current message holder u, but to a randomly selected link p that

satisfies the condition FP (p) ∈ range (Algorithm 2, line 3). Such a link will

always exist, assuming the underlying ring structure is in place.

The LongRangeLink Algorithm. To assign the long-range link, the lon-
gRangeLink algorithm is used (Algorithm 3), which chooses uniformly at ran-

dom one of the partitions Ai (line 2) and then assigns the random peer v from

that partition using the queryToRange algorithm (line 3). The queryToRange
algorithm is a greedy routing algorithm, which minimizes distance to the given

range Ai and terminates whenever the first peer v in that range is reached.

Because of the randomized nature of the Oscar network, the probability of

reaching peer v in range Ai is the same as for all the other peers in that range,

which is required by the Oscar’s long-range link acquisition procedure. Thus,

peer v represents a random peer from that range. Since the algorithm requires k
samples per each logarithmic partition, the expected number of needed samples

per peer in total is O(k log N).

Note that the algorithm does not require knowledge or estimation of the

total number of nodes in the network. The only place where in principle the

estimation of N is needed is the TTL value of a random walk. As explained

in Bharambe et al. [2004] the TTL should be set to a value of log2 N . How-

ever, the simulations show that it is sufficient to set the TTL value equal to

the number of previously determined partitions. Likewise, newly joined peers

acquire the information on the partition size from their ring neighbors (boot-

strapping peers can set their initial TTL values to some minimal number, e.g.,

20, which ensures that they will be larger than log2N at the time of the network

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

Structured Overlay for Heterogeneous Environments • 2:15

bootstrap). In such a way the Oscar algorithms are designed to be independent

of the estimation of the network size N .

Since churn exists in P2P networks and the peers join and leave the sys-

tem dynamically each peer has to rewire its long range links from time to time.

This can be done either periodically or adaptively. We used adaptive techniques

for performing the sampling algorithms if the key distribution in the network

changed considerably, and as a result some peers got overloaded and the aver-

age routing cost increased. In practice the sampling is rarely performed since,

as we will show in the next section, Oscar partitioning is robust to imprecise

measurements and distribution fluctuations. In such a way the Oscar system

can self-optimize under dynamically changing network conditions.

In online Appendix A we show that the Oscar overlay is robust to sampling

errors and has logarithmic search performance given a logarithmic number of

links per node.

6. SIMULATIONS
Here we show that the network built according to our proposed technique per-

forms well and does not suffer the drawbacks of existing systems. Similarly as

in Mercury [Bharambe et al. 2004], we created a discrete-event-based network

simulator (in Java 1.6) where each application level hop is assigned a unit de-

lay. Using the simulator, we simulate an Oscar network with bidirectional links

starting from the network bootstrap of 2 nodes and simulating its growth until

it reaches a peer population of 10000. Unless specified otherwise, we set the

average node degree to 13 links per peer, Oscar sampling parameter k to 9, and

use Gnutella filename trace (see Section 4) to model the key distribution in the

network. We have performed the simulations under various settings, namely

varying key and node degree distributions, and performed the simulations un-

der churn, where the key distribution changes over time. In the following, we

will describe the simulation settings in more detail.

6.1 Oscar�s Performance with Low Sample Sizes
First we have investigated the optimal parameters for an Oscar overlay. As we

show in online Appendix A the search performance of Oscar should be suffi-

ciently efficient even with very inaccurate estimations of the medians—with

very small sampling parameters k. Hence we measure the effect of the size of

the sampling parameter k on Oscar’s search performance. We have grown an

Oscar network from scratch to 10000 peers with an average node degree of 7 and

with different values of k. We compared the search performance (Figure 4(a)) to-

gether with the distribution of the estimated number of partitions by each peer

(Figure 4(b)). The latter suggests how accurate the measurements are since

the perfect estimation would result in exactly log N logarithmic partitions (for

N = 10000, log N ≈ 13). From the experiments we can see that even with very

low values of k, Oscar peers could estimate well the existing key distribution

in the network (in terms of determining the logarithmic partitions), hence the

search cost did not deteriorate much even with sampling values as low as k = 1.

