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Abstract—The standard separable 2-D wavelet transform (WT)
has recently achieved a great success in image processing because
it provides a sparse representation of smooth images. However,
it fails to efficiently capture 1-D discontinuities, like edges or
contours. These features, being elongated and characterized
by geometrical regularity along different directions, intersect
and generate many large magnitude wavelet coefficients. Since
contours are very important elements in the visual perception of
images, to provide a good visual quality of compressed images, it is
fundamental to preserve good reconstruction of these directional
features. In our previous work, we proposed a construction of
critically sampled perfect reconstruction transforms with direc-
tional vanishing moments imposed in the corresponding basis
functions along different directions, called directionlets. In this
paper, we show how to design and implement a novel efficient
space-frequency quantization (SFQ) compression algorithm using
directionlets. Our new compression method outperforms the stan-
dard SFQ in a rate-distortion sense, both in terms of mean-square
error and visual quality, especially in the low-rate compression
regime. We also show that our compression method, does not
increase the order of computational complexity as compared to
the standard SFQ algorithm.

Index Terms—Directional transforms, directional vanishing mo-
ments (DVMs), image coding, image orientation analysis, image
segmentation, multiresolution analysis, nonseparable transforms,
wavelet transforms (WTs).

I. INTRODUCTION

PROVIDING efficient transform-based representations of
images is an important problem in many areas of image

processing, like approximation and compression. An efficient
representation requires sparsity, that is, most of the information
has to be contained in a few large-magnitude coefficients.

The standard 2-D wavelet transform (WT) has become very
successful in recent years because it provides a sparse multires-
olution representation of natural images due to the presence of
vanishing moments in the high-pass (HP) filters (enforced by
imposing zeros at ) [3]. This method is conceptually
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simple and has a low computational complexity because of the
simple separable 1-D filtering and subsampling operations. For
these reasons, the 2-D WT has been adopted in the image com-
pression standard JPEG-2000.

However, the performance of the 2-D WT is limited by the
spatial isotropy of the basis functions and the construction only
along the horizontal and vertical directions, which does not
provide enough directionality. For this reason, the standard
2-D WT fails to provide a sparse representation of oriented
1-D discontinuities (edges or contours) in images [1]. These
features are characterized by a geometrical coherence that is
not properly captured by the isotropic wavelet basis functions.
Thus, to provide an efficient representation of contours, the
basis functions are required to be anisotropic and to have di-
rectional vanishing moments (DVMs) along more than the two
standard directions. Several previous approaches, like curvelets
[4], contourlets [5], bandelets [6], [7], and wedgeprints [8],
have already addressed this nontrivial task. However, these
methods have higher complexity than the standard 2-D WT and
require nonseparable filtering and filter design. Furthermore,
these transforms are often oversampled, thus, making it non-
trivial to have efficient image compression methods. Another
directional method that resides on content-based adaptation of
transform directions has already been reported in [9], where
image is segmented and the segments are separately resampled
and transformed so that the dominant directions are aligned
with the horizontal or vertical direction. Similarly, in [10], the
WT is applied along curves such that the energy in the HP
subband is minimized.

Several recently proposed directional approaches use the
lifting scheme [11] in image compression algorithms. This
scheme is exploited in [12], where transform directions are
adapted pixel-wise throughout images. A similar adaptation is
used in [13] and [14], but with more (9 and 11, respectively)
different directions. In addition, the method in [13] uses the
pixel values at fractional coordinates obtained by interpola-
tion. Lifting is also implemented in [10] and in [15], where
the wavelet packet decomposition is applied. However, even
though these methods are computationally efficient and provide
good compression results, they show a weaker performance
when combined with zerotree-based compression algorithms.

In our previous work [2], [16], [17], we designed critically
sampled anisotropic basis functions with DVMs across any two
directions with rational slopes, which we called directionlets.
Our basis construction retains the separable processing and the
computational simplicity of the standard 2-D WT. We showed
that directionlets outperform the standard 2-D WT in nonlinear
approximation (NLA) of images while keeping a similar com-
plexity. In [17], we also analyzed the approximation power of
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directionlets when applied to piecewise smooth synthetic im-
ages with smooth twice continuously differentiable disconti-
nuity curves.

The improvement in the efficiency of image representation
provided by directionlets motivated us to implement our trans-
form in the wavelet-based image compression methods that
exploit the correlation of wavelet coefficients across scales
[18]–[20]. We showed in [21] that directionlets can be struc-
tured in hierarchical multiscale trees of transform coefficients,
similarly to the wavelet zerotrees originally proposed in [18].
Furthermore, we demonstrated that directionlets outperform
the standard 2-D WT in the zerotree compression method [18]
at low operational bit rates.

Our main goal is to design and implement a compression
method based on space-frequency quantization (SFQ) [20]
using directionlets instead of the WT. In the SFQ, the best
hierarchical wavelet trees are chosen using Lagrangian opti-
mization, that is, the hierarchical trees are pruned such that
the total Lagrangian cost is minimized. Furthermore, the best
quantizer step size is also found using Lagrangian optimization
and the chosen quantizer is applied to all wavelet coefficients
retained in the trees. Since directionlets retain orthogonality
inherited from the 1-D wavelet filter-banks, thus conserving the
mean-square error (MSE) in the transform domain,1 they can be
conveniently applied in the various compression methods based
on Lagrangian optimization. In this paper, we demonstrate
that directionlets lead to a significant gain in the compres-
sion performance, especially at low operational bit rates. The
compressed images obtained using our method are better than
the images obtained using the standard SFQ both in terms of
MSE and visual quality. Furthermore, because of directional
adaptation, the artifacts that appear as a result of compression
of images are aligned with locally dominant orientations across
the image domain and are, thus, less visually annoying. At the
same time, our method retains the same order of computational
complexity as the standard method.

