
ProtoPeer: A P2P Toolkit Bridging the Gap
Between Simulation and Live Deployment

Wojciech Galuba, Karl Aberer
Ecole Polytechnique Fédérale de Lausanne

Lausannne, Switzerland
firstname.lastname@epfl.ch
http://protopeer.epfl.ch

Zoran Despotovic, Wolfgang Kellerer
DOCOMO Euro-Labs

Munich, Germany
lastname@docomolab-euro.com

ABSTRACT
Simulators are a commonly used tool in peer-to-peer systems re-
search. However, they may not be able to capture all the details
of a system operating in a live network. Transitioning from the
simulation to the actual system implementation is a non-trivial
and time-consuming task.

We present ProtoPeer, a peer-to-peer systems prototyping toolkit
that allows for switching between the event-driven simulation and
live network deployment without changing any of the application
code. ProtoPeer defines a set of APIs for message passing, mes-
sage queuing, timer operations as well as overlay routing and
managing the overlay neighbors. Users can plug in their own cus-
tom implementations of most of the parts of ProtoPeer including
custom network models for simulation and custom message pass-
ing over different network stacks.

ProtoPeer is not only a framework for building systems but
also for evaluating them. It has a unified system-wide infras-
tructure for event injection, measurement logging, measurement
aggregation and managing evaluation scenarios.

The simulator scales to tens of thousands of peers and gives
accurate predictions closely matching the live network measure-
ments.

Categories and Subject Descriptors
I.6.7 [Simulation Support Systems]: Environments—
event-driven simulation, network simulation; C.2.4 [Computer-
Communication Networks]: Distributed Systems—peer-
to-peer systems, message passing

Keywords
distributed systems, peer-to-peer systems, prototyping, toolkit,
framework, simulator

1. INTRODUCTION
The three important research tools used by the P2P re-

search community are the analytical models, simulations and
experiments on the actual systems. Large-scale distributed
systems are complex and accurately modeling them analyti-
cally is not an easy task. Most of the time the first iteration

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools ’09, Rome, Italy
Copyright 2009 ICST 978-963-9799-45-5.

of an analytical model is not tractable and the model needs
to be successively simplified to produce useful insights. This
leads to models that describe the system at a very coarse-
grained level and with many uniformity assumptions. De-
spite this, the analytical models are in most cases accurate,
scale to an arbitrarily large system size and are an excellent
tool for early feasibility assessment of a P2P solution. How-
ever, for a more complete and accurate evaluation under a
wider range of conditions the researchers commonly turn to
simulation or system evaluation on the actual networks.

Simulations cannot be scaled to an arbitrarily large size
as the analytical models can, but allow for exact implemen-
tation of the message passing protocols. The protocols can
then be evaluated under a wide range of conditions without
being limited to the highly uniform cases used in the ana-
lytical models. With all their advantages simulators often
make many simplifying assumptions about the underlying
network model, which might affect the predictions obtained
from the simulation in non-trivial ways.

Usually the simulators are purpose-built for specific ap-
plications or classes of applications. Few simulators are de-
signed as more general tools for system building and evalua-
tion. What is more, even though simulation is a widely used
evaluation technique there is almost no simulator code shar-
ing among the researchers and little standardization of the
common practices. Naicken et. al [20] examine 287 papers
on P2P systems. Out of the 141 papers that use some form
of simulation 114 either use a custom-made simulator or do
not specify what software was used. The other 27 papers
use publicly available simulators, however these papers are
either authored by researchers who developed the simulator
or by researchers from the university in which the simulator
was developed. The limited evaluation tool reuse motivated
us to invest effort in sharing our framework, ProtoPeer, with
the rest of the community. We have also made ProtoPeer
modular such that it can be easily extended and the mod-
ules can be shared among the system builders. We further
define the niche ProtoPeer fills and compare our framework
to the others in §6.

While simulators are a popular tool, the most accurate
system evaluation can only be achieved with a system im-
plementation running in the real network. Switching from
the simulation to the actual implementation often requires
a considerable development effort. Network I/O implemen-
tation, measurement instrumentation, deployment automa-
tion and distributed debugging are among the most time
consuming tasks that developers face. Moreover, large parts
of the application code existing in the simulator are not

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147949168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

reused in the actual system. Bridging the gap between the
simulation and the actual system deployment was the pri-
mary motivation for developing ProtoPeer.

In ProtoPeer the developer can switch between the simula-
tion of a P2P system to its deployment on the actual network
without changing a single line of code. This dramatically
speeds up the implement-evaluate-reimplement cycle. Most
of the major bugs and performance problems are caught
early on during the simulation while the more time-consuming
live deployment is used for the accurate evaluation of the fi-
nal system on testbeds such as ModelNet [25] or PlanetLab
[11].