The average search costs given k = 1 and k = 100 differ by only 2.5 hops. This

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

2:16 • S. Girdzijauskas et al.

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

Amount of Samples

A
ve

ra
ge

 P
at

h
Le

ng
th

Influence of the sample size on the path length for networks of size 10000

(a) Search performance of Oscar network given different sampling parameters k

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000

Estimated number of partitions

N
um

be
r

of
 P

ee
rs

Sample size distribution for networks of size 10000

Sample size =1
Sample size =9
Sample size =17
Sample size =25
Sample size =33

(b) The distribution of number of estimated logarithmic partitions at each peer

Fig. 4. Performance of the networks with various sample parameters k.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

Structured Overlay for Heterogeneous Environments • 2:17

is a clear indication of the robustness of the small-world networks built using

the Oscar technique.

6.2 Oscar vs. Mercury
As suggested in Mercury [Bharambe et al. 2004], we have set Mercury’s pa-

rameters k1 and k2 to log2 N for constructing a Mercury network. Each peer

in our Mercury simulation constructed a distribution approximation from the

sample set of k1 · k2 random walks. In this way we simulated the exchange of

Mercury’s distribution estimates in an epidemic manner where each peer is-

sued k1 random walks and each of the selected nodes reported back the k2 most

recent estimates. Thus, to sample the network, each Mercury peer had to issue

log2
2 N random walkers. We set the number of random walkers in Mercury to

169 per peer and Oscar’s sampling parameter k to 9, which results in the av-

erage number of 108 samples per peer for networks of size 10000. With such a

setting it is ensured that the sampling parameters in Oscar are not larger than

in Mercury, which provides fair simulation conditions.

Each peer p in the network had values ρ(p) and ρmax(p) as the preferred and

maximal allowed degrees of a peer. During the network construction procedure

each peer p was trying to establish ρ(p) bidirectional connections to other peers

using long-range links. However, only peers that had less than ρmax(p) degree

acknowledged becoming peer p’s neighbors. This allowed individual peers to

autonomously determine their degree and thus the load incurred by them for

network maintenance and query traffic. Since both Oscar and Mercury are

randomized overlay networks we could employ the power-of-two choice tech-

nique [Mitzenmacher et al. 2001] to better load-balance the degree distribu-

tion among the peers. During the growth of the networks we were periodically

rewiring long-range links of all the peers and measuring the performance of

the current network.

Different Key Distributions. Since our goal is to show that our proposed tech-

nique results in routing-efficient networks, and dealing with churn is an orthog-

onal issue, we have simulated a fault-free environment—a system where peers

do not crash. We simulated three cases of key distribution: uniform, monotonous

Zipf (with parameter α = 1) [Breslau et al. 1999; Zipf 1929], and Gnutella file-

name (as in Figure 1). In each case a peer joining the network was assigned an

identifier randomly drawn from the corresponding key distribution. We com-

pare the simulation results also with a perfect case, Kleinbergian small-world

network [Girdzijauskas et al. 2005; Manku et al. 2003] built based on per-

fect knowledge of the global key-distribution. The preferred degree ρ(p) was

set to 7 links for every peer. To show the actual capacity of every system to

construct routing-efficient overlay networks we did not limit the maximum de-

gree value ρmax(p) for any peer. We have measured the performance of the

resulting networks; specifically, the average routing cost and the average node

degree.

As expected, the simulations showed that Mercury performed well given uni-

form and monotonous skews, but poorly given a complex Gnutella distribution

(Figure 5(a)). In contrast the Oscar network resulted in a much more efficient

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

2:18 • S. Girdzijauskas et al.