In Section II, we briefly review principles of the standard SFQ
and the construction of directionlets. Then, in Section III, we
provide the motivation for spatial segmentation of images and
present the details of the SFQ compression method based on di-
rectionlets. The segmentation process can cause some blocking
effect in the compressed images, which is especially noticeable
at low bit rates. For that reason, in the same section, we pro-
vide a deblocking algorithm used to remove the blocking effect
and also we analyze the computational complexity of the com-
pression method. We show that the computational complexity of
our compression algorithm is not substantially increased when
compared to the complexity of the SFQ method. In Section IV,
we present the results of compression for several standard test
images. Finally, in Section V, we provide several conclusions.

II. BACKGROUND AND RELATED WORK

Here, we give a brief overview of the related work. First, we
review the basic definitions and properties of the SFQ compres-

1Actually, if the used 1-D wavelet filter-bank is biorthogonal, then direction-
lets are also biorthogonal and the mean-square error is not exactly preserved.
However, in practice, the frequently used biorthogonal filter-banks, like “9-7”
[22], are very close to orthogonal and the difference between the mean-square
error in the original and transform domains is negligible.

Fig. 1. Wavelet coefficients are grouped in tree structures to exploit the mul-
tiscale correlation. Each coefficient has four children in the next finer scale in
the 2� 2 region that corresponds to the same spatial location. The exceptions
are the coefficients at the coarsest scale, which have only three children, and the
ones in the finest scale, which have no children.

sion method explained in [20] and based on the joint rate-dis-
tortion (R-D) optimization using the Lagrangian method.2 Then,
we revisit the construction of directionlets presented in [2].

A. Space-Frequency Quantization

The SFQ image compression method for images was origi-
nally proposed in [20]. In the follow-up work [23], the authors
analyzed the extension of the SFQ using wavelet packets. How-
ever, despite the improvement obtained along this direction, in
this paper, we focus only on the adaptation of directionlets to the
first implementation of the SFQ using the standard WT given
in [20].3 Here, we briefly revisit SFQ and explain the basic
concept.

The main idea behind SFQ is to minimize a MSE distortion
measure of the reconstructed image for a given bit-rate con-
straint. The algorithm exploits the multiscale correlation among
wavelet coefficients produced by the standard 2-D WT. The co-
efficients are structured in multiscale trees so that one tree con-
sists of the coefficients from different transform scales at the
same spatial location (see Fig. 1). Each tree has a root at the
corresponding coefficient from the coarsest scale. These coeffi-
cients have three children represented as nodes in the next finer
scale. In turn, each of these children-nodes have four children in
the next subsequent scale with the same orientation grouped in
the 2 2 region at the same spatial location. The tree structure
grows iteratively through scales until the finest scale is reached,
where the corresponding nodes have no children. The same tree
structure is used in [18], where it is referred to as zerotrees,
whereas a similar one is exploited in [19].

In the process of the SFQ encoding, a subset of wavelet
coefficients is discarded (set to zero), whereas the rest is
quantized using a single uniform scalar quantizer. The main
tasks of the SFQ are a) to select the subset of coefficients that
should be discarded and b) to choose which quantization step
size should be used to quantize the retained coefficients. In

2A review of the main principles of Lagrangian optimization is given in Ap-
pendix I.

3We leave the implementation using wavelet packets for the future work.
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Fig. 2. Standard SFQ encoding consists of four blocks. First, the standard 2-D
WT is applied on the input image x. Then, the SFQ encoder decides which
subset of the wavelet coefficients should be discarded based on the R-D opti-
mization. The retained coefficients are quantized using the optimal quantization
step size, which is also chosen based on the R-D optimization. Finally, the output
stream of coding symbols is entropy coded. The data �X is transmitted together
with the map information and the quantization step size as a side information.

both tasks, Lagrangian optimization (see Appendix I) is used
to select the optimal solution in the R-D sense. The locations
of the retained coefficients are encoded and sent as a map
information, whereas the quantized magnitudes are entropy
coded. The block diagram of the encoder is shown in Fig. 2.

The optimization process consists of three phases: a) space-
frequency tree pruning, b) predicting the map, and c) joint opti-
mization of the quantizers. Notice that even though the optimal
result of the tree pruning is influenced by the bit rate spent for
predicting and encoding the map in b), the optimization process
in a) is assumed to be independent and is updated in the subse-
quent phase. Notice also that the MSE is measured directly in
the transform domain to reduce the computational complexity,
with no loss of optimality due to the orthogonality.

The optimization process in the first phase a) is defined as
follows. For all nodes in the full depth multiscale tree, check
bottom-up if it is cheaper to keep or to zero out the descendant
nodes in a R-D sense. The cost of pruning the descendants is
equal to the sum of squares of the descendant magnitudes (since
no bit rate is spent). The cost of keeping and encoding the de-
scendants is the Lagrangian cost obtained combining the en-
tropy-based estimate of the bit rate and the quantization MSE.
The process is iterated on the resulting pruned multiscale tree
using the updated entropy-based estimates of the bit rates until
the convergence is reached, that is, until no new node is pruned.
As a result of the pruning process, we can assign a binary map
to each node defining if the node has children or not.

In the second phase b), the locations of the retained nodes are
encoded as a map information using a generalized version of the
predictive scheme from [24], where each subband is processed
independently. First, the variance of each parent node is cal-
culated as the energy of a 3 3 block of coefficients from the
same subband centered at the corresponding coefficient using
the quantized values. Then, the variances in each subband are
ordered in decreasing magnitude. The coefficients with the vari-
ance above the threshold are considered significant, thus
having children and requiring no map information. Similarly,
the coefficients with the variance below the threshold are
considered insignificant having no children and also requiring
no map information. The map information is required only for
the nodes with the variance between and . The values of

and are chosen so that the corresponding total Lagrangian
cost is minimized and the optimal values are sent as side infor-
mation for each subband.

