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Abstract— One major drawback of multipath transferring 
schemes, which is inspired by the usage of different paths 
with diverse delays, is the emergence of reordering among 
packets of a flow. This reordering brings some substantial 
problems (like larger delay and buffer space) to the 
transport applications. In this paper, we present a novel 
UDP-based multipath scheme for in-order delivery to the 
receiver by scheduling of packets among multiple paths. 
This method imposes the minimum possible delay and a 
small buffer space on the receiver’s application. We 
theoretically prove the optimality of the proposed method. 
Finally, through simulation experiments, we show that the 
performance of our multipath method is comparable with 
the best-case one-path transmission with aggregated 
bandwidth. 

I. INTRODUCTION 
The idea of multipath routing was initially proposed to 

achieve load balancing  [1], falt-tolerance, and more 
aggregate bandwidth. However, such a scheme causes the 
packets belonging to the same flow to experience different 
end-to-end delays. As the first result, this yields the 
packets to be delivered in a different order with respect to 
what the source has sent. This reordering results in i) more 
demanded buffer space; and ii) extra delays for the 
receiver’s application. This makes the application of 
multipath schemes hardly possible for receiver devices 
with limited resources, like handheld PDAs. This problem 
becomes even more serious in wireless ad hoc networks. 
This is due to the fact that for the sake of reducing the 
potential interference between paths, the selected paths 
must be preferably as disjoint as possible. This implies the 
utilization of more diverse paths which causes more 
discrepancy between their delays.  

Thus far, most of the multipath schemes have tried to 
bypass the reordering problem by streaming all of the 
packets belonging to the same flow through a single path 
 [2]- [5]. In fact, they divide the available flows 
individually between paths. Nevertheless, as reported in 
 [6], a per-packet granularity results in much better 
performance than the explained per-flow streaming 
approach.  

In  [7], Mao et al. extended Realtime Transmission 
Protocol (RTP) to support the use of multiple paths in 
Multipath Realtime Transmission Protocol (MRTP), an 
protocol that relies on UDP as transport. MRTP specifies 
session establishment, maintenance, and scheduling 
mechanisms over multiple paths. The other prominent 

related works concern mostly the specific side effects of 
reordering in TCP. In  [8], we proposed novel end-to-end 
streaming mechanisms to transfer packets of a single flow 
through multiple paths. Our approach schedules 
transmission of packets over multiple paths in such a way 
that they are received at the destination in-order. Also, we 
defined some techniques to reduce fast-retransmit and 
timeout events in multipath TCP schemes. In this paper, 
we refine our method in the context of UDP connections 
and then analyze it, specifically in terms of the required 
buffer space. Besides, through simulation, the impact of 
the proposed method on both delay and buffer space 
metrics is studied in realistic dynamic network conditions. 

The remainder of the paper is organized as follows. 
Section II illustrates the assumed network model. Section 
III is devoted to the explanation of the proposed method 
and also its analytical discussion. Our analysis is verified 
through simulation in section IV. Finally, we conclude the 
paper in section V. 

II. NETWORK MODEL 
Assume two network nodes S and D, where node S has 

some amount of data towards node D. Moreover, assume 
that there exist n distinct paths from S to D. We use di 
notation to indicate the average one-way delay of path i 
(i.e. propagation plus queuing and transmission delays). 
Without loss of generality, suppose that all paths are 
sorted with respect to their delays, i.e. di < dj ( ,, ji∀  i < j).  

As Figure 1 illustrates, the transmission process of a 
connection in our model is divided into some fixed-size 
steps. Formally, we define a transmission step as a part of 
transmission process in which all of the paths are 
participated exactly once (namely, every path carries a 
continuous set of data in each step). We use bulk j to 
indicate the amount of data which is transmitted over path 
j in each step. Generally, in each step we stream data 
bulks of slower paths (i.e. the paths with larger delays) 
sooner than those of faster ones. As we will show in the 
next section, operating in this manner allows us to 
schedule packets among multiple paths in a way that they 
arrive at the destination in-order. Consider Figure 1 again. 
Suppose that there exist only two available paths 1 and 2 
while path 2 is the slower one. Step i starts with 
transmitting through path 2. This transmission lasts t2 
seconds. After that, the packets are carried over path 1 for 
t1 seconds. With completion of transmission over path 1, 
the i+1th step starts with transmission through path 2 
again.  
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Figure 1. Timeline of sequential transmission steps in the presented 
model. The transmission time of bulk j lasts tj seconds and the delay 
of path k is dk. 