ProtoPeer has an API for building arbitrary message pass-
ing systems not only the P2P systems. Most of the com-
mon tasks such as network I/O, message serialization and
message queuing are handled by ProtoPeer. The user only
needs to focus on implementing the message passing logic
of the application without worrying about the underlying
details. If need arises, the ProtoPeer API allows users to
plug in their own implementations of most of the parts of
the system. This can be for example used to implement a
specialized message queuing discipline or to implement mes-
sage passing over transports other than the default TCP or
UDP.

Measurements are an important part of any system eval-
uation. ProtoPeer has tools and APIs covering most of the
measurement pipeline: from measurement instrumentation
through aggregation and computation of the basic statistics
to plotting the measurements at the end. ProtoPeer also
implements a general event injection mechanism, which is
particularly useful for evaluating the system under various
failure scenarios and modeling churn (i.e. peer departures
and arrivals).

2. ARCHITECTURE

2.1 Message passing & timers
In ProtoPeer the system is composed of a set of peers that

communicate with one another by passing messages. Each
application1 defines its set of messages and message han-
dlers. An application typically also defines a set of timers
and handlers for the timer expiration events. All the appli-
cation logic in ProtoPeer is called from within the timer and
message handlers.

2.2 Networking & time abstraction
One of the main goals of ProtoPeer is to be able to switch

between simulation and live network deployment without
changing any of the application’s code. The key architec-
tural feature that enables this are the abstract time and
networking APIs2. The APIs allow for only a small number
of basic operations: creation of timers for execution schedul-
ing and creation of network interfaces for sending and receiv-
ing messages. These simple APIs serve as the key building
block for the rest of the ProtoPeer and form the ”waist” of
the framework’s hourglass architecture (Fig. 1).

1by ”application” we will understand a distributed appli-
cation implemented using ProtoPeer, there can be several
applications running simultaneously in the system
2The reader is referred to the on-line ProtoPeer tutorial at
http://protopeer.epfl.ch/wiki/IntroTutorial for nu-
merous code examples. We have omitted them in the paper
due to the lack of space.

When switching from the simulated run to the live run the
simulated time and networking implementations are simply
swapped with the implementations using real timers and
TCP or UDP networking (see §4.1). The ProtoPeer user
can also provide alternative time and networking implemen-
tations, using, for example, some other transport protocols
or different message serialization. The new implementations
can be plugged in without any changes to the application
code using them. This allowed us, for example, to imple-
ment a separate network model for mobile ad-hoc networks
(MANETs) using the JiST/SWANS framework [1]. The
model was simply plugged into the simulator and the same
message passing protocols that run in peer-to-peer systems
could then be evaluated in MANETs. Besides confirming
ProtoPeer’s versatility these experiments have led to a num-
ber of new insights and improvements in the simulated pro-
tocols. We elaborate further on network modeling in §2.4.

2.3 Event-driven execution
Execution in ProtoPeer progresses by calling event han-

dlers in response to time and networking events. For exam-
ple, when a timer expires an appropriate handler is called for
that event. The handler might send a message or schedule
other timers, which subsequently trigger other handler calls
and so on.

During simulation the events are stored in a single system-
wide queue. The events are ordered according to their sched-
uled time of execution (the time is virtual). When a handler
call finishes the next closest future event is dequeued and its
corresponding handler is executed.

During live deployment handlers are asynchronously called
as the various networking and timer events happen. The
ProtoPeer’s event-driven architecture does not forbid con-
current execution of two handlers in two different threads.
The implementations of time and networking have com-
plete freedom in allocating the different handler calls to the
threads, which gives great flexibility in performance opti-
mization. In the current version of ProtoPeer both time
and networking implementations use thread pools with con-
figurable size. We discuss the advantages of this approach
in §4.1.

2.4 Network modeling
As mentioned in §2.2 switching between the simulation

and the live run is as easy as swapping one networking im-
plementation for the other. During simulation the network
needs to subject the messages to realistic delay and loss.
Loss and delay modelling are encapsulated in the Network-

Model interface in ProtoPeer. Users can provide their own
implementations of that interface. There are several im-
plementations already available, including simple uniformly
distributed delay model, the Euclidean model (i.e. delay be-
tween nodes proportional to their distance in the Euclidean
space) or the delay matrix model into which arbitrary delay
matrices can be loaded (e.g. based on the King dataset3).

Messages in ProtoPeer can be of arbitrary size after serial-
ization. The delay to which the message is subjected should
be a function of its size and the available bandwidth. For
simulating bandwidth allocation we are currently developing
a MaxMin flow-based model. In that model each peer has
a limited incoming and outgoing bandwidth. This model
is especially useful for simulating bandwidth-bound applica-

3http://pdos.csail.mit.edu/p2psim/kingdata/

���������	
�

��������	���
��
��������� �		��������
� ��
���
�����	

��������

����

����	������ ��������

 �������!����
�

 ��������������"���	

�#� $%� &�������'

