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Abstract

The theory of Compressed Sensing (CS) is based on reconstructing sparse signals from ran-
dom linear measurements. As measurement of continuous signals by digital devices always
involves some form of quantization, in practice devices based on CS encoding must be able to
accommodate the distortions in the linear measurements created by quantization.

In this paper we study the problem of recovering sparse or compressible signals from uni-
formly quantized measurements. We present a new class of convex optimization programs, or
decoders, coined Basis Pursuit DeQuantizer of moment p (BPDQp), that model the quantiza-
tion distortion more faithfully than the commonly used Basis Pursuit DeNoise (BPDN) program.
Our decoders proceed by minimizing the sparsity of the signal to be reconstructed subject to
a particular data-fidelity constraint imposing that the difference between the original and the
reproduced measurements has bounded `p norm, for 2 ≤ p ≤ ∞.

We show that, in an oversampled situation, i.e. when the ratio between the number of
measurements and the sparsity of the signal becomes large, the performance of the BPDQp

decoders are significantly better than that of BPDN. Indeed, in this case the reconstruction error
due to quantization is divided by

√
p+ 1. The condition guaranteeing this reduction relies on a

modified Restricted Isometry Property (RIPp) of the sensing matrix bounding the projections of
sparse signals in the `p norm. Surprisingly, Gaussian random matrices are also RIPp with high
probability. To demonstrate the theoretical power of BPDQp, we report numerical simulations
on signal and image reconstruction problems.
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1 Introduction

The theory of Compressed Sensing (CS) [CR06, Don06] is based on reconstructing sparse or com-
pressible signals from few linear measurements compared to the dimensionality of the signal space.

In short, on one side, a signal is compressed at the acquisition level from few linear and non-
adaptive measures. This generalizes the common (Dirac) signal sampling, i.e. the signal is sensed
by its comparison (correlation) with the elements of a certain sensing basis.

On the other side, we have a “beyond Nyquist” statement. It tells us that signal reconstruction
is still possible thanks to the signal sparsity or compressibility prior. Indeed, if the matrix underly-
ing the sensing stage is well behaved, i.e. if it respects a Restricted Isometry Property (RIP) saying
roughly that any small subset of its columns is “close” to an orthogonal basis, the signal recon-
struction is guaranteed from non-linear techniques based on convex optimization. What makes CS
more than an interesting theoretical concept, is that some class of randomly generated matrices
(e.g. Gaussian, Bernoulli, Fourier ensemble, ...) respect the RIP with overwhelming probability.
Roughly speaking, the common requirement is then that the number of measurements be higher
than a few multiples of the signal sparsity. The same RIP also ensures that the reconstruction
is robust if noise corrupt the measurements and/or if the signal deviates from the exactly sparse
model, i.e. in the compressible setup.

In a realistic acquisition system, quantization of these measurements is a natural process that
Compressed Sensing theory has to handle conveniently. Any coder or device that can integrate a
CS encoding step may transmit data to the decoder in a digital way so as for instance to limit the
transmission error. This will require modification to the algorithm used to recover the signal. The
commonly used Basis Pursuit algorithm for CS recovery finds the sparsest signal (in `1 norm) that
could have produced the observed measurements. Directly using the quantized measurements in
Basis Pursuit fails, however, as there may be no signal close to the desired signal whose (unquan-
tized) measurements reproduce the observed quantized values! This problem may be resolved by
relaxing the data fidelity constraint.

One commonly used technique is to simply treat the quantization distortion as Gaussian noise,
which leads to reconstruction based on solving the Basis Pursuit DeNoising (BPDN) program.
While this approach can give acceptable results, it is theoretically unsatisfying as the measurement
error created by quantization is highly non-Gaussian, being essentially uniform and bounded by
the quantization bin width.