Figure 2. Schematic view of the proposed idea for UDP connections. 
The method schedules packets at the source to arrive in-order at the 
destination. 

It is worth noting that in this model all sending 
(receiving) times are measured based on the exit 
(entrance) of packets from (to) IP layer. This justifies the 
serial transmission scheme which is depicted in Figure 1, 
despite the existence of multiple network interfaces at the 
end hosts. The IP layer of the sender is responsible for 
splitting traffic between the available paths. In other 
words, during each step which lasts tstep seconds, the IP 
layer sends the incoming packets over path i for ti seconds 
which comprise the ith bulk in that step. We define the 
effective bandwidth of path i (referred to by Bi) as the 
amount of used bandwidth by the sender through path i, 
considering the limitation of the intermediary network 
between S and D. In our model, we utilize paths according 
to their effective bandwidths, namely:  
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in which fi is the ratio of bandwidth utilization over path i 
and B is total effective bandwidth over all paths. For 
simplicity, hereafter we use the bandwidth term to refer to 
the effective bandwidth. 

We assume that the approximate values of paths’ delay 
and effective bandwidth are known for the network (IP) 
layer. This information could be acquired by a simple 
extension to some link-state routing protocols such as 
OSPF (like the ones proposed in  [10] and  [11]). Another 
way to realize this assumption is to keep track of on-
going/receiving data/ACK packets at the sender to 
estimate the delay values of paths. Note that in UDP 
connections, the control packets of RTCP can play the 
role of ACK packets. 

III. THE PROPOSED METHOD 
Consider a scenario in which we are going to split 

packets belonging to a single UDP connection between 
multiple paths. Clearly, packets which are moved over 
slower paths will receive later at the destination in 
comparison with those carried over faster paths. In 
general, our idea is to schedule the packets among these 
paths such that the destination receives them in-order. The 
idea is schematically depicted in Figure 2. The first row in 
the figure is sequential raw data which is ready for 
transmission in step i. The second row shows the 
reordered data which is actually transmitted. Finally, the 
last row depicts the received data at the destination. As we 
described before, in each step the sender transmits a 
continuous bulk of data over every path. In the figure, 
each data bulk is tagged by the path number which 
conveys it. The intuition behind our idea is that in each 
step the data bulks of the slower paths are streamed sooner 
than those of the faster ones. Because of more delays of 
path j in comparison with path i ( ,i∀ 0 < i < j), the traffic 
could be properly scheduled so that the data bulk carried 
over path j is delivered at the destination after the data 
bulk of path i. In fact, the main issue is “how to schedule 
the traffic over path 1 to n in a way that the packets sent 
on path i ( ,i∀ i > 1) are received exactly after those 
carried over path i-1”. Since the sender breaks the original 
order of data, the data should be completely available 

before the start of transmission. Consequently, this 
approach is not suitable for applications like VoIP and 
video conferencing which produces raw data instantly. 
However, it is very useful for some other applications like 
video/voice on-demand applications which usually have 
strong senders (e.g. powerful servers), while their 
receivers are from a broader range, like PDA and PC. 
Since the limited memory space at the hand-held devices 
is one of the major factors influencing design options, 
reducing buffer space at the receiver is much of interest. 

To measure the performance of our method, we now 
define a practical performance metric. 

Definition 1. Beginning Pause Time (BPT): the amount 
of time from the start of transmission (by the sender) that 
the receiver should pause to get sure that delivering data to 
the upper layer will not be interrupted. 