���	��

(���������� &�������'
������

#	��	
�)	��
��������	
��
'�����

'���	���
�

%�))���
�
�������
����	
��)	��
��������	
��
'�����

'���	���
�

��

��
��

�

���

��
��

��
�	

*	
��

�

�

&�������+�����������

Figure 1: The ProtoPeer architecture. The time API and the networking API consist of only a few basic abstractions

and methods and form the narrow ”waist” of the ProtoPeer’s hourglass architecture. The upper part of the hourglass

are all the components that use the time and networking APIs. The peer provides the runtime context for the

peerlets (§2.6) in which the various parts of the peer’s functionality are encapsulated, e.g. bootstrapping logic, overlay

message routing, event injection (§3.2) or the application-specific logic. The lower part of the hourglass are the

concrete implementations of the abstract time and networking APIs, e.g. message passing over TCP or virtual timers

for scheduling events during simulation. Switching from the simulated system to the actual system is as simple as

switching from one time & networking implementation to another.

tions such as BitTorrent, while the other simpler and faster
models mentioned in the previous paragraph can be used for
delay-bound applications such as DHTs.

2.5 Overlay modeling
Research on peer-to-peer systems has produced many ways

of constructing and maintaining overlays. Most overlays as-
sign identifiers to the peers from some ID space. Each ID
space typically has a distance metric associated with it. For
example, in Chord [23] the ID space is the unit ring (0,1]
and the metric is the distance between the IDs on the ring,
while in Kademlia[18] peers take IDs from the set of 160-bit
integers, the distance is measured as the numerical value of
the bitwise XOR between two IDs. In fact, there exist over-
lays construction protocols for arbitrary identifier spaces and
distance metrics[13]. To support the wide range of overlays,
ProtoPeer defines an abstract PeerIdentifier that is used
throughout the system. The different overlay implementa-
tions override it with concrete implementations of their ID
space and the distance metric.

Most of the peer-to-peer systems define some form of logi-
cal links between peers that together form the overlay topol-
ogy. This concept is so fundamental that it has been added
at the core of ProtoPeer. Each peer has its neighbor set
and exposes it in a uniform way to all applications. Each
neighbor is stored as a pair of the neighbor’s peer ID and
the neighbor’s network address. The neighbor set appears
in many overlay implementations and is sometimes referred
to as the routing table, finger table etc. The neighbor set is
used not only by the overlays but also by the applications
running on top of them such as DHTs, which is another
reason for making access to the peer’s neighbors uniform
throughout the system.

2.6 Peerlets
A peer in the peer-to-peer system typically implements

more than one piece of the message passing functionality.
For example, a peer might need one protocol for contact-
ing the bootstrap server and getting the initial neighbors,
another protocol for maintaining the overlay during churn
and yet another for DHT key replication. In ProtoPeer the
message passing logic and state of each of the protocols is
encapsulated in components called peerlets. Peers are con-
structed by putting several peerlets together. The peerlets
can also be removed or added at runtime.

The peerlets, just as the applets or servlets, have the fa-
miliar init-start-stop lifecycle. The peer provides the execu-
tion context for all of the peerlet instances it contains. The
peerlets can discover one another within that context and
use one another’s functionality. The peerlets have access to
the peer’s network interface through which they send and
receive messages. Peerlets can also arbitrarily modify the
peer’s neighbor set.

The peerlet-based approach has all the advantages of any
other modular design. Firstly, the message passing func-
tionality is conveniently encapsulated in building blocks with
well defined behavior. The blocks can be composed to achieve
the desired peer functionality. Certain functionality can be
easily enabled or disabled depending on the context (e.g. de-
bug mode vs. evaluation mode). Secondly, peerlets can be
reused across applications. Peerlets can export well defined
interfaces e.g. a DHT interface, which can have several im-
plementations that can be easily swapped one for another.
Lastly, peerlets can be unit tested either in isolation or with
other peerlets as mock objects.

2.7 Queuing
Message queues are an essential component of many peer-

to-peer system designs. Queues buffer the messages during
the transient periods when the rate of asynchronously ar-
riving messages at the peer exceeds its capacity to process
them. Very often queues are not explicitly implemented and

��
��

��
��

�	

	���	�
��!����

���/'����
���	
�
	���	�
��!����

�
�	��
��!����

0'�1�������"���	

2�
���	����3�

Figure 2: Message queueing in ProtoPeer. When an

application sends a message it first passes through the

main outgoing queue and then is placed on the appro-

priate per-destination outgoing queue. The networking

layer picks the messages from the outgoing queue, seri-

alizes them and sends the raw binary data over the net-

work. When data is received, the deserialized message

is put on the incoming queue for the application to pick

up. Each of the queues can be replaced by application-

specific implementations. Queues can consist of from

several queues linked together in various ways. Basic im-

plementations of mux/demux queues, queue chains etc.

are available.

the applications implicitly rely on operating system’s socket
buffers for message buffering. Even if the queues are imple-
mented they are typically unbounded. This is a valid as-
sumption for the applications with low message rates. How-
ever, queuing has to be more carefully designed in systems
optimizing for high throughput or implementing congestion
control schemes (for example [15, 12]).

