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This work augments the proposal of Schwarzenbach & Flack [J. Appl. Cryst.

(1989), 22, 601–605], who have advocated the use of a diffractometer-

independent definition of the azimuthal angle  to specify the diffraction

geometry of a Bragg reflection. It is here proposed that one additional angle �,
which is also based on a diffractometer-independent definition, is needed to

encode the direction of linear polarization for those experiments where this

quantity is of importance. This definition is then extended to the cases of

partially and/or elliptically polarized X-ray beams, and the use of three

normalized Stokes parameters, P1, P2 and P3, together with �, is advocated in

order to characterize exhaustively the polarization state of the incident beam.

The conventions proposed here present a general, unambiguous and economical

means of encoding the information about the diffraction geometry, without the

need to record any further information about the instrument, crystal orientation

matrix and goniometer angles. Data-processing software using these definitions

to analyse polarization-dependent phenomena becomes instrument-indepen-

dent and completely general. These methods have been implemented in the

macromolecular phasing program SHARP for exploiting the polarization

anisotropy of anomalous scattering in protein crystals.

1. Introduction

The polarization properties of the X-ray beam are of impor-

tance in a number of diffraction experiments, including

magnetic diffraction (Lovesey & Collins, 1996) and polarized

resonant (anomalous) diffraction (Templeton & Templeton,

1982; Dmitrienko et al., 2005). We have recently shown that

the polarization anisotropy of anomalous scattering (AAS) is

a significant and ubiquitous effect in protein crystallography

and that its exploitation can substantially enhance the phasing

power of single- or multi-wavelength anomalous diffraction

measurements collected at or near an absorption edge (Schiltz

& Bricogne, 2008). In these experiments, the polarization

properties of the incident X-ray beam enter as parameters into

the structure factor equations. We have for instance shown

that, in this context, the anomalous scattering factor of an

atom that displays AAS can in many cases be approximated by

f ¼ tp0 F pÞ= tp0 pð Þ;ð ð1Þ

where the left superscript t stands for matrix transposition, F is

a second-rank tensor and it is assumed that the incident beam

is completely linearly polarized along a direction given by the

unit vector p. The direction of unit vector p0 is that of the

projection of p onto a plane perpendicular to the scattered

beam direction and corresponds to the direction of linear

polarization of the diffracted beam in the absence of AAS. To

refine the tensorial values of the anomalous scattering factors

and/or to extract phase information from AAS-induced

symmetry-breaking effects (Schiltz & Bricogne, 2008), it is

therefore necessary to record information about the orienta-

tion of the crystal with respect to the direction of X-ray

polarization for each reflection measurement.

The experimental geometry of a Bragg reflection in X-ray

diffraction is not completely specified by the lattice constants

of the crystal and the reciprocal lattice indices (hkl) of the

scattering vector. Almost 20 years ago, Schwarzenbach &

Flack (1989) advocated a diffractometer-independent defini-

tion of the azimuthal angle  to specify, for each experimental

reflection measurement, the orientation of the incident and

diffracted X-ray beams with respect to the crystal lattice. They

noted that the values of diffractometer-based angles become

meaningless without the additional specification of the crystal

orientation matrix and the definition of the goniometer setting

angles and senses of rotation of the various circles. On the

other hand, with a crystal-based definition of  , the diffraction
geometry can be specified by four values, namely h, k, l and  ,
without the need for any additional information about the

instrument or crystal orientation matrix. The specification of

an azimuthal angle  allows one to carry out the calculation

and/or refinement of absorption, thermal diffuse scattering
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and anisotropic extinction corrections. A further area of

applications is that of multiple-beam X-ray diffraction

experiments, where  -scan profiles can be used in the deter-

mination of absolute structures (Hümmer &Weckert, 1995) or

for the computation of triplet phases (Weckert & Hümmer,

1997). However, for experiments that directly involve the

polarization of the incident X-ray beam, the mere indication

of the azimuthal angle  is not enough to specify the

diffraction geometry completely, even in the simple case of

linear polarization.