A more appealing modification is to impose the Quantization Consistency (QC) constraint,
i.e. the fact that the requantized measurements of the reconstructed signal must match the original
quantized measurements. This idea, in some form, has appeared previously in the literature. At
the beginning of the Compressed Sensing developments, Candès et al. mentioned that the `2-norm
of BPDN should be replaced by the `∞-norm to handle more naturally the quantization distortion
of the measurements [CT04]. More recently, In [PG08], the extreme case of 1-bit CS is studied,
i.e. when only the signs of the measurements are sent to the decoder. Authors tackle the recon-
struction problem by adding a sign consistency constraint in a modified BPDN program working
on the sphere of unit-norm signals. In [DPM09], an adaptation of both BPDN and the Subspace
Pursuit integrates an explicit QC contstraint. However, in spite of interesting experimental results,
no theoretical guarantees are given about the approximation error reached by these solutions. The
QC constraint has also been used previously for image and signal processing outside of the com-
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pressed sensing field. Examples include oversampled Analog to Digital Converter (ADC) conversion
of signal [TV94], and in image restoration problems [WAB06, WBA08].

In this paper, we propose to tackle the problem by the introduction of a new class of convex
optimization programs, or decoders, coined Basis Pursuit DeQuantizer of moment p (BPDQp) that
model the quantization distortion more faithfully. These proceed by minimizing the sparsity of the
reconstructed signal subject to a particular data-fidelity constraint. This constraint imposes that
the difference between the original and the reproduced measurements has bounded `p norm, for
p ≥ 2. As p approaches infinity, this fidelity term reproduces the QC constraint.

We show theoretically that, given a sufficient number of measurements, the performance of
the BPDQp decoders for appropriate p are significantly better than that of BPDN, i.e. BPDQ2.
This difference is especially significant in an oversampled situation, i.e. when the ratio between the
number of measurements and the sparsity of the signal becomes large. In this case, we show that
if the signal is exactly sparse, the approximation error scales inversely with

√
p+ 1.

The proof of these results relies on introducing a modified Restricted Isometry Property (RIPp)
that bounds the `p norm of random projections of sparse signals. We show that matrices generated
by a Gaussian random process satisfy this new property with controllable high probability. We
conclude with numerical simulations demonstrating the use of the BPDQp for example signal and
image reconstruction problems.

The paper is structured as follows. In Section 2, we review the principles of Compressed
Sensing, i.e. the sensing model, the reconstruction and the requirements for its robustness with
respect to noise and to deviation to the exactly sparse signal model. The common treatment of the
quantization distortion as a noise is also recalled.

The Section 3 introduces the BPDQ decoders. Their stability, i.e. the `2−`1 instance optimality,
is deduced by the new Restricted Isometry Property of moment p (RIPp). Standard Gaussian
Random matrices are shown to satisfy this property with high probability for a sufficiently large
number of measurements. The section finishes with the key result of this paper, i.e. it is shown that
the approximation error of BPDQp scales inversely with

√
p+ 1 when the signal measurements are

uniformly quantized.
In Section 4, we briefly explore the non-convex world, i.e. when we deal with equivalent decoders

based on the `0 non-convex sparsity constraint. Those can be solved approximately by a reweighting
procedure of the `1 BPDQ programs. The RIPp is also essential to bound the approximation error
but only for exactly K-sparse signal model. It is shown that the same approximation error reduction
by
√
p+ 1 occurs at smaller oversampling ratio m/K.

Section 5 describes the numerical techniques that we emply to solve the BPDQ programs.
These rely on the Proximal methods [Com04]. In particular, the global optimization is solved
iteratively using the Douglash Rashford splitting method. The fidelity constraint expressed in the
`p-norm corresponds to an orthogonal projection on a `p tube of RN that we compute iteratively
by using Newton’s method to solve the associated Lagrange multiplier problem. Section 7 confirms
experimentally the theoretical power of BPDQp on 1-D signals and images reconstruction problems.
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2 Compressed Sensing and Quantization of Measurements

In Compressed Sensing (CS) theory [CR06, Don06], the signal x ∈ RN to be acquired and subse-
quently reconstructed is assumed sparse or compressible in an orthogonal1 basis Ψ ∈ RN×N (e.g.
wavelet basis, Fourier, etc.). In other words, the best K-term approximation xK of x in Ψ gives
an exact or accurate representation of this signal even for small K < N . For simplicity, only the
canonical basis Ψ = Id will be considered here.

