
Master Project

Push To Chat

Realized by

The Quang Nguyen

Supervisor

Professor Jean-Yves Le Boudec (EPFL, LCA)

Assistant

Alaeddine El Fawal (EPFL, LCA)

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Winter Semester 2007-2008

Contents

1 Introduction 7

2 Development environment and Architecture 8

2.1 Development environment . 8

2.1.1 Hardware equipments . 8

2.1.2 Language programming . 9

2.1.3 Building MIDlet . 11

2.2 Architecture . 14

3 Application 16

3.1 Functionalities . 16

3.2 Java Micro Edition version . 17

3.2.1 User Interface . 20

3.2.2 Message reordering process . 21

3.2.3 Displaying messages with CustomItem 26

3.2.4 Block or Unblock users . 29

3.2.5 SLEF status . 31

3.2.6 User’s identification . 31

3.3 Java Standard Edition version . 32

4 Self Limiting Epidemic Forwarding (SLEF) Implementation 33

4.1 Protocol description . 33

4.2 Protocol implementation . 34

4.2.1 The epidemic buffer . 37

4.2.2 Reception . 38

4.2.3 Transmission/Retransmission . 42

3

4.2.4 Checklist . 48

5 MAC Broadcast 49

5.1 J2ME implementation . 50

5.1.1 MACBroadcast . 50

5.1.2 MACReceiver . 50

5.2 J2SE implementation . 51

5.2.1 MACBroadcast . 51

5.2.2 MACReceiver . 51

6 Deployment 52

7 Conclusion and Future work 54

Acknowledgements

I would like to say a special thanks to:

• Professor Jean-Yves Le Boudec (EPFL, LCA) for his supervision of this project.

• Alaeddine El Fawal (EPFL, LCA) for his kind guide during the whole semester.

Chapter 1

Introduction

Nowadays, communications using small, smart and attractive electronic devices become
popular and take an important place in our everyday life. With the expansion of small
mobile devices along with their improvements in performance, we would like to build an
application that facilitates the communications between people. With the idea that each
device is a mobile station, we would like to create a self-organized network, which also can
be extendable with the host’s movement. The future application would be useful for the
traffic information, security message, or, simply it would offer the possibility to chat during
train time travel.

The Self Limiting Epidemic Forwarding (SLEF) protocol designed by Alaeddine El Fawal
provides all necessary mechanisms for building such an application. And this gives birth to
the Push To Chat project.

The objective of this project is to build a chat application over SLEF for Smartphones.

7

Chapter 2

Development environment and
Architecture

In this chapter, we would like to discuss about the development environment and the archi-
tecture of the application. By development environment, we mean the hardware equipments
and the language programming. In the latter part, we will also give some general concepts
and components of the language, without diving into details. Then, in order to understand
the two next chapters, we aim to explain the interactions between different layers of the
system.

2.1 Development environment

2.1.1 Hardware equipments

This project targets Smartphone field. It is worth noting that there are Personal Digital
Assistant (PDA) phone and Smartphone on the market. In spite of their similar func-
tionalities, their approaches are different. A Smartphone is a mobile phone with advanced
functionalities of a classical computer, and a PDA phone is a complete PDA to which mo-
bile phone’s functionality is added. Hence, in general, when we compare the functionalities,
the available memory and the processor power of these two devices, we can say that a
Smartphone is a light version of a PDA phone.

The chosen Smartphone for development is the HTC S620. The device runs on Microsoft
c©Windows Mobile (version 5.0) platform with 64MB of RAM and 128MB of ROM. Its
processor is the Texas Instruments OMAP 850 running at 201 MHz. Moreover, it also
has advanced connectivity, such as Bluetooth c©2.0 and Wi-Fi c©IEEE 802.11. The IEEE
802.11 is the mandatory type of connection for this project. Although the HTC S620 is a
non touch-screen device, it offers a compact QWERTY keyboard and a large QVGA display
(320x240 with 65,536 colors).

8

2.1.2 Language programming

Java is the main programming language for this project. This language is known for its
portability, available libraries, online tutorials and for its documentation. The official sup-
port center at Sun’s website continuously maintains and updates the documentation. And,
an incontrovertible advantage of Java comparing to other languages is its highly active
community. At the Java’s official forum 1, developers usually can find answer to a lot of
technical problems.

However, although smartphones have many functionalities, they still are limited-resources
devices. They are limited in screen resolution, in memory and in processor power. So
clearly, we do not have enough performance nor memory to deploy the standard Java
Virtual Machine (JVM) to run Java 2 Standard Edition (J2SE) application, and we need
a lightweight version of Java.

The Java 2 Micro Edition (J2ME) is a Java platform which is designed for small devices.
That can be a pager, mobile phone or a personal digital assistant (PDA). Actually, J2ME is
not a proper subset of J2SE (hence nor of the Java 2 Enterprise Edition (J2EE)). Beside a
lightweight virtual machine and a lightweight subset of the standard edition, J2ME contains
additional packages specially designed for small devices, such as javax.microedition.*
packages. Figure 2.1(a) illustrates the Java 2 platform architecture.

(a) Java Platform Architecture (b) J2ME Layers

Figure 2.1: The Java Platform Architecture and the J2ME Layers

J2ME is divided into configurations, profiles and optional APIs. A valid combination of
a configuration and a profile targets a specific family of devices. Because the devices are
limited in performance, these combinations are necessary in order to balance portability
with performance and feasibility in the real world.

Configuration

A configuration specifies the Java Virtual Machine (JVM) and a set of supported Java
libraries. Usually, based on memory contraints and the power of the processor, importing
a specific configuration into devices is the responsibility of the device manufacturers. For
instanct, there are two configurations:

1Java Technology Forums, http://forum.java.sun.com/index.jspa

9

http://forum.java.sun.com/index.jspa

Connected Device Configuration (CDC) This configuration is designed for devices
with 2 MB or more of total memory and with advanced network connection. It
targets devices like car navigation systems or high-end PDAs. CDC specifies the use
of the full Java 2 virtual machine, which is called Compact Virtual Machine (CVM)
in this context.

Connected, Limited Device Configuration (CLDC) This configuration is included
in CDC. CLDC targets smaller devices (such as mobile phones) than those targeted
by the CDC. It specifies a small JVM called Kilobyte Virtual Machine (KVM), due
to the fact that the size is measured in kilobytes. As it has a small size, the KVM
cannot support all JVM’s features and has some security problems.

In its version 1.0, CLDC does not support floating point calculations at all. It was a
big inconvenience, because that means there are no float or double primitive types,
neither the corresponding wrapper types, java.lang.Float and java.lang.Double.
Since CLDC 1.1, these types are included.

Profile

As illustrated in figure 2.1, a profile is implemented on top of a configuration and provides
additional APIs, such as a graphical user interface, security, and network connectivity,
in order to develop applications. There are several profiles in the market, such as PDA
Profile, Personal Profile... but the two most important ones are Foundation Profile and
Mobile Information Device Profile.

Foundation Profile (FP) This profile is based on the CDC. It provides a rich Java net-
work environment. However, FP does not support graphical user interfaces (GUIs);
Abstract Window Toolkit (AWT) and Swing packages are not present.

Mobile Information Device Profile (MIDP) This profile is based on the CLDC and
is widely deployed on mobile devices. Even if other CLDC-based profiles have been
mentioned, MIDP is the only well supported and available for instant.

As discussed earlier, each valid combination of a configuration and a profile targets a specific
family of devices. The CDC/FP and CLDC/MIDP are the most typical combinations that
we can find. A J2ME platform implementation can have only one configuration, but it can
have multiple profiles that are built on top of one another. For example, Personal Basic
Profile can be used in order to add GUI support on top of the FP. Besides, those valid
combinations can be extended with optional packages which are built to support specific
application needs (Mobile Media API supports audio/video controls and streaming media,
Bluetooth API to supports Bluetooth communication protocol).

As we are interested in developing an application that can be deployed on different types
of smart phones, CLDC/MIDP is adopted. MIDP applications are also called MIDlets.

10

CDC and CLDC implementations on the market

It is necessary to mention that there are required features and recommended features in
J2ME specifications. For example, CLDC/MIDP 2.0 implementers must provide support
for Http connection, but for other connection types, it’s up to them to provide support or
not. Sun Microsystems does not release any official implementation for CDC and CLDC.
However, as the market of mobile devices grows up, some companies and independent de-
velopers are interested in providing solutions for J2ME. During this project, some solutions
have been studied:

• Intent Midlet Manager (Tao Group) implements CLDC 1.0 and MIDP 2.0 and
is a well-known solution. It comes pre-installed on HTC phones. However, the only
connection type that it supports is HttpConnection type. DatagramConnection, Sock-
etConnection and ServerSocketConnection are not supported. Moreover, the group
does not exist anymore and there is not any official support for the product. One of the
developers is still giving his help to the end-users on the private forum xda-developers
2

• CrEme (NSIcom) is a CDC 1.0 implementation for Windows CE devices. NSIcom
also provides additional packages for advanced graphics (Swing) and connectivity
(Serial Communication). However, it is not compatible with Windows Mobile Smart-
phone Edition.

• WebSphere Everyplace Micro Environment (IBM) provides a very complete
solution for both CDC and CLDC. DatagramConnection, required for this project, is
also supported along with other connection types. The solution, which is commercial,
comes with a good documentation.

This is the solution that we use in this project. Further information about how to
download trial version or how to buy the solution can be found at its official website
3.

2.1.3 Building MIDlet

We would like to discuss in this section some general components of the J2ME language.
We intend to explain only components used during this project. Our goal is not to make
the reader dive into details, but is only to give necessary information to understand how
the application is built. We would like to recommend interested readers to refer to the
complete J2ME book of Sing Li and Jonathan Knudsen [1] for more advanced knowledge
about the J2ME language.

MIDlet Life Cycle

J2ME applications are real Java application that run under control of a Java virtual ma-
chine. But in reality, with devices like mobile phones, Java applications cannot be invoked

2xda-developers forum, http://forum.xda-developers.com/
3 WebSphere Everyplace Micro Environment , http://www-306.ibm.com/software/wireless/weme

11

http://forum.xda-developers.com/
 http://www-306.ibm.com/software/wireless/weme

by command shell. Actually, the entire life cycle of a J2ME application is controlled by an
Application Manager Software (AMS). This AMS also controls the installation, execution
and the application removal.

The base class for all MIDP applications is javax.microedition.midlet.MIDlet. The
main class of a MIDP application always extends this base class. MIDlets have a small
set of well-defined states. Along with the constructor method, we can find in a MIDlet
subclass three other methods startApp(), pauseApp()and destroyApp() which are called
to perform transitions from one state to another state. Figure 2.2 shows the states of a
MIDlet and the transitions between them.

Figure 2.2: The J2ME MIDlet’s life cycle

When the MIDlet is started, the AMS calls its constructor and the MIDlet enters to the
Paused state. Then, only when the AMS calls the startApp() method that the MIDlet
will be in Active state. From here, the AMS can suspend the MIDlet’s execution and place
it in the Paused state, and then put it back into Active state by calling pauseApp() and
startApp(). After that, destoyApp() put MIDlet into the Destroyed state, where the
application is stopped and awaits garbage collection.

If an active application wants to put itself to Paused or Destroyed state, it can call respec-
tively notifyPaused() or notifyDestroyed() method.

User interface

One of the main differences between building a MIDlet and a classical J2SE application
resides on the user interface. A MIDlet is usually built to run on different devices having
screen of all sizes, with or without color. Moreover, all devices don’t have the same input
capabilities; one can have a numeric keypad while another possesses a touch screen. That’s
why the way that user interfaces are built is differently conceived compared to a Swing or
AWT graphical interface. With MIDP, rather than assign a command to a specific place,
we only can ensure that the command exists somewhere in the interface, and it is the role
of the J2ME implementation to design and place it where it should be. That’s the reason
why depending on the J2ME implementation, when running the same MIDlet on different
devices, the user interface may be different.