In other word, BPT is the sum of buffer underrun 
durations for the case that the receiver starts its playing 
just as the sender begins its transmission. As it can be seen 
from Figure 2, the BPT of our solution is calculated by: 
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To establish the scheduling illustrated in Figure 2, the 
delay of path i should equal the sum of the following 
parameters: i) the delay of path 1; ii) the elapsed time for 
sending traffic through path j for all j, j < i (i.e. after 
transmitting over path i); and iii) the time required to get 
sure that the data which will be sent after path i in the 
same step will arrive at the destination. These issues are 
summarized in the following equation: 



 
Figure 3. Axis of receiving times from path 1 and 2. The zero point of 
the axis represents the start of transmission by the sender. 

 

 
Figure 4. The additional delay imposed by the proposed method on 
the receiver’s application (i.e. BPT – d1) with respect to the delay 
difference (i.e. Δd) and bandwidth ratio of the slower path (i.e. B2/B). 
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This set of independent equations along with those 
obtained by (1) allow us to deterministically compute the 
exact values of variables t1, …, tn. For example, consider 
the most practical case where n = 2, namely we use only 
two paths between source and destination nodes. As a 
consequence, (1) and (3) are rewritten as: 
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Suppose that Δd = d2 – d1. Based on above equations, 
the perfect values of t1 and t2 are straightforwardly 
computed by: 

 dft Δ⋅= 22 , (6) 

 dft Δ⋅= 11 . (7) 

Together with (2), (6), and (7), we can conclude the 
following BPT for our solution: 

 2211 fdfdBPT ⋅+⋅= . (8) 

From (8), it is evident that by decreasing the amount of 
data which will be conveyed through the slower path, the 
BPT value will be reduced accordingly. However, we 
should be careful not to decrease f2 so much that the 
overhead of packet header becomes intolerable. 

 Below, we prove that our solution delivers an optimal 
value for BPT. Assume a general streaming algorithm 
where the packets are received arbitrarily (i.e. in-order or 
out-of-order). We consider the best case in which all the 
received packets are in-order. Suppose an arbitrary point 
in the axis of time at the receiver. The zero point of the 
axis represents the start of transmission by the sender. 
Figure 3 illustrates this. 

According to (1), the expected sending rate over path i 
would be proportional to fi. Let t be a given time where 

idt ≥ . Thus, during [di,t], the receiver is supplied through 
path i with ui units of time for playing, where ui is 
calculated by: 
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From definition 1, the BPT is equal to the sum of the 
idle times at the receiver in which it has no data for 
delivering to the upper layer, namely: 
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When n = 2 (i.e. we are using only two paths), the 
optimal value of BPT would be:  

( ) ( )[ ] 22112211
2 dfdfdtfdtftBPTopt ⋅+⋅=−⋅+−⋅−= . (11) 

This value equals the value of BPT achieved by our 
solution, as shown in (8). Clearly, the BPT obtained by all 
other algorithms would be greater than or equal to this 
value. Consequently, the BPT which the receiver 
experiences by our algorithm is optimal.  

Using Δd instead of d2-d1, we can rewrite (8) as: 

 21 fddBPT ⋅Δ=− . (12) 

Remind that d1 is the inevitable delay of transmission 
between node A and B, because it is the smallest possible 
delay between two nodes. Hence, the above equation 
implies that the additional delay (i.e. BPT-d1) will rise by 
the increase in the difference between paths’ delay and 
also by the raise in the fraction of data which will be 
conveyed across the slower path. The analytical results of 
the BPT with respect to Δd and f2 are depicted in Figure 4. 
As the figure shows, the overall delay will increase 
multiplicatively with the raise in the fraction of data which 
is conveyed through the slower path. 

A. Analyzing the Required Buffer Space 
Now, we analyze our method with respect to the 

amount of buffer space required at the receiver. Based on 
 [13], the delay experienced by each packet over a path y is 
determined by two parameters: i) the minimum constant 
delay of path y (represented by yDmin ), which can be 
thought as the propagation delay of that path; and ii) the 
additional variable delay of path y (denoted by yDvar ), 
which can be seen as the queuing and processing delay of 
the intermediate routers. Inspired by  [13] and  [14], we 
assume that the additional delay of path y (i.e. yDvar ) 
follows an exponential distribution with the average of 

yλ . Now, let Δs be the constant interval between 
transmissions of two consecutive packets at the sender. 
The value of Δs is determined by the actual throughput of 
the connection which roughly remains constant despite 
switching between paths. Also, suppose that y

iS  
represents the start time of transmission for the ith packet 
sent through path y and y

iR  denotes the reception time of 



this packet at the receiver. Then, according to the above 
discussion, the following relations are obtained for every 
path y, ny ≤≤1 : 