2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

90

100

Network Size

A
ve

ra
ge

 P
at

h
Le

ng
th

Mercury (gnutella key distribution case)
Oscar (gnutella/uniform/zipf key distribution case)
Oscar (with perfect knowledge)
Mercury (uniform key distribution case)

(a) Search performance of Mercury and Oscar given various key distributions

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

0

10
1

10
2

10
3

Individual peers ordered by peer degree

P
ee

r
de

gr
ee

Peer degree distribution for networks of size 10000

Oscar (gnutella/uniform/zipf key distribution case)
Mercury (gnutella key distribution case)
Mercury (uniform/zipf key distribution case)

(b) Distribution of node degree with Gnutella key distribution

Fig. 5. Simulation results.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

Structured Overlay for Heterogeneous Environments • 2:19

10 20 30 40 50 60 70 80 90
0

2000

4000

6000

8000

10000

12000

14000

16000

Path length

A
m

ou
nt

 o
f q

ue
rie

s

Path length distribution for networks of size 10000

Path length distribution for Oscar
Path length distribution for Mercury (bars)

Fig. 6. Distributions of search costs with Gnutella key-distribution.

network for highly complex key distributions. Figures 5(b) and 6 indicate that

the Oscar network had a much better distribution of node degree and lower

message cost for the case of the Gnutella key distribution. In contrast, the Mer-

cury overlay could not cope with the complex distribution of the keys and had

significantly higher node degree imbalance, which in turn resulted in poorer

lookup performance. As expected the results have shown that Oscar is robust

for realistic skews in the key distribution.

Different Node Degree Distributions. Heterogenous Peers. We have also shown

by simulation that the Oscar technique results in routing-efficient networks not

only given homogeneous peers but also assuming node-degree heterogeneity. We

performed simulations of Oscar given three different node degree distributions:

realistic, linear, and constant. In the realistic node degree distribution case

the maximum degree value ρmax of each peer was drawn from a predefined

synthetic spiky distribution (Figure 7) to emulate the behavior of real P2P

systems [Stutzbach et al. 2005]. To match the data from Stutzbach et al. [2005],

we chose 13 bidirectional links as the mean degree. In the linear node degree

distribution case, for each peer the ρmax value was drawn uniformly at random

from the range of 6 to 20. In the constant degree distribution case, for all peers,

ρmax was set to 13. Note that for all the aforementioned cases the average node

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

2:20 • S. Girdzijauskas et al.

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

Node Degree pdf

Number of neighbors per peer

Fig. 7. Synthetic spiky node degree distribution.

degree remained 13. The keys for the peers were drawn from the Gnutella

filename distribution.

After performing network construction, the results showed that Oscar per-

formed almost identically for all the degree distribution cases (Figure 8(a)).

This shows that Oscar can easily adapt to various degree distributions without

any loss in search performance. To measure how well the potential network

connectivity is exploited we calculate for each peer pi, the ratio ρ(pi)
ρmax (pi)

between

the actual peer degree and the available (maximal) peer degree. In Figure 8(b)

we can see that the node degree distribution ratio was very similar in all three

cases and exploited around 98% of available degree volume (100
N

∑
i

ρ(pi)
ρmax (pi)

) in

the system of 10000 peers. We also observed in our experiments that in the

Mercury network with the same setting and constant node degree distribution,

only 61% of available degree volume was exploited and the Mercury network

had an average search cost of 27.3 routing hops per query. The inability of Mer-

cury to exploit the full capacity of the heterogeneous environment is due to the

fact that many Mercury peers are forced to drop some of their links because

of the node-degree overload (when Mercury protocol requires peer p to acquire

more than ρmax(p) links), caused by wrongly estimated peer key distribution.

Since Mercury could acquire fewer links than Oscar, naturally the search cost

in Mercury was higher compared to Oscar.

Oscar Under Churn. Since the data stored on the peers is not static but dy-

namic, it is expected that because of the storage load-balancing, the peer key

distribution will be changing as well. To investigate the robustness of the Os-

car network under churn we performed simulations of our system in a dynamic

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

Structured Overlay for Heterogeneous Environments • 2:21

2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

 R
ou

tin
g

C
os

t

Network Size

Search cost in the networks of size 10000

Constant degree distribution
Linear degree distribution
Synthetic degree distribution

(a) Search performance of Oscar given various node degree distributions

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ra
tio

 "
ac

tu
al

 d
eg

re
e"

/"
av

ai
la

bl
e

de
gr

ee
"

Peer number (sorted according to node degree)

Relative degree load in the networks of size 10000

Constant degree distribution
Linear degree distribution
Synthetic degree distribution

(b) Relative degree load in Oscar peers

Fig. 8. Oscar’s performance given various key and node degree distributions.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

2:22 • S. Girdzijauskas et al.