Fig. 3. Frequency decomposition of the standard wavelet transform (WT) and
anisotropic wavelet transform (AWT). (a) The frequency decomposition of the
standard 2-D WT. The number of transforms along the horizontal and vertical
directions is equal at each scale and, thus, the transform is isotropic. The cor-
responding basis functions have symmetric square support. (b) The frequency
decomposition of the AWT. The transform is anisotropic because the transform
steps along one direction are applied more times than the ones along the other
direction.

Finally, in the last phase c), the previous optimization process
[the phases a) and b)] is run exhaustively for each value of the
quantization step size from the list

.4 The value that minimizes the Lagrangian cost
is optimal and applied to all retained wavelet coefficients. Sim-
ilarly, the coefficients from the root of the multiscale trees (the
scaling coefficients) are quantized using another quantization
step size that is also optimized exhaustively using the values
from the same list. The quantized coefficients are entropy en-
coded using an adaptive entropy coder [25].

Notice that the probability density function of the low-pass
(LP) scaling coefficients is significantly different when com-
pared to the one of the wavelet coefficients (which is peaked
at zero). Thus, independent optimization of the LP quantiza-
tion step size is reasonable. In contrast, the wavelet coefficients
at different scales have different sizes of the peak at zero [22].
However, after the thresholding imposed by tree pruning (where
many coefficients with small magnitudes are discarded), the
peaks are smoothed and the probability density functions at dif-
ferent scales are more similar. For that reason, only one quanti-
zation step size is used for all retained wavelet coefficients.

B. Directionlets

In our previous work [2], [16], we showed that the standard
2-D WT fails to provide an efficient representation of oriented
and elongated objects, like contours. For that reason, we pro-
posed a transform construction with anisotropic basis functions
built along different directions, which we called direction-
lets. Here, we review the construction and basic properties of
directionlets.

Recall that, in the standard 2-D WT, the number of 1-D trans-
forms along the horizontal and vertical directions is the same
at each scale, that is, the standard 2-D WT is isotropic [see
Fig. 3(a)]. Consequently, the corresponding basis functions are
also isotropic [with the square supports; see Fig. 4(a)]. How-
ever, elongated objects in images produce many large magni-
tude wavelet coefficients and this is the main reason for a lower

4The interval is optimized ad-hoc.
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Fig. 4. Basis functions (directionlets) of the standard and anisotropic wavelet
decomposition for different transform directions and 1-D filter-banks. The
standard wavelet frequency decomposition is shown in Fig. 3(a), whereas
the anisotropic decomposition is presented in Fig. 3(b). (a) The standard 2-D
WT using the Haar 1-D filter-bank. (b) The skewed isotropic 2-D WT with
the transform directions along 45 and �45 using the Haar 1-D filter-bank.
(c) The skewed AWT (S-AWT) with the transform directions along 45 and
�45 using the Haar 1-D filter-bank. (d) The standard 2-D WT using the
biorthogonal 9-7 1-D filter-bank. (e) The skewed isotropic 2-D WT with
the transform directions along 45 and �45 using the biorthogonal 9-7
1-D filter-bank. (f) The S-AWT with the transform directions along 45 and
�45 using the biorthogonal 9-7 1-D filter-bank. In all cases, directionlets are
critically sampled and separable.

efficiency of the standard 2-D WT in representation of these
objects.

In contrast, in the anisotropic WT (AWT), the transform steps
along one out of two directions are applied more than along the
other. The frequency decomposition shown in Fig. 3(b) corre-
sponds to an example of the AWT, where the number of the hor-
izontal transform steps is twice the number of the vertical trans-
form steps. This leads to anisotropic basis functions, elongated
along the chosen transform direction [the horizontal for the ex-
ample in Fig. 3(b)] at each scale.

The HP filters in both the standard 2-D WT and the AWT have
vanishing moments only along the horizontal and vertical di-

Fig. 5. Lattice � determined by the generator matrixM = (d ;d ) parti-
tions the cubic lattice into two cosets (black and white circles). The transform
(including filtering and subsampling) is performed along the first vector d of
the matrixM . The retained pixels in the subsampling operation belong to the
sublattice � determined by the generator matrix M = (2d ;d ) . The
transform operations are performed in each coset separately.

rections. To impose vanishing moments along more directions,
we proposed in [2] and [16] a transform construction along a
general pair of directions with rational slopes based on integer
lattices.

Recall that a full-rank integer lattice consists of the pixels
obtained as linear combinations of two linearly independent in-
teger vectors , and , where the coefficients are also integers.
These two vectors form a generator matrix as-
sociated to the integer lattice. Any integer lattice is a sublattice
of the cubic integer lattice . Recall also that the cubic lattice

can be partitioned into cosets of the lattice .
The 1-D WT (including both filtering and subsampling oper-

ations) is applied on the pixels of the lattice located along the
direction determined by the first vector in the corresponding
generator matrix . The pixels retained after the subsampling
operation belong to the sublattice of the original lattice
determined by the generator matrix . Such
a subsampling operation allows for alignment of the retained
pixels in the direction determined by the second vector and
efficient iteration of transform steps. Recall that, if the cubic lat-
tice is partitioned into more cosets, then the processing is per-
formed in each coset separately. An example of the lattice-based
transform is shown in Fig. 5 for the transform directions
and and two cosets.