 ∞≤≤++= iDDSR yyy
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y
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In addition, regarding the fact that in each step all packets 
of the faster path i are streamed exactly after those of the 
slower path i+1, we can conclude that: 
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where my denotes the number of packets in bulk y. On the 
other hand, according to (13), we have: 
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In order to simplify the calculations, we define the 
threshold variable α as follows: 
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Then, (15) converts into: 
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Depending on the value of α, we may encounter two 
different cases: 
 
Case A) if α > 0: 
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Case B) if α < 0: 
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Consider ith and jth packet where j=i+k and 0>k . We 
define k

goodΡ  as the probability of receipt of jth packet after 
the ith one. Accordingly, the following probabilities are 
defined: 
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For a given packet i, the next packets will not cause 
reordering, if all of them will receive after the packet i. 
The probability of this event is: 
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This yields that the maximum buffer size equals 1 for 
successful (in-order) delivering of the ith packet to the 
upper layer. Generally, the probability that the maximum 
buffer size for successful delivery of the ith packet reaches 
l, is the probability of reordering of l-1 individual of the 
packets sent after the ith packet. This probability (referred 
to by il

maxbuffer
,Ρ ) can be calculates as follows: 
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Clearly, the probability that the required buffer space 
never exceed l throughout the whole communication, i.e. 

l
maxbufferΡ , is the maximum of il

maxbuffer
,Ρ  over all given 

values of i, namely: 
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In our network model, the lifetime of a connection is 
comprised from several fixed-size steps. So, we just 
evaluate the corresponding probabilities of packets inside 
a given step. Note that in the special case of one-path 
scenario, the probability of (22) remains the same for all 
given values of i. For practical applications, the maximum 
length of buffer which will be realized in 95% of 
situations is of interest. Hence, the required buffer space at 
receivers, l, will be minimum value of k for which 

05.0,
max <Ρ kl

buffer . Table 1 presents the obtained analytical 
results for our multipath method. 

 

TABLE I.  BUFFER LENGTH AT RECEIVER, ACHIVED ANALYTICALLY FOR 
TRANSFERRING A FILE OF SIZE 100KB; THE ROWS AND COLUMNS 
REPRESENT THE RATIO OF BANDWIDTH AND DELAY OF PATH 2 TO PATH 
1, RESPECTIVELY. 

   B2/B1  
 

d2/d1 
0.48 0.86 1.25 1.64 

2 2 3 3 3 

2.5 3 4 4 4 

3 4 4 4 5 

3.5 5 5 5 5 

4 5 6 6 6 
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Figure 5. BPT achieved by UDP methods for transferring a file of size 
100KB. 
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Figure 6. The measured buffer level of three methods. 

IV. PERFORMANCE EVALUATION 
In this section, we first present the simulation model 

used to evaluate the performance of the proposed method 
and then provide the experimental results. 

A. Simulation Model 
For the purpose of simulation, we implemented 

RTP/RTCP protocol in Java. The complete code of our 
simulator can be found in  [12]. In our simulations, two 
threads act as a client and a server. A file will be 
transferred from the server to the client through a UDP 
connection. The implemented code simulates the common 
characteristics and limitations of real networks like 
dynamically changing latency of links and also drop 
behavior when the traffic load exceeds the link capacity. 
Moreover, it enables the IP layer to split the outgoing 
traffic among multiple distinct paths. 

We suppose that path 1 has a smaller delay than other 
path. The interface bandwidth of two paths is the same 
(i.e. 2Mbps) and the size of all data packets is fixed to 
0.5KB. Also, the bandwidths of path 1 and 2 are limited to 
B1 and B2, respectively. The configurable parameters of 
our experiments are i) the relative latency and ii) the 
relative bandwidth of the paths. 