At the acquisition stage, x is measured by m linear measurements (with K ≤ m ≤ N) provided
by a sensing matrix Φ ∈ Rm×N , i.e. we know from x only m measurements (or questions) 〈ϕi, x〉 =∑

k ϕ
∗
ikxk where (ϕi)m−1

i=0 are the rows of Φ.
In this paper, we are interested in a particular non-ideal sensing model. Indeed, as measurement

of continuous signals by digital devices always involves some form of quantization, in practice devices
based on CS encoding must be able to accommodate the distortions in the linear measurements
created by quantization. Therefore, we adopt the noiseless and uniformly quantized sensing (or
coding) model:

yq = Qα[Φx] = Φx+ n, (1)

where yq ∈ (αN+ α
2 )m is the quantized measurement vector, (Qα[·])i = αb(·)i/αc+ α

2 is the uniform
quantization operator in Rm of bin width α, and n ∈ Rm is the quantization distortion.

This model is a realistic description of systems where the quantization distortion dominates
other secondary noise sources (e.g. thermal noise), an assumption valid for many electronic mea-
surement devices including ADC. In this paper we restrict our study to using this extremely simple
uniform quantization model, in order to concentrate on the interaction with the compressed sensing
theory. The study of more realistic non-uniform quantization is deferred as a question for future
research.

In much previous work in compressed sensing, the reconstruction of x from yq is obtained by
handling the quantization distortion n as a noise of bounded power (i.e. `2-norm) ‖n‖22 =

∑
k |nk|2.

For such a noise, a robust reconstruction of the signal x from corrupted measurements y = Φx+ n
is provided by the Basis Pursuit DeNoise (BPDN) program (or decoder) [CRT06]:

∆(y, ε) = arg min
u∈RN

‖u‖1 s.t. ‖y − Φu‖2 ≤ ε, (BPDN)

This convex optimization program can be solved numerically by methods like Second Order Cone
Programing (for BPDN) or by the Proximal methods [Com04] described in Section 5. We will often
refer to the constraint ‖y−Φu‖2 ≤ ε in BPDN as the fidelity term. Notice that the noiseless situation
ε = 0 leads to the Basis Pursuit (BP) program with additional specific numerical implementation
in the field of Linear Programming and interior point method.

A necessary condition for BPDN to provide a good approximation of the initial signal x is the
feasibility of this solution, i.e. we must chose ε s.t. ‖n‖2 = ‖y−Φx‖2 ≤ ε. In [CRT06], an estimator
of ε for y = yq is obtained by considering n distributed as a uniform random vector ξ ∈ Rm in the
quantization bins, i.e. ξi ∼iid U([−α

2 ,
α
2 ]). An easy computation shows then that

‖ξ‖22 ≤ ε22(α) , E[‖ξ‖22] + κ
√

Var[‖ξ‖22] = α2

12m+ κ α2

6
√

5
m

1
2 ,

1A generalization for redundant basis, or dictionary, exists [RSV08, YZ09].
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with a probability higher than 1− e−c0κ2
for a certain constant c0 > 0 (by the Chernoff-Hoeffding

bound [Hoe63]). Therefore, CS usually handle quantization distortion by setting ε = ε2(α), typically
for κ = 2.

If the feasibility is satisfied, the stability of BPDN is guaranteed if the sensing matrix Φ ∈ Rm×N

satisfies the following property:

Definition 1. A matrix Φ ∈ Rm×N satisfies the Restricted Isometry Property (RIP) of order K
and radius δ ∈ (0, 1), if there exists a constant µ such that

µ
√

1− δ ‖u‖2 ≤ ‖Φu‖2 ≤ µ
√

1 + δ ‖u‖2, (2)

for all K-sparse signals u ∈ RN .

To clarify the writting of our study, we adopt here a slightly different definition of the common
RIP [Can08]. The original definition considers indeed normalized matrices Φ̄ = Φ/µ having unit-
norm columns (in expectation) so that µ is absorbed in the normalizing constant. We will see in
Section 3.2 that the value of µ is intrinsically linked to the norm used to measure the projected
vector Φu in (2).