0 1 2 3 4 5 6

x 10
4

0

2

4

6

8

10

12

14

16

A
ve

ra
ge

 R
ou

tin
g

C
os

t

Time Slot

Churn and changing key distribution in the networks of size 5000

p=0
p=0.5
p=0.9

Fig. 9. Routing cost of Oscar under churn.

environment where the key distribution changes over time. We have modeled

a volatile transition from a simple uniform key distribution to a Gnutella file-

name distribution. Our simulation starts with the Oscar overlay of 5000 peers

with the uniform key distribution. We model a stable churn rate where in every

time slot a peer joins or leaves the network with 50% probability. The simula-

tion has two phases. In the first, in the arriving peers acquire a key drawn from

a uniform distribution. After some time the second phase starts and the new

peers start acquiring the keys drawn from the Gnutella filename distribution.

We perform the measurements at every time step and measure the average

lookup length in the network. Upon joining the network, a peer has two op-

tions for acquiring the global view of the distribution function: (1) by copying

the estimated boundaries of the logarithmic partitions from a ring neighbor;

(2) estimating by using sampling. In our simulations a peer chooses with the

probability p option (1) and with the probability (1− p) – option (2). We run our

simulations with three different settings, where p = 0, p = 0.5, and p = 0.9. In

Figure 9 the first dotted vertical line marks the starting time of the 2nd phase

(the arriving peers start acquiring keys from the Gnutella filename distribu-

tion). As expected, the network adapts very quickly to the dynamic churn when

p = 0, but even with p = 0.9 (the network is sampled only by 10% of the peers),

the search cost is still relatively low. This shows that Oscar overlay can sustain

efficient routing properties under volatile and dynamic network conditions, and

changing load-skews.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

Structured Overlay for Heterogeneous Environments • 2:23

7. CONCLUSIONS
In this article, we have addressed the problem of dealing with skewed key

distributions as encountered in data-oriented applications, in a realistic P2P

environment characterized by churn and heterogeneity. We have shown that

current approaches cannot cope successfully with such complex workload dis-

tributions. Furthermore most existing structured overlay designs do not deal

with peer heterogeneity, and instead assume homogeneity and aim at achiev-

ing load-balancing. We take a more pragmatic look at the problem. In deployed

(unstructured) overlays, it has been observed that contributions made by partic-

ipating peers have large variations, and are decided autonomously by peers sub-

ject to their own physical constraints. The ability to use load-balancing schemes

in the presence of peer heterogeneity and autonomy is an impractical ideal.

What is pragmatic is instead to respect peers’ autonomy to exploit whatever

is available from each of these peers to fulfill the system’s needs adequately

and efficiently. External mechanisms based on incentives or punishments to

achieve load-balancing in a manner where peers are individually deciding to

contribute to the system equally is an orthogonal issue, and will work well in

our settings. The system design is founded in fundamental understanding of the

small-world networks, and applicability of the principles are validated with sim-

ulation experiments. In the actual implementation, our system is able to reuse a

lot from fine-tuned implementations of ring-based overlay networks like Chord,

particularly using existing self-stabilization algorithms for ring maintenance

and content replication. The only required changes are the choice of the long

range link based on the sampling mechanism to make these choices proposed

here.

REFERENCES

ABERER, K. 2001. P-Grid: A self-organizing access structure for P2P information systems. In

Proceedings of the 6th International Conference on Cooperative Information Systems (CoopIS).
ABERER, K., DATTA, A., HAUSWIRTH, M., AND SCHMIDT, R. 2005. Indexing data-oriented overlay net-

works. In Proceedings of the 31st International Conference on Very Large Data Bases (VLDB).
VLDB Endowment, 685–696.