MIDP contains the user interface classes in the javax.microedition.lcdui package. The
device’s display is represented by an instance of the Display class whose main purpose

12

is to determine what is currently shown in the device screen. The content that can be
displayed in the device screen is a Displayable. The difference between Display and
Displayable is that Display class represents the display hardware, whereas Displayable
is the content that can be shown on the display. In order to change the contents of the
display, a Displayable instance is passed to the provided setCurrent() method of the
Display class. As the name of the method can signify, only one instance of Displayable
can be displayed at the same time. We cannot have a multi-windows interface as it is the
case for a J2SE user interface.

Figure 2.3: The J2ME’s lcdui package

Figure 2.3 shows Displayable’s sub-classes. Screen and Canvas are two direct sub-classes
which target different type of applications. Screen targets generic applications whereas
Canvas targets game developments. The development of this project only uses Screen’s
classes, as they already provide all necessary and convenient functionalities. Screen has
four sub-classes: Alert, List, Form and TextBox. As mentioned earlier, only one instance
of these four types of Screen can be displayed in the device screen at the same moment.
The following will give a brief description of these types.

TextBox This is the simplest type of screen. It allows the user to insert or to modify a
text.

Alert This is a screen containing text or image. It is used to show informative message,
errors or exceptions. There are two types of alerts: modal alert and timed alert. A
modal alert needs confirmation from user to be dismissed, while a timed alert doesn’t
need confirmation but will be shown for a certain amount of time.

Form This screen is used to create more advanced interface. It includes a collection of
user-interface components, called items. They can be images, read-only text fields,
editable text fields, editable date fields, gauges, choice groups, or customized items.

These items are all subclasses of javax.microedition.lcdui.Item class. There
are eight items, but only StringItem, TextField and CustomItem are used in this
project. The StringItem represents a text label. Whatever the text length can be,
this item can still be conveniently displayed in the device screen. For that, the text
will automatically be made scrollable if needed. However, the text’s font cannot be
easily customized. Then, the TextField represents an editable string. It can be used

13

for the user to compose his message. And the third item used in the application is
CustomItem. As its name indicates, this item is customizable by sub-classing and
is employed to introduce new visual and interactive elements to Form. For this end,
its sub-classes have possibility to customize the size, colors, fonts and graphics of
the item. They also handle events introduced by users by keys, pointer actions or
traversal actions. The message area displaying incoming and outgoing messages of
Push To Chat application is built using this item.

It is interesting to mention that Form provides a concept of focus, which refers to the
currently selected item in the form. This gives possibility to perform some specific
actions when a given item is selected and when the user invokes some command.

List This screen allows the user to select elements from a list of choices. The selection
can be exclusive, implicit or multiple. As part of this Push To Chat application, this
screen is used to propose a list of users to be blocked or unblocked.

Handling User Input with Commands

A Displayable (i.e. four screens discussed above) or an Item has possibility to contain a
list of Commands in purpose of supporting a flexible interaction with users. A Command can
be compared to a button in J2SE GUI and can be invoked for example by a keypad button,
touch screen or voice recognition.

In order to respond to an event invoked by an user, the Command’s container (Displayable
or Item) has to register an object called listener. Otherwise, even if commands are shown
in the device screen, nothing will automatically happen when an user invoke one of them.
The listener is an object that implements the CommandListener interface by defining a
single method public void commandAction(Command c, Displayable s). Within this
method, specific actions are defined when a Command represented by c is invoked. Then, to
register the listener to its container, the container’s method setListener() is called.

2.2 Architecture

The main application will allow end-users to exchange text messages over an ad-hoc net-
work. We adopt the layer approach to present the architecture of the system. There are
three layers: (1) Application, (2) SLEF and (3) MAC. The layer approach has several im-
portant advantages. It allows having a clear structure and as it is the case in the traditional
network, each layer can be developed and maintained independently. The development or
maintenance of one layer does not affect the operation of other layers. Moreover, SLEF
was designed for different types of application, and not only for chat application. We will
present here the role of each layer and how they communicate to each other. The two first
ones will be discussed in detail in the two next chapters.

Application The Push To Chat application itself is built at this layer. It is responsible
for the interaction with end-users. Its two essential functions are (1) executing user’s
commands and (2) displaying messages. For this mean, a graphical user interface

14

Figure 2.4: Architecture

(GUI) was provided. Packets exchanged between the application layers are referred
as Payloads. This unit carries the message to display and the message’s information,
such as the originator and sequence number of the message.

SLEF This is the layer at which the protocol SLEF is implemented. It resides under
the application layer and above the MAC layer. We also adopted the concept of
encapsulation in this layer. Additional information, such as the MAC address and
the age of the packet, will be added to payload that is passed by the application layer.
The result of this encapsulation will form a NetMessage which is the unit exchanged
between SLEF layers.

MAC The role of this layer is to send and receive packets over the network using the
pseudo-broadcast mechanism of the SLEF protocol. This mechanism is included in
the Efficient use of MAC broadcast function and is not studied in this project. Instead
of it, we use an UDP connection. It transmits packets passed by the upper SLEF layer
using the broadcast address and when it receives a datagram from the network, it will
deliver to that SLEF layer again. The unit used for communication between these
two layers is an array of bytes containing the content of a NetMessage. Datagram is
directly constructed from this array without any modification. As a perspective, we
still call this layer MAC as the expected pseudo-broadcast mechanism will be built
at this layer.

15

Chapter 3

Application

In this chapter, we will present in detail the Push To Chat application. First, we will discuss
about the functionalities that the application is supposed to provide, and then the manner
that they are implemented. We will provide at the end two versions of the application. The
first one is implemented in J2ME for being deployed to Smartphones and the second one
is in J2SE for traditional computers.

3.1 Functionalities

1. As the application is designed for chatting, the application must provide a graphical
user interface (GUI) containing (1) a messages area for displaying incoming and out-
going messages and (2) an input text field allowing the user to compose the outgoing
text.

2. The newest message (last received message) is supposed to be distinctly displayed.
For example, this message can be displayed in bold and/or with a different color.

3. The messages area must be scrollable. As the number of messages increases, the
messages area cannot display all of them. It would be regrettable if end-users cannot
read other hidden messages.

4. At this application layer, we do not have any guarantee for the messages of the same
source to be delivered in the right order. As the application is built on top of SLEF
layer, the transmission and retransmission of messages depend on the SLEF state
at each node in the network. Moreover, we use UDP connection for broadcasting
and receiving packets, thus either the packets reception or their deliverance sequence
is guaranteed. Messages may arrive in a wrong sequence, and the application must
provide a mechanism to reorder them. The mechanism handling this problem is called
message reordering and will be explained in section 3.2.2.

5. The application also aims to demonstrate the mechanism of SLEF protocol. Showing
the current state of the lower SLEF layer while the application is running is one
solution.

16

6. Messages are broadcasted to all nodes in the network, so everyone can compose mes-
sages and can send to all others. Unfortunately, undesirable messages exist. Since we
are in a distributed network, and in a decentralized system, there is not possibility
to forbid an user to send messages. But a local user can stop receiving messages of
one or more specific users, so that these messages will not be displayed on his screen.
This process is called blocking/unblocking users.

3.2 Java Micro Edition version

The first version of the application was developed in J2ME for Smartphone. To present the
application, we will start from a global view (for example how the program runs) to very
specific problems (for example how the message reordering problem is solved). Figure 3.1
shows the lifecycle of the application.

Figure 3.1: The J2ME application’s life cycle

Once the application is started, it will ask for the nickname that the user wants to use for
chatting. While this value is empty, the application will keep asking. Otherwise, the appli-
cation will enter to the chat environment, where the local user can compose his messages
and receive messages from other users participating to the same network. At this state,
user has three other possibilities. The first one displays the current status of SLEF layer,
the second one allows the local user to block or unblock other users, and the last one quits
the application. In the first two cases, if the local user wants to stops the application, it
has to come back to the chat environment before executing the Exit command.

The provided package PushToChat.Application contains all necessary classes for this ap-
plication part. We give below a description for each of these classes:

PushToChatMidlet.java This is the main class of the Push To Chat application. It is
responsible for almost functionalities listed in section 3.1 above, that is to say the
graphical user interface, the message reordering process, the SLEF status displaying

17

and the blocking/unblocking users process. It is straightway to mention that the
user’s commands are also handled in this part.

Payload.java This represents the unit used to exchange information between application
layers. As illustrated in figure 3.2, a payload contains the user’s MAC address, its
nickname and also its message. receivedFrom indicates the node from which this
payload is received. If it differs from the user’s MAC address, then the payload has
been forwarded by another node, which is different from the payload’s originator. This
is one of the advantages of the SLEF protocol and the information will be displayed on
the device screen. The class also provides a method, called getBytes(), for converting
the current state of the object into an array of bytes. This process is required when
the payload needs to be sent over the network, and then needs to be reconstituted.
It can be compared to a serialization. Actually, this is done ”manually” because
J2ME does not provide the interface Serializable. Then, as this class contains the
message, it also provides a method returning the String to be displayed in the screen’s
device.

Figure 3.2: Payload

User.java This class represents an user in the network, at the application layer view. It
contains information related to an user such as its nickname, its MAC address and also
the payload with the lowest sequence number that has been received by the local user,
and it also contains a wait list indicating the next expected and the delayed payloads.
This aspect belongs to the message reordering mechanism and will be discussed in
section 3.2.2.

DisplayItem.java This class is responsible for functionalities 2 and 3 listed above. It is-
sues a scrollable text box used to display the incoming and outgoing messages with the
possibility to repeat the scrolling movement. Then, the newest message is displayed
in bold and in blue, in order to distinct with other previously received messages. As
J2ME does not provide convenient tools for doing all this, we will discuss about this
DisplayItem in more detail in section 3.2.3.

KeepScrollingTask.java This class is a TimerTask, which is a task that can be scheduled
for one-time or repeated execution by a Timer. In order to repeat the scrolling
movement when the specified key is help down, an object of this class is periodically
called by a timer initiated in DisplayItem.

The application can be divided into two main processes: Reception and Sending .

18

The reception process is illustrated in figure 3.3, as a sequence of events. In the figure,
italic words indicate methods in the corresponding class, while the label above the arrow
indicates the method’s parameter.

Figure 3.3: J2ME Reception

The reception process starts when the SLEF layer delivers a new received Payload to the
application (i.e. to PushToChatMidlet class). It will enter into the message reordering
process, which will be explained in detail in section 3.2.2 below. We use a buffer to store all
received payloads in the reversed order that they are displayed in the device screen, called
receivedPayloadsBuffer, which is a Vector. At the end of the message reordering process,
the received payload will be inserted to the correct position to the buffer. As we intend to
display this payload with a different font, the argument boldLineIndex is used to store the
index of this payload in the buffer. Then we will map receivedPayloadsBuffer into a new
buffer which contains this time the exchanged messages extracted from payloads. The new
buffer is called receivedMessagesVector, which also is a Vector. Nevertheless, each entry
of receivedMessagesVector corresponds to a line of text displayed on the device screen,
and it is possible that an exchanged message needs to be mapped to several lines. Then, this
buffer along with the indexes of the first and the last line to be displayed with a different
font will be passed to the setTextVector() method of DisplayItem, which is responsible
for displaying incoming and outgoing messages. As the number of messages increases, the
device screen may become too small to be able to show all messages. setTextVector()
method analyzes the portion of text lines that will be displayed on the device screen and
then calls repaint() method in order to ”paint” on the screen the corresponding text lines.

Figure 3.4: J2ME Sending

At the other side, the sending process is much simpler. Figure 3.4 illustrates this process.
When the user invokes the specific sending command, called sendCommand, the listener will
call commandAction() method to execute the specific actions. As SLEF protocol provides
a Congestion Control mechanism which controls the sending flow of the application, the
variable allowedToSend indicates whether the application can inject a new payload to

19

SLEF layer. Then, if it’s authorized, a new payload containing the composed message will
be created and injected to the lower SLEF layer. The payload is identified by its originator
and its sequence number. The application has a global variable called seqNum initiated
by 1 when the application starts. This variable is increased by 1 whenever a payload is
successfully sent. Hence, the first payload has sequence number equal to 1.