For conventional diffraction data collection, area detectors

are now universally used in macromolecular crystallography

and also to a very large extent in small-molecule crystal-

lography. In these experiments, a large number of reflections

are recorded nearly simultaneously. No  -scan is performed

and the geometry is such that the direction of polarization of

the X-ray beam will be in a general orientation (neither

parallel nor perpendicular) with respect to the diffraction

plane. It therefore becomes necessary to compute and encode

the direction of polarization for each of these reflection

measurements. With the current emphasis on high-throughput

data collection schemes at synchrotrons, where large quan-

tities of data can be collected in a short time, it becomes

imperative to keep track of all geometric information about

the experiment and to encode it in an efficient and easily

usable way. In the present communication we propose that

one additional angle �, which is based on a diffractometer-

independent definition, can fulfil the task of recording the

direction of polarization. We then extend this discussion to the

cases of partially and/or elliptically polarized X-ray beams and

advocate the use of three normalized Stokes parameters, P1,

P2 and P3, together with �, to characterize exhaustively the

most general state of polarization of the incident beam.

2. Diffractometer-independent specification of
diffraction geometry

The vectors and tensors involved in the structure factor

equations reported by Schiltz & Bricogne (2008) [equation

(1)] are expressed in a crystal Cartesian basis. On the other

hand, the direction of the X-ray beam polarization is usually

known in some laboratory reference system, where it is often

fixed. It would therefore seem necessary to record the infor-

mation about the orientation of the crystal at each diffraction

measurement with respect to this laboratory system. As an

alternative, following Schwarzenbach & Flack (1989), our

guiding principle has been that all geometric quantities should

be defined with respect to the crystal lattice, not the labora-

tory.

2.1. Definition of the n angle

Fig. 1 shows the relevant vectors and angles defined by

Schwarzenbach & Flack (1989) and (in colour) the new

additional geometric objects that are needed for our defini-

tion. All vectors shown are unit vectors: s and s0 represent the
incident and diffracted beam directions, respectively [these

are, respectively, designated p and d by Schwarzenbach &

Flack (1989), but we prefer here to avoid the use of p in order

to prevent any possible confusion with the direction of beam

polarization]; e is collinear with �ðsþ s0Þ; f is collinear with
the scattering vector H ¼ ha� þ kb� þ lc�; g is perpendicular

to the diffraction plane and chosen such that (e; f; g) forms a

right-handed coordinate system. The vector q ¼ Q=jQj indi-
cates the reference direction defining the zero position of  by

the convention given by Schwarzenbach & Flack (1989):

Q ¼
�
h a� h b if h ¼ k ¼ l

ðk� lÞ aþ ðl � hÞ bþ ðh� kÞ c otherwise:
ð2Þ

We now define another reference vector t lying in the

diffraction plane (e; f) and perpendicular to the incident beam
direction s. Furthermore, t is defined to point upwards; t � f is
always positive. Thus

t ¼ � sin � eþ cos � f: ð3Þ
It follows from this definition that the plane ðt; gÞ is

perpendicular to the incident beam direction s. Thus, if the

incident beam is linearly polarized along a direction given by

the unit vector p, this vector is necessarily contained in the

ðt; gÞ plane. � then defines the angle between p and the

reference vector t:

cos � ¼ p � t; ð4Þ

sin � ¼ p � g: ð5Þ
This definition of � uniquely specifies the vector p by

p ¼ cos � tþ sin � g: ð6Þ
The vectors s and p are usually available as components in

some laboratory-fixed coordinate system (where they are

constant in most cases). The computational steps necessary to

convert them to components in a crystal-based coordinate

system using the goniometer angles recorded for each reflec-

tion are outlined in Appendix B. This requires knowledge of

the definition of the laboratory-fixed coordinate system (some

conventions used by area-detector processing programs are

summarized in Appendix B), the crystal orientation matrix,

the design of the goniometer instrument, and the conventions

used to define the senses of rotation and zero positions of the
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Figure 1
Diffraction geometry. The figure displays the various unit vectors and
angles defined by Schwarzenbach & Flack (1989). The new additional
geometric objects that are needed for the definition presented in this
paper are displayed in colour.
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goniometer circles. It would therefore be highly desirable if

the  and � values were computed during the integration of

the area-detector diffraction images when all the necessary

information is readily available, and we strongly call for

developers to include these computations in their software

packages. The computation of the azimuthal angle  using the

Schwarzenbach & Flack (1989) convention is already available

as an option in the data-processing program XDS (Kabsch,

1988), but to our knowledge, this facility has not been

implemented in any of the other commonly used area-detector

processing programs.