In ProtoPeer all the peers have incoming and outgoing
message queues (Fig. 2). Applications may add their own
queue implementations. At runtime the applications have
access to the queue state and can for example use it for
congestion signalling. Queues are a versatile tool and can
be used for many purposes: message prioritization, message
flow rate-limiting or failure injection (§3.2) by dropping, mu-
tating or delaying messages.

3. TOOLS
So far we have covered the basic architectural building

blocks for constructing a peer-to-peer system. We now turn
to facilities available in ProtoPeer for evaluating the peer-
to-peer systems once they are built.

3.1 Measurement infrastructure
Obtaining reliable and accurate measurements is an im-

portant, if not the most important part of any peer-to-peer
system evaluation. Measurements need to be instrumented
in the application code, logged, aggregated from all the peers
in the system, analyzed and optionally plotted. ProtoPeer’s
measurement infrastructure helps with all of these tasks.
The measurements are instrumented by doing calls to the
measurement API in the appropriate places in the applica-
tion code. While the system is running the measurements
can either be sent regularly to the measurement server for
live monitoring of the network or they can be dumped to a

��������	
���
���
�������
	�������������������	���
���
�
������������
�������
�	
����
���������������	
�
	�������������������
��
�������
������������ �����
!
�"����#�����$"�
��
	������������� ��������
%���
�����
���������%���
���

�������
���
�
�&�'
����

��
����������	$
�����()*+��#���	
���
�
	���
�%�
��
����������()*+��#����������
�&�	��
��
����
�,-����
��
����
������
�.**�
	���
�%�
��
��������
�/
��
����
�,-��
��
����
���������	$
�����$"�
��*0
�����	���
�1/���������
�
	���
�%�
��
�������� ���
 �2
� ��#%���
����34�5-�5��3-655,4���

�
 �2
� ��#%���
�����54�5-��53�4-63574����
�&�	���

Figure 3: Measurement API example. Measurement

logging is done by calling log() on the MeasuremenLog-

ger instance. The function takes as arguments an ar-

bitrary number of tags and the measured floating point

value. A tag can be any Java object as long as its hash()

and equals() methods are well defined, which makes the

tagging-based measurement a multi-purpose tool. The

same tags used for logging are then used to obtain ag-

gregates. Aggregates can also be computed for specific

time windows, specific peers or system-wide. There are

tools for fetching and merging measurement logs from all

the peers as well as tools for log browsing and plotting.

local file at each peer and aggregated later.
While the measurements are accumulating the system com-

putes the basic statistics on-the-fly: average, sum, variance
etc. This allows for extremely compact representation of
the measurements. Optionally all logged values can be kept
which later on permits the computation of other statistics
such as percentiles. The statistics can be computed at var-
ious aggregation levels: per peer, per time window and per
measurement tag. Measurement tags are objects used to
”mark” the values that are reported to the measurement
logger. The user can request an aggregate performed over
all the measurements that match a certain tag or a set of
tags. Tags can be any object, in particular they can iden-
tify an individual peer, a link between peers, the message
class or they are simply a string describing the nature of
the measured value. We found that in practice the simple
tagging-based measurement infrastructure covers the vast
majority of needs (Fig. 3). Alternative solutions were nec-
essary only in very obscure cases where complex objects had
to be logged as the ”measured values”, which can be done
using the existing logging frameworks 4

ProtoPeer has several tools to support the measurement
post-processing phase. Measurement log files coming from
the different peers can be merged into a single system-wide
log which can then analyzed separately. The access to the
log content is programmatic so the users have complete free-
dom in outputting the processed log information in any for-
mat they desire. There is a basic tool that allows to browse
the contents of the log files and plot measurements for the
various aggregates types and tags.

Measurement logging can be disabled to minimize its im-
pact on the system performance and for evaluating the ”pro-
duction” version of the system.

3.2 Event injection & scenarios
While evaluating the peer-to-peer system there is frequently

4http://logging.apache.org/log4j/

8�
�������
��������
9�
��

7 �7�5 /

���������
5 �-�� /

��������
� 53�, /

���������
7 77�7 /

��������

8��:
�����������
�����-;������;��

��
;�, �-;�; /

��.���
���
�(����
���
�����
�

Figure 4: An example scenario file. Each scenario file

consists of three columns. The first one specifies the

peer index (or a range of indices) that uniquely identify

the affected peer. The second column is the number of

seconds since the beginning of the simulation when the

event should be injected. The last column indicates the

method to be called. Churn can be simply defined as

a sequence of calls to the peer’s start and stop meth-

ods. Calls can be made to any method of the peer or its

peerlets. Users can define their own methods and call

them in the scenario files, which makes event injection a

multipurpose tool.

a need to test the system’s response to various, often exoge-
nous events, e.g. peer arrivals and departures (i.e. churn),
user actions or, more commonly, failures. ProtoPeer pro-
vides a simple but general mechanism for event injection.
The events are specified in triples consisting of time, the
set of unique peer indices to be affected and the method to
call. Despite its simplicity this way of describing events is
expressive enough to cover most of the common use cases.