3.2.1 User Interface

In order to build an user interface, notions discussed in section 2.1.3 are used. The main class
PushToChatMidlet extends the base class javax.microedition.midlet.MIDlet. Along
with its constructor method, PushToChatMidlet inherits three other methods (startApp(),
pauseApp() and destroyApp()) which are called by the AMS to transit from one state to
another state within the MIDlet’s life cycle (section 2.1.3). Moreover, to respond the events
invoked by the user, this class implements the CommandListener interface by defining the
method commandAction(). In this method, we specify the sequence of actions to be
executed when the local user invokes a specific command.

As discussed, when the application is started, the AMS calls startApp() method for
the application to enter into the Active state. In this method, we initialize global vari-
ables such as the sequence number seqNum or the buffer containing received payloads
receivedPayloadsBuffer, or also variables used for the GUI like the main container
Form called form, or the TextField named nicknameField which allows the user to insert
his nickname to. Furthermore, in order to access to the device’s display, an instance of
the Display class, called display, is also created by calling the Display static method
getDisplay(). We create next an instance of the SLEF protocol class. Then, calling
askNickname() method will guide the application to its first state for asking the user’s
nickname.

Referring to figure 3.1, which illustrates the application’s life cycle, the main Form form
will be used at two different states, Ask for nickname and Chat environment. Whereas,
another Form called statusForm will be used for displaying the status of the lower SLEF
layer and at last, a List called displayableUsersList will be employed to display a list
of users to be blocked or unblocked. We would like to remind that only one Displayable
object can be shown on device screen at the same time. We can set the next one to be
shown by giving it as the argument of the display.setCurrent() method. A collection
of Commands have also been defined, such as sendCommand for sending, exitCommand for
quitting the application or validateCommand for validating an action. These Commands can
be associated to a Form by its addCommand() method.

Figure 3.5 shows two screenshots of the application running on the HTC S620 Smart-
phone. The corresponding J2ME components are also illustrated in the figure. The first
screenshot (a) shows the application in its Ask for nickname state and the second (b)
in its Chat environment state. The askNickname() method prepares the first state. It
adds to form two commands validateCommand and exitCommand, then adds a TextField
called nicknameField for the user to compose his nickname. If a valid nickname is
given (i.e. the nickname is not empty), the second state can be reached after calling
the initFormsForChat() method and then the showChattingArea() method. Primar-

20

Figure 3.5: Push To Chat, J2ME’s user interface

ily, initFormsForChat() method sets new values for the main form, and then it initial-
izes statusForm and displayableUsersList. The main form, which is currently used
for showing the nickname field, will be reinitialized for the chat environment. The main
form will now contain a DisplayItem for displaying messages and a TextField called
outgoingMessage for the user to compose a message. It also keeps another list of com-
mands, such as sendCommand, blockUsersCommand. Once the main form is prepared, the
sole instruction display.setCurrent(form) in the showChattingArea() method will al-
low the new form to be displayed next on the device screen.

Initializing statusForm for displaying the SLEF layer status is similar and will be discussed
in section 3.2.5. However, there’s a slight difference for initializing the List displayableUsersList
for blocking or unblocking users, that we will discuss in section 3.2.4.

3.2.2 Message reordering process

As payloads may arrive out of sequence, and it is usually the case, this process provides a
mechanism to sort incoming payloads and put them into the correct position in the buffer,
whose entries are displayed on the device screen. This process is first proposed by Ibrahim
El Ghandour[4] and is optimized in this project.

The whole process is included in the processIncomingMessage() and the updateOthers()
methods of the PushToChatMidlet class. They also summary the two main parts of the
process. The first part starts as soon as the SLEF layer delivers a payload to the application.
In this part, the process analyzes the position for this payload to be inserted into the global
buffer. This position is stored in a variable called insertionPosition. Then, in the second
part, the process will update, if necessary, the position to be inserted of other awaiting
payloads belonging to other users.

The process employs a global buffer, called receivedPayloadsBuffer, which is a Vector,
to store all received payloads in the reversed order that they are displayed in the device
screen. The first payload stored in the buffer, thus at position 0, will be displayed at the
bottom of the screen and the last payload at the top of the screen.

The User class represents an user in the network. Besides information related to its identity,

21

Figure 3.6: Three buffers of the message reordering process

each user maintains a wait list called waitList, which is a Hashtable. The table’s keys
correspond to the sequence number of next payloads to come, and its values indicate the
position to be stored in the receivedPayloadsBuffer of each payload. For example, if
waitList contains the pair (5, 10), it means that when the payload with sequence number
equal to 5 is received, it will be inserted into the position 10 in the buffer. There’s a
particularity that for payload whose the entry in waitlist has a value equal to -1, it will
be inserted at the first position in the received payloads buffer.

Along with this receivedPayloadsBuffer, the process also maintains another buffer con-
taining participating users, called usersList, which is a Hashtable. The presence of an
user in this table signifies that the application has received at least one payload originated
by this user. The table’s keys are the MAC address of the user’s device, and its values refer
to the User objects.

An important component of this process is the integer incrementCredit, which is a global
variable. It stores the accumulated credits that the position of payloads in the users wait
lists must add while being recovered or updated. Using this variable allows to postpone,
when possible, the update of the payload’s positions in the wait list of all users in the
buffer. The update occurs only when the received payload is not stored at the first position
in the received payloads buffer. Otherwise, the update is avoided and incrementCredit
is increased by 1. This value will be taken into account at the next position’s recovery or
update. By this way, we can reduce significantly the number of loops while recovering all
users in the buffer and their wait lists. The use of a loop is always very costly in term of
performance.

The process is illustrated by figure 3.7. Some additional terms are used in the figure and
need to be described. seqNum refers to the sequence number of the received payload, while
currentLowestSeqNum refers to the smallest sequence number that the application has
received from this user. And, nextExpectedSeqNum is the sequence number of the next
expected payload, which is supposed to come next. In the wait list of the user, this payload
is assigned to -1 and will be stored at the first position in receivedPayloadsBuffer.

The first part of the process starts at the payload’s reception. It analyzes the payload and
following cases are possible:

Blocked user : This user is blocked by the local user; hence its payloads will not be
analyzed nor be displayed on the screen. The application maintains a list of blocked
users, called blockedUsersList, which is a Hashtable. The MAC address of the
user is stored as the table’s key and its presence in this table implies that the user is
blocked. The return instruction is called to quit the process.

22

Unblocked user : The MAC address of the user is not in blockedUsersList and
the process continues.

New user : This is the first payload received for this user. Its MAC address is
not present in usersList. This payload will be stored at the first position in
receivedPayloadsBuffer, hence insertionPosition is equal to 0. An instance
of User is created and is added to the list of users usersList. Within the User’s
constructor method, an entry will be added to the wait list of this new user. This
entry indicates to the next expected sequence number, which is equal to the
current sequence number plus 1, and the corresponding position to be inserted,
which is -1.

Registered user : usersList contains the user’s MAC address, it means that
the application has received at least one payload from this user. The User object
and the wait list waitList are recovered. The process verifies whether waitList
contains the payload sequence number.

Expected payload : This payload is in the wait list and its assigned position
is -1. This payload will be stored at the first position in the received payloads
buffer (insertionPosition is equal to 0). The current sequence number will
be removed from the wait list, and the next expected one will be added. The
new entry in the wait list is (seqNum+1, -1).
Delayed payload : This payload is in the wait list and its assigned position
is p 6= -1. This payload will be stored at the position insertionPosition =
incrementCredit + p in the buffer. Like in the previous case, the current
sequence number is removed from waitList. However, not any additional
entry is added to waitList, and the position of payloads whose sequence
number is smaller than this current one will be increased by (incrementCredit
+ 1). This action corresponds to an implicit shift down movement in the
received payloads buffer, and is the main mechanism of the process.
The three following cases happen when this payload is not in the wait list,
thus there is no pre-computed position for it. In order to compute the
position for this payload, the process will base on previous received payloads.
As mentioned earlier, each user keeps track of the received payload with the
smallest sequence number. The first action is to verify whether the current
sequence number seqNum is smaller the lowest stored one.
New lowest payload : This sequence number of this payload is smaller the
lowest recorded one, labeled currentLowestSeqNum. We will first search for
the position n of the latter payload that is currently stored in the received
buffer. Then, the insertionPosition will be equal to (n + 1), in order to
display the received payload after the current lowest one. Then, entries with
keys equal to sequence numbers between seqNum and currentLowestSeqNum,
and with values equal to n will be added to the user’s wait list. And finally,
the received payload is recorded as the lowest received one of the user.
Low payload : This payload has the sequence number greater than the low-
est stored one, but smaller than the nextExpectedSeqNum. In this situation,
we will looking for the position n in the received payloads buffer of the first

23

payload whose the sequence number is lower than the current one. Then,
insertionPosition will be equal to n.
This case happens because we do not keep all awaiting sequence numbers in
the wait list, but only some of them. This will be discussed right after, in
Newest payload case.
Newest payload : The sequence number of this payload is greater than all
stored in the user’s wait list. As a result, it will be stored at the first position
in the buffer (insertionPosition = 0). Then, we would like to keep at
most 4 entries in the wait list, one for the next expected payload (same as in
the Expected payload case), and three others are for payloads whose sequence
number is at most 3 smaller than seqNum. Among these three entries, if one
of them already exists, value will be increased by (incrementCredit + 1);
otherwise, a new entry whose value equal to 1 will be added.

The two last cases are quite particular. If, in Newest payload case, instead of keeping only
4 entries in the wait list, we kept all of them, then the previous Low payload case would
not have happened. The reason is that we would like to keep a good balance between
performance and memory space. In the Low payload case, a search in received payloads
buffer requires a loop, hence the performance will be panelized. However, keeping all entries
in the wait list would cost the memory space, especially if these payloads never arrive. As
a result, this method would make a good trade-off for performance and memory space.

At this state, the received payload is correctly inserted into the received payloads buffer
at the position insertionPosition and the wait list of the user is also updated. So, the
first part of the process ends with the call of updateOthers() method, which starts the
second part. The purpose of this part is quite simple; it is to update the wait list of
other users, if necessary. First, the update can be avoided if the payload is inserted at
the first position of the buffer (insertionPosition = 0). In this case, incrementCredit
will be increased by 1. Otherwise, the update occurs and each User object referred by the
usersList will be recovered. Then, its waitList will be updated. The process increases
by 1 the position of payloads in this wait list, if this position is greater than the insertion’s
position insertionPosition.

With this, the process ends and results (1) the correct insertion of the received payload in
to the buffer, (2) the wait list of all users or their credit is updated and (3) the index of the
payload to be displayed in bold, which is equal to insertionPosition.

24

F
ig

ur
e

3.
7:

T
he

m
es

sa
ge

s
re

or
de

ri
ng

pr
oc

es
s

up
on

re
ce

pt
io

n

25

3.2.3 Displaying messages with CustomItem

At the end of the message reordering process, payloads in receivedPayloadsBuffer needs
to be redisplayed and the newest one, whose position is equal to insertionPosition,
is supposed to be differently displayed. In figure 3.3, we can see that the redisplaying
process implicates three methods: redisplay() of the PushToChatMidlet class, then
setTextVector() and repaint() belonging to the DisplayItem class. Figure 3.8 illus-
trates some important components of this DisplayItem class.

Figure 3.8: Push To Chat, J2ME’s DisplayItem

The first method, redisplay(), is called right after the message reordering process. Its
task is to map receivedPayloadsBuffer into a new buffer containing this time text lines
of exchanged messages extracted from received payloads. The new buffer also is a Vector
and is called receivedMessagesVector. Each element of receivedMessagesVector now cor-
responds to a line of text displayed on the device screen, and it is possible that an ex-
changed message requires several lines to be entirely displayed (e.g. message ”Aline (4):
I’m fine,...”) in figure 3.8).

If we consider the message as a String, then the necessary number of lines to display
this String is equal to the number of characters in the String devided by the number of
characters that the device can display on a line, the all plus 1. In our case, the unit used
for the computation is not the number of characters, but is the width of each character
displayed on the screen. Moreover, this width varies depending on the font that is currently
used. The Font class of the package javax.microedition.lcdui provides necessary tools
for this. We define two fonts in DisplayItem class, one called PLAIN TEXT FONT for painting
the text in plain style and the other called PLAIN TEXT FONT for painting it in bold style.

Font BOLD_TEXT_FONT = Font.getFont(Font.FACE_SYSTEM, Font.STYLE_BOLD, Font.SIZE_MEDIUM);

Font PLAIN_TEXT_FONT = Font.getFont(Font.FACE_SYSTEM, Font.STYLE_PLAIN, Font.SIZE_MEDIUM);

After extracting the message from each payload in the received payloads buffer, redisplay()
method will call getLineIndices() method in order to compute the necessary number of
lines for this message. This method has three parameters: text is the original message,
currentFont corresponds to the font being used, and lineWidth is the available width
for displaying a line of text. The value for the last parameter is somehow equal to width
- sliderWidth - someOffset. This method returns a Vector whose the size plus one
indicates the required number of lines, and each element in the vector stores the index of

26

the last character of the corresponding line in the original message. For example, if the
vector contains {4,8}, it means that we need 3 lines for this message, the first line starts
at 1st character to the 4th, then the second from the 4th to the 8th, and the last one from
the 8th to last character of the string. Then, within the redisplay() method, each new
line will be added to the receivedMessagesVector. When processing the payload which
is supposed to display in bold (i.e. its position is equal to boldLineIndex, which also is
equal to insertionPosition), the method will record the first line index to beginBoldLine
variable and set the font to bold. Then, when all necessary lines are added, the method
will record the last line to be displayed in bold, to endBoldLine variable.

for (int i = receivedPayloadsBuffer.size() - 1; i >= 0; i--) {

// first line diplayed in bold

if (i == boldLineIndex) {

currentFont = incomingDisplayItem.BOLD_TEXT_FONT;

beginBoldLine = receivedMessagesVector.size();

} ...

if (i == boldLineIndex) { // last line diplayed in bold

endBoldLine = receivedMessagesVector.size();

}

}

This will end the redisplay()’s task. Now that the receivedMessagesVector and indexes
are prepared, DisplayItem’s setTextVector() method will be next called to compute the
portin of text lines to be displayed. There are some components in this DisplayItem’s class
that we would like to describe first.

messagesVector: this Vector is the same as the receivedMessagesVector passed
by redisplay() method.

maxVisibleLines: The maximal number of lines that can be displayed in the text
area. It is equal to the height of the area height minus some offsets, then the all
divided by the height of a character displayed with a given font.

fontHeight = BOLD_TEXT_FONT.getHeight();

maxVisibleLines = (int) (height - yOFFSET)/fontHeight;

firstVisibleLine: The index of the first element in the messages vector messagesVector
to be displayed.

firstInvisibleLine: The ending index of the element in the messages vector to be
displayed. We stop displaying text line just before this index.

With the given arguments beginBoldLine and endBoldLine, we compute the number of
lines to be displayed in bold and store it to numOfBoldLines. From here, we distingue three
cases:

1). If the number of bold lines exceeds the maximal visible lines, then the first line to
display is the first line that is supposed to be in bold. And we display only a number of
lines equal to the maximal visible lines authorized for this area, which is maxVisibleLines.
As a result, there will be hidden text line(s) at the bottom of the screen.

27

if (numOfBoldLines > maxVisibleLines) {

firstVisibleLine = beginBoldLine;

firstInvisibleLine = firstVisibleLine + maxVisibleLines;

}

2. The second case is when this number is smaller than maxVisibleLines, and the last line
which is supposed to be in bold corresponds to the last line stored in the buffer. This case
happen when the received payload is stored at the first position in receivedPayloadsBuffer,
this payload will be displayed at the bottom of the screen.

else if (endBoldLine == messagesVector.size()) {

firstInvisibleLine = endBoldLine;

firstVisibleLine = firstInvisibleLine - Math.min(maxVisibleLines, messagesVector.size());

}

3). The last case is when the portion of lines in bold is somewhere in the middle of the
vector, and it does not exceed maxVisibleLines, then we try to central this portion on the
device screen.

else {

firstVisibleLine = Math.max(0, beginBoldLine - (maxVisibleLines - numOfBoldLines)/2);

firstInvisibleLine = Math.min(firstVisibleLine + maxVisibleLines, messagesVector.size());

// re-adjust the firstVisibleLine

if ((firstInvisibleLine-firstVisibleLine) < maxVisibleLines) {

firstVisibleLine = Math.max(0,

firstVisibleLine - (maxVisibleLines-(firstInvisibleLine-firstVisibleLine)));

}

}

Then, we call repaint() method to refresh the screen. This method will signal to the
system that the item needs to be drawn again. In response, it will call the paint() method.
We pass to this method a Graphics object, called g. This object represents the drawing
surface and provides methods for drawing images and texts. We use its setFont() and
setColor() methods for customizing the text, and use its drawstring() method to draw
the text line stored in the buffer. As we have computed all necessary indexes, we extract
all messages from the buffer messagesVector and draw them in the defined order and with
the corresponding font.

The last thing to be drawn is a scrollbar. The drawScrollBar() method is responsible
for this. It also uses methods of the Graphics class for drawing. The scrollbar slider’s
dimensions are re-computed each time the screen is redrawn. The slider reflects the size
and the position of the portion of text lines that are being shown regarding to the size of
the whole buffer messagesVector.

A scrollable area

Displaying messages is not the only task handled by this DisplayItem class. This class
also provides a mechanism for making its display area scrollable.

28

At this state, a scrollbar is drawn. However, as the command events are not handled
yet, no action will be taken to respond to user’s request. The CustomItem class supports
some input modes, including key pressing, key releasing and key repetition. The last mode
occurs when a key is pressed down for a long period. When a key is pressed, the system calls
CustomItem.keyPressed() method, and when it’s released, the CustomItem.keyReleased()
method is called. As DisplayItem extends this CustomItem class, we will overwrite these
two methods in order to define specific actions for our display area.

For reminding, a Form can be considered as a container of Items and it also supports the
concept of focus. A focused item is the item that is being selected by the user. When
the user traverses into the item for the first time, a call to CustomItem.traverse() will
occures. Then when the user traverses out this item, CustomItem.traverseOut() will be
called. We redefine these two methods and use a boolean, called isFocused to indicate
whether the DisplayItem is currently selected. Its value becomes true within traverse()
and false within traverseOut().

Afterwards, we also define the two other booleans, named keyUpPressed and keyDownPressed
to indicate if the ”Up” key or the ”Down” key is currently pressed. The numpad key 1
is used as the ”Up” key and the numpad key 4 as the ”Down” key. They correspond to
constants Canvas.KEY NUM1 and Canvas.KEY NUM4.

When ”Up” key is pressed and the item is focused, keyUpPressed will becomes true and
the scrollTextDown() is called. An ”Up” key implies the text to be scrolled down, in
order for the upper hidden text lines to be displayed. Hence, in scrollTextDown(), we
decrease the values of firstVisibleLine and of firstInvisibleLine, if the first one is
greater than 0. Then, we call repaint() for the item to be drawn again.

The same principle is applied when the ”Down” key is pressed, keyDownPressed will
becomes true and the scrollTextUp() method is called. This time, we increase those
two indexes, if firstInvisibleLine remains smaller than the last text line’s index, i.e.
messageVector.size().

Up to this state, the user can scroll up and down the area. But it has to keep pressing and
releasing the key to scroll the area line by line. We also handle here the possibility of re-
peating the scrolling movement when the user holds down a key for a long period. For doing
this, we initiate a Timer, called timer within the constructor’s method of DisplayItem.
This timer schedules a task and will periodically call to this task. The task is a TimerTask
object, called KeepScrollingTask. When this task is called by the timer, at its turn it will
call the keepScrolling() method of DisplayItem to verify if the item is focused, and if
the specific key is still help down, then it will call scrollTextUp() or scrollTextDown()
method, depending on the pressed key. For instant, we fix the period to SCROLLING DELAY
= 100 [ms].

3.2.4 Block or Unblock users

This process is entirely handled within the main class PushToChatMidlet. The application
maintains a list of blocked users, called blockedUsersList, which is a Hashtable. The
table’s key is the MAC address of the user, and its value corresponds to the user’s nickname.

29

Normally, a Vector could be enough if it was just for keeping a list of MAC addresses.
However, when we display the list of currently blocked users during the unblocking process,
the nicknames are shown instead of the MAC addresses. It is more convenient for the end-
user to read a list of nicknames and chose some of them, than to read a list of the MAC
addresses.

We use a List called displayableUsersList to store and display the list of users. For
reminding, a List is a Screen’s subclass, like Form, and represents an entity that can
be shown on the device screen. The list’s type is MULTIPLE, it means several choices can
be selected at the same time. From the Chat environment state, the user can invoke the
blockUsersCommand command to block users or invoke the unblockUsersCommand com-
mand to unblock currently blocked users. When one of these commands is invoked, the
listener will call the commandAction() method to perform defined actions. We employ the
performingAction variable, which can be equal to one of two constants BLOCK USERS and
UNBLOCK USERS, to store the current user’s will. BLOCK USERS indicates that the local user is
blocking other users, and UNBLOCK USERS indicates the opposite. Then performingAction
is passed as argument to showUsers() method for displaying the corresponding list of users.

In this showUsers() method, depending on the value of performingAction, each referred
User from usersList for blocking or from blockedUsersList for unblocking will be recov-
ered and its nickname will be employed to create an entry in displayableUsersList. For
doing this, we call its append() method. As the user’s nickname are shown on the screen,
but we need the MAC address to identify an user, a Vector named macAddInDisplayableUsersList
is used to store the MAC addresses at the same position as the corresponding nickname is
stored in displayableUsersList. This vector is used to recover the corresponding MAC
address when some nickname has been selected from the list. Once the vector and the list
are prepared, we execute the display.setCurrent(displayableUsersList) instruction
to display the list on the device screen.

While displayableUsersList is shown, the user can invoke validateCommand to validate
its choices. Once again, depending on the value of performingAction, the corresponding
method for blocking (blockUsers()) or unblocking (unblockUsers()) is called.

In order to retrieve selected elements from the list, we call the following instructions:

boolean[] selectedUsers = new boolean[displayableUsersList.size()];

displayableUsersList.getSelectedFlags(selectedUsers);

The value of the n-th element of the array selectedUsers will indicate if the n-th element
in displayableUsersList is selected. For example, if selectedUsers[0] is true, it means
that the first nickname is selected. This index is also used to retrieve the corresponding
MAC address in macAddInDisplayableUsersList. If an user is selected for being blocked,
its MAC address will be added to blockedUsersList and will be removed from usersList.
Otherwise, if it’s selected for being unblocked, its MAC address will simply be removed from
blockedUsersList. It implies that at the next reception of any payload from this user, it
will be treated as a New user case inside the message reordering process. Then, we reset
the list containing user’s nicknames and the vector containing MAC addresses for the next
use. Calling showChattingArea() method will lead the application to the previous Chat
environment state.

30

3.2.5 SLEF status

This process is also handled within the main class PushToChatMidlet. In order to display
the status of the lower SLEF layer, we use another Form called statusForm. It is the
simplest form in the application. It contains only a command, named cancelCommand, for
returning to the chat environment, and a StringItem for displaying the content, named
slefMonitoringArea. The content to displayed on the device screen is provided by the
SLEFProtocol instance via setMonitoringAreaContent() method. The content contains
information related to the SLEF protocol, like the current number of packets in the epi-
demic buffer or the attributes of these packets, such as age and the number of sent events.
If cancelCommand is invoked, showChattingArea() method will be called to lead the ap-
plication to the previous Chat environment state.

3.2.6 User’s identification

The User class represents an user in the network. We need to identify each user with an
unique identifier. The simplest idea is to use the nickname as the identifier. However, if
two users chose the same nickname, they will be confused in their messages will not be
correctly delivered.

A second solution is to use the MAC address of the device. The J2SE class that gives
the possibility to retrieve the MAC address of a device is java.net.NetworkInterface.
But, regretfully, due to security reason, it is not possible to have a low-access on device
in J2ME’s CLDC. Until now, retrieving MAC address is still a difficult topic to resolve in
J2ME community. Another regretful matter is that J2ME’s CLDC does not support Java
Native Methods (JNI). The idea could be to write a method in another language which
device’s low-access is allowed, for example in C, and then call the method from the J2ME
application.