The transform obtained as a combination of the lattice-based
filtering and subsampling and the frequency decomposition
used in the AWT results in the skewed AWT (S-AWT). The
basis functions of the S-AWT, which we call directionlets, are
elongated along one of the two transform directions (not neces-
sarily horizontal or vertical). Several examples of directionlets
are shown in Fig. 4 with different constructions and transform
directions. Notice that, in the case , direction-
lets inherit resolution-scalability from the standard 2-D WT,
that is, the lowest frequency subband can be considered as a
low-resolution version of the original image.

Notice also that, as shown in [2] and [16], anisotropy and
the directionality power of directionlets allow for more effi-
cient representation of elongated objects generating fewer large
magnitude transform coefficients. Here, we want also to em-
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phasize that directionlets are fully separable since all the basic
operations (filtering and subsampling) are 1-D. Furthermore,
the computational complexity of the transform is low and all
the standard wavelet theory carries over. At the same time and
very importantly, directionlets are critically sampled allowing
for efficient compression algorithms based on Lagrangian opti-
mization, as explained in the next section.

III. SPACE-FREQUENCY QUANTIZATION USING DIRECTIONLETS

Now, we show how directionlets can be successfully
combined with the standard SFQ compression approach, re-
sulting in an adaptive compression method using Lagrangian
optimization.

First, we motivate and explain our spatial segmentation
algorithm and its local adaptation of transform directions in
each image segment. Then, we explain the construction of our
adaptive compression algorithm. Finally, we describe a post-
processing of the reconstructed images in order to remove the
blocking effect, which appears at low bit-rate compression due
to the independent treatment of each block. We also analyze
computational complexity of the entire method.

A. Spatial Segmentation

As explained in Section I, the requirement for basis func-
tions to capture efficiently directional information in images is
to have DVMs along more than only the standard (horizontal
and vertical) directions. However, images have geometrical ori-
ented features that vary over space. Directionality, thus, can be
considered as a local feature, defined in a small neighborhood.

Since directionlets can have up to 2 DVMs across any two
directions with rational slopes, we have to adapt the choice of
directions locally to each neighborhood. Thus, this implies a
need for spatial segmentation as a way of partitioning an image
into smaller segments with one or a few dominant directions per
segment.

Even though there exist many ways to segment image, we
choose the iterative quad-tree segmentation [26]–[29] as the
simplest method in the sense of encoding efficiency (only one
bit per quad-tree node is required to transmit the information on
the segmentation process).5

Therefore, we apply the S-AWT independently for each seg-
ment in an image. The two transform directions per segment are
chosen separately to match the two local and most dominant di-
rections. This choice is based on Lagrangian R-D optimization
and is explained in more details in the sequel.

B. Compression Algorithm

The implementation of the S-AWT is described in [2] and
reviewed in Section II-B. Here, we present several details of
the implementation of our transform and, then, we explain our
compression algorithm.

Even though the original construction of the S-AWT allows
for anisotropy, we do not make use of it here. The main reason

5Notice that we are aware of a recent analysis of other more general seg-
mentation methods [30], but the implementation of these methods in our image
compression is left for future work.

for this is the quad-tree spatial segmentation, which is isotropic.
As we noticed in the experiments and contrasting with the case
analyzed in [2] (where an anisotropic segmentation was used
in the analysis of asymptotic behavior in nonlinear approxima-
tion), an anisotropic transform applied to isotropic segments
results in a less efficient representation. Furthermore, an
anisotropic transform requires more bits to specify the choice
of the transform directions when compared to the corresponding
isotropic transform. More precisely, because of asymmetry of
the transform directions, one more bit per transform is needed
to specify which transform direction (out of two) is enforced in
the anisotropic construction. For those reasons, we restrict the
S-AWT only to isotropic realizations. However, notice that we
still allow for different directions in the construction.

As mentioned earlier, the construction of the S-AWT is based
on integer lattices. If the corresponding lattice partitions the
cubic space into more cosets, then the iterated processing is
applied in all cosets separately. However, since some neighbor
pixels can be classified in different cosets, the separate filtering
does not exploit efficiently the correlation among those pixels,
thus leading to less sparse representation in the transform do-
main. For that reason, we use only integer lattices that generate
one coset, that is, lattices such that . Even
though this constraint seems to be severe at a first glance, this
still allows for enough combinations of transform directions, as
we show next.

In the practical implementation of the compression algorithm,
we use four transform directions: 0 90 45 , and 45 . These
directions are represented by the following vectors: (1,0), (0,1),
(1,1), and ( 1,1), respectively. Notice that these four directions
allow for six different linearly independent pairs of transform
directions.6 However, the combination of 45 , and leads
to two cosets in the lattice and is, therefore, discarded. Thus, the
other five combinations are used in the optimization process.

The optimal number of transform levels depends on the size
of the compressed images and segments, their content and com-
plexity. However, for the various images we use in this paper,
the best number of levels is always 5. In the filtering process,
the 1-D biorthogonal “9-7” filter-bank [22] is used because of
the good visual quality of the reconstructed images. To prevent
a strong border effect, the symmetric extension is applied when
the filters are convolved with the pixels that are surrounding the
original support of the image and also the segments.7

Recall that the S-AWT provides a similar multiresolution
analysis as the standard 2-D WT. Thus, directionlets can also
be grouped in multiscale hierarchical trees, where all coeffi-
cients (except the ones in the finest scale) have children—the
coefficients in the next finer scale at the same spatial location
(revisit Fig. 1). The multiscale grouping of directionlets allows
for more efficient capturing of the preserved correlation among
the coefficients across scales. Notice that, even though the
transform can be applied along nonstandard directions, the

6Here, by linear independence of a pair of directions, we mean that the two
corresponding vectors are linearly independent.