2.2. Discussion

Once the six values h, k, l, �,  and � have been recorded in

the reflection file, the diffraction geometry can be uniquely

derived for each reflection, without the need to specify any

additional information about the instrument, goniometer

angles or crystal orientation. The vectors s, s0 and p, which

represent directions of physical quantities, can be computed

by the formulae that are summarized in Appendix C.

An alternative proposal would be to specify the vectors s, s0

and p through their direction cosines. A number of data

processing programs already have an option to compute the

direction cosines of s and s0 and write them to the reflection

file. These values can then be used in the refinement of an

empirical absorption surface as proposed by Blessing (1995).

However, direction cosines necessarily refer to certain coor-

dinate axes, which must then be specified to ensure that the

same convention is used by the data-processing software that

computes and writes the direction cosines to the reflection file

and the software that uses these values.1 On the other hand,

the definition of the �,  and � angles is completely inde-

pendent of any coordinate system. The specification of the s, s0

and p vectors through their direction cosines also requires the

recording of more values (nine as opposed to three). We

therefore assert that the specification of the three angles �,  
and � is the most general, unambiguous and economical means

to encode the information about the diffraction geometry.

In practice, it may even be superfluous to record the �
values explicitly as these can be computed, for a given

reflection, from the hkl indices and from the wavelength � of

the incident X-ray beam. As an alternative to �, the value of �
could be recorded. Since in most data sets the wavelength is

constant for large batches of reflections, it is unnecessary to

record the � or � values individually for each reflection.

2.3. Further extension

As a further extension, we can also define a reference vector

t0 lying in the diffraction plane (e; f) and perpendicular to the

diffracted beam direction s0. We define t0 to point upwards;

t0 � f is always positive. Thus

t0 ¼ sin � eþ cos � f: ð7Þ
If the incident X-ray beam is completely linearly polarized

along p and in the absence of AAS, the scattered beam will

also be completely linearly polarized along a direction

denoted by the unit vector p0 and which is obtained by

projecting p onto a plane perpendicular to the scattered beam

direction s0. Thus,

p0 ¼ ðp � t0Þ t0 þ ðp � gÞ g
½ðp � t0Þ2 þ ðp � gÞ2�1=2 ¼

cos � cosð2�Þ t0 þ sin � g

½cos2 � cos2ð2�Þ þ sin2 ��1=2 : ð8Þ

It can be noted here that

ðp � p0Þ2 ¼ cos2 � cos2ð2�Þ þ sin2 � ð9Þ
is the conventional polarization correction factor for diffrac-

tion by a completely linearly polarized X-ray beam. The above

definition for p0 is therefore not applicable when 2� ¼ 90� and
� ¼ 0�. This corresponds to scattering at 90� in the plane of

polarization, a geometry where the scattered intensity (in the

absence of AAS) is zero.

Finally, we can define vectors p? and p0? by

p? ¼ s� p; ð10Þ

p0? ¼ s0 � p0; ð11Þ
such that ðs; p; p?Þ and ðs0; p0; p0?Þ form right-handed ortho-

gonal coordinate systems attached to the incident and

diffracted beam directions, respectively. The computation of

these additional vectors does not require anything more than

knowledge of the cell parameters and, for each reflection, the

hkl indices and the three angles �,  and �.
The scattering of X-rays from an atom that exhibits AAS is

described by a matrix of four elements corresponding to

polarization transfers from the incident beam polarization

components along u and v to the scattered beam polarization

components along the directions u0 and v0 (Templeton &

Templeton, 1982; Fanchon & Hendrickson, 1990; Kirfel et al.,

1991; Schiltz & Bricogne, 2008):

