
Inducing Thermal-Awareness in Multicore Systems Using Networks-on-Chip

Emilio Martinez⋆, David Atienza†

⋆DACYA - Complutense University of Madrid,

C/ Jose G. Santesmases, 28040 Madrid, Spain. E-mail: emmartin@pdi.ucm.es
† Embedded Systems Laboratory (ESL) - EPFL,

EPFL-STI-IEL-ESL, 1015 Lausanne, Switzerland. E-mail: david.atienza@epfl.ch ∗

Abstract

Technology scaling imposes an ever increasing tem-

perature stress on digital circuit design due to transistor

density, especially on highly integrated systems, such as

Multi-Processor Systems-on-Chip (MPSoCs). Therefore,

temperature-aware design is mandatory and should be per-

formed at the early design stages. In this paper we present a

novel hardware infrastructure to provide thermal control of

MPSoC architectures, which is based on exploiting the NoC

interconnects of the baseline system as an active component

to communicate and coordinate between temperature sen-

sors scattered around the chip, in order to globally monitor

the actual temperature. Then, a thermal management unit

and clock frequency controllers adjust the frequency and

voltage of the processing elements according to the tem-

perature requirements at run-time. We show experimental

results of the infrastructure to implement effective global

temperature control policies for a real-life 4-core MPSoC,

emulated on an FPGA-based emulation framework.

1. Introduction

When considering embedded MultiProcessor Systems-

on-Chip new challenges arise for temperature management.

These systems are subjected to temperature unbalancing

and heat flow problems [10, 12]. Thus, solutions for early

stages of design flows have been recently proposed [11].

However, these static approaches cannot handle heteroge-

neous application scenarios targeted by embedded MPSoCs

with multimedia applications [15, 1, 2].

On the other side, these systems offer new degrees of

freedom to implement runtime temperature control strate-

gies based on frequency allocation of each core or work-

load migration [13, 9]. However, despite the large number

of thermal-aware policies proposed so far, there is lack of

understanding on how these policies can be implemented

and supported inside a real MPSoC. Several questions are

∗This work is partially supported by the FPU fellowship number

AP2007-00843 and the Spanish Research Grants TIN2008-00508.

open concerning how to place temperature sensors, dis-

tribute their information and implement decision policies.

In this work we address these issues by presenting a

temperature-management hardware infrastructure that ex-

ploits the NoC to propagate temperature-related informa-

tion collected by distributed thermal sensors. This infor-

mation is conveyed to a centralized Thermal Management

Unit (TMU) that dynamically configures the frequencies

and voltages of Processing Elements (PE) depending on the

application requirements using dedicated core clock man-

agers. The built infrastructure is flexible and scalable for

many-core systems, exploiting NoC’s features. We used

XPipesCompiler [3] as a NoC technology and we enhanced

its design and synthesis tools to include the temperature

management support inside the design flow. In particular,

the NoC design environment exploits the existing Network

Interfaces (NIs) to transmit the temperature messages as

short control messages in the interconnection infrastructure,

which results in a negligible bandwidth overhead to imple-

ment thermal control. We experimentally validate the effec-

tiveness of the proposed infrastructure for thermal control

using a Xilinx Virtex-V FPGA-based thermal emulation en-

vironment of a 4-core industrial MPSoC and implementing

several Dynamic Voltage and Frequency Scaling (DVFS)

policies, based on run-time monitoring provided by the NoC

about the intercommunication activities of the processing

cores of the MPSoC, and off-line characterization of the ap-

plication behavior a parallel version of real-life multime-

dia video benchmark. Our results show a much better ther-

mal balancing behavior of the 4-core MPSoC (reductions of

almost 10 degrees on average temperature) using the pro-

posed global NoC-based thermal control infrastructure in

comparisons to local DVFS thermal control techniques ap-

plied on the processing cores. Moreover, we enhance the

performance of the MPSoC by approximately 40%, while

respecting the temperature constraints provided by the low-

cost packaging of the original MPSoC, as well as achieving

almost 45% energy savings with respect to local DVFS.