7Since the “9-7” filter-bank consists of linear-phase filters, the symmetric ex-
tension preserves critical sampling in the transform domain.
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Fig. 6. Multiscale grouping of wavelet coefficients. Children are grouped in
squares 2� 2 and joint to the corresponding parent. The shape of the children
groups is not affected by the transform directions. The example shows grouping
in the case of the transform directions determined by the vectors (1,0) and (1,1)
at the two consequent scales. In the left-hand figure, the coefficients are obtained
after two filtering and subsampling steps resulting in the generator matrixM .
In the right-hand figure, the children-coefficients are obtained after only one
transform step and the corresponding generator matrix isM .

corresponding sampling structure is always rectangular since
the equivalent sublattices can be described by the generator
matrices , where is the identity matrix.8 For that
reason, the children are grouped in squares of the size 2 2
with the sides aligned in the horizontal and vertical directions.
An example of parent-children grouping is shown in Fig. 6 for
the transform directions determined by the vectors (1,0) and
(1,1).

As mentioned earlier, the list of allowed quantization step
sizes in the original SFQ algorithm is restricted to the values

. Since we also address the
low bit-rate compression, we have to adapt this list by allowing
coarser quantization (that is, larger values for ). The list of
step sizes that we consider is optimized ad-hoc and given by

.
The compression algorithm consists of several embedded op-

timization phases. First, spatial segmentation is applied on the
entire image in the original domain and, then, S-AWT is ap-
plied on each segment separately using all allowed combina-
tions of transform directions. For each segment and combina-
tion of transform direction, the optimal encoding is found fol-
lowing the same philosophy as in the optimization phases pro-
posed in [20] and referred to in Section II-A as phases (a) and
(b), adapting it to our additional freedom of directions. In Al-
gorithm 1, we present the full compression method without re-
peating these phases in detail. We focus only on the optimiza-
tion phases that handle the spatial segmentation and choice of
directions.

The variable is chosen a priori. In our experi-
ments, we set . Notice that the jump in Step 1 is
not a loop, but a recursive call, where a newly generated smaller
segment is forwarded as an argument for each call. The op-
timal choices of the spatial segmentation, transform directions
for each segment and the quantization step sizes are encoded as
side information that is added to the output bit stream. The cost
of these side information bits is added to the total Lagrangian
cost of encoding segments and is used when the optimal seg-
mentation is calculated.

Notice also that the standard SFQ can be considered as a spe-
cial case of the proposed algorithm for and the

8The proof is trivial and we do not show it here.

Algorithm 1 The Full Adaptive SFQ Compression
Algorithm Using Directionlets

Step 0: Set ,

Step 1: If , then:

Apply quad-tree segmentation in the original domain.
For each of the 4 segments go recursively to Step 1 with

.

Step 2: For each pair of transform directions from the list

Apply S-AWT to each segment using isotropic
construction and build the hierarchical trees.

Quantize the LP coefficients using all values
and find the one

that minimizes the Lagrangian cost.
For each

Prune the trees so that the resulting tree minimizes
the Lagrangian cost [phase a) from Section II-A].

For each subband from coarser to finer scales [phase
b) from Section II-A]:
— Order coefficients in descending order of variances

computed as the sum of squares in the 3 3
neighborhood.

— Optimize , and .
Compute and record the resulting Lagrangian cost.

Choose the best that minimizes the Lagrangian cost.

Step 3: Choose the best pair of transform directions that
minimizes the Lagrangian cost.

Step 4: If , then:

If the sum of the Lagrangian cost of the current segment
and the cost of the side bits is smaller than the sum of the
Lagrangian costs of its children-segments and the costs
of their side bits, then keep only the current segment and
discard the children-segments.

Otherwise, keep its children-segments and set the
Lagrangian cost of the current segment to be the sum of
the Lagrangian costs of the children-segments and the
costs of their side bits.

Step 5: Encode the quantized coefficients and map information
for each segment using an adaptive arithmetic coder.

list of the allowed transform directions reduced to a single entry
(0 , 90 ).

C. Deblocking

In Section III-A, we explained the need of spatial segmenta-
tion of images and independent adaptation of transform direc-
tions in each segment. However, since the segments are trans-
formed separately, the resulting reconstruction may be affected
by a blocking effect, which is visible as sharp artificial edges
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along the segment boundaries. This effect is especially severe in
the case of compression at low bit rates because the differences
between the reconstructions of neighbor segments are larger.

The same issue appeared in the old JPEG standard in the 90s
[31]. Since then, there have been many successful deblocking
algorithms [32], [33]. In this paper, we use the deblocking
algorithm proposed in [33], which is based on the overcom-
plete wavelet representation proposed in [34]. In this method,
the wavelet coefficients produced by two levels of the three
channel (one LP channel, horizontal and vertical HP channels)
undecimated WT are thresholded, whereas the corresponding
scaling coefficients are smoothed. Then, the corresponding in-
verse transform is applied to the processed scaling and wavelet
coefficients.

The original deblocking algorithm from [33] was proposed
for the JPEG standard, where the size of segments was small
and the tiling was fine resulting in a significant improvement in
both the corresponding MSE and the visual quality of the recon-
structed images. In our method, the segments are larger than in
the case of the JPEG standard and, for that reason, the number
of pixels affected by the blocking effect is smaller. Thus, the im-
pact of the deblocking algorithm on the MSE is negligible (the
improvement obtained in our experiments is less than 0.05 dB).
However, the visual quality of the deblocked images is improved
importantly, as shown in Section IV.

D. Computational Complexity

Let us first calculate the order of computational complexity
of the S-AWT (expressed in terms of the total number of multi-
plications and additions) and compare it to the computational
complexity of other previously proposed directional methods
(this analysis has also been presented in [21]). Then, we com-
pare the computational complexity of our compression method
to the complexity of the standard SFQ.