A set of events defines a scenario. Peers load the scenarios
on startup and execute the events specified in them. Each
scenario can be kept in a separate file (Fig. 4). For exam-
ple, one scenario file can contain the precise churn model
for the system specifying when the peers should go online
or offline, while another scenario file can define the failures
injected at the different moments in time. The scenario files
can be generated, merged and filtered in various ways us-
ing the common text processing utilities. Scenarios are an
important tool for systematizing the evaluation process and
ensuring high experiment repeatability.

3.3 Unified randomness source
Another facility for ensuring repeatability in ProtoPeer is

the unified source of randomness in the system. All ran-
dom numbers are drawn via single system component man-
aging the random number generators. The generators are
seeded at the beginning. The same seed leads to the same
sequence of events, which is particularly important during
debugging. Naturally, randomness can only be completely
controlled during simulation, however, if used correctly the
unified randomness source also improves the repeatability of
live runs. ProtoPeer uses the Mersenne twister [17] random
number generator. Users can plug in their own generators
if needed.

ProtoPeer manages several random generators at a time,
each for a different purpose. This allows to, for exam-
ple, keep the randomly generated overlay topology the same
while changing the random sequence of message delays.

4. IMPLEMENTATION
ProtoPeer is developed in Java, which has been chosen for

its popularity, ease-of-use and availability of libraries. We
next cover the key implementation details.

4.1 Networking
In most of the peer-to-peer systems, messages arrive at the

peers asynchronously. We have implemented both the time
and networking event handling using the thread pools. The
application puts the incoming messages on the queue, there
is a pool of processing threads, whenever one of the threads
becomes idle it dequeues the next message and processes it.
We expose the queues to the application §2.7 so that the
application can access their state or replace them with its
own custom queue implementations.

Networking is implemented using Apache MINA5, a high-
performance networking framework. Its event-driven design
and the use of non-blocking I/O fits well into ProtoPeer.
Messages can be sent either over UDP or TCP. The choice
which of the two to use can be made by the application on
the per-message basis. All the complexity of opening sock-
ets, maintaining them, handling the I/O errors and serial-
izaing/deserializing messages is hidden from the application,
which only receives callbacks for successfully sent messages
and network exceptions.

4.2 Messages
Each message type in ProtoPeer is a separate Java class.

The fields of the class correspond to the fields of the mes-
sage. Messages can contain fields of any type, not only the
primitive types, all of which are correctly passed between
the peers.

During a live run when a peer sends a message it is seri-
alized into bytes and then deserialized at the receiving peer.
During the simulation the messages are efficiently cloned us-
ing the standard Java cloning mechanisms. Cloning is nec-
essary to ensure that any subsequent modifications of the
message instance at the source after the send call returns
do not affect the message instances received at the destina-
tions. Message classes that are guaranteed to be immutable
can easily disable cloning. To measure bandwidth consump-
tion during simulation, cloning can be optionally replaced
with serialization, naturally, at a performance cost.

The standard Java serialization mechanism is extremely
verbose and is primarily designed with persistent storage in
mind not for transient data sent over the network. To ad-
dress this, ProtoPeer uses its own lightweight serialization
protocol which reduces the bandwidth consumption by a fac-
tor of 3 to 10 compared to the standard Java serialization.
New message classes do not have to implement any serializa-
tion code, lightweight serialization is done through the Java
Reflection API. Optionally, if message serialization becomes
a performance bottleneck for some messages, they can de-
fine their own optimized binary serialization protocol. We
are also considering dynamically injecting the serialization
code into the Java classes using the Java bytecode rewriting
to avoid the reflection overhead. Efficient serialization is still
work in progress and we omit it in the evaluation section.

We have not yet considered the interoperability of Pro-
toPeer applications with other systems, however, the seri-
alization is well separated from the rest of the framework
and custom code can be added for serializing messages into
a standard format, e.g. XML-based.

5http://mina.apache.org/

0

500

1000

1500

2000
pe

ak
 m

em
or

y
us

ag
e

[M
B

]

0 1 2 3 4 5 6

x 104

0

50

100

150

200

250

300

si
m

ul
at

io
n

tim
e

[m
in

]

number of peers

memory [MB]
simulation time [min]

Figure 5: ProtoPeer simulator scaling. As the num-

ber of peers increases, the number of messages that are

passed around in the system is increasing at least linearly

as each added peer contributes its own lookup workload

to the system. There are approximately 20 different mea-

surement instrumentation points, the measurements are

aggregated on-the-fly during the simulation. Logging is

turned off. The system used was a 4-core Xeon 3.4GHz

with 3GB of RAM running 2.6.8 Linux and Sun JDK

1.6.