ANGLUIN, D., ASPNES, J., CHEN, J., WU, Y., AND YIN, Y. 2005. Fast construction of overlay networks.

In Proceedings of the 17th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA’05).

ASPNES, J., DIAMADI, Z., AND SHAH, G. 2002. Fault-tolerant routing in peer-to-peer systems. In

Proceedings of the 21st Annual Symposium on Principles of Distributed Computing (PODC).
223–232.

ASPNES, J., KIRSCH, J., AND KRISHNAMURTHY, A. 2004. Load balancing and locality in range-queriable

data structures. In Proceedings of the 23rd Annual ACM Symposium on Principles of Distributed
Computing (PODC). 115–124.

ASPNES, J. AND SHAH, G. 2003. Skip graphs. In Proceedings of the 14th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA). Society for Industrial and Applied Mathematics, Philadel-

phia, PA, 384–393.

BARBELLA, D., KACHERGIS, G., LIBEN-NOWELL, D., SALLSTROM, A., AND SOWELL, B. 2007. Depth of

field and cautious-greedy routing in social networks. In Proceedings of the 18th International
Symposium on Algorithms and Computation (ISAAC’07). 574–586.

BARRIÈRE, L., FRAIGNIAUD, P., KRANAKIS, E., AND KRIZANC, D. 2001. Efficient routing in networks

with long range contacts. In Proceedings of the 15th International Conference on Distributed
Computing (DISC’01). Springer-Verlag, London, UK, 270–284.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

2:24 • S. Girdzijauskas et al.

BHARAMBE, A. R., AGRAWAL, M., AND SESHAN, S. 2004. Mercury: supporting scalable multiattribute

range queries. SIGCOMM Comput. Comm. Rev. 34, 4, 353–366.

BRESLAU, L., CAO, P., FAN, L., PHILLIPS, G., AND SHENKER, S. 1999. Web caching and Zipf-like dis-

tributions: evidence and implications. In Proceedings of the 18th Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM), vol. 1, 126–134.

GANESAN, P., BAWA, M., AND GARCIA-MOLINA, H. 2004. Online balancing of range-partitioned data

with applications to peer-to-peer systems. In Proceedings of the 30th International Conference on
Very Large Data Bases (VLDB). VLDB Endowment, 444–455.

GHODSI, A. 2006. Distributed k-ary System: Algorithms for distributed hash tables. Ph.D. thesis,

KTH—Royal Institute of Technology.

GIAKKOUPIS, G. AND HADZILACOS, V. 2005. A scheme for load balancing in heterogenous distributed

hash tables. In Proceedings of the 24th Annual ACM Symposium on Principles of Distributed
Computing (PODC). 302–311.

GIAKKOUPIS, G. AND HADZILACOS, V. 2007. On the complexity of greedy routing in ring-based peer-

to-peer networks. In Proceedings of the 26th Annual ACM Symposium on Principles of Distributed
Computing (PODC). 99–108.

GIRDZIJAUSKAS, S., DATTA, A., AND ABERER, K. 2005. On small world graphs in non-uniformly dis-

tributed key spaces. In Proceedings of the 21st International Conference on Data Engineering
Workshops (ICDEW). 1187.

GIRDZIJAUSKAS, S., DATTA, A., AND ABERER, K. 2006. Oscar: Small-world overlay for realistic key dis-

tributions. In Proceedings of the 4th International Workshop on Databases, Information Systems,
and Peer-to-Peer Computing (DBISP2P).

GODFREY, B., LAKSHMINARAYANAN, K., SURANA, S., KARP, R., AND STOICA, I. 2004. Load balancing in

dynamic structured P2P systems. In Proceedings of IEEE INFOCOM.

GUERRAOUI, R., HANDURUKANDE, S. B., HUGUENIN, K., KERMARREC, A.-M., FESSANT, F. L., AND RIVIERE,

E. 2006. Gosskip, an efficient, fault-tolerant and self organizing overlay using gossip-based

construction and skip-lists principles. In Proceedings of the IEEE International Conference on
Peer-to-Peer Computing 12–22.