�u0u ¼ tu
0
F u;

�v0u ¼ tv0 F u;

�u0v ¼ tu0 F v;

�v0v ¼ tv0 F v;

ð12Þ

where the unit vectors u and v are mutually perpendicular and

perpendicular to the incident beam direction s, while the unit

vectors u0 and v0 are mutually perpendicular and perpendi-

cular to the scattered beam direction s0. The choice of these

directions is free, but we have demonstrated (Schiltz &

Bricogne, 2008) that the particular choice

u ¼ p; v ¼ p?; u0 ¼ p0; v0 ¼ p0? ð13Þ
can considerably simplify the expressions for AAS in the case

of linearly polarized X-rays.
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1 As an example of possible confusion, the standard convention in the
program SHELX (Sheldrick, 2008) is to use direction cosines defined relative
to the crystal reciprocal lattice axes, whereas the software implementing the
Blessing (1995) method uses direction cosines defined with respect to
orthogonal crystal axes (alternative orthogonalization conventions can give
rise to further confusion in such cases).
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3. Generalization to partially and/or elliptically
polarized X-ray beams

So far we have assumed that the incident X-ray beam is

completely linearly polarized. On synchrotrons, the radiation

emitted in the plane of the electron orbit is indeed linearly

polarized, with the direction of polarization lying in that same

plane. However, the radiation emitted from a bending magnet

is elliptically polarized above and below the plane of the

electron orbit (Bathow et al., 1966; Brunel et al., 1983; Materlik

& Suortti, 1984; Templeton & Templeton, 1988). In most

experiments, a fan of radiation of a certain angular range is

intercepted and focused by optical devices onto the sample.

Thus, the radiation that arrives on the crystal is not purely

linearly polarized (although, with undulator insertion devices,

the degree of linear polarization remains often well above 0.9).

Reflecting optical elements such as crystal monochromators

and focusing mirrors also modify the polarization state of the

beam. With phase plates based on perfect crystals (e.g.

diamond), it is also possible to actively tune the polarization

state of the X-ray beam, to change the polarization plane from

horizontal to vertical (or any other direction) or to convert

linear polarization to circular polarization (Giles et al., 1994;

Hirano et al., 1995). The radiation emitted from a laboratory

X-ray tube is completely unpolarized, but reflecting optics

(monochromators, mirrors, capillary X-ray optics) will induce

partial linear polarization. The mere indication of a direction p

is therefore not sufficient to specify completely the polariza-

tion properties of an X-ray beam in the general case.

3.1. Conventional ways of specifying the polarization

properties of an X-ray beam

The ‘degree of polarization’ is widely used as an additional

quantity to specify the X-ray beam properties. Unfortunately

this concept is not totally unequivocal. What is usually meant

is the degree of linear polarization of the beam, defined in

most cases by the ratio

Dlin ¼ ðIp � InÞ=ðIp þ InÞ; ð14Þ

where Ip is the intensity of the polarization component in the

plane of polarization and In the intensity of the polarization

component perpendicular to that plane. Note that this defi-

nition is only useful if a plane of polarization can be defined.

In the case of elliptical polarization, the ‘plane’ of polarization

can be defined to be the plane containing the major semi-axis

of the ellipse. In the special case of circular polarization, this

plane would be degenerate, but Dlin is anyway zero. However,

for a completely unpolarized beam, Dlin is also zero, but the

beam properties of an unpolarized beam are not the same as

those of circularly polarized X-rays, and, in the presence of

AAS, the scattered intensities differ in the two cases. The

conclusion is that a single degree of (linear) polarization is not

sufficient to specify completely the polarization properties of

an X-ray beam that are needed in the case of AAS.

3.2. Stokes parameters

The Stokes (1852) parameters provide a means of specifying

the most general polarization properties of a nearly mono-

chromatic light beam (Born & Wolf, 1959). They are now

widely used in the field of magnetic X-ray scattering (Blume &

Gibbs, 1988; Lovesey & Collins, 1996, 2001) but they have only

been very rarely used in the context of conventional X-ray

diffraction (Vaillant, 1977; Fanchon & Hendrickson, 1990).