5. PERFORMANCE
The goal of this section is to to evaluate the main perfor-

mance characteristics of ProtoPeer. The results presented
here should be treated as indicative, they are likely to change
as the framework’s codebase is evolving.

5.1 Scalability
We place the peers on a one-dimensional ring and wire

them according to the Chord[?] rules. Each peer at 500-
1500ms intervals picks a key from the ID space uniformly at
random and performs a lookup on that key. The lookup is
routed using the Chord algorithm. We simulate 300 seconds
of the running system. The number of peers is gradually
increased to test the scalability of the system (Fig. 5).

In our Chord routing test ProtoPeer reaches its scalability
limit at approximately 50000 peers, when it hits the mem-
ory cap of 1.8GB, the maximum Java heap size the JDK
1.6 would allow us to allocate on a 3GB Linux system. The
main memory consumer are the messages in the simulator’s
event queue scheduled to be delivered to their destinations.
The main CPU bottleneck (approx. 20%) is message cloning
when messages are passed from one peer to another. How-
ever, for most of the systems implemented in ProtoPeer that
we worked with the CPU bottlenecks in the application code
are far more common than in the ProtoPeer code.

5.2 Accuracy & realism
Simulation realism greatly depends on the network model

used (§2.4). To validate our simulator’s accuracy we have
developed the NetMapper tool for generating network mod-
els that reproduce the exact delay and loss conditions oc-
curring in a live network. We deployed NetMapper on 350
PlanetLab hosts. For 3 hours the hosts were pinging one
another at one minute intervals. For each link the message
loss and roundtrip latency were measured. Based on the

measurements for each link we then generate a log-normally
distributed delay model and compute the fixed loss proba-
bility based on the fraction of messages that got through on
a given link. The delay and loss models are then plugged
into ProtoPeer. Different delay and loss scenarios can then
simply be generated by changing the random seed. This re-
moves the need for capturing many PlanetLab traces and
replaying them in the simulator.

To test the accuracy of ProtoPeer simulation and our
delay-loss model we have re-run the same Chord routing
test as in §5.1. We simulated a 350 peer Chord system and
ran the same system live on PlanetLab. Figure 6 compares
the measurements from both runs. The latency predictions
from the simulator are very close to the ones obtained from
the live network, especially considering the fact that the
lookup delay accumulates over many peers and links on the
routing path. On the other hand, the message loss is slightly
overestimated in simulation, i.e. there are more lookup time-
outs. Overall, however, the simulation results stay remark-
ably close to the ones from PlanetLab, which validates Pro-
toPeer as an accurate simulation tool. We have consistently
observed similar accuracy in the wide range of other systems
that we implemented with ProtoPeer. In general, when there
is no network congestion on the links or CPU overload at
the nodes, the simulation results from our network model
are very close to the ones from PlanetLab. Our framework
is open-ended and if needed, users can implement more so-
phisticated models that take congestion into account.

6. RELATED WORK

6.1 Simulators
Naicken et al. [19] survey nine existing peer-to-peer sys-

tem simulators. The simulators can be broadly classified into
flow-level [2], message-level [5, 8, 7] and packet-level [6], in
increasing level of simulation detail. ProtoPeer in its current
implementation falls into the message-level category, which
offers an acceptable level of accuracy for most peer-to-peer
applications (§2.4).

Despite the lack of packet-level simulation detail, Pro-
toPeer provides an API for defining the models of the un-
derlying network. Message loss and delay can be accurately
simulated. This is in contrast to some of the existing sim-
ulators which either ignore the problem of delay and loss
simulation or do not provide a way to customize the net-
work model [7, 5, 3].

Most of the existing simulators do not provide any mea-
surement facilities and those that do [6, 5, 7] offer only a
default set of measurements, adding new ones requires a
considerable development effort. ProtoPeer has a unified
API and tools covering most of the measurement pipeline
(§3.1)S: instrumentation, system-wide log merging and ag-
gregate computation (e.g. mean, sum, percentiles).

A number of the existing simulators have the ability to
script events in the system [6, 27]. Event injection is an
important system evaluation tool. It can be used, for ex-
ample, for injecting failures into specific system components
or for simulating churn by specifying the peer arrival and
departure events. ProtoPeer uses simple (but expressive)
scenario files for event injection (§3.2), which help the user
systematize the evaluation process.

6.2 System development tools

0 200 400 600 800
0

0.1

0.2

0.3

0.4

0.5

time [s]

fra
ct

io
n

of
 ti

m
ed

 o
ut

 lo
ok

up
s

simulation
PlanetLab

(a) Lookup timeouts

0 200 400 600 800
0

500

1000

1500

2000

time [s]

lo
ok

up
 la

te
nc

y
[m

s]

simulation, 95th percentile
PlanetLab, 95th percentile
simulation, median
PlanetLab, median

(b) Lookup latency

Figure 6: ProtoPeer simulator accuracy. The Chord routing test was run in a 350 peer PlanetLab deployment
and in a 350 peer ProtoPeer simulation using the PlanetLab network model. All messages are sent over UDP.
We measured the median and the 95th percentile lookup latency as well as the fraction of lookups that timed
out, i.e. when the destination did not respond back to the source. The timeout was set to 1500ms. The peers
start issuing lookups at 180s. In addition at 450s we inject a failure (§3.2), 50 randomly chosen peers stop
forwarding the lookup messages. This leads to an increase in the number of timeouts.