Another idea for the identifier is to use the Smartphone’s International Mobile Equipment
Identity (IMEI) number. This number usually resides in system’s properties. In Java,
we can query system’s properties by using the java.lang.System.getProperty() static
method, as in:

String key = "microedition.platform";

String value = java.lang.System.getProperty(key);

In the case of the Smartphone HTC S620, the returned value is ”Windows CE 5.1”, which in-
dicates current platform of the device. Once again, not all system’s properties are supported
in CLDC/MIPD 2.0. It depends on the J2ME implementation, and further, on device’s
manufacturer to develop and provide additional APIs to retrieve the optional properties.
Nokia and Sony Ericson are two manufacturers who provide additional APIs built on CLDC
for reading the optional information of their phones. The IMEI number can be retrieved
on Nokia phones by giving ”com.nokia.IMEI” as they key and ”com.sonyericsson.imei” for
Sony Ericson phones. Unfortunately, HTC does not provide any additional API for their
phones.

31

As a result, this user’s identifier still is a problem to be solved. For instant, after the
Ask for nickname state of the application, we call retrieveMacAddress() method in
PushToChatMidlet class on the purpose of retrieving the MAC address of the device. How-
ever, due to the problem explained above, this method returns the value of the user’s
nickname. Within the development, we still refer to MAC address as the user’s identifier
in the network, but the contained value is the user’s nickname. The idea is not to let
further development have to change all the program, but only the returned value of this
retrieveMacAddress() method.

3.3 Java Standard Edition version

The second version of the application was developed in J2SE for being deployed on desk-
tops or laptops. The provided package PushToChatSE.Application contains all necessary
classes for this J2SE version. There are only 3 classes in the package, which are PushToChat,
Payload and User. The last two classes are identical to the J2ME’s ones described in sec-
tion 3.2. That also is the case for the message reordering process (section 3.2.2) which is
handled in PushToChat class.

We would like only mention the development of this version. We do not intend to go into its
details. The first reason is the project focuses on development in J2ME for Smartphones,
and the second reason is this J2SE version has the same structure as the J2ME one. The
main difference resides on the way that the graphical user interface was built.

Besides, this version implements all required functionalities and is fully compliant to the
J2ME one. It gives the possibility to interconnect different types of devices, from Smart-
phones to traditional desktops, and to make up an interesting network.

32

Chapter 4

Self Limiting Epidemic Forwarding
(SLEF) Implementation

4.1 Protocol description

Self Limiting Epidemic Forwarding (SLEF) was designed by Alaeddine El Fawal as ”a
complete practical middleware for multi-hop broadcast in ad hoc networks. It adapts itself
to the variability of the ad hoc network environments”’ [5]. For this end, it uses multiple
advanced mechanisms. We are taking the liberty to refer the reader to the main article of
SLEF, titled ”Multi-hop Broadcast from Theory to Reality: Practical Design for Ad Hoc
Networks” for understanding SLEF. Therefore, we will only give a brief description about
its functions.

1. Congestion control : This function consists in adapting the application injection rate
for (1) avoiding local buffer overflow and (2) allowing packets to propagate in the
network.

2. Efficient use of MAC broadcast : This function manages an efficient use of the MAC
broadcast by using two mechanisms: pseudo-broadcast and presence indicator.

3. Scheduler/fairness: This function is for deciding which packet to serve. It ensures
some level of source-based fairness.

4. Buffer management : This function is responsible of dropping packets in order to keep
space in the buffer.

5. Spread control : This function manages the trade-off between the spread and the
application rate. It uses an aging mechanism.

6. Inhibition: This function inhibits nodes from transmitting over-sent/received packets.
It uses a concept called virtual rate to achieve an adaptive inhibition.

33

4.2 Protocol implementation

The implementation was first realized in J2ME, and then another version in J2SE has
been proposed. However, as there isn’t any need of the user interface in this layer, the
two versions are identical. In consequence, we will only present in this chapter the J2ME
implementation.

The provided package PushToChat.SLEF contains all necessary classes. The following will
describe each of them.

NetMessage.java This represents the unit used to exchange information between SLEF
layers. As illustrated in figure 4.1, a NetMessage contains a payload, then the source
and the sequence number of this payload. Actually, this source corresponds to the
MAC layer of the originator’s device, and the NetMessage sequence number is re-
trieved from the payload’s one. The field age that a NetMessage carries is the
attribute age of a packet within the SLEF protocol[5]. And the last field sender
indicates the originator of the NetMessage. It is used to verify in the application
layer weather the received payload has been transmitted by its originator, or it has
been forwarded by some other node in the network. This process is not included in the
protocol, but its objective is to demonstrate one of the advantages of SLEF. Another
utility of this sender field is for discarding at the reception the packets transmitted by
the local node. Indeed, while using the broadcast address to transmit datagrams with
an UDP connection, it happens that these datagrams are also received and delivered
by the local node. This will make the SLEF’s operation error erroneous. To re-
solve this problem, while reconstituting the NetMessage delivered by the MAC layer,
we verify weather this NetMessage was transmitted by the local node, by checking
the sender with the local MAC address. If it is the case, this NetMessage will be
discarded.

Figure 4.1: NetMessage

As it is the case in Payload class, NetMessage also provides a method for converting
the current state of the object into an array of bytes, which is called getBytes()
method. Indeed, this mechanism is not used in the application layer, where the
Payload class is defined. As the Payload is encapsulated in this SLEF layer, its
getBytes() method also is called in this layer.

The bytes array of NetMessage is composed of a header part and a main content
part. The header has 4 bytes, each of them indicates the length of its corresponding

34

field in the content part. The length of a field is the number of character it has.
This length is an integer converted into a byte. As an integer is a 32-bit, then only
its eight least significant bits will be taken into account. Therefore, the maximal
length for a field is 127, which can be considered more than enough. As an example,
if the value contained in the first byte (labeled source’s length) corresponds to an
integer 5, it means that the first five bytes of the content compose the source field.
Then, the first part of the content contains the bytes of all fields concatenated into
a single String, and the second part is the content of the Payload. For copying an
array to another, we user the static method System.arraycopy(). By processing in
the opposite direction, we can reconstitute the NetMessage whose the bytes array is
delivered by the MAC layer.

NetRecord.java This class corresponds to the clone notion in SLEF protocol. It contains
the original packet, which is a NetMessage and its attributes: the number of sending
events sendCount, or of receiving events rcvCount, the virtual rate vRate and age.
These are ones of most essential attributes of the protocol. We also define another
variable called firstSeenTime, which records the time (in millisecond) that the packet
of this clone is received by this node for the first time. This record is used for
computing the real time age of the packet. Another time’s record variable called
lastTransmissionTime is also present. It records the time at which the packet was
transmitted for the last time. This value is used in the decision if the last transmission
in pending mode will be taken into account, or this transmission has occurred too long
ago for being confirmed. Furthermore, this class also provides methods for computing
and updating the attributes mentioned above.

NetRecordId.java This class provides an identification for a NetRecord object. It is
composed of two global variables source and seqNum, which corresponds to the MAC
address of a node and the sequence number of the payload. With this information,
we can recover the corresponding NetRecord object. The class only overwrites the
equals() of the Object class for the comparison of two NetRecordId objects. We
would like to know if those two objects are equivalent, and are only interested in
the values of their two fields source and seqNum. If these values are equal, then we
confirm the equivalence of those two objects.

NetSource.java This class represents a source in the network. In a simple way, we can
say that this class is to the SLEF layer like the User class is to the application layer.
This class contains the table of clones called cloneTable, which is a Hashtable. The
table’s keys are the packet’s sequence numbers, and the values are the corresponding
NetRecord objects. Then, the class has a Vector called FIFO, which contains eligible
packets [5]. Finally, a double named sourceClaim indicates how much this source
can claim to be scheduled is also present.

SLEFTimeoutTask.java This class extends the Java’s TimerTask and represents the
task which will be scheduled by the SLEFProtocol’s global timer for the packets
stored in the epidemic buffer. The packet’s identifier is stored in the NetRecordId’s
instance, called recordId. Therefore, when the timer’s delay expires, this task will
call the timeout() method of the SLEFProtocol class and gives the packet’s identifier

35

as argument. This signals that the packet needs to be added into the FIFO of the
corresponding source. This relates to the eligible packet ’s concept.

SLEFProtocol.java This is the main class of the SLEF package. It orchestrates the
whole operation of the SLEF layer. Among others, we define in this class all SLEF’s
constants (such as K0, K1 or R0) and the essential epidemic buffer, which will be
discussed in section 4.2.1. We would like to present some important components that
are used in this class before entering into its main functions.

blacklist (Vector): This buffer stores the list of removed packets. These pack-
ets have once been present in the epidemic buffer, but are now removed due to its
age, to the buffer size or due to the congestion control. In any case, the process
keeps tracks of these packets, by adding its corresponding NetRecordId object
to this buffer, in order for it to be discarded at next reception.

timer (Timer): This is the global timer that will be used to schedule the specific
task for all packets in the epidemic buffer. It needs two parameters: the task
to be executed (SLEFTimeoutTask) and the delay after which the execution will
start.

timerTaskTable (Hashtable): This table maintains a list of packets for which
a timer task is currently associated (i.e. scheduled). The table’s key is a
NetRecordId object, which identifies a NetRecord, and its key is a SLEFTimeoutTask
object, which corresponds to the scheduled task . Whenever a timer is set for a
packet, an entry will be added into this buffer. This buffer is used for recovering
the timer task if it needs to be canceled before its execution after the specific
period.

selfRecordsDroppingList (Vector): According to the Congestion control func-
tion, the number of self-packets stored in the epidemic buffer cannot exceed σ
(currently equal to 2). But in case of an implicit acknowledgement of a given
self-packet or in case where its sendCount reached 3, the application is allowed
to inject a new payload, and the given old self-packet will be removed. We call
that old self-packet removable one. Hence, this buffer is used to store a list of
removable self-packets. The vector only stores the sequence numbers, because
we know that the source of these packets is the local node.

pendingRecordsList (Vector): SLEF’s Efficient use of MAC broadcast function
discusses about the pending transmission. This buffer is used to store packets
whose the last transmission is in this pending mode. The buffer contains the
NetRecordId objects, from which the corresponding NetRecord objects can be
recovered.

localSource (NetSource) This object represents the local source at this SLEF
layer. Its cloneTable contains locally originated packets, that we call self-
packets. This object can also be recovered from the epidemic buffer (presented
later), but because of its frequent use, it’s more convenient to maintain it apart.

sourceClaimIncrement (double) This is the value by which the sourceClaim
of each source in the epidemic buffer will be increased whenever a packet is
scheduled for transmission (cf. Scheduler function). It’s equal to 1

#sources and is

36

updated by a call to updateSourceClaimIncrement() method each time a new
source is created.

lastReceiveTime (long): This variable is used to store the time of the last
reception. This value will be employed to compute the presenceIndicator,
which belongs to Efficient use of MAC broadcast function

This main class also contains a instance of the upper layer PushToChatMidlet that we
call parent, and one of its lower layer MACBroadcast called macBroadcast. These two
objects allow the communications between the three layers. We would like to present next
the buffer epidemic, and then the implementation will be explained though the two main
processes: Reception and Transmission .

4.2.1 The epidemic buffer

The protocol defines that each node in the network maintains one epidemic buffer to store
”received and locally originated packets”. In the implementation, the role of this buffer
is ensured by a Hashtable called epidemicBuffer. This table and its connections are
illustrated in figure 4.2.

Figure 4.2: The Epidemic buffer

Actually, the buffer does not directly contain the packets. The epidemicBuffer’s key is
the MAC address of the node and its value points to a NetSource object. As mentioned,
this latter represents a source in the network. At its turn, each source keeps with it a
buffer called cloneTable, which also is a Hashtable, to store packets originated by itself.
The packet here is a NetRecord object which is identified by the sequence number. It is
necessary to mention that the sequence number of the packet here is the sequence number
of the payload created in the application. A packet in SLEF layer always encapsultates a
payload. As a result, if we want to verify if a packet exits in the epidemic buffer, we have
to recover first its source and then to look for that packet in the clone’s table.

When the application starts, an entry for the local user called localSource will be created
and added into the epidemic buffer. Naturally, this buffer still remains empty because the
source’s cloneTable does not contain any entry.

In [5], it says that the epidemic buffer size is upper bounded by maxTTL+1
K1

. By using
default values, maxTTL=255 and K1=0.1, we obtain 2560 [packet] for the maximal size of
the packet. However, due to the very limited memory space of the Smartphone (64MB of
RAM), we fix this limit to 170 [packet].

37

4.2.2 Reception

Figure 4.3: SLEF Reception

NetMessage’s reconstitution

The reception process is presented in figure 4.3. It begins when the MAC layer delivers the
packet to SLEF. That means, when the receiver thread calls SLEFProtocol’s receive()
method with the bytes array datagramInBytes as argument. The first action to take is
to reconstitute the NetMessage object from that array. Basing on the structure defined in
NetMessage class (illustrated in figure 4.1), we read the first four bytes in order to obtain
the length of each field. Afterwards, by using the String.substring() method, we can
extract each field. Below is an example for extracting the sender field of a NetMessage
object.

senderLength = (int) datagramInBytes[3];

datagramContent = new String(datagramInBytes,0,datagramInBytes.length);

sender = datagramContent.substring(4 + sourceLength + identifierLength + ageLength,

netMessageStartPos + sourceLength + identifierLength + ageLength + senderLength);

Following this mechanism, we extract field by field. We reconstitute first the Payload ob-
ject, as it is required to create a NetMessage object. Once this latter object is reconstituted,
before calling processIncomingNetMessage() method to process this message, we record
this time in lastReceiveTime, which indicate the time of the last reception in millisecond.

NetMessage’s processing

The main part of this reception process is realized within this processIncomingNetMessage()
method. First, we analyze the state of this packet following to the schema in figure 4.4.
The incomingNetMessageState() method performs this analysis and returns an integer
indicating the state. We notice that there are 7 states, nevertheless, only with 3 of them
the packet is valid and will be processed. These 3 states are 1, 4 and 7. While with other
states, either the blacklist contains the packet’s identifier, or the packet’s age exceeds the

38

Figure 4.4: Received NetMessage state

authorized one, in consequence it will be discarded. If it’s because of the age, this packet
will also be added into the blacklist. We will now discuss about the three valid states.

State 1: This is the first packet that we receive for that source. A new NetSource object and
a NetRecord one will be created. Before inserting the clone into the source’s clone’s
table, we have to update its received events counter rcvCount, its virtual rate vRate,
and its age. The NetRecord’s receiveCloneUpdate() method performs this update
and is shown below.

public void receiveCloneUpdate() {

rcvCount++;

vRate = computeVRate();

// update age

discreteAge += SLEFProtocol.K0;

continuousAge = computeContinuousAge();

age = discreteAge + continuousAge;

}

private double computeContinuousAge() {

return (((double)((new Date().getTime()) - firstSeenTime))/3600000.0)

* SLEFProtocol.alpha; // [hours]*alpha

}

Inside this method, the computeVRate() method applies the formulaR0a
rcvCountbsendCount

and returns a double. While computeContinuousAge() computes the continuous age
of the packet. The first subtraction (new Date().getTime()) - firstSeenTime
gives us the elapsed time in millisecond since the moment this packet was received
for the first time. Then, dividing it by 3600000 converts this time to hour, which will
be multiplied by the constant α of SLEF to obtain the continuous age of the packet.
This constant α is equal to 32, which will let the packet reside in the epidemic buffer
during at most 8 hours.

Afterwards, this packet is ready to be inserted into the epidemic buffer. This inser-
tion increases the buffer size. If the maximal size is reached, the process will remove
the oldest packet in the epidemic buffer. This follows the rule of Buffer management
function. The system maintains a global variable called oldestRecordId, represent-
ing the packet with highest age in the epidemic buffer. When this packet needs to
be removed, we call updateOldestRecordId() method to update this variable, by

39

searching again in the epidemic buffer the packet with the highest age, and then we
call removeOldestRecord() to remove it. As we have just added a new source, the
value of sourceClaimIncrement also needs to be updated. And this is the first packet
received for this clone, the corresponding payload is also passed up to the application
layer, by a call to parent.processIncomingMessage(). This implies that the process
only delivers the same payload once to the application layer. Otherwise, the message
reordering process would not correctly operate.

State 4: This state is quite similar to the previous case, except that the source already exists
in the epidemic buffer. Hence, we will recover this source and create a new clone,
perform reception’s updates and add this packet into the buffer. The corresponding
payload will also be delivered to the application layer, as this is the first reception.

State 7: In this case, both the source and the clone are already registered. Hence, we will
recover them both, and call receiveCloneUpdate() method to update the packet’s
attributes. Moreover, if the packet is a self-packet (i.e. the MAC address it car-
ries is equal to the local one), then we will consider this reception as an implicit
acknowledgment, according to the second statement of SLEF’s Congestion control
function. Then, this self-packet is a removable one and therefore will be added into
selfRecordsDroppingList. The presence of a removable self-packet implies that
SLEF layer allows the application to inject new packets. The call to enableSending()
of the PushToChatMidlet class will set its variable allowedToSend to true.

Timer

Up to this moment, the state of the received NetMessage is identified. If the packet is a
valid one (state equal to 1, 4 or 7), then we need to set a timer task for it. However, if the
state is equal to 7 and the pendingRecordsList contains this packet’s identifier, then this
operation will be postponed to the next part of the process.

To set a timer for a packet, we’ll call setTimer() method. It is possible that there’s another
timer task which is currently scheduled to this packet, but thes specified delay does not
expire yet. Hence, within the setTimer() method, before associating a new task for this
clone, a call to cancelTimer() method will first try to cancel the current one, if it does exist.
The corresponding SLEFTimeoutTask object will be recovered and its cancel() method is
excuted. It is good to mention that once a TimerTask instance has been cancelled, it is not
possible to use this task again for a future scheduling. Otherwise, it would be preferable to
reschedule this instance again for the packet, and we would have avoided the destruction
and construction operations.

This timer process corresponds to the notion of ”eligible” packets within the Scheduler
function. It says that a packet is eligible if at any time t, it has earliestSendTime ≤ t,
where earliestSendTime is equal to the last time the vRate was modified, plus 1

vRate . It
also means that, at the moment where its vRate is modified, if the packet waits for a period
equal to 1

vRate , then it will become eligible. And that’s how we compute the delay for the
timer, which is equal to 1

vRate . A timer is necessary for a packet to become eligible, thus to
be inserted into the source’s FIFO. The actions to take when a timer’s delay expires (called
timeout) will be discussed later in the transmission/retransmission mechanism (section ??).

40

Pending transmission’s update

The next action to take is to confirm the transmission of packets that were previously trans-
mitted in pending sending mode. This confirmation will occur if the pendingSendConfirmation
flag is true and the pendingRecordsList is not empty. If all conditions are verified, then the
method updatePendingSentRecords() will be called. The condition for a pending trans-
mission to be confirmed is that the elapsed time from the moment where the transmission oc-
curred to now must be less or equal to a predefined interval, called validPendingInterval,
which is currently fixed to 1000 millisecond.

For each packet’s identifier stored in the pendingRecordsList, the corresponding packet
(NetRecord) will be recovered. Then, the lastTransmissionTime field of the packet will be
used to verify the condition above. If the pending transmission has not occurred too long
ago, it will be updated as if it was a normal transmission. This update is ensured by the
NetRecord’s sendCloneUpdate() method, which is very similar to receiveCloneUpdate()
that we discussed earlier. The sole difference is that instead of the rcvCount, its sendCount
will be increased and hence also be the virtual rate. And as the virtual rate has changed,
we need to set a new timer for this packet. The action is just discussed above. The
timer for the received packet whose the state is equal to 7 and which is present in the
pendingRecordsList is performed here.

if ((currentTime - record.lastTransmissionTime) <= validPendingInterval) {

record.sendCloneUpdate();

setTimer(recordId);

if ((recordId.source.equals(this.localMacAddress)) && (record.sendCount==3)) {

if (!selfRecordsDroppingList.contains(seqNumInInteger)) {

selfRecordsDroppingList.addElement(seqNumInInteger);

}

parent.enableSending();

}

}

Moreover, if the packet is a self-packet and the new value of the sendCount is greater or
equal to 3, then the third statement of the Congestion control function will be applied. The
result will be the same as State 7 above, this packet will become a removable self-packet
and will be stored in the selfRecordsDroppingList buffer. Finally, PushToChatMidlet’s
enableSending() is called.

However, if the pending transmission has occurred too long ago, we will not confirm this
transmission and will add right after the packet’s identifier into the source’s FIFO, if this
latter does not contain the packet’s identifier yet. This action aims to let the packet to be
retransmitted as soon as possible. Before doing this, if a timer task is currently scheduled
for this packet, it has to be canceled first.

else if (!source.FIFO.contains(seqNumInInteger)) {

cancelTimer(recordId); // cancel the current timer if necessary

source.FIFO.addElement(seqNumInInteger);

}

At the end of this update, the packet will be removed from pendingRecordsList buffer.
This process continues until the buffer becomes empty.

41

SAT and reception’s updates

The received NetMessage’s processing is done, now other updating methods are necessary.
First, we will update the value of SAT, which is the Self Age Threshold value. The new
value for this threshold is equal to max(SAT0, SAT −K1) (with SAT0= 10).

Afterwards, we have to increase the age of other packets in the epidemic buffer by K1

(adaptive age). The method updateOthersAgeUponReception() is responsible of this ac-
tion. It recovers each packet in the epidemic buffer, and then distinguishes two cases:
self-packet and foreign-packet. For the latter one, the process is simple. The NetRecord’s
updateUponReceptionForForeignPacket() is called for each packet. This increases the
discrete age by K1 and the continuous age is recomputed with computeContinuousAge()
that we discussed earlier. Then, the new age is the sum of these two. If the new age exceeds
maxTTL+1, then the packet is too old and will be dropped. We also take advantage of this
process to update the variable oldestRecordId, which represents the packet with highest
age in the buffer.

For self-packets, we applies in this situation the density detection mechanism, for short,
we call it ”SAT process”. We will call first the updateUponReceptionForSelfPacket()
method in order to update the self-packet’s age. This method receives in parameter the
current value of SAT. It will compare the currnet age of the packet with this SAT value.
If the current age reaches this value and the packet was never transmitted (sendCount is
equal to 0), then its age will be equal to maxTTL. Otherwise, the self-packet’s age will be
updated as it is in the foreign-packet case. After its age is updated, if the packet is too
old (greater than maxTTL+1), it will be removed from the epidemic buffer. Otherwise, it
will be taken in account for the update of the variable oldestRecordId. We would like
to mention that it is not necessary to verify here whether the self-packet’s sendCount is
strickly positive before removing it. Because even if the SAT process is activated for this
self-packect, its age will never exceed maxTTL+1.

SLEF status displaying

The last call we perform with this process is to the displayEpidemicBuffer() method.
This method browses the epidemic buffer and generates a String called textContent con-
taining the current state of the packets (i.e. its attributes). Then this textContent is
passed up to the application layer. The content can be displayed right after, as it is the
case in the J2SE application, or by the user’s command, as in the J2ME version.

4.2.3 Transmission/Retransmission

In this section, we will discuss about the sending process of the SLEF layer. We slightly
distinguish the transmission process from the retransmission one. The transmission occurs
when the application injects a new payload into the SLEF layer and is sure the SLEF will do
its best to send this payload to the network, and the other one is due to the retransmission
mechanism of SLEF regarding to packets in the epidemic buffer. There are four essential
methods involved in this transmission/retransmission: send(), timeout(), scheduler()
and sendToMac(). The first method, send() is a communication point with the application
layer. It is called when this latter has a new payload to send over the network. Hence, we

42

say that this method is responsible for the transmission and its operation will be discussed
in the first part of this section. The second method timeout() is called when the delay of a
packet’s timer expires. This packet becomes eligible and therefore is inserted into the FIFO
for a retransmission. In consequence, this method is involved in the retransmission process.
Then scheduler() is responsible for the Scheduler function which selects the next packet
to be retransmitted and sendToMac() this method is used for delivering the packet to the
lower MAC layer. The last three functionned will be discussed in the second part of this
section, the retransmission part.

Sending packets coming from the application layer

This process can be divided into two parts. The first part is responsible of the Congestion
control function and the second part consists in adding the packet into the epidemic buffer
and in transmitting it to the MAC layer.

The injection rate of the application is controlled by the SLEF layer. This control is
performed through the boolean allowedToSend at the application side. The value of
this variable is changed by the call to PushToChatMidlet’s enableSending() or to its
disableSending() method by SLEF. When allowedToSend is set to true, the application
can inject new payload into the SLEF layer. For this mean, the application will call the
SLEFProtocol’s send() method, and passes the new payload in paramater.

As mentioned earlier, the number of self-packets currently stored in the epidemic buffer
cannot exceed σ, which currently is equal to 2. The localSource.cloneTable.size()
method returns this number. Therefore, if it is smaller than σ − 1, the application can
freely send new payloads without any restriction from SLEF. The two relevant cases are
when it reaches σ − 1 and σ.

Case σ−1: The current number of self-packets is σ−1, that means, with the new pay-
load, it will be equal to σ. In a simple way, SLEF would not allow the application to
inject any new payload until one of the currently stored is removed. However, accord-
ing to three possibilities for a new payload be injected defined in Congestion control
function, we still allow the application to send new payload only if there is any re-
movable self-packet in the epidemic buffer. That means, selfRecordsDroppingList
is not empty. Otherwise, SLEF will prohibit the application from sending by calling
the parent.disableSending() method. This call will set allowedToSend to false.

Case σ: This case occurs only when at the previous case, the selfRecordsDroppingList
buffer is not empty. The process will recover the first element in this buffer and then
remove the corresponding packet from the epidemic buffer. Afterwards, if there isn’t
any other removable self-packet, the process will prohibit the application from sending.
Otherwise, the application still is allowed to send until the selfRecordsDroppingList
buffer becomes empty.

Integer seqNum = (Integer) selfRecordsDroppingList.firstElement();

NetRecord removeRec = (NetRecord)localSource.cloneTable.get(seqNum);

removeRecord(new NetRecordId(removeRec));

43

if (selfRecordsDroppingList.size() == 0) {

parent.disableSending();

}

The congestion control process ends here. We will now add the packet into the epidemic
buffer. For this mean, a new NetMessage object encapsulating the payload is created,
followed by a NetRecord object. This new clone will be first into the source’s cloneTable.
As this packet is about to be sent, it’s also inserted into the source’s FIFO. Then, we verify
the epidemic buffer size, as a new entry was just added. If necessary, the oldest packet will
be removed.

At this state, this new payload is not processed yet by the application’s message reordering
process, hence either is displayed on device screen. We would like to be sure that the packet
resides in the clone’s table before displaying it at the application side. We deliver back this
payload by the call to the parent.processIncomingMessage() method.

At any time, the MAC layer can be occupied due to the retransmission mechanism. We
maintains a boolean named MacIdle to indicate whether the MAC layer is idle. If it is
idle, then new packet can be sent to the MAC layer right away. The sendToMac() method
is responsible for this action and will be discussed in the retransmission part. However,
before that method is called, we set MacIdle to false, to indicate to other methods that the
MAC layer is occupied. This variable can be considered as mutex for sharing access to the
sendToMac() method. In the case where the channel is occupied, the packet cannot be sent
right away. Anyways, it resides in the source’s FIFO, depending on the value sourceClaim,
the packet will be scheduled for transmission later.

Retransmission of packets in the epidemic buffer

Timeout

When the delay of specific task SLEFTimeoutTask scheduled by the global timer expires,
the task will be executed. The only instruction that is defined in its run() method is
the call to the timeout() method of the SLEFProtocol class, by giving in parameter
the NetRecordId object identifying the packet to which the timer is associated. The
SLEFProtocol’s timeout() method can be considered as a retransmission trigger, as its
task is too insert the eligible packet into the source’s FIFO. When this method is called,
the source of the packet will be recovered, then its clone and its sequence number.

NetSource source = (NetSource) epidemicBuffer.get(recordId.source); // source

Integer seqNumInInteger = new Integer(recordId.seqNum); // sequence number

NetRecord record = (NetRecord)source.cloneTable.get(seqNumInInteger); // the clone

Then, the method adds the packet’s sequence number into the source’s FIFO for retrans-
mission. If the channel is idle, it will create a new NetMessage object, equal to the current
one stored in the clone, but with the current age. Otherwise, as the same as the send()
case, the packet resides in the source’s FIFO and will be scheduled for retransmission by
the scheduler.

44

source.FIFO.addElement(seqNumInInteger); // add the packet to its source’s FIFO

if (MacIdle) { // send to MAC layer

NetMessage message = record.netMessage;

message.age = record.age;

MacIdle = false;

sendToMac(message);

}

Scheduler

In the implementation, the scheduler() method is called after a packet has been delivered
to the MAC layer, that means, at the end of the sendToMac() method. Its tasks are well
defined: update the sourceClaim for each source, then decide the next packet to serve.

Actually, these two tasks are delegated to the updateSourceClaim() method. The sched-
uler calls this method and waits for the selected packet returned by this call.

NetRecordId nextSendRecordId = updateSourceClaim();

The updateSourceClaim() method recovers each source stored in the epidemic buffer and
increases its sourceClaim by the sourceClaimIncrement. Then it compares the new
value sourceClaim of the source with currently highest one, stored in maxClaimSource.
If sourceClaim is greater than maxClaimSource and the source’s FIFO is not empty, i.e.
there exists eligible packets, then the source’s key will be stored into selectedSource.

while (sourceKeys.hasMoreElements()) {

currentKey = (String) sourceKeys.nextElement();

currentSource = (NetSource) epidemicBuffer.get(currentKey);

if (currentSource != null) {

currentSource.sourceClaim += sourceClaimIncrement;

// select the source with the highest sourceClaim

if ((maxClaimSource < currentSource.sourceClaim) && (currentSource.FIFO.size() > 0)) {

maxClaimSource = currentSource.sourceClaim;

selectedSource = currentKey;

}

}

}

At the end of the process, the method will create a NetRecordId object corresponding to
the first packet stored in the FIFO of the selected source selectedSource. This object
is returned to the scheduler and is stored in nextSendRecordId. If the returned object is
not null, then the scheduler will create a NetMessage object from nextSendRecordId, and
update its age before passing it to sendToMac(). At this state, the channel is occupied
(MacIdle = false). Therefore, the scheduler will keep the channel until no eligible packet
is present in the epidemic buffer anymore. In this case, the scheduler releases the channel
by setting MacIdle to false.

if (nextSendRecordId != null) {

Integer seqNumInInteger = new Integer(nextSendRecordId.seqNum);

NetSource source = (NetSource) epidemicBuffer.get(nextSendRecordId.source);

45

NetRecord record = (NetRecord) source.cloneTable.get(seqNumInInteger);

NetMessage message = record.netMessage;

message.age = record.age;

sendToMac(message);

}

else {

MacIdle = true;

}

Deliver the packet to MAC layer

As mentioned above, the sendToMac() method delivers the packet (NetMessage) to the
MAC layer and performs updates depending on the value of the presenceIndicator. The
presence indicator is a concept defined in Careful use of MAC broadcast function. This
method can be called from the scheduler, from timeout() or from send() methods. The
two latter cases happen will the channel is idle, i.e. MacIdle is true.

Before sending the NetMessage, this method recovers its source and decreases the value
of sourceClaim by 1, as defined in Scheduler function. Then, this packet is also removed
from the source’s FIFO, as the packet will be transmitted soon.

source.sourceClaim--; // decrease the claimSource by 1

Integer seqNumInInteger = new Integer(netMessage.identifier);

if (source.FIFO.contains(seqNumInInteger)) {

source.FIFO.removeElement(seqNumInInteger);

}

Next, the method will put the MAC address of the local source as in the NetMessage’s
sender field. For reminding, this field indicates the node that transmits this packet. Then it
calls the send() method of MACBroadcast class and gives the bytes array of the NetMessage
as parameter. This send() method is a blocking one. It returns a boolean, which is true
when the MAC layer has successfully delivered the packet into the network, or is false when
an error or an exception has occurred. We keep sending this packet if the transmission is
not successful.

netMessage.sender = parent.getMacAddress(); // Modify the sender field of the NetMessage

while(!macBroadcast.send(netMessage.getBytes())); // Send to MAC layer

// compute the presence indicator

presenceIndicator = (new Date().getTime() - this.lastReceiveTime) < this.busyInterval;

When the transmission is successful, then we will compute the value of presenceIndicator.
It will depend on the amount of elapsed time since the last reception. We remind that the
value of lastReceiveTime is updated at each reception. If this amount of time does not ex-
ceed busyInterval’s value, which is arbitrarily fixed to 5 seconds, then presenceIndicator
is set to true, otherwise, it is set to false. The busyInterval’s value should not be chosen
in an arbitrary manner, but it should be based on the frequency of interactions between
nodes. However, this value is not analyzed in this project.

With the given value of presenceIndicator, we can decide whether the transmission was
in pending mode. If presenceIndicator is true, then the transmission was sent in normal

46

mode and can be considered successful. In this case, we update the sendCount and other at-
tributes of the packet with the sendCloneUpdate() method, and set pendingSendConfirmation
to false. This method was once mentioned during the reception process. It increases the
sendCount by 1, re-computes the vRate and age of the packet.

As its age increases, we verify that it does not exceed maxTTL +1, otherwise, it will be
removed from the epidemic buffer. We call removeRecord() for removing the packet. Else,
if this packet does not age out yet, as its vRate has been updated, the timer will schedule
a new timer task for this packet. setTimer() is responsible for this action.

Afterwards, if the packet is a self-packet and the new value of the sendCount is greater or
equal to 3, then we apply once again the third statement of the Congestion control function.
This packet is a removable self-packet and is added in the selfRecordsDroppingList
buffer. Finally, we allow the application to send new packet by a call to its enableSending()
method.

These actions are taken when the transmission is not in pending mode. In the contrary
case, we do not increase the packet’s sendCount, but only its continuous age is increased.
Also, the pendingSendConfirmation is set to true to indicate that the system is in pending
sending mode. As this transmission can be analyzed later for being validated, we have to
record the time of the packet’s transmission to its variable lastTransmissionTime.

pendingSendConfirmation = true;

record.updateContinuousAge();

record.setLastTransmissionTime(new Date().getTime());

NetRecordId recordID = new NetRecordId(record); // the identifier of the record

if (!pendingRecordsList.contains(recordID)) {

pendingRecordsList.addElement(recordID);

}

setTimerInPendingMode(recordID); // set a new timer for this packet, but in sending pending mode.

Then we add this packet into pendingRecordsList buffer and associate a timer to this
packet by the setTimerInPendingMode() method. The only difference between this method
and setTimer() resides on the timer’s delay. In pending mode, the packet’s vRate is
maintained and we use a fixed delay for its timer, called pendingRetransmissionDelay
and currently fixed to 5000 milliseconds.

The value of SAT is also updated in this process, which is equal to min(maxTTL, SAT +
SAT0). As there’s change within the epidemic buffer, displayEpidemicBuffer() is called
to redisplay the status and finally the scheduler will take place in order to select next eligible
packet for retransmission.

Packet’s removal

Packets can be removed from the epidemic buffer according to the Buffer management
and the Congestion control functions. The removeRecord() method is responsible for this
removal. It has to ensure that the packet is completely removed and does not let any
trace that could disturb SLEF’s operation. That is to say, the timer must be canceled
(using cancelTimer() method), the clone must be removed from the source’s clone table

47

and also from the source’s FIFO. After that, the packet is added into the blackList for
not being processed again. With that, the epidemic buffer size can be decreased by 1.
Finally, if a self-packet is removed, we verify the number of self-packet currently stored in
the epidemic buffer for allowing the application to send new packet, due to the Congestion
control function.

4.2.4 Checklist

At this state, almost all SLEF’s functions are implemented. The only missing mechanism
is the use of the pseudo-broadcast, which is included in the Careful use of MAC broadcast
function. We would like to give a brief checklist basing on the SLEF’s functions.

1. Congestion control : This function is first applied when a new payload is injected by
the application through the send() method. Then, it’s also applied when a packet is
received, which is handled by the processIncomingNetMessage() method. Finally,
we verify this function when a packet is removed from the epidemic buffer with the
removeRecord() method.

2. Efficient use of MAC broadcast The pending sending mode is supported and the
presence indicator is introduced.

3. Scheduler The scheduler() method ensures this function. It selects eligible packets
in accordance with the source-based fairness. For this mean, we employ a global
timer to schedule a new timer task for the packet each time its vRate changes, and
the sourceClaim of each source is updated at each transmission.

4. Buffer management We fix a maximal size maxEpidemicBufferSize for the epidemic
buffer and always verify its size whenever a new packet is inserted. We keep track on
the packet with the highest age for a removal if necessary.

5. Spread control Age of each packet is always re-computed upon a reception or a trans-
mission. Even in the pending sending mode, the real time age is always updated. We
also implemented the SAT process for self-packets.

6. Inhibition The virtual rate of each packet is well maintained within the NetRecord
class. All necessary methods for updating are implemented.

48

Chapter 5

MAC Broadcast

We aim to present in this chapter the design and the implementation of the third and also
the last layer of the architecture, the MAC layer. The role of this layer is very simple, it
is responsible for broadcasting the packets into the network and for receiving them from
the network. Therefore, its design is only composed of two classes: MACBroadcast for
broadcasting and MACReceiver for receiving. Because of the simplicity of the design, it can
be used for both J2ME and J2SE versions. An illustration is given in figure 5.1. We will
give here the main structure for both of them, then the particularity of each version will
be discussed in their implementation part.

Figure 5.1: MAC layer’s design

The unit used for exchanging information between the SLEF layer and this layer is an array
of bytes. And, as we would like to keep this layer as simple as possible, there will not be
any data processing in this part.

The MACBroadcast is the main class of this layer. It is responsible for opening the connec-
tion, which is an UDP connection, and then for initializing an instance of MACReceiver.
Along with the constructor method, we define in this class the send() method, which is
used by the SLEF layer to deliver packets, which are bytes arrays. Then this method is
supposed to create an UDP datagram from these arrays and broadcast them into the net-
work. It will return a boolean set to true if the transmission was successful, and it is set to
false if errors occured.

49

Besides, the MACReceiver extends Thread and contains only the the constructor and the
run() methods. It maintains a MACBroadcast object and a SLEFProtocol object. The first
one is used to retrieve the connection for sharing, and the second object is used to call the
corresponding method to deliver incoming datagram to.

5.1 J2ME implementation

5.1.1 MACBroadcast

Within the constructor method of MACBroadcast, we open an UDP connection called
datagramConn.

datagramConn = (UDPDatagramConnection)Connector.open("datagram://:" + portNumber);

The IP address is not given while opening the connection because we would like to obtain a
datagram server. The variable portNumber indicates the port number and is equal to 9001,
a standard port for UDP connection. In J2ME, UDPDatagramConnection is a subclass of
DatagramConnection. The only difference resides on the fact that UDPDatagramConnection
provides an additional method called getLocalAddress() which returns the IP address of
the device. Then, a MACBroadcast instance is created and started within the init()
method. SLEF layer only calls this method when at the application layer, the user has
correctly inserted his nickname. It is for avoiding the messages to be receieved while the
user is not in the chat environment yet.

When SLEF wants to deliver a packet,it will call the send() method. An UDP datagram
will be created and sent with the predefined broadcast address, called broadcastAddress.

datagramConn.send(datagramConn.newDatagram(netMessageInBytes, netMessageInBytes.length,

broadcastAddress));

This the value of broadcastAddress is ”datagram://169.254.255.255:9001” when the Smart-
phones HTC S620 are used. This value was deduced from the register key AutoSubnet of the
Smartphone, which is equal to ”169.254.0.0” and can be found in HKEY LOCAL MACHINE\Comm
\TNETWLN1\Parms\TCPIP\. This is because in J2ME, due to security reason, the generic
broadcast address 255.255.255.255 is not allowed.

5.1.2 MACReceiver

This thread keeps receiving datagrams from the network. The blocking method receive()
of UDPDatagramConnection will wait until a datagram is received and is stored into the
given argument datagram, which is a Datagram. The received portion of bytes stored in
datagram will be extracted to a new array called datagramInBytes, and this latter will be
delivered to the SLEF layer by its receive() method.

50

while (true) {

// receives the incoming datagram

macBroadcast.getDatagramConnection().receive(datagram); // a blocking method

byte[] datagramInBytes = new byte[datagram.getLength()];

// copy the right portion of bytes to the returned array

System.arraycopy(datagram.getData(),0,datagramInBytes,0,datagram.getLength());

slef.receive(datagramInBytes); // send to SLEF

}

5.2 J2SE implementation

5.2.1 MACBroadcast

In the MACBroadcast’s constructor method, we open a datagram socket DatagramSocket
with portNumber given as the port number. We also call that socket datagramConn. The
broadcasting address required now is now longer a String, but an InetAddress.

datagramConn = new DatagramSocket(portNumber);

inetAddress = InetAddress.getByName(broadcastAddress);

When there’s a packet to send into the network, send() method will create a DatagramPacket
and use datagramConn to send that packet to the broadcast address defined by inetAddress.

packet = new DatagramPacket(netMessageInBytes, netMessageInBytes.length,

inetAddress, portNumber);

datagramConn.send(packet);

5.2.2 MACReceiver

At this receving side, we maintain a DatagramPacket called packet to store the incoming
datagram. Its creation requires a bytes array and the array’s length. We fix this length
to 1500, which is the standard size for a datagram. The thread also perfoms the blocking
method receive() of the DatagramSocket class, and then it stores this incoming datagram
into packet.

message = new byte[1500];

packet = new DatagramPacket(message, message.length);

macBroadcast.getDatagramConnection().receive(packet); // a blocking method

After that, we extract the received portion of bytes and store it into another array, which
is delivered up to the SLEF layer.

byte[] bytes = new byte[packet.getLength()];

System.arraycopy(packet.getData(), 0, bytes, 0, bytes.length);

slef.receive(bytes);

51

Chapter 6

Deployment

In order to deploy the J2ME application on mobile phones, two files are required:

1. Java Archive file (JAR)

2. Java Application Descriptor file (JAD). This file contains information describing the
application, such as the application’s name, the JAR file size. This information
belongs to manifest information within the JAR file. However, the fact that they live
outside the JAR enables the AMS to learn about the application without installing
it.

We provide two files PushToChat.jar and PushToChat.jad to be copied into the phone’s
directory. For the J2SE version, its JAR file can be directly executed.

The application has been tested with different device’s combinations. Below we would like
to give some observations and remarks:

1. When the J2ME version runs on laptops over the Java simulator, the connection is
very low. It does not miss messages but takes a lot of time to receive and display
them. The problem is solved when the J2SE version is used.

2. The time for a laptop’s card to connect to the ad hoc network is superior to the time
needed between Smartphones.

3. Currently, when the application starts, the sequence number will begin at 1 and is
increased by 1 each time a new payload is sent. However, below is a scenario in which
this causes a problem.

Pierre is chatting and is sending his 94th message. Suddenly, his connection fails
and he has to restart his application, then the sequence number will begin at 1. As
a message is identified by its originator and its sequence number, Pierre’s new 94
messages will not be delivered by other SLEF layer to their application layer, because
they were received at least once. Hence, these 94 messages will not be displayed.

52

To avoid this situation, each time the application is launched, the starting sequence
number must be bigger than the one at the previous exit. A solution is to take the
current time value, as it is a long (64bits) and it continuously increases. However,
because of the length of the number, it is preferable to not display it with the content
of the message.

4. In order to demonstrate the functionalities of SLEF, we added a field in Payload called
receivedFrom to indicate the node that transmitted this payload. If this node is
different from the payload’s originator, then we concatenate to the message displayed
on the device screen the notice ”forwarded by”. This is because before delivering the
payload up to the application, SLEF changes the value of this field to the value of the
NetMessage’s sender. This action would violate the rule of the encapsulation, which
would not change the content of the encapsulated object.

Combining with the sequence number remark above, we provide another version in
which the sequence number starts with the current time (therefore it is not displayed)
and we remove the receivedFrom field from Payload class. Hence, this new version is
a real chat application for end-users, where SLEF mechanism is hidden. The current
version is still used for development purpose.

53

Chapter 7

Conclusion and Future work

The first part of the project concentrated on the learning of the new platform J2ME. It was
not a straight line to understand how J2ME applications work and to find necessary infor-
mation or functionalities that could be applied to the HTC S620. Several test applications
were developed apart in order to find out the supported and unsupported functionalities of
the phone. An important part of the application layer was already built during this period.
The second part was dedicated to the understanding of the SLEF protocol. I received a
lot of help from my assistant in this part. After having achieved necessary knowledge on
J2ME and on SLEF, the program’s architecture was designed followed by its development
until this day.

As this point of the project, two objectives defined at the beginning of the project have
been reached:

• SLEF is implemented on Smartphone. Almost all functions are supported.

• A chat application built over SLEF for Smartphone is released. This application also
supports usual chat functionnalites (block/unblock users, a scrollable text area) and
can diplay SLEF status.

• Moreover, a version in J2SE is also provided and is fully compatible with the J2ME
version.

However, there still are missing components and here are some suggestions for the future
work:

• Resolve the user’s identifier problem discussed in section 3.2.6.

• The value of pendingRetransmissionDelay, used to create timers for packets sent in
pending mode, and of busyInterval, used to compute the presence indicator, should
be carrefully computed.

• Reduce the number of threads due to the use of timer for the packets.

54

In the final word, I would like to thank Alaeddine El Fawal for his kind guide and his useful
advices during the whole semester. The project has been a pleasure. It certainly required
a lot of work, but considering the experiences and knowledge acquired, it was worth for.

55

List of Figures

2.1 The Java Platform Architecture and the J2ME Layers 9

2.2 The J2ME MIDlet’s life cycle . 12

2.3 The J2ME’s lcdui package . 13

2.4 Architecture . 15

3.1 The J2ME application’s life cycle . 17

3.2 Payload . 18

3.3 J2ME Reception . 19

3.4 J2ME Sending . 19

3.5 Push To Chat, J2ME’s user interface . 21

3.6 Three buffers of the message reordering process 22

3.7 The messages reordering process upon reception 25

3.8 Push To Chat, J2ME’s DisplayItem . 26

4.1 NetMessage . 34

4.2 The Epidemic buffer . 37

4.3 SLEF Reception . 38

4.4 Received NetMessage state . 39

5.1 MAC layer’s design . 49

56

Bibliography

[1] Sing Li and Jonathan Knudsen, Beginning J2ME, From Novice to Professional

[2] Sun Developer Network, J2ME Low-Level Network Programming with MIDP 2.0
by Qusay H. Mahmoud, http://developers.sun.com/mobility/midp/articles/
midp2network/

[3] Michael Juntao Yuan, Enterprise J2ME, Developing mobile Java applications

[4] Ibrahim El Ghandour, Self Limiting Epidemic Forwarding Implementation, Semester
Project

[5] Alaeddine El Fawal, Multi-hop Broadcast from Theory to Reality: Practical Design for
Ad Hoc Networks

[6] Vartan Piroumian, Wireless J2ME Platform Programming

57

http://developers.sun.com/mobility/midp/articles/midp2network/
http://developers.sun.com/mobility/midp/articles/midp2network/

	Introduction
	Development environment and Architecture
	Development environment
	Hardware equipments
	Language programming
	Building MIDlet

	Architecture

	Application
	Functionalities
	Java Micro Edition version
	User Interface
	Message reordering process
	Displaying messages with CustomItem
	Block or Unblock users
	SLEF status
	User's identification

	Java Standard Edition version

	Self Limiting Epidemic Forwarding (SLEF) Implementation
	Protocol description
	Protocol implementation
	The epidemic buffer
	Reception
	Transmission/Retransmission
	Checklist

	MAC Broadcast
	J2ME implementation
	MACBroadcast
	MACReceiver

	J2SE implementation
	MACBroadcast
	MACReceiver

	Deployment
	Conclusion and Future work