Assuming that the subsampling operations do not carry any
computational cost, each 1-D filtering operation is performed in

multiplications and additions, where is
the number of input samples and is the length of the applied
filter. Then, in one iteration block of the S-AWT, there are

multiplications and additions. Furthermore, assume that the
S-AWT consists of iterations. Then, the total number of
operations is given by

(1)

which results in .
Notice that the S-AWT can also be implemented using the

lifting scheme [11], in which case the total number of operations

is reduced. However, this decrease of computational complexity
affects only the constant, whereas the order remains the same.

The computational complexity of the S-AWT is substantially
lower than the complexity of the other transforms. More pre-
cisely, bandelets [6] require operations. The
implementation of wedgeprints [8] requires to build a large dic-
tionary of linear edges, and, thus, the complexity of processing
grows rapidly with the size of the image, as .
Furthermore, contourlets [5] have a complexity of the order

, where the implemented filters are purely 2-D and
have the size . Thus, the number of operations is also
higher than in the case of directionlets in the sense that

.
The complexity of our compression method is increased only

by a constant factor as compared to the complexity of the stan-
dard SFQ method. The increase is generated by both the de-
blocking algorithm and the two steps in the optimization al-
gorithm, that is, a) optimization over spatial segmentation and
b) optimization over directions.

The deblocking algorithm carries more multiplication and
addition operations because of the implemented forward and
inverse undecimated WT. Assuming that thresholding and
smoothing the oversampled transform coefficients do not carry
any additional computational cost, the number of multiplica-
tions and additions is given by (two decomposition
levels with three undecimated subbands at each level in both
the forward and inverse transforms), where the length of the
filters is smaller than in the case of the S-AWT. Thus, the
order of operations remains the same and is given by .

The two optimization phases contribute to the total com-
plexity in the two multiplicative constants. The optimiza-
tion over spatial segmentation increases the complexity

times, whereas the optimization over direc-
tions contributes with the constant equal to the total number
of allowed pairs of transform directions. Notice that these
constants have small values in our experiments and do not
depend on the image size.

Therefore, the total complexity of the compression method is
increased only up to a constant, which does not depend on the
image size, when compared to the complexity of the standard
SFQ. Proposition 1 formalizes these conclusions.

Proposition 1: Given an image.
a) The number of operations required by the S-AWT with

transform steps in each transform level is of the order
, where is the length of the filter used in the

transform.
b) The number of operations required by the SFQ compres-

sion method using directionlets is given by .

IV. RESULTS

In this section, we apply our compression algorithm using
directionlets to several standard natural test images of the size
512 512. The results are compared to the results of the stan-
dard SFQ in terms of both numerical and visual quality.

First, we compare the behavior of the standard WT and the
adaptive S-AWT choosing best directions per segment in NLA
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Fig. 7. Nonlinear approximation performance: Lena image. (a) The original
image. (b) The optimal segmentation and the optimal choice of transform di-
rections in each segment. (c) The NLA results obtained by retaining a portion
of transform coefficients. (d) A magnified interval of the results shown in (c).
Directionlets outperform the standard WT in terms of the approximation power.

of images. Then, we show the numerical results of the compres-
sion methods and reconstructed images for compression at dif-
ferent bit rates.

A. Nonlinear Approximation

The main task of approximation is to represent a signal by
a subset of transform coefficients, while the rest of them is set
to zero. We distinguish between linear approximation (LA) and
nonlinear approximation (NLA). In the first, the indices of the
retained coefficients are fixed, whereas, in the latter, they are
adapted to the content of the signal.

The quality of approximation is commonly measured in terms
of MSE, that is, for a signal and its approximation , the MSE
is given by .9 If an orthogonal transform is used in the
NLA, then the optimal strategy to minimize the MSE is to retain
the largest-magnitude transform coefficients [1].

Notice that the MSE decays as the number of retained coef-
ficients grows. The asymptotic rate of decay of the MSE, as the
number of retained coefficients tends to infinity, is a very impor-
tant approximation property of the transform. In [2], [16], and
[17], we showed that directionlets outperform the standard WT
in terms of this asymptotic rate of decay in the case of a 2-D
piecewise smooth signal with a 1-D smooth discontinuity
curve. Here, we present the results of NLA for natural images
and compare them to the results obtained using the standard WT.

As explained in Section III-A, directionality in images is a
local characteristic, and, thus, spatial segmentation and adapta-
tion of transform directions in segments is required to achieve
a good representation. In the implementation of directionlets in
NLA, we optimize spatial segmentation using Lagrangian op-
timization, similar to the method analyzed in Section III for

9The quality of images is usually evaluated by calculating the peak-signal-to-
noise-ratio (PSNR), where PSNR=10 � log (255 =MSE).

Fig. 8. NLA results of Lena: (a)–(c) Reconstructions of the image Lena for
0.5%, 1.0%, and 1.5% retained transform coefficients, respectively, using di-
rectionlets. The quality of the obtained images is 27.10, 29.38, and 30.80 dB,
respectively. (d)–(f) The reconstructions at the same approximation rates using
the standard WT. The quality of the images is 26.93, 29.21, and 30.66 dB, re-
spectively. The reconstructions obtained using directionlets are better than the
ones obtained by the standard WT both numerically and visually. Moreover, the
artifacts that appear in the reconstructions obtained using directionlets are also
oriented in the dominant directions, making them less objectionable.

compression.10 In each segment, the best transform directions
are chosen (again, in the sense of Lagrangian optimization) and
a portion of the largest-magnitude transform coefficients is re-
tained. Then, the corresponding inverse transform is applied and
the reconstruction is compared to the original image in terms of
PSNR.

We show the results of NLA of the image Lena. The original
image is shown in Fig. 7(a), whereas the optimal segmentation
and the choice of transform directions in each segment is illus-
trated in Fig. 7(b). Notice that the optimal transform directions
follow the dominant directions in segments, as expected from
the optimization method. A comparison between the NLA re-
sults obtained by directionlets and the standard WT is shown in
Fig. 7(c). The gain is obtained because directionlets are capable

10In the case of NLA, rate and distortion used in Lagrangian optimization
are replaced by the number of retained coefficients and energy of the discarded
coefficients, respectively.
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Fig. 9. Barbara image. (a) The original image. (b) The optimal segmentation
and the optimal choice of transform directions in each segment. This solution is
obtained as a result of the optimization process for the compression at the target
bit rate 0.12 bpp.

Fig. 10. Results of compression expressed in terms of PSNR using four
methods: JPEG-2000, SPIHT [19], the standard SFQ [20], and the SFQ
combined with directionlets. The methods are applied to three test images:
(a) Lena, (b) Barbara, and (c) Boat. Our method outperforms the standard SFQ
and the other two methods in all these examples.

of better capturing locally dominant directions in the image. In
Fig. 8, the reconstructed images shown are obtained for different
number of retained transform coefficients using the two trans-
forms. Both the numerical results and the visual quality of the re-
constructions obtained by directionlets are better than the same
in the case of the standard WT. Furthermore, the artifacts that
appear in the reconstructions for a very small number of retained
coefficients are oriented in the transform directions and aligned
with the dominant directions in segments. Hence, these artifacts
are less perceptually annoying than in the case of the standard
WT.

Notice that some remaining blocking effect is visible in the
images approximated by directionlets because of the segmenta-
tion. However, even though this effect can be successfully re-
moved by the deblocking method explained in Section III-C,

Fig. 11. Our compression method outperforms significantly the standard SFQ
at low bit rates (below 0.2 bpp). The comparison of the results is shown for the
three test images: (a) Lena, (b) Barbara, and (c) Boat.

Fig. 12. Deblocking after compression. (a) Blocking effect is severe at very low
bit rates. The coefficients in neighbor segments are quantized and encoded sep-
arately and artificial sharp edges are noticeable at the boundaries of segments.
This reconstruction of the image Barbara is obtained at 0.12 bpp for the optimal
segmentation shown in Fig. 9 and PSNR = 25:29 dB. (b) The deblocking algo-
rithm explained in Section III-C successfully removes the blocking effect. Even
though the PSNR is improved by only 0.04 dB, the edges between segments are
less visually perceptible.

here, we only compare the approximation performances and
leave this correction for the next section.

B. Compression

Compression using orthogonal transforms is an extension of
NLA that involves quantizing and indexing the retained coef-
ficients. The quantized values are commonly compressed in an
entropy coder, whereas the indexes are encoded using a predic-
tive tree structure. We explained the compression method based
on the SFQ and directionlets in details in Section III and, here,
we present the results and compare them to the results of the
standard SFQ.

As mentioned in Section III-A, spatial segmentation allows
for local adaptation of transform directions to dominant direc-
tions in images. The choice of optimal segmentation and optimal
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Fig. 13. Compression of Lena. (a) The original image. (b), (c) The image is
compressed using the adaptive SFQ with directionlets at the bit rates 0.10 bpp
(with the compression ratio 1:80) and 0.15 bpp (1:53), respectively. The numer-
ical quality of the reconstructions is 30.92 and 32.56 dB. (d), (e) The image is
compressed using the standard SFQ at the same bit rates. The quality is lower
and is equal to 30.17 and 32.09 dB, respectively. The visual quality is also im-
proved because the artifacts are oriented along locally dominant directions and
are, thus, less annoying.

transform directions in the R-D sense depend on the target bit
rate and the Lagrangian multiplier. An example of the optimal
solution is shown in the previous section in Fig. 7(b) for the
image Lena compressed at 0.051 bpp. In Fig. 9(b), we show a
similar example for the image Barbara at the operational bit rate
0.12 bpp. Notice that the transform directions are well adapted
to the dominant directions in segments of the images in all these
examples.

Both the standard SFQ and our adaptive method are applied
to the images Lena, Barbara and Boat. The comparison of the
numerical quality in terms of PSNR of the compressed images is
shown in Fig. 10. Notice that our method outperforms the stan-
dard SFQ as well as the other standard methods, like SPIHT [19]
and JPEG-2000. This gain is especially noticeable at low oper-
ational bit rates. The results for the low bit-rate interval (below

Fig. 14. Compression of Barbara. (a) The original image. (b), (c) The image is
compressed using the adaptive SFQ with directionlets at the bit rates 0.10 and
0.15 bpp, respectively. The numerical quality of the reconstructions is 25.34 and
26.55 dB. (d), (e) The image is compressed using the standard SFQ at the same
bit rates. The quality is lower and is equal to 24.58 and 25.75 dB, respectively.

0.2 bpp) are magnified and shown in Fig. 11 for compression of
the same test images.

Recall that the standard SFQ (and also our method) does not
produce an embedded bitstream, and, thus, it is not bit-rate scal-
able, unlike SPIHT or JPEG-2000. The optimal encoding bit-
stream is found for each preselected bit rate. However, in spite
of this lack of rate-scalability, the standard SFQ, as well as our
method, outperforms the two standard methods.

Notice also that, as mentioned in Section III-C, spatial seg-
mentation leads to a perceptible and annoying blocking effect
in the reconstructed images, especially for low bit rates. The
proposed deblocking method successfully removes this effect.
An example of compression of the image Barbara at 0.12 bpp
without and with deblocking is shown in Fig. 12. Even though
the deblocking method does not improve significantly the nu-
merical result (only 0.04 dB in the case shown in Fig. 12), it
leads to a less disturbing visual distortion in the compressed
images.
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Fig. 15. Compression of Boat. (a) The original image. (b), (c) The image is
compressed using the adaptive SFQ with directionlets at the bit rates 0.10 and
0.15 bpp, respectively. The numerical quality of the reconstructions is 27.10 and
28.36 dB. (d), (e) The image is compressed using the standard SFQ at the same
bit rates. The quality is lower and is equal to 26.16 and 27.66 dB, respectively.

Therefore, the deblocked reconstructions are better than the
images obtained by the standard SFQ not only in terms of the
numerical measurement, but also in terms of the visual quality.
The remaining artifacts are oriented along dominant directions
and are, thus, less annoying than in the case when the standard
WT is used. The corresponding comparison for the test images
Lena, Barbara and Boat are shown in Figs. 13–15, respectively,
at the bit rates 0.10 and 0.15 bpp.

The amount of side information required to encode the op-
timal spatial segmentation, transform directions and quantizer
step sizes is negligible. To show that, we analyze each partic-
ular requirement.

In the case of quad-tree spatial segmentation, one bit is sent
to transmit the binary decision on further segmentation for each
segment-node in the quad-tree, except the ones at the maximally
allowed segmentation level. The total number of bits depends
on the optimal solution, but it is upper bounded by ,

where is the maximal number of segmentation levels. For the
examples shown above , the upper bound is 21 bits.

Transform directions are encoded only for terminate seg-
ment-nodes in the quad-tree. Notice that the number of the
terminate segments is upper bounded by . Therefore, the
number of required bits is upper bounded by ,
where is the number of possible combinations of transform
directions. For the presented examples, , and ,
and, thus, the upper bound equals 149 bits.

Finally, two quantizer step sizes (for the LP and HP subbands)
are chosen from a set of values. Therefore, the number of en-
coding bits is given by and, for the given examples,
it is equal to 16 bits.

Thus, the side information is encoded using maximally 186
bits, which is still negligible as compared to the number of en-
coding bits used in Step 2 of Algorithm 1.

V. CONCLUSION

We have proposed a novel adaptive image compression algo-
rithm that combines the SFQ method proposed in [20] and direc-
tionlets. In our algorithm, image is segmented using the quad-
tree segmentation method and transform directions are adapted
to dominant directions in each segment. The spatial segmenta-
tion and the choice of transform directions are optimized in a
R-D sense using Lagrangian optimization.

We showed in our previous work that directionlets are capable
of providing a more efficient representation of elongated ori-
ented features in images, like edges or contours, than the stan-
dard 2-D WT [2]. For that reason, our compression method out-
performs the standard SFQ in terms of both the numerical and
visual quality of compressed images at the same bit rate. The
gain is especially significant at low operational bit rates, as we
have demonstrated in Section IV.

Since we use spatial segmentation in our method, the recon-
structed images are affected by blocking effect. Hence, we apply
a postprocessing deblocking method that successfully removes
the sharp edges along segment boundaries, as we have explained
in Section III-C. We have shown that the improvement of the vi-
sual quality of reconstructed images is significant, although the
difference in the numerical quality is negligible.

We have also analyzed the total computational complexity of
our method. We have shown in Section III-D that the order of
complexity of our method is of same as the order of complexity
of the standard SFQ algorithm.

APPENDIX I
LAGRANGIAN OPTIMIZATION

The optimization tool based on Lagrange multipliers is ex-
plained in detail in [35], [36]. Here, we give a brief overview on
the use of the tool in the compression algorithm.

The goal of the optimization process is to minimize the av-
erage distortion of a set of signal blocks subject to a total
bit rate assuming that a) the operational R-D curve11 is

11The R-D curve consists of the set of operational points in the R-D coordinate
system that characterize a compression algorithm.
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independent for each signal block and b) the total bit rate and
distortion is obtained as the sum of the bit rates and distortions
in each signal block. The second assumption holds only in the
case of orthogonal transforms applied in each signal block, and,
thus, this tool cannot be used in the case of overcomplete trans-
forms (frames) and is only used suboptimally for biorthogonal
transforms.12

For the th signal block, we denote the chosen quantizer as
and the obtained bit-rate and distortion as and .
This problem is often called resource (bit) allocation, although
its applicability is more general (e.g., optimal segmentation,
choice of different bases, etc.). The problem of independent re-
source allocation is stated in the form of a constrained mini-
mization, as follows:

(2)

The constrained optimization problem given by (2) can be
shown to be equivalent to an unconstrained problem given by
[35]–[37]

(3)

In (3), the bit rate and the distortion are incorporated
into the Lagrangian cost for a given Lagrange multiplier

. The multiplier trades off distortion for bit rate and the above
minimization is performed for each value of . Notice that, since
at R-D optimality all signal blocks must operate at the same
slope point on their R-D curves,13 the minimization of the
Lagrangian cost is performed independently in each signal
block. Thus, the optimization problem in (3) is unconstrained
and can be solved in an algorithmically simpler way than the
one in (2).

Notice also that different values of the Lagrange multiplier
correspond to different points on the R-D curve. Therefore,
taking values from 0 to is equivalent to moving operating

point across the whole R-D curve. Since the optimization prob-
lems given by (2) and (3) are equivalent, the solution to the un-
constrained problem of (3) is also the solution to the constrained
problem of (2) for the particular case of
(see [37] for the formal proof).

Each value of the total bit rate used in (2) and (3) cor-
responds to a different value of the multiplier . Given a target

, the optimal constant slope is not known a priori.
However, even though the search for the corresponding in-
creases the complexity of the whole optimization algorithm,
there exist low computational cost algorithms, such as the bi-
section algorithm [36]–[38].
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[16] V. Velisavljević, “Directionlets: Anisotropic multi-directional repre-
sentation with separable filtering,” Ph.D. dissertation, School Comput.
Commun. Sci., EPFL, Lausanne, Switzerland, 2005.
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