ProtoPeer is not only a simulator but also a tool for build-
ing systems running in real networks and we need to relate
our framework to the existing ones.

Mace [14], a C++ language extension, defines a language
for message passing protocol specification. Given the pro-
tocol specification Mace generates the C++ code which can
then be deployed on the peers. One of the distinctive fea-
tures of Mace is that it allows for automated protocol verifi-
cation based on the specifications. Unlike ProtoPeer, Mace
code cannot be easily run in a simulator, the more common
practice with Mace is to use the emulators such as ModelNet
[25], which limits the scalability.

In P2 [16] overlays are defined in a declarative language
OverLog. OverLog allows for concise representation of pro-
tocols. However, OverLog, being a high-level language, hides
most of the low-level implementation details which are del-
egated to the runtime.

In ProtoPeer we opted for the more traditional event-
driven way of protocol specification (as in MACE) instead
of the more concise declarative way with a steeper learn-
ing curve (as in P2). Unlike the two above frameworks we
do not define a new language for specifying protocols, the
application programmatically sets up the handlers for the
various events occurring in the system (§2.2) and the execu-
tion progresses by calling these handlers (§2.3). The same
handler setup is used both during the simulation and live
deployment.

Neither P2 nor Mace allow for simulation of the system
prior to deployment, which is their main disadvantage in
comparison to ProtoPeer.

6.3 Testbeds & emulators
ProtoPeer requires the users to develop the application

with the ProtoPeer API, there is no trivial way of taking the
existing unmodified application and evaluating it with Pro-
toPeer. However, our framework was not designed for that,
many testbeds and emulators have been developed with that
goal in mind.

GODS [9], provides tools for automating the evaluation
of distributed systems, but is not a library for developing

them. Similarly to ProtoPeer, GODS has an infrastructure
for instrumenting and aggregating measurements (§3.1) and
for injecting events into the system (§3.2), e.g. peer depar-
tures and arrivals or link state changes. The framework also
has tools for automating the evaluation and controlling the
system lifecycle. GODS uses ModelNet [25] for IP layer em-
ulation. In the MicroGrid [22], the application’s networking
calls are intercepted and mediated by the framework to em-
ulate the network. MicroGrid uses a local scheduler that
starts and stops the application processes according to a
predetermined configuration.

Although the testbeds and emulators do not require any
modifications to the application code, they have limited scal-
ability since each application process is run separately and
requires orders of magnitude more resources than applica-
tion instances running in a simulator.

6.4 Develop once, deploy many times
ProtoPeer is designed from ground up to serve the dual

role of a simulator and a tool for developing the live-deployable
systems. There are several other frameworks capable of this.
Most notably, Neko [24], uses the same message passing
model as we do. Similarly to ProtoPeer, the messages can
either be serialized and sent over TCP or UDP or passed
between the peers in a simulator. However, Neko focuses
primarily on the application layer and not the networking
layer. The simulator has been designed for the clustered dis-
tributed systems communicating over LAN rather than for
wide-area system communicating over the Internet, which is
the target deployment environment for ProtoPeer.

GRAS [21] together with SimGrid [10] form a develop-
ment and simulation framework. The framework was de-
signed with Grid systems in mind and thus the focus is on
bandwidth- and CPU-limited distributed applications while
our ProtoPeer was designed for prototyping the delay-limited
message passing systems. We are currently working on im-
plementing a network model for ProtoPeer using the MaxMin
bandwidth allocation, which would allow the simulation of
bandwidth-limited applications such as BitTorrent.

Emulab (Netbed) [26] was originally designed as an em-

ulator and a framework for network virtualization, but has
been extended and now supports all three modes: simula-
tion, emulation and live deployment. Just like ProtoPeer,
Netbed has a wide range of tools for experimental control
and event injection. However, Netbed’s simulator uses ns
[4], which is a packet-level simulator and is less scalable than
our message-passing approach.

The focus of ProtoPeer is slightly different than that of the
existing frameworks. We designed ProtoPeer primarily with
the ease of use and rapid application prototyping in mind.
Despite its simplicity, the framework is extensible both up,
in the application complexity and down, in the simulation
detail. This is how we see the ProtoPeer’s development pro-
gressing in the future.