Overall, three different UDP-based methods are 
simulated in our experiments: i) the usual one-path UDP 
with aggregated bandwidth of B1 + B2; ii) the simple 
multipath UDP which simply divides the traffic between 
two paths according to their bandwidth ratio; and iii) our 
enhanced multipath whose transmission parameters are set 
based on (6) and (7). Clearly, the results of the one-path 
scenario with aggregated bandwidth imply the optimal 
values which could be obtained by any perfect multipath 
method. In the simple multipath scenario, the outgoing 
packets are divided at the IP layer between two available 
paths according to the ratio of their bandwidths (i.e. in 
each point of the time, path 1 has carried B1 / (B1 + B2) 
portion of the outgoing data). We measure the BPT 
parameter and the consumed buffer space at receiver to 
compare performance of these methods.  

In all of the following experiments, we assume that the 
average latency and the bandwidth of path 1 are fixed to 
0.05s and 128Kbps, respectively. Also, all diagrams are 
plotted based on the relative latency and bandwidth of 
path 2 with respect to those of path 1. 

B. Experimental Results 
Figure 5 shows the experimental results of BPT 

obtained by different methods for transferring a file of size 
100KB. To give the reader better insight, the figure also 
presents the analytical result of BPT in our approach, 
calculated based on (8). As we proved in Section III, this 
result shows the minimum value of BPT that can be 
obtained by any multipath method. According to the 
figure, the one-path method completely outperforms two 
other multipath approaches, especially when d2 / d1 is 
high. However, our enhanced multipath method 
significantly improves the BPT, compared with simple 
multipath approach. As much as the delay ratio of two 
paths becomes higher, this improvement becomes more 
apparent. Also, the simulation results of our approach are 
on average 20% above the analytical ones, which is 
mainly due to the existence of packet delay variance and 
drop behavior in our experiments. 

With the assumption that the receiver’s application 
starts its playing with the optimal measured BPT, the 
consumed buffer space at the receiver is depicted in 
Figure 6. As illustrated in the figure, the consumed buffer 
space generally increases with the raise in the effective 
bandwidth ratio. In the case of simple multipath scenario, 
the buffer level grows drastically with the increase in the 



delay of the slower path. Although we can observe this 
growth in our approach too, but its variation has been well 
controlled now.  One can easily comprehend the similarity 
between the analytical results, presented in the previous 
section, and these experimental ones. For instance, both 
results increase as the ratio of B2 / B1 becomes higher. 

To better demonstrate the effect of our proposed 
method with respect to buffer space, a 2-D snapshot of 
Figure 6 is rendered in Figure 7, comparing the results of 
all three methods. As the figure shows, the consumed 
buffer level of our method is close to the inevitable level 
implied by the one-path method. Also, the level of buffer 
space remains steady throughout the increase in the delay 
ratio of path 2 to path 1. This is in spite of the simple 
multipath method that the buffer level raises drastically 
with the increase in the delay ratio. 

 

0

1

2

3

4

5

6

7

8

9

10

2 2.5 3 3.5 4

d2/d1

B
uf

fe
r S

pa
ce

Simple Multipath (Simulation)
Enhanced Multipath (Simulation)
Enhanced Multipath (Analytical)
One-path (Simulation)

 
Figure 7. The measured buffer level of three methods for B2 / B1 equals 
to 0.86 through different delay ratios. 

V. CONCLUSION 
The main problem of multipath schemes is the 

difference between the delays of selected paths which 
causes reordering among packets of the same flow. This 
imposes a larger buffer space and extra delay on receiver’s 
application. Multipath methods in both wired and wireless 
networks prefer more diverse paths and this unfortunately 
intensifies the problem. In this paper, a novel streaming 
approach for handling the reordering problem in end-to-
end multipath schemes was presented. Our method 
schedules packets at the sender among multiple paths in a 
way that they arrive at the receiver in-order. It was proven 
that our proposal imposes the minimum possible delay on 
the receiver’s application to start after the sender begins 
its transmission. In addition, our method reduces the need 
for large buffer spaces at the receiver. Simulation results 
also confirm the efficiency of the proposed method in 
terms of delay and buffer space. Interestingly, the 
consumed buffer is close to the buffer required by the 
optimal one-path method (with aggregate bandwidth) and 
also is relatively indifferent to changes in delay ratios. 
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