The rest of the paper is organized as follows. In Sec-

2009 IEEE Computer Society Annual Symposium on VLSI					

978-0-7695-3684-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ISVLSI.2009.25

187

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on August 19, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147948965?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tion 2 we summarize related work in the area of thermal

management and NoC design. In Section 3 we describe the

NoC-based thermal control infrastructure proposed in this

work and its design flow. Then, in Section 4 we present

different thermal control policies that exploit the proposed

NoC-based thermal monitoring infrastructure. Next, in Sec-

tion 5 we describe the experimental framework and results

that validate our approach by emulating the thermal behav-

ior of a real-life 4-core MPSoC. Finally, in Section 6 we

summarize our conclusions.

2 Related work

Temperature control has been an important issue since

the last two decades especially for high-end systems. Given

the raise of importance of early thermal analysis, vari-

ous thermal model for systems-on-chip have been devel-

oped [16, 12]. Also finite element [8] and Green-function

[17] based algorithms have been applied for on-chip ther-

mal analysis. All these models can be used at design time to

study better placements of components and sizing of cool-

ing elements. In our case, we use the model presented in

[5] to accurately estimate the run-time temperature using

FPGA MPSoC emulation, which enables a fast thermal em-

ulation for long transient intervals, as MPSoC require.

Based on the previous thermal modeling tools, Dynamic

Thermal Management (DTM) techniques have been sug-

gested for processors using architectural adaptation, DVFS,

task and activity migration and profiling-based techniques.

In [12], it is proposed to use formal feedback control theory

as a way to implement adaptive techniques in the processor

architecture. Also, [4] performs extensive studies on em-

pirical DTM techniques when the power consumption of a

processor crosses a predetermined threshold (i.e. 24W). In

[13] it is presented an approach that uses profiling to predict

the theoretical highest performance within a thermally-safe

DVFS configuration for multimedia workloads. We use this

technique as part of the basic DTM approach we propose

for NoC-based thermal control (Section 4).

Other solutions have been proposed with the scope of re-

ducing temperature difference within the chip through ac-

tivity migration [9], that is aimed at reducing peak tem-

perature by moving computation between replicated units.

Thermal-aware design for NoC-based architectures have

also being recently proposed. In [10] an algorithm for the

optimal placement of on-chip components is proposed for

achieving thermal balancing while minimizing communica-

tion cost. This work is complementary to our approach, and

can be applied in early phases of the design when the floor-

plan of the final chip can be modified, while our approach

deals with run-time thermal control.

Finally, NoCs are envisioned as the future on-chip in-

terconnect since they can overcome the scalability bottle-

neck present in traditional bus interconnects in the MP-

Figure 1. Active NoC-based MPSoC

SoC domain, and several NoC topology proposals and in-

terfaces have been proposed at different levels of abstrac-

tion [3] according to different application requirements. Re-

cent works [11, 10] outline the benefits of using NoCs to

control the power consumption or temperatures in SoCs.

They rely on local information and exploit power-related

messages transmitted using the on-chip network. In our ap-

proach we extend these ideas by integrating the global ther-

mal management aspect as basic part of NoC design. Thus,

the NoC acts as an active element that dynamically monitors

the communication of the processing blocks and provides

proactive thermal control of the MPSoC.

3 NoC-based MPSoC Thermal Control
As depicted in Figure 1, our proposed MPSoC including

the NoC-based thermal control infrastructure consists of six

different components: (i) Processing Elements (PEs), (ii)

On-chip memories, (iii) a regular or custom NoC, (iv) Ther-

mal Sensors or TSs associated to PEs, (v) a global Thermal

Management Unit (TMU), and (vi) a set of DVFS units.

The PEs and the memories are the basic components in

regular NoC-based MPSoCs already designed for a given

application. The TSs can provide the temperature of a PE

to the TMU through control packets injected in the regu-

lar NIs associated to each PE. Then, the TMU is an ele-

ment that first collects all the temperatures provided by the

TSs of the system, and then communicates with the DVFS

unit/s in order to set the frequency of the PEs of the sys-

tem according to a certain global DVFS strategy. Since the

MPSoC is networked, the TMU can be localized at any unit

of the underlying NoC, such as an NI or a switch. Then,

the TMU executes a thermal policy based on manual opti-

mization, which has been defined at compile-time accord-

ing to the possible workloads of the working environment

where the NoC-based SoC will be used (see Section 4 for

more details). Knowing what the distribution of the tem-

peratures on the die is, and knowing what the workload of

each processor is, it can setup the voltage and the frequency

of each component in order to guarantee that a user-defined

temperature threshold is not exceed and improving thermal

188

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on August 19, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

balancing (see Section 4 for more details).

In this design, we have associated our TSs with PEs be-

cause our first goal is to control the temperature of PEs, but

associating TSs to other components of the SoC would be

also feasible. We also do not restrict ourselves to single TS

per component. In fact, our proposed infrastructure can in-

clude several TSs per NI, in case a finer granularity on the

thermal distribution is required. Finally, We attach our TSs

around the cores because it enables keeping the complexity

of the NoC design flow (see Section 3.1), as we do not need

to add any channels to the NoC or increase the number of

inputs/outputs of regular switches. Indeed the scalability of

NoCs applies to our NoC-based thermal control infrastruc-

ture, since we do not add any extra design complexity or

restrictions to the design of the NoC itself.

3.1 NoC Design Flow for Thermal Control

In this section we overview the design flow for NoC-

based MPSoCs with thermal management support. Our

methodology relies on SunFloor [14] and XPipesCom-

piler [3] to automatically generate the basic NoC topology

without thermal control. Nevertheless, our approach is gen-

eral and can be combined with any other state-of-the-art

NoC design flow.

During the first phase of our design flow, once the NoC

interconnect has been defined for the final MPSoC platform,

we include our thermal management components. The first

element to add is the TMU. This component can be located

in any position of the NoC topology as long as it can com-

municate to every node (memories, PEs) of the MPSoC,

where thermal control has to be applied. In our designs,

the TMU unit is placed using a dedicated switch and NI,

where the conflicts with incoming outgoing traffic to any

other MPSoC nodes are minimized. Also, the TMU in-

cludes a dual master/slave NI to be able to access the TS

as a processing element, and to receive the replies in the

slave interface, and non-acknowledged write responses are

used to make this communication of thermal information as

fast as possible. Then, the TMU uses its master interface

to send requests to set the frequencies of PEs to the DVFS

units, which use a slave interface. Thus, using this mas-

ter/slave scheme less than 3% of bandwidth is utilized for

transmitting thermal control packets (see Section 5).

Then, the DVFS unit must be inserted in the MPSoC.

Our design can support several DVFS units; thus, each

DVFS unit can generate the value for one or several PEs.

On the one hand, when having only one DVFS unit which

drives all the PEs of the MPSoC (as in [2]), the most suit-

able location to place it is on the same NoC switch as the

TMU. Hence, preference (i.e., the shortest possible latency)

is given to the intercommunication channel between the

TMU and the DVFS unit. On the other hand,when there is

one DVFS unit per PE (e.g., [1, 7]), each DVFS unit is con-

nected to the same switch used in the original NoC topol-

Figure 2. Three-threshold-based DVFS work-

ing points

ogy design for its respective PE. Therefore, the length of the

clock signals (from DVFS units to PEs) across the die are

minimized. Any other intermediate configuration regarding

the number of DVFS units with respect to the number of

PEs is feasible as well. In this case, each DVFS unit should

be placed in the switch that minimizes the distance to all

the PEs it controls. Thus, the length of clock signals on the

final die are as low as possible, which reduces in turn the

chances of clock skews in the final MPSoC. In this case, the

inclusion of DVFS units in the SunFloor [14] design tool

has been done as slave devices, since they do not require to

initiate any transaction, but just receiving the requests com-

ing from the TMU.

In the final phase of the thermal control integration pro-

cess, the basic NIs are reused for thermal monitoring by

including a new input port to read the current temperature

of the PE coming from the TS attached to it, which is sent

to the TMU unit when this unit demands it, typically in the

order of milliseconds (see Section 5).

4 NoC-Based Thermal Management Policies

We have implemented support in the TMU for several

thermal management policies to validate the proposed NoC-

based thermal control infrastructure. In general, many MP-

SoCs are designed to run a limited set of applications, de-

pending on the targeted application domain. As an exam-

ple, in [14], the authors show that the NoCs for industrial

MPSoC designs typically support several use-cases or ap-

plications. For such MPSoCs, the workload of the system is

well characterized for each of the application. Thus, using

the specific processing and idle times of multimedia bench-

marks (see Section 5.2 for more details), we have computed

the maximum operating frequencies that needs to be sup-

ported by the processors for an application, so that the work-

load constraints are satisfied. However, this precomputed

values do not imply that the systems is thermally optimal.

Thus, we include the execution precharacterization of the

applications in our TMU, such that, it can provide the sup-

port for application-level DVFS to achieve an efficient de-

sign that satisfies the thermal constraints at run-time.

To validate the functionality of our thermal control sys-

189

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on August 19, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

tem, we have implemented three policies into the TMU for

a 4-core MPSoC case study, according to different types of

active NoC monitoring support of the basic MPSoC. The

behavior of these policies is incremental, namely, the sec-

ond includes the behavior of the first and so on. Thus, we

can observe how system thermal control is enhanced when

adding more local and global knowledge about the current

temperature and monitoring of the transactions of the PEs

in the policy implemented. In all these cases the multipro-

cessor system can operate at four different frequencies and

voltages for each processor, namely, 500MHz, 250MHz,

125MHz and 62.5MHz, according to the figures found in

the ARM 9 processing cores [7] used in our modeled 4-

core MPSoC. Using simply these four operation points

from the hardware management viewpoint, different DVFS-

based thermal control policies can be designed to make the

system more stable from a thermal viewpoint, enabling less

abrupt thermal oscillations (i.e., less thermal gradients and

hot-spots), by partially characterizing off-line the specific

performance constraints of the set of multimedia bench-

marks to be executed, similar to [13].

3-Threshold DVFS based on local temperature

(DVFS Local): This is an instance of the most frequently

implemented policy nowadays for hardware-based thermal

management in MPSoCs, where the temperature informa-

tion from each PE, monitored by its respective TS, is used

to provide input to a local thermal control algorithm. To

keep the MPSoC temperature below a thermal run-away

threshold, once the temperature of the system passes a cer-

tain temperature threshold, this policy switches gradually

between different lower DVFS operation points (to prevent

large DVFS changes) to reduce the temperature of a PE.

Once the temperature has come down to a safe threshold,

the PE start increasing their frequency of operation. In our

4-core MPSoC case study, we use three thresholds to obtain

four different thermal control regions to decrease the tem-

perature after reaching the critical rising temperature thresh-

old, as depicted in Figure 2.

3-Threshold DVFS based on local temperature and

local transactions monitoring (DVFS and local commu-

nication): Besides the local temperature of the processor,

as in the previous policy, this thermal management policy

decides the DVFS operation point by also taking into con-

sideration the number of outstanding transactions with the

local memory of the processor. In fact, this additional infor-

mation is used to understand the switch between the waiting

and execution phases of the PEs in the parallel implemen-

tation of the multimedia embedded systems under execu-

tion, if a processor is not performing transactions in a cer-

tain time-out period (i.e., 10 msecs in our experiments), we

assume that the processor will not make any transaction in a

significant lapse of time, and its frequency is reduced to the

minimum operating point (62.5MHz). On the other hand, as

Figure 3. Floorplan of 4-core MPSoC case

study using the proposed active NoC with

global TMU

soon as the active NoC observes any new transaction started

from that PE, the TMU starts increasing the frequency as in

the previous policy. This adaptation of the frequency to the

new application phase is very fast, and only requires few

clock cycles, and no real performance penalty is observed

in the final MPSoC.

3-Threshold DVFS with global temperature analysis

and workload predictor (DVFS and global workload pre-

dictor): This thermal control policy enhances the previous

one by including additional global information of the multi-

media application under study, which is monitored at the

NoC level, as an attempt to evaluate what would be the

maximum potential benefit for thermal control that can be

achieved by using global run-time system behavior moni-

toring, achieved by the proposed active NoC infrastructure.

Due to the partial regularity of the video processing of the

considered multimedia application (see Section 5.2), PE-1

determines the slowest execution bound, and from a thermal

balancing viewpoint, it is better to run the cores at the low-

est frequency possible to finish its processing when it needs

to be regrouped for the final output by PE-1, instead of fin-

ishing the computation of a certain PE at a higher DVFS

operation point and then remain idle. Second this policy

adapts the DVFS operation point for each PE according to

a predicted time estimating when PE-1 will start collecting

the data of each of the other cores in each iteration of the

application under study.

5 Experimental Setup

In order to validate our NoC-based thermal control in-

frastructure, we have emulated a real-life 4-core ARM9

MPSoC design (see Figure 3) with low-cost plastic pack-

aging (typical of embedded multimedia MPSoC platforms)

using an FPGA-based thermal emulation platform, inspired

from the structure presented in [5].

The multi-task MPSoC application used to test our NoC-

based thermal control infrastructure was the Visual Tex-

190

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on August 19, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

Figure 4. MPSoC Thermal Emulation Setup

ture Coding (VTC) software, which is used in the MPEG-4

standard [6] to compress the texture information in photo-

realistic 3D models. As the texture in a 3D model is similar

to a still picture, the application can also be used for com-

pression of still images. It is based on the discrete wavelet

transform, scalar quantization, zero-tree coding and arith-

metic coding. Its software realization requires around 10K

lines of C++ code. In particular, we used a parallel im-

plementation of this benchmark based on multiple complex

32x32 bi-dimensional multiplications divided into 4 proces-

sors, 8 rows per processor, between matching windows of

two consecutive frames.

5.1 Thermal Emulation Flow

We show in Figure 4 an overview of the instantiation of

the thermal emulation environment implemented onto a Xil-

inx Virtex-V FPGA for the 4-core MPSoC. The instantia-

tion of our emulation environment is created in three steps.

First, we define the hardware part of the MPSoC emula-

tor. It implies synthesizing the NoC topology, assembling

the basic components (PEs, memories, etc.) of the emu-

lated MPSoC and adding the TMU and the DVFS unit. We

plugged our TSs on the same NI of the PEs through a shared

port, as explained in Section 3.1. Our TSs are implemented

as registers, which can be written by the emulation control

processor and can be read by the TMU through NoC trans-

action requests as a master.

Second, we compile and download the software applica-

tion that has to be executed by the PEs (Section 5.2). Then,

to update the temperature in the TS at run-time, we used the

model described in [5], which relates the temperature of the

PEs and the memories by monitoring the traffic generated

or received by each element of the MPSoC. To this end,

we installed hardware sniffers for the PEs. These sniffers

report energy consumption values of basic MPSoC compo-

nents that are then analyzed by a host workstation (see Fig-

ure 4) connected to the FPGA emulation framework through

a serial port. The external workstation computes then the

temperature of the different parts of the MPSoC at run-time,

according to the model given in [5], and the emulation con-

Figure 5. System temperature for each policy

trol processor takes care of updating the temperature in the

TSs at run-time. Then, when the update of the tempera-

ture in the TSs is performed, the emulation control proces-

sor freezes the emulation by applying a global clock gating

to the complete MPSoC. This FPGA-based MPSoC emu-

lation framework allows us to instantiate and perform long

thermal behavior explorations of MPSoCs very fast with re-

spect to HDL simulators, as shown in [5]

Finally, in the third step we define in the TMU the ther-

mal management policy to evaluated. Instead of develop-

ing a hard-coded TMU, we have used a standard soft-core

processor provided by the Xilinx Virtex-V FPGA (i.e., a

MicroBlaze) to implement the policies presented in Sec-

tion 4 in a faster way. Since these policies are emulated as

software in our MPSoC emulation environment, it is highly

configurable and can easily evaluate variations of very com-

plex thermal control algorithms.

5.2 Experimental Results

From our experiments we first report the run-time ther-

mal evolution of the MPSoC case study while executing

multiple instances of the parallel VTC software application.

As shown in Figure 5, the two thermal control schemes with

active NoC monitoring using the global TMU achieve a

much smoother transition in temperature variations on the

die with respect to hardware-based local DVFS policies,

which in turn produces a much better thermal balancing ef-

fect in the MPSoC, i.e., the temperature is stabilized in regu-

lar working conditions to approximately 328-degree Kelvin.

Hence, the active NoC achieves an average working tem-

perature reduction in the 4-core MPSoC of 10 degrees on

average in comparison to local DVFS, which subsequently

improves system reliability, as this factor decreases expo-

nentially with working temperature [12].

In addition, thanks to the more balanced thermal behav-

ior achieved by the active NoC with global TMU, the MP-

SoC does not make frequent transitions between extreme

DVFS working points (500MHz and 62.5MHz), conversely

to the local DVFS thermal control policy. Therefore, as

191

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on August 19, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

Figure 6. Energy consumption of 4-core MP-

SoC using different thermal control policies

(normalized to active NoC-based with global
workload predictor)

shown Figure 6, the 4-core MPSoC experiences consider-

able energy consumption savings (almost 50%) using the

NoC-based thermal control infrastructure with respect to

the local DVFS thermal control. Also, the MPSoC achives

a higher overall performance level (i.e., 40%).

Finally, we report in Figure 7 the percentage of energy

consumed by the active NoC infrastructure with respect to

the basic NoC interconnect using three 5x5 switches for the

4-core MPSoC (Figure 3). As Figure 7 shows, the active

NoC with a global TMU only generates a negligible 2% en-

ergy overhead with respect to the basic NoC. This is due

to the fact that the thermal control messages generated by

the active NoC require a very limited NoC bandwidth, be-

cause the thermal dynamics of the material are quite slow

(in the order of milliseconds) with respect to the volume

and frequency of regular interconnect messages of the ba-

sic MPSoC components. Hence, the thermal information

used by the TMU to make its thermal control decisions, as

well as the thermal control messages sent by the TMUs to

the PEs, can be included in the existing NoC bandwidth of

the basic NoC design, as described in Section 3.1. These

results illustrate the applicability of our active NoC-based

infrastructure for thermal control of MPSoC architectures.

6 Conclusions

Due to the improvements in process technology, MP-

SoC architectures are a promising solution to provide the re-

quired performance of latest multimedia applications. How-

ever, process technology scaling imposes important temper-

ature stress in circuit design due to increasing power den-

sity. In this paper we have presented a thermal manage-

ment hardware infrastructure that exploits the concept of

an active NoC interconnect to monitor the communication

activity and temperature evolution of basic MPSoC compo-

nents (processors, memories, etc.) and includes a central-

ized TMU that provides global DVFS-based thermal con-

trol policies. This proposed design flow and active NoC

implementation reuses the existing NIs to transmit the tem-

perature messages, as short control messages, in the in-

Figure 7. Comparisons of energy consump-
tion of basic NoC and active one in 4-core

MPSoC

terconnection infrastructure, which results in a negligible

bandwidth overhead to implement thermal control. Our

experimental results emulating a 4-core industrial MPSoC

have shown that this approach achieves more than 10 de-

grees reduction on average working temperature than multi-

threshold-based local DVFS thermal control. Moreover, as

a consequence of the better thermal control, the MPSoC

performance improves by almost 40%, while respecting the

temperature constraints, and more than 45% energy savings

are achieved.

References

[1] Cradle technologies: Multi-core DSPs for IP network surveillance, 2005. www.

cradle.com/.

[2] ARM 11 - mpcore, 2004. http://www.arm.com/products/CPUs.

[3] G. De Micheli, et al. Networks on Chips: Technology and Tools. Morgan

Kauffman, 2008.

[4] David Brooks, et al. Dynamic thermal management for high-performance mi-

croprocessors. In Proc. of HPCA, 2001.

[5] David Atienza, et al. HW-SW emulation framework for temperature-aware de-

sign in MPSoCs. ACM TODAES, August 2007.

[6] Irak Sodagar et al. Scalable wavelet coding for synthetic and natural hybrid

images. IEEE Trans. CSVT, March 1999.

[7] i.MX31-serie Multimedia Processors, 2003. www.freescale.com/imx31.

[8] B. Goplen, et al. Efficient thermal placement of standard cells in 3d ics using a

force directed approach. In Proc. ICCAD, 2003.

[9] S. Heo, et al. Reducing power density through activity migration. In Proc.

ISLPED, 2003.

[10] W. Hung, et al. Thermal-aware IP virtualization and placement for NoC archi-

tecture. In Proc. ICCD), 2004.

[11] W. Hung, et al. Thermal-aware allocation and schedulilng for systems-on-chip.

In Proc. DATE, 2005.

[12] K. Skadron, et al. Temperature-aware microarchitecture: Modeling and imple-

mentation. IEEE TACO, January 2004.

[13] J. Srinivasan, et al. Predictive dynamic thermal management for multimedia

applications. In Proc. ICS03, 2003.

[14] S. Murali, et al. Designing Application-Specific Networks on Chips with Floor-

plan Information In Proc. ICCAD, 2006

[15] ST Nomadik multimedia processor, 2004.

http://www.st.com/stonline/prodpres/dedicate/proc/proc.htm.

[16] T.-Y. Wang, et al. 3-d thermal-adi: A linear-time chip level transient thermal

simulator. IEEE T-CAD), December 2002.

[17] Y. Zhan, et al. Fast computation of the temperature distribution in VLSI chips

using the discrete cosine transform and table look-up. In Proc. ASPDAC, 2005.

192

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on August 19, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