7. CONCLUSIONS
We have presented ProtoPeer, a P2P systems prototyp-

ing framework that bridges the gap between simulation and
live system deployment. The applications are built on top
of a simple time and networking abstraction which allows
the user to switch from simulation to live deployment with-
out any changes to the application code. This dramatically
speeds up the implement-evaluate-reimplement cycle. All
the low-level complexities of managing the network sockets,
message serialization and queuing are hidden from the ap-
plication developer. Applications in ProtoPeer can be mod-
ularized into peerlets which are reusable, unit-testable and
can be composed together to achieve the desired peer func-
tionality. Finally, ProtoPeer’s measurement infrastructure,
event injection and scenarios allow for systematic evaluation
and performance tuning of the complete system.

8. ACKNOWLEDGMENTS
The authors would like to thank Julien Herzen and Jean

Respen for their numerous contributions to the ProtoPeer
source tree and the helping hand in testing the early ver-
sions of the framework. We would also like to thank Frank
Lehrieder for the flow-based network model implementation
that has become an important part of ProtoPeer.

9. REFERENCES
[1] Jist/swans. http://jist.ece.cornell.edu/, Mar 2008.

[2] Narses. http://sourceforge.net/projects/narses, Mar
2008.

[3] Neurogrid. http://www.neurogrid.net/, Mar 2008.

[4] ns2 network simulator.
http://www.isi.edu/nsnam/ns/, Mar 2008.

[5] Overlay weaver.
http://overlayweaver.sourceforge.net/, Mar 2008.

[6] P2psim. http://pdos.csail.mit.edu/p2psim, Mar 2008.

[7] Peersim. http://peersim.sourceforge.net/, Mar 2008.

[8] Planetsim. http://www.planetsim.net/, Mar 2008.

[9] C. Arad, O. Kafray, A. Ghodsi, S. Haridi, N. Finne,
J. Eriksson, A. Dunkels, and T. Voigt. GODS: Global
observatory for distributed systems. Technical Report
Technical Report T2007-09, Swedish Institute of
Computer Science.

[10] H. Casanova, A. Legrand, and M. Quinson. SimGrid:
a Generic Framework for Large-Scale Distributed
Experiments. In 10th IEEE International Conference
on Computer Modeling and Simulation, Mar. 2008.

[11] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. Planetlab: an
overlay testbed for broad-coverage services.
SIGCOMM Comput. Commun. Rev., 33(3):3–12, 2003.

[12] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek,
and R. Morris. Designing a DHT for low latency and
high throughput. In NSDI, pages 85–98. USENIX,
2004.

[13] W. Galuba and K. Aberer. Generic emergent overlays
in arbitrary peer identifier spaces. In 2nd International
Workshop on Self-Organizing Systems (IWSOS 2007),
volume 4725, pages 88–102, 2007.

[14] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala,
and A. M. Vahdat. Mace: language support for
building distributed systems. SIGPLAN Not.,
42(6):179–188, 2007.

[15] F. Klemm, J.-Y. Le Boudec, and K. Aberer.
Congestion Control for Distributed Hash Tables. In
The 5th IEEE International Symposium on Network
Computing and Applications (IEEE NCA06), 2006.

[16] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing declarative
overlays. SIGOPS Oper. Syst. Rev., 39(5):75–90, 2005.

[17] M. Matsumoto and T. Nishimura. Mersenne twister: a
623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Transactions
on Modeling and Computer Simulation (TOMACS),
8(1):3–30, 1998.

[18] P. Maymounkov and D. Mazieres. Kademlia: A
peer-to-peer information system based on the xor
metric, 2002.

[19] S. Naicken, B. Basu, A.and Livingston, and
S. Rodhetbhai. A survey of peer-to-peer network
simulators. In Proceedings of The Seventh Annual
Postgraduate Symposium, 2006.

[20] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai,
I. Wakeman, and D. Chalmers. The state of
peer-to-peer simulators and simulations. SIGCOMM
Comput. Commun. Rev., 37(2):95–98, 2007.

[21] M. Quinson. GRAS: A research & development
framework for grid and P2P infrastructures. In
International Conference on Parallel and Distributed
Computing and Systems, 2006.

[22] H. Song. The MicroGrid: A scientific tool for
modeling Computational Grids. Scientific
Programming, 8(3):127–141, 2000.

[23] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In
SIGCOMM’01, pages 149–160, 2001.

[24] P. Urban, X. Defago, and A. Schiper. Neko: a single
environment to simulate and prototype
distributedalgorithms. In Information Networking,
2001. Proceedings. 15th International Conference on,
pages 503–511, 2001.

[25] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan,
D. Kostić, J. Chase, and D. Becker. Scalability and
accuracy in a large-scale network emulator. SIGOPS
Oper. Syst. Rev., 36(SI):271–284, 2002.

[26] B. White, J. Lepreau, L. Stoller, R. Ricci,
S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment

for distributed systems and networks. pages 255–270.
Boston, MA, Dec. 2002.

[27] W. Yang and N. Abu-Ghazaleh. Gps: a general
peer-to-peer simulator and its use for modeling
bittorrent. 13th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 2005., pages 425–432,
27-29 Sept. 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