Fortunately, it is actually not too difficult to find matrices satisfying the RIP. For instance,
a matrix Φ ∈ Rm×N with each of its entries drawn independtly from a (sub) Gaussian random
variable satisfies this property with an overwhelming probability as soon as [BDD08, DT09]

m ≥ O(K logN/K).

This is the case of Standard Gaussian Random (SGR) matrices where Φij ∼ N(0, 1), and of
the Bernoulli matrices with Φij = ±1 with equal probability, with for both µ =

√
m in the RIP

definition. This results from the measure concentration property of such random distribution over
the union of all the K-dimensional subspaces of RN [LT91]. We will reprove this basic fact as a
special case of a more general RIP adapted to other norms of the projection Φu of sparse vectors u.
Let us mention that other random constructions satisfying the RIP exist (e.g. Fourier ensemble)
[CR06, CRT06].

The following theorem expresses the announced stability result, i.e. the `2 − `1 instance opti-
mality2 of BPDN.

Theorem 1 ([Can08]). Let x ∈ RN be a compressible signal with a K-term `1-approximation error
e0(K) = K−

1
2 ‖x−xK‖1, for 0 ≤ K ≤ N , and xK the best K-term `2-approximation of x. Let Φ be

a RIP matrix of order 2K and radius 0 < δ2K <
√

2− 1. Given a measurement vector y = Φx+ n
corrupted by a noise n with power ‖n‖2 ≤ ε, the solution x∗ = ∆(y, ε) obeys the `2 − `1 instance
optimality

‖x∗ − x‖2 ≤ Ae0(K) + B ε
µ , (3)

for values A = 2 1+(
√

2−1)δ2K
1−(
√

2+1)δ2K
and B = 4

√
1+δ2K

1−(
√

2+1)δ2K
. For instance, for δ2K = 0.2, A < 4.2 and

B < 8.5.
2Adopting the definition of mixed-norm instance optimality [CDD09].
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We call the first term in the RHS of (3), the compressibility error, while the second term is
named the noise error.
Remark : The situation where x represents the vector of coefficients of a signal s = Ψx in a non-
trivial sparsity basis Ψ instead of the signal itself can be solved by considering the new sensing
basis Θ = ΦΨ. This one is still RIP with overwhelming probability when Φ is a SGR matrix and
when Ψ is an orthonormal basis3. In that case however, the `2 approximation error on the left
of (3) is equal to the approximation error of the signal (by Parseval), while the `1-measure of the
signal compressibility on the right is still expressed in the coefficient domain.

However, using the BPDN decoder to account for quantization distortion is theoretically un-
satisfying for several reasons. First, there is no guarantee that the BPDN solution x∗ respects the
Quantization Consistency, i.e. Qα[Φx∗] = yq. This will be met iff

‖yq − Φx∗‖∞ ≤ α
2

which is not necessarily implied by the BPDN `2 fidelity constraint. The failure of BPDN to respect
QC suggests that it may not be taking advantage of all of the available information about the signal
encoded in the available measurements.

Second, from a Bayesian Maximum a Posteriori (MAP) standpoint, BPDN can be viewed as
solving an ill-posed inverse problem where the `2-norm used in the fidelity term corresponds to the
conditional log-likelihood associated to an additive white Gaussian noise. However, the quantization
distortion is not Gaussian, but rather uniformly distributed. This motivates the need for a new
kind of CS decoder that more faithfully models the quantization distortion.

3 A New Class of Decoders: BPDQp

3.1 Generalizing the Fidelity Constraint

The considerations of the previous section encourage the definition of a new class of optimization
programs (or decoders) generalizing the fidelity term of the BPDN program.

In the objective of reconstructing an approximation of a sparse or compressible signal x from
its measurements y = Φx + n when the pth moment of the noise n is bounded, i.e. when ‖n‖pp =∑

k |nk|p ≤ ε for some estimators ε > 0, we introduce the novel programs

∆p(y, ε) = arg min
u∈RN

‖u‖1 s.t. ‖y − Φu‖p ≤ ε, for p ≥ 1. (BPDQp)

The fidelity constraint expressed in the `p-norm is now tuned to noises that follow centered Gen-
eralized Gaussian Distribution4 (GGD) of shape parameter p [VA89], with the uniform noise case
corresponding to p→∞.

We dub this class of decoders Basis Pursuit DeQuantizer of moment p (or BPDQp) since, for
reasons that will become clear in the next sections, their approximation error when Φx is uniformly
quantized has an interesting decreasing behavior when both the moment p and the oversampling
factor m/K increase.

3Results are also proved for the case where Ψ is a redundant basis or a dictionary [RSV08, YZ09]. In that case
the RIP radius δ is increased by a quantity linked to the coherence of the basis.

4The probability density function f of a such a distribution is f(x) ∝ exp−|x/b|p for a standard deviation σ ∝ b.

9



This arises from the conjunction of two effects. First, when the matrix Φ satisfies a certain
extension of the RIP, the BPDQp decoders satisfies an instance optimality, similar to this of BPDN
(Section 2), with respect to ε and to the possible compressibility of x. Second, the pth moment of
a uniformly random vector arising from quantization distortion can be precisely bounded for all p.

3.2 RIPp and `2 − `1 Instance Optimality

In order to study the approximation error of the BPDQp decoders, we must introduce the Restricted
Isometry Property of moment p (or RIPp).

Definition 2. A matrix Φ ∈ Rm×N satisfies the RIPp (1 ≤ p ≤ ∞) property of order K and radius
δ, if there exists a constant µp > 0 such that

µp
√

1− δ ‖x‖2 ≤ ‖Φx‖p ≤ µp
√

1 + δ ‖x‖2, ∀x ∈ RN s.t. ‖x‖0 ≤ K, (4)

where ‖·‖p is the `p norm on Rm.

The common RIP previously introduced (see Section 2) is thus the RIP2. Note that the constant
µp appearing above will play an important role in our theory, and as we will see later is intimately
related to the error of the recovered signal. Interestingly, as for the RIP, SGR matrices Φ ∈ Rm×N

satisfy also the RIPp with high probability provided that m is sufficiently big compared to the
sparsity K of the signals to measure. This is shown in the following Proposition, for which the
proof is given in Appendix A.

Proposition 1. Let Φ ∈ Rm×N be a Standard Gaussian Random (SGR) matrix, i.e. a matrix
with each entry Φij drawn according to a normalized Gaussian distribution N(0, 1). Then, if m ≥
(p− 1)2p+1 and m ≥ O

(
(δ−2K logN/K)max(p/2,1)

)
for 1 ≤ p < ∞, or logm ≥ O(δ−2K logN/K)

for p = ∞, Φ is RIPp of order K and radius δ with a high probability. Moreover, the value
µp = E[‖ξ‖p] is the expectation value of the `p-norm of a SGR vector ξ ∈ Rm.

Notice that µp can be approximated thanks to the following result (see Appendix B for its
explanation) that is mainly due to the study made in [FWV07].

Lemma 1. For the random vector ξ ∈ Rm with ξi ∼iid P, for a certain distribution P, there exists
a ρ > 0 such that ρ−1

√
logm ≤ E[‖ξ‖∞] ≤ ρ

√
logm. In addition, for 1 ≤ p < ∞, if P is a

normalized Gaussian distribution N(0, 1),

E[‖ξ‖p] ' E[‖ξ‖pp]
1
p =

√
2π−

1
2p Γ(p+1

2 )
1
p m

1
p , (5)

Var[‖ξ‖p] ' 2π−
1
p p−2

√
π Γ( 2p+1

2
) − Γ( p+1

2
)2

Γ( p+1
2

)
2− 2

p
m

2
p
−1
,

where the symbol ' means that the equalities holds asymptotically with m.

However, non-asymptotic bounds for µp can be deduced from E[‖ξ‖pp]
1
p thanks to the following

result (proof in Appendix C).

Lemma 2. If ξ ∈ Rm is a SGR vector, then, for 1 ≤ p <∞,(
1 + 2p+1

m

) 1
p
−1
E[‖ξ‖pp]

1
p ≤ E[‖ξ‖p] ≤ E[‖ξ‖pp]

1
p .
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In particular, as soon as m ≥ β−1 2p+1 for β ≥ 0,

E[‖ξ‖p] ≥ E[‖ξ‖pp]
1
p (1 + β)

1
p
−1 ≥ E[‖ξ‖pp]

1
p (1− p−1

p β).

In Figure 1, we have tested numerically the evolution of the ratio µp/E[‖ξ‖pp]1/p ≤ 1 for m ∈
{128, 256, 512} and p ∈ [2, 16]. The value of µp has been estimated by averaging of ‖ξ‖p over 10 000
trials of SGR vectors ξ ∈ Rm, while E[‖ξ‖pp]1/p is given by (5). We observe clearly that increasing
m makes the ratio closer to 1 for a larger range of p. However, µp/E[‖ξ‖pp]1/p deviates slower from

1 when p increases than the expected bound (1 + m−12p+1
) 1
p
−1 (not shown here).

 

 

µ
p
/E

[‖ξ
‖p p

]1
/
p

p

m = 512
m = 256
m = 128

2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.88

0.9

0.92

0.94

0.96

0.98

1

Figure 1: Numerical estimation of µp/E[‖ξ‖pp]1/p (averaged over 10 000 trials) for m ∈
{128, 256, 512} and p ∈ [2, 16].

An interesting aspect of matrices respecting the RIPp is that they approximately preserve the
decorrelation of sparse vectors of disjoint supports.

Lemma 3. Let u, v ∈ RN with ‖u‖0 = s and ‖v‖0 = s′ and supp(u) ∩ supp(v) = ∅, and
2 ≤ p <∞. If Φ is RIPp of order s+ s′ with constant δs+s′, and of orders s and s′ with constants
δs and δs′, then

|〈J(Φu),Φv〉| ≤ µ2
pCp ‖u‖2‖v‖2, (6)

with (J(u))i = ‖u‖2−pp |ui|p−1 signui and

Cp(δs, δs′ , δs′+s) = min
{ [

(δs + δs+s′)
(
(p− 2) + (p− 1)δs′ + δs+s′

)] 1
2 ,

1
2

[
(p− 2 + p δs+s′)

(
2(p− 2) + (p− 2)δs′ + p δs+s′

)] 1
2
}
.

As shown in its proof in Appendix D, this Lemma uses explicitly the 2-smoothness of the Banach
spaces `p when p ≥ 2 [Byn76, Xu91], in connection with the normalized duality mapping J that
plays a central role in the geometrical description of `p.
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The relation (6) may be seen as a generalization of the one proved in [Can08] (see Lemma 2.1)
for p = 2. We can check indeed that for this Hilbert space case C2 = δs+s′ . We may finally notice
that Cp behaves as

√
(δs + δs+s′) (1 + δs′) p for large p, and as δs+s′ + 3

4(1 + δs+s′)(p− 2) for p ' 2.
We are now ready to bound the approximation error commited by BPDNp. This result, a

generalization to Banach spaces `p of the fundamental result proved by Candès in [Can08], expresses
the `2 − `1 instance optimality of the BPDQp decoders, i.e. their stability under reconstruction of
compressible (or sparse) signals under measurement corrupted by bounded pth moment.

Theorem 2. Let x ∈ RN be a compressible signal with a K-term `1-approximation error e0(K) =
K−

1
2 ‖x − xK‖1, for 0 ≤ K ≤ N and xK the best K-term `2-approximation of x. Let Φ be a

RIPp matrix on s sparse signals with constants δs, for s ∈ {K, 2K, 3K} and 2 ≤ p < ∞. Given a
measurement vector y = Φx + n corrupted by a noise n with bounded pth moment, i.e. ‖n‖p ≤ ε,
the solution x∗p = ∆p(y, ε) obeys the `2 − `1 instance optimality

‖x∗p − x‖2 ≤ Ap e0(K) + Bp
ε

µp
,

for values
Ap(δK , δ2K , δ3K) = 2(1+Cp−δ2K)

1−δ2K−Cp , Bp(δK , δ2K , δ3K) = 4
√

1+δ2K
1−δ2K−Cp ,

and Cp = Cp(δK , δ2K , δ3K) given in Lemma 3.