HARVEY, N. J. A., JONES, B., M., SAROIU, S., THEIMER, M., AND WOLMAN, A. 2003. Skipnet: A scalable

overlay network with practical locality properties. In Proceedings of the USENIX Symposium on
Internet Technologies.

HELLERSTEIN, J. M. 2003. Toward network data independence. SIGMOD Rec. 32, 3, 34–40.

HOEFFDING, W. 1963. Probability inequalities for sums of bounded random variables. J. Amer.
Statis. Assoc. 58, 13–30.

HUI, K. Y., LUI, J. C., AND YAU, D. K. October, 2006. Small-world overlay p2p networks: Construc-

tion and handling dynamic flash crowd. Comput. Netw. J. 50, 15.

KARGER, D. R. AND RUHL, M. 2004. Simple efficient load balancing algorithms for peer-to-peer

systems. In Proceedings of the 16th Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA’04). 36–43.

KLEINBERG, J. 2000. The small-world phenomenon: an algorithm perspective. In Proceedings of
the 32nd Annual ACM Symposium on Theory of Computing (STOC’00). 163–170.

LI, X., MISRA, J., AND PLAXTON, C. G. 2004. Active and concurrent topology maintenance.

In Proceedings of the 18th Annual Conference on Distributed Computing (DISC). Springer,

320–334.

LIBEN-NOWELL, D., BALAKRISHNAN, H., AND KARGER, D. 2002. Analysis of the evolution of peer-to-

peer systems. In Proceedings of the 21st Annual Symposium on Principles of Distributed Com-
puting (PODC). 233–242.

MANKU, G. S., BAWA, M., RAGHAVAN, P., AND INC, V. 2003. Symphony: Distributed hashing in a small

world. In Proceedings of the 4th USENIX Symposium on Internet Technologies and Systems. 127–

140.

MANKU, G. S., NAOR, M., AND WIEDER, U. 2004. Know thy neighbor’s neighbor: the power of looka-

head in randomized p2p networks. In Proceedings of the 36th ACM Symposium on Theory of
Computing (STOC’04). 54–63.

MITZENMACHER, M., RICHA, A. W., AND SITARAMAN, R. 2001. The power of two random choices:

a survey of techniques and results. In Handbook of Randomized Computing, Kluwer,

255–312.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

Structured Overlay for Heterogeneous Environments • 2:25

NOVAK, D. AND ZEZULA, P. 2006. M-chord: a scalable distributed similarity search structure. In

Proceedings of the 1st International Conference on Scalable Information Systems (InfoScale). 19.

RAO, A., LAKSHMINARAYANAN, K., SURANA, S., KARP, R., AND STOICA, I. 2003. Load balancing in struc-

tured p2p systems. In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems
(IPTPS).

RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SCHENKER, S. 2001. A scalable content-

addressable network. SIGCOMM Comput. Commun. Rev. 31, 4, 161–172.

ROWSTRON, A. AND DRUSCHEL, P. 2001. Pastry: Scalable, distributed object location and routing for

large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware).

SHAKER, A. AND REEVES, D. S. 2005. Self-stabilizing structured ring topology p2p systems. In

Proceedings of the IEEE International Conference on Peer-to-Peer Computing. IEEE Computer

Society, 39–46.

STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BALAKRISHNAN, H. 2001. Chord: A scalable

peer-to-peer lookup service for internet applications. In Proceedings of the Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM).
149–160.

STUTZBACH, D., REJAIE, R., AND SEN, S. 2005. Characterizing unstructured overlay topologies in

modern p2p file-sharing systems. In Proceedings of the 5th ACM SIGCOMM Conference on In-
ternet Measurement (IMC). USENIX Association, Berkeley, CA, 5–5.

ZIPF, G. K. 1929. Relative frequency as a determinant of phonetic change. Harvard Studies Clas-
sical Philology 40, 1–95.

Received June 2008; revised March 2009; accepted July 2009

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 1, Article 2, Publication date: February 2010.