They consist of a set of four real quantities, S0, S1, S2 and S3,

that have the dimensions of intensity. The parameter S0
corresponds to the total intensity of the X-ray beam. The

parameter S1 corresponds to the intensity difference between

the linear polarization components along directions located,

respectively, at 0 and 90� with respect to some reference

direction. The parameter S2 corresponds to the intensity

difference between the linear polarization components along

directions located at 45 and�45� with respect to the reference
direction. Finally, the parameter S3 corresponds to the inten-

sity difference between the right- and left-circular polarization

components.2 If the reference direction is denoted by p

(perpendicular to s), we can write

S0 ¼ IðpÞ þ Iðp?Þ; ð15Þ

S1 ¼ IðpÞ � Iðp?Þ ð16Þ
and

S2 ¼ Iðpþ p?Þ � Iðp� p?Þ; ð17Þ
where IðuÞ denotes the intensity of the linear polarization

component along the direction u. A fundamental property of

the Stokes parameters is given by the following inequality

(Born & Wolf, 1959):

S20 � S21 þ S22 þ S23; ð18Þ
where the equality holds for a completely polarized (not

necessarily linearly polarized) beam.

Since we are only interested in the polarization properties

of the X-ray beam, we can use the three normalized Stokes

parameters, which are also sometimes called Stokes–Poincaré

parameters since they correspond to the Cartesian coordinates

of a point on the Poincaré (1889) sphere,

P1 ¼ S1=S0; P2 ¼ S2=S0; P3 ¼ S3=S0: ð19Þ
As a consequence of equation (18), the values of P1, P2 and P3

always fall between �1 and +1.

The degree of polarization is given by

D ¼ ðS21 þ S22 þ S23Þ1=2=S0 ¼ ðP2
1 þ P2

2 þ P2
3Þ1=2; ð20Þ

the degree of linear polarization is given by

Dlin ¼ ðS21 þ S22Þ1=2=S0 ¼ ðP2
1 þ P2

2Þ1=2 ð21Þ
and the degree of circular polarization is given by
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2 The Stokes parameters can also be defined in terms of electromagnetic
theory (Born & Wolf, 1959) as S0 ¼ hE2

xi þ hE2
yi, S1 ¼ hE2

xi � hE2
yi, S2 ¼

2hExEy cos �i and S3 ¼ 2hExEy sin �i, where Ex and Ey expði�Þ are projections
of the electric field vector along two orthogonal directions x and y, � is the
phase difference between them, and the angular brackets indicate time-
averaged quantities.
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Dcirc ¼ ðS23Þ1=2=S0 ¼ jP3j: ð22Þ
Thus, an unpolarized beam has normalized Stokes parameters

P1 ¼ P2 ¼ P3 ¼ 0, whereas for a circularly polarized beam we

have P1 ¼ P2 ¼ 0, P3 ¼ 	1, with the sign depending on the

polarization sense (+1 for right-circular and �1 for left-

circular polarization).

In order to exploit the polarization properties of synchro-

tron radiation, in particular for experiments that aim at using

AAS effects in macromolecular crystallography, it is necessary

to characterize fully the polarization properties of the X-rays

delivered at a given beamline. Several methods have been

described in the literature to determine experimentally the

three normalized Stokes parameters of a synchrotron beam in

the hard X-ray region (Ishikawa et al., 1991; Shen & Finkel-

stein, 1992; Hirano et al., 1995). We call for beamline scientists

to carry out such measurements and report the polarization

properties of their beamlines in terms of Stokes parameters.

Even though Stokes parameters are a general means to

specify the polarization properties of an X-ray beam, it is clear

that, for a given polarization state, the values of the normal-

ized Stokes parameters P1 and P2 (but not of the parameter

P3) depend on the particular choice of the reference direction

p. We propose that p be an arbitrarily chosen direction

perpendicular to s and fixed in the laboratory frame of

reference. Once the reference vector p has been chosen, the

Stokes parameters will be identical for all reflections recorded

under similar X-ray beam conditions (e.g. it will only be

necessary to record one set of normalized Stokes parameters

for a standard data collection). However, in accordance with

the earlier principles, the reference direction p should be

recorded with respect to the crystal lattice, not the laboratory.

With the definitions given in x2, the direction p can be para-

metrized by the angle � for each reflection record. It should be

noted that the status of p has now changed with respect to the

special case of linear polarization discussed in x2; it does not
necessarily need to correspond to a direction of polarization

or to a direction of main linear polarization, but now simply

represents the arbitrarily chosen reference direction with

respect to which the Stokes parameters S1 and S2 are defined

according to equations (16) and (17). Clearly, in the case of a

nearly linearly polarized beam it would be natural (although

not compulsory) to chose p along the direction of polarization,

which then corresponds to the simplified treatment presented

earlier.

Since the choice of p is arbitrary, alternative choices will

give rise to different normalized Stokes parameters P1 and P2.

Simple geometric considerations show that the set of para-

meters ðP1;P2;P3; �Þ and ðP0
1;P

0
2;P

0
3; �

0Þ are equivalent

(characterize the same polarization state) if

P0
1 ¼ P1 cos½2ð�0 � �Þ� þ P2 sin½2ð�0 � �Þ�; ð23Þ

P0
2 ¼ �P1 sin½2ð�0 � �Þ� þ P2 cos½2ð�0 � �Þ�; ð24Þ

P0
3 ¼ P3: ð25Þ

In summary, we propose that the polarization properties of

the incident X-ray beam in a diffraction experiment should be

specified by the three normalized Stokes parameters P1, P2

and P3, which are defined with respect to an arbitrary refer-

ence direction p that is fixed in the laboratory frame of

reference. The direction p is then encoded, for each reflection

record, with respect to the crystal lattice by using the angle �.

3.3. The general form of the polarization correction factor

using normalized Stokes parameters

As an example of the application of Stokes parameters, the

general form of the polarization correction factor for a mosaic

crystal has been derived by Vaillant (1977). Using the notation

and conventions described here, the polarization correction

factor for diffracted intensities has the following expression:

P ¼ ð1=2Þ ½1þ cos2ð2�Þ� � ðP1=2Þ cosð2�Þ sin2ð2�Þ
� ðP2=2Þ sinð2�Þ sin2ð2�Þ: ð26Þ

Clearly, the polarization factor can be computed for a given

reflection from the knowledge of the two normalized Stokes

parameters P1 and P2 and the angles � and �. No further

information about the experimental geometry is required.

This is the most general form of the polarization correction,

from which all other expressions reported in the literature

(Whittaker, 1953; Ramaseshan & Ramachandran, 1953;

Azároff, 1955; Levy & Ellison, 1960; Phillips et al., 1977; Kahn

et al., 1982), which are often limited to particular geometric

settings, can be derived.

If a data set with a sufficient redundancy is available, the

Stokes parameters P1 and P2 could even be refined (along with

other scale factors) as part of the data-reduction procedure.

4. Implementation

The ideas presented here have been implemented in the

software package SHARP (de La Fortelle & Bricogne, 1997;

Bricogne et al., 2003), which is now capable of refining and

exploiting AAS properties of anomalously scattering atoms in

proteins (Schiltz & Bricogne, 2008). The auxiliary program

SCALA2SHARP (Schiltz & Bricogne, 2007) prepares a multi-

record MTZ data file produced by the CCP4 (Collaborative

Computational Project, Number 4, 1994) program SCALA

(Evans, 1993) for input to SHARP. In particular, SCALA2-

SHARP adds data columns containing �,  and � for each

measurement to the reflection file. SHARP is now able to read

these values and internally computes the s, s0, p and p0 vectors
that are needed for the refinement of AAS tensors. In the case

of partially and/or elliptically polarized X-rays, the normalized

Stokes parameters can be declared as refineable parameters at

the Batch level within the hierarchical organization of data

implemented in SHARP (de La Fortelle & Bricogne, 1997).

APPENDIX A
Computation of w and n

In general, any data-processing program encodes the crystal

orientation in the form of a matrix ½A� ¼ ½U� ½B� (Busing &
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Levy, 1967). ½B� is a pure orthogonalization matrix, which

transforms the coordinates of a vector v in the reciprocal

lattice basis, written as a column matrix ½v�RL, to coordinates in
a crystal Cartesian coordinate system, written as a column

matrix ½v�CC:
½v�CC ¼ ½B� ½v�RL: ð27Þ

In particular, for a scattering vector H,

½H�CC ¼ ½B�
h

k

l

0
@

1
A: ð28Þ

The exact form of ½B� depends on the choice of the orthogo-

nalization convention. Most data processing program use the

original (Busing & Levy, 1967) convention, which sets the X

axis of the Cartesian coordinate system parallel to a� and its Z

axis parallel to c. In some data-processing programs, the

entries of the ½B� matrix are, however, multiplied by the

wavelength �, ostensibly to make them dimensionless.

½U� is a pure rotation matrix, which transforms the coordi-

nates of a vector v in the crystal Cartesian basis to coordinates

in a laboratory Cartesian coordinate system, written as a

column matrix ½v�Lab, at a reference position (�) for the

diffractometer angles:

½v��Lab ¼ ½U� ½v�CC: ð29Þ
The exact form of ½U� depends on the choice of the laboratory-
fixed coordinate system. The conventions used in some data-

processing programs are summarized in Appendix B.

The rotations generated by the goniometer axes are

represented by an orthogonal matrix denoted as ½��, so that

½v�Lab ¼ ½�� ½v��Lab: ð30Þ
The exact form of ½�� depends on the choice of the laboratory-
fixed coordinate system, on the design of the goniometer

instrument, and on the conventions used to define the rotation

senses (clockwise or anticlockwise) and zero positions of the

goniometer axes. For a certain set of diffractometer angles

���� ¼ ð!; �; �; ’; . . .Þ we then have

½v�Lab ¼ ½�ð����Þ� ½U� ½B� ½v�RL ð31Þ
and, because of equation (27),

½v�Lab ¼ ½�ð����Þ� ½U� ½v�CC: ð32Þ
The coordinates of the incident beam direction s and beam

polarization direction p in the laboratory coordinate system

must be known (they are usually constant). They can then be

converted to crystal Cartesian coordinates for each reflection

measurement, knowing the diffractometer angles ����:

½s�CC ¼ t½U� t½�ð����Þ� ½s�Lab; ð33Þ

½p�CC ¼ t½U� t½�ð����Þ� ½p�Lab; ð34Þ
where the left superscript t denotes matrix transposition.

Once the ½H�CC, ½s�CC and ½p�CC matrices have been

computed, all the vectors required for the subsequent calcu-

lations are available as column matrices of components in the

same crystal Cartesian coordinate system. The angles �,  and

� can then be computed by the following sequence of calcu-

lations:

(i) First, the direction of the diffracted beam is computed by

application of the diffraction condition, knowing the wave-

length �:

s0 ¼ sþ �H: ð35Þ
(ii) The right-handed basis ðe; f; gÞ can then be constructed:

e ¼ �ðs0 þ sÞ=js0 þ sj; ð36Þ

f ¼ H=jHj; ð37Þ

g ¼ e� f: ð38Þ
(iii) The reference direction q ¼ Q=jQj is computed

according to the Schwarzenbach & Flack (1989) convention

[equation (2)]. Note that the components of Q given by

equation (2) are expressed in the direct-lattice basis. The

conversion to crystal Cartesian coordinates is given by

½Q�CC ¼ ðt½B�Þ�1
h

h

0

0
@

1
A ð39Þ

if h ¼ k ¼ l or

½Q�CC ¼ ðt½B�Þ�1
k� l

l � h

h� k

0
@

1
A ð40Þ

otherwise.

(iv) The angles � and  can then be computed, respectively,

by

cos � ¼ �s � e; ð41Þ

sin � ¼ s � f; ð42Þ
and

cos ¼ q � g; ð43Þ

sin ¼ q � e: ð44Þ
(v) Finally, the reference vector t and the � angle are

computed by

t ¼ � sin � eþ cos � f ð45Þ
and

cos � ¼ p � t; ð46Þ

sin � ¼ p � g: ð47Þ

APPENDIX B
Laboratory coordinate systems used by some area-
detector data-processing programs

(i) The program MOSFLM (Leslie, 1993) uses a laboratory

coordinate system ex, ey, ez that sets ex parallel to the incident

beam direction s and pointing in the same direction; ez is set
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parallel to the rotation axis (which is assumed to be perpen-

dicular to s) and its direction is chosen so that a positive

rotation is clockwise when viewed from the origin towards the

tip of ez; ey is chosen so as to complete a right-handed

orthogonal system. Thus, the coordinates of s in this labora-

tory system are always

½s�Lab ¼
1

0

0

0
@

1
A; ð48Þ

but the coordinates of p depend on its orientation with respect

to the rotation axis. If we designate � the angle between p and

ez, we can write

½p�Lab ¼
0

sin �
cos �

0
@

1
A: ð49Þ

Thus, on a synchrotron beamline (where p is in the horizontal

plane), a horizontal rotation axis will give � ¼ 0, and for a

vertical rotation axis we have � ¼ 90�.
(ii) The program DENZO, which is part of the HKL

package (Otwinowski & Minor, 1997), uses a laboratory

coordinate system ex, ey, ez that sets ez parallel to the incident

beam direction s and ex parallel to the rotation axis; ey is

chosen so as to complete a right-handed orthogonal system.

(iii) The program XDS (Kabsch, 1988) allows the user free

choice of a right-handed orthonormal laboratory coordinate

system. The incident beam direction and the direction of the

rotation axis are then specified by their components with

respect to the chosen coordinate system. The direction of

X-ray polarization is not specified directly, but rather the

components of the normal to a plane containing the polar-

ization direction (this corresponds to p? in our notation).

(iv) The convention defined for the crystallographic binary

file and image-supporting crystallographic information file

(CBF/imgCIF) representations is as follows (Bernstein, 2005).

The data items in the AXIS category record the information

required to describe the goniometer, detector, source and

other axes needed to specify a data-collection setup. These

vectors are referred to a right-handed laboratory coordinate

system with its origin at the specimen. The X axis of this

system is aligned to the mechanical axis pointing from the

specimen along the principal axis of the goniometer. The Z

axis is the component of the source axis (defined to be the axis

running from the sample to the source) orthogonal to the X

axis. The Y axis completes an orthogonal right-handed system.

APPENDIX C

Computation of s, s000 and p from h, k, l, h, w and n

We here summarize the formulae that allow one to compute,

from the six values h, k, l, �,  and � recorded for each

reflection measurement, the diffraction geometry.

(i) First, the scattering vector H is computed from the ðhklÞ
indices. Similarly, the reference direction q ¼ Q=jQj is

computed by using the Schwarzenbach & Flack (1989)

convention [equation (2)]. These computations only require

knowledge of the unit-cell parameters.

(ii) Knowledge of the  angle allows one to construct the

right-handed basis ðe; f; gÞ:
f ¼ H=jHj; ð50Þ

e ¼ sin qþ cos ðf � qÞ; ð51Þ

g ¼ e� f: ð52Þ
(iii) Knowledge of the � angle allows one to construct the

reference vector t by applying equation (7).

(iv) Finally, the vectors s, s0 and p, which represent direc-

tions of physical quantities, can be computed as

s ¼ � cos � e� sin � f; ð53Þ

s0 ¼ � cos � eþ sin � f; ð54Þ

p ¼ cos � tþ sin � g: ð55Þ
(v) If needed, the vectors p0, p? and p0? can then be

computed from equations (8), (10) and (11), respectively.

All these vectors can be computed as column matrices of

components in a crystal-based coordinate system. The choice

of which system the end-user or software decides to employ is

completely free, since the definition of the �,  and � angles is
not attached to any particular coordinate system.

We thank Dieter Schwarzenbach for careful reading of the

manuscript.
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