Notice that this theorem is unfortunately not valid for the case p = ∞. This is mainly due to
the fact that `∞ does not fit the Lemma 3 and the proof of this theorem, i.e. this Banach space
is not 2-smooth and no duality mapping exists. Therefore, a result involving `∞ would require
different tools than the ones we developped here.

The proof of this theorem, given in Appendix E, adapts the one of [Can08] to the particular
geometry of `p.

3.3 Quantization Error Reduction

Let us now observe the particular behavior of the BPDNp decoders on quantized measurements of
a sparse or compressible signal.

First, if we assume in the model (1) that the quantization distortion n = Qα[Φx] − Φx is
uniformly distributed in each quantization bin, the simple Lemma below provides precise estimator
ε for all the pth moments of n.

Lemma 4. If ξ ∈ Rm is a uniform random vector with ξi ∼iid U([−α
2 ,

α
2 ]), then, for 1 ≤ p <∞,

ζp = E[‖ξ‖pp] = αp

2p(p+1) m. (7)

In addition, for any κ > 0, P
[‖ξ‖pp ≥ ζp+κ αp

2p
√
m
] ≤ e−2κ2

, while, limp→∞ (ζp + κ αp

2p
√
m )

1
p =

‖ξ‖∞ = α
2 .

The proof is given in Appendix F.
According to this result, we may set the pth moment bound ε of the program BPDQp to

ε = εp(α) , α
2 (p+1)1/p

(
m+ κ (p+ 1)

√
m
) 1
p , (8)
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so that, for κ = 2, we know that x is a solution of the BPDQp fidelity constraint with a probability
e−8 ≤ 3.4 10−4.

Second, Theorem 2 points out that, when Φ is RIPp with 2 ≤ p <∞, the approximation error
of the BPDQp decoders is the sum of two terms: one that expresses the compressibility error as
measured by e0(K), and one, the noise error, proportional to the ratio ε/µp. In particular, from
Lemma 1, taking a SGR matrix, for m ≥ O((δ−2K logN/K)p/2

)
, we have

‖x− x∗p‖2 ≤ Ap e0(K) + Bp
εp(α)
µp

. (9)

Therefore, combining these two results, for a uniform quantization distortion n, the noise error
can be more precisely bounded. Indeed, for 2 ≤ p < ∞, by Lemma 2, if m ≥ (p − 1)2p+1,
µp ≥ p−1

p νpm
1
p with νp =

√
2π−

1
2p Γ(p+1

2 )
1
p . In addition, using Stirling formula of the Gamma

function, i.e.5 Γ(z) = (2π
z )

1
2 ( ze )z(1 +O(1

z )), we get easily

νp = 2−
1
p e
− p+1

2p
√
p+ 1

(
1 +O(p−2)

) ≥ 2−
1
2 e−

3
4

√
p+ 1

(
1 +O(p−2)

)
.

Finally, by (8), we see that,

εp(α)
µp

≤ e3/4p√
2(p−1)

( 1
p+1 + κ 1√

m
)1/p α√

p+ 1
(
1 +O(p−2)

)
< C

α√
p+ 1

(
1 +O(p−2)

)
, (10)

with C < 2.994. We used the bound p
p−1 ≤ 2 and the fact that ( 1

p+1 + κ 1√
m

)1/p tends to 1 from
below6 when p→∞.

In short, the noise error term in the `2 − `1 instance optimality relation (9) in the case of
uniform quantization of the measurements of a sparse or compressible signal is thus divided by√
p+ 1 if the sensing matrix Φ satisfies the RIPp!

More precisely, with a philosophy close to the oversampled ADC conversion [TV94], this error
noise reduction happens in oversampled sensing, i.e. when the oversampling factor m/K is high.

Indeed, taking a SGR matrix, Proposition 1 teaches us the following lesson. If mp is the smallest
number of measurements for which such a randomly generated matrix Φ is RIPp of radius δp < 1
with a certain nonzero probability, taking m > mp allows one to generate a new random matrix
with a smaller radius δ < δp with the same probability of success.

Therefore, increasing the oversampling factor m/K provides two effects. First, it enables one
to hope for a matrix Φ that is RIPp for high p, providing the desired error division by

√
p+ 1.

Second, oversampling gives a smaller δ, i.e. δ ