Rhéophysique des suspensions granulaires très concentrées par vélocimétrie par images de particules fluorescentes

S. Wiederseiner, N. Andreini, M. Rentschler & C. Ancey

Laboratoire d'Hydraulique Environnementale Ecole polytechnique fédérale de Lausanne

11^{ème} Congrès francophone de techniques Laser

ENSMA-Futuroscope, le 16 septembre 2008

(日) (日) (日) (日) (日) (日) (日)

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats	Conclusion
	-				

• Avalanches de neige

Laves torrentielles

Coulées pyroclastiques

Photo SLF

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats	Conclusion
É					

• Avalanches de neige

Laves torrentielles

Coulées pyroclastiques

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats	Conclusion
Écoulor	onte gáo	nhuciau			

Avalanches de neige

Laves torrentielles

Coulées pyroclastiques

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats	Conclusion
Écoulen	nents aé	ophysia	ues		

Écoulements

suspensions

Rhéologie

technique de mesure

Resultats

Conclusion

Comment étudier ces fluides complexes?

Fluides étudiés

Méthodes optiques

Suspension concentrée de particules (25mm d'épaisseur)

FPIV / FPTV

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

technique de mesure

Resultats

Conclusion

Suspensions concentrées et transparentes de particules non colloïdales

- Particules sphériques de PMMA de 50 à 350 µm
- Mélange de 3 fluides newtoniens (Lyon & Leal 1997)

• □ > < 同 > < 回 > < 回 < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < < □ < □ < < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ < □ <

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats	Conclusion
Tamisag	e humide				

Diamètre des particules [µm]

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats	Conclusion
Mélang	e de 3 flu	ides			

• Trois Fluides $\rightarrow \begin{cases} Iso-indice \\ Densité contrôlable \end{cases}$

"Wait, wait, before you mix them, you have to say, 'Pow!'."

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats	Conclusion
Iso-indic	e				

• Trois Fluides \rightarrow $\begin{cases} \text{Iso-indice} \Rightarrow \text{Transparence} \\ \text{Densité contrôlable} \Rightarrow \text{Effet de la gravité} \end{cases}$

Écoulements	suspensions	Rhéologie	technique de mesure	Resultats	Conclusion

Iso-indice : effets de la température

Température [°C]

ъ

・ロト ・聞 と ・ ヨ と ・ ヨ と

technique de mesure

Resultats

Conclusion

Iso-indice : effets de la température

Mesure

Écoulements suspensio	ns Rhéologie	technique de mesure ○	Resultats	Conclusion

Iso-indice : effets de la température

-

・ロト ・聞 と ・ ヨ と ・ ヨ と

Écoulements	suspensions	Rhéologie	technique de mesure	Resultats	Conclusion

Iso-indice : effets de la longueur d'onde

12

・ロン ・聞と ・ 聞と

Écoulements	suspensions	Rhéologie	technique de mesure	Resultats	Conclusion

Iso-indice : effets de la longueur d'onde

Écoulements	suspensions	Rhéologie	technique de mesure	Resultats	Conclusion

Iso-indice : effets de la longueur d'onde

Images couleurs (RGB) d'une suspension de particules :

Composante bleue

Composante rouge

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ●□ ● ●

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats	Conclusion
Densité					

• Trois Fluides \rightarrow

 $\begin{cases} \mathsf{Iso-indice} & \Rightarrow \mathsf{Transparence} \\ \mathsf{Densité contrôlable} \Rightarrow \mathsf{Effet de la gravité} \end{cases}$

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats	Conclusion
Densité					

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Hydraulioue Environmementale

Écoulements	suspensions	Rhéologie	technique de mesure	Resultats	Conclusion

Margueur fluorescent : la rhodamine 6G

• Trois Fluides \rightarrow $\begin{cases}
 Iso-indice \Rightarrow Transparence \\
 Densité contrôlable \Rightarrow Effet de la gravité
 \end{cases}$

● Margueur fluorescent ⇒ Visualisation

Écoulement	S	susp	pensions	F	théologie	9 1	o	mesure	Re oc	sultats	Conclusi	ion
		-										

Choix de la Rhodamine 6G

- Trois Fluides \rightarrow $\begin{cases} \text{Iso-indice} \Rightarrow \text{Transparence} \\ \text{Densité contrôlable} \Rightarrow \text{Effet de la gravité} \end{cases}$
 - Marqueur fluorescent ⇒ Visualisation

- Excellent efficacité
- suffisamment faible "Stokes shift"

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats	Conclusion
Combie	en de rho	damine	6G ?		

• Margueur fluorescent \Rightarrow Visualisation

Écoulements	suspensions	Rhéologie	technique de mesure o	Resultats	Conclusion

• Trois Fluides \rightarrow $\begin{cases}
 Iso-indice <math>\Rightarrow$ Transparence Densité contrôlable \Rightarrow Effet de la gravité

• Marqueur fluorescent \Rightarrow Visualisation

Particules

- Sphéricité
- Qualité optique

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats	Conclusion
• Trois Fluides \rightarrow	∫ Iso-iı	ndice =	⇒ Transpare	nce	
	ois riuldes \rightarrow	Dens	sité contrôlable =	⇒ Effet de la	gravité

• Marqueur fluorescent \Rightarrow Visualisation

Particules

- Sphéricité
- Qualité optique

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats 0000	Conclusion		
• Tr	ois Fluides $ ightarrow$	∫ Iso-ir) Dens	$\begin{cases} \text{Iso-indice} & \Rightarrow \text{Transparence} \\ \text{Densité contrôlable} & \Rightarrow \text{Effet de la gravité} \end{cases}$				

• Marqueur fluorescent \Rightarrow Visualisation

Particules

- Sphéricité
- Qualité optique

Écoulements	suspensions	Rhéologie	technique de mesure o	Resultats	Conclusion

• Trois Fluides \rightarrow $\begin{cases}
 Iso-indice <math>\Rightarrow$ Transparence Densité contrôlable \Rightarrow Effet de la gravité

• Marqueur fluorescent \Rightarrow Visualisation

- Sphéricité
- Qualité optique

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats 0000	Conclusion
• Ti	rois Fluides —	∫ Iso-ir Dens	ndice = sité contrôlable =	⇒ Transpare ⇒ Effet de la	nce gravité

• Marqueur fluorescent \Rightarrow Visualisation

Particules

- Sphéricité
- Qualité optique
- Granulométrie

<u>Fluide</u>

- Faible évaporation
- Bon "mouillant du PMMA"
- Pas solvant du PMMA
- Faible absorption
- Pas excitable
- Viscosité variable (4^{ème} fluide)

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats	Conclusion
La géor	nétrie				

Écoulements suspensions Rhéologie technique de mesure Resultats Conclusion

Conséquence pour les mesures rhéologiques

 \Rightarrow

$$\bigcirc \begin{pmatrix} \mathsf{T} \\ \Omega \end{pmatrix} \dashrightarrow \begin{pmatrix} \tau \\ \dot{\gamma} \end{pmatrix}$$

LARGE ENTREFER (granulométrie)

- T : Couple total
- Ω: Vitesse angulaire
- τ : contrainte de cisaillement
- $\dot{\gamma}$: taux de cisaillement

Résoudre le problème inverse de Couette

r : Rayon h : Hauteur de fluide *R_{in/out}* : Rayon du cylindre intérieur/extérieur

Écoulements	suspensions	Rhéologie	technique de mesure	Resultats	Conclusion

Conséquence pour les mesures rhéologiques

Méthodes de résolution du problème inverse de Couette :

- Mooney (1931)
- Krieger & Maron (1952)
- Krieger & Elrod (1953)
- Krieger (1968)
- Yang & Krieger (1978)
- Mac Sporran (1986)(1989)
- Nguyen (1992)
- Yeow (2000)
- Ancey (2005)
- De Hoog & Anderssen (2005)(2006)

technique de mesure o Resultats

Conclusion

Rhéométrie classique et optique

Approche par la mécanique des milieux continus Rhéométrie classique T and Ω Résoudre le problème inverse de Couette τ and $\dot{\gamma}$

Approche rhéophysique Suspensions transparentes Déplacement des particules (FPIV / FPTV) Différentiation du profile de vitesse

au and $\dot{\gamma}$

Écoulements	suspensions	Rhéologie	technique de mesure o	Resultats	Conclusion
Technic	ue de me	esure			

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats	Conclusion
Technic	ue de me	esure			

Écoulements	suspensions	Rhéologie	technique de mesure o	Resultats	Conclusion
Technic	ue de mo	esure			

MENTAL P

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats	Conclusion
					

Technique de mesure

Écoulements	suspensions	Rhéologie	technique de mesure ●	Resultats	Conclusion
Installation					
L'instal	lation				

HYDRAILLOUE ENVIRONMEMENTALE

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats	Conclusion
Images	FPIV				

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats ●○○○	Conclusion				
Validation									
Mesure de validation									

LABORATORE HYDRAULIQUE ENVIRONMEMENTALE

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats ○●○○	Conclusion				
Profiles de vitesse de suspensions concentrées de particules (fraction solide de 50%)									
Evolutio	Evolution temporelle de la suspension								

|= •**०**९०

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats ○○●○	Conclusion				
Profiles de vitesse de suspensions concentrées de particules (fraction solide de 50%)									
Effet du	fond								

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats ○○○●	Conclusion
Dérivation de la loi	d'écoulement				
Compar	aison				

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats	Conclusion
Conclus	sion				

- Nouvelle technique de mesure du champs de vitesse dans des suspensions très concentrées
- Applicable à un grand nombre de géométrie

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats	Conclusion
Travaux	futurs				

- Mesurer le profil de concentration
- Nous souhaitons maintenant utiliser la même technique pour étudier le problème dit de rupture de barrage (lâcher d'un volume fini de fluide, puis de son écoulement le long d'une surface) et mesurer le profile de vitesse au coeur de la suspension dans le front de l'écoulement.

Écoulements	suspensions	Rhéologie	technique de mesure ○	Resultats	Conclusion
Remerc	iements				

- Christophe Ancey
- Nicolas Andreini, Martin Rentschler
- Le Fond National Suisse de la recherche scientifique

Rhéologie et rhéophysique

Fluides complexes

- Particules
 - Matériaux
 - Forme
 - Granulométrie
 - Rugosité
- Fluide interstitiel
 - Viscosité

Comment mesurer les propriétés rhéologiques de ces fluides ?

- Seuil de contrainte
- Comportement rhéoamincissant
- Thixotropie
- Dilatance
- ...

 \Rightarrow

Fluides complexes

- Particules
 - Matériaux
 - Forme
 - Granulométrie
 - Rugosité
- Fluide interstitiel
 - Viscosité

Comment mesurer les propriétés rhéologiques de ces fluides ?

- Seuil de contrainte
- Comportement rhéoamincissant
- Thixotropie
- Dilatance

• ...

 \Rightarrow

(日) (日) (日) (日) (日) (日) (日) (日)

Consequences for the rheologist

Solving methods :

- Infinite series approach
- Least square approach
- Projection approach
- Adjoint operator approach

Consequences for the rheologist

Example : an artificial Herschel-Bulkley fluid $\tau = \tau_y + K \dot{\gamma}^n$

Consequences for the rheologist

The same fluid with a wide-gap geometry

Example : a polymeric gel

Ancey, J.Rheology 49 (2005) 441-460

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example : a particle suspensions

- S : adimensionalized shear stress
- Γ : adimensionalized angular velocity

1= 9Q0

Example : a particle suspensions

- S : adimensionalized shear stress
- Γ : adimensionalized angular velocity

1= 9Q0

イロト イポト イヨト イヨト ヨ

- Shear localization ?
- Particle segregation?
- Particle migration?
- Ordering?

- Particle roughness?
- Particle Shape?
- Slipping?

Do we measure material's physical properties...

... or disturbing effects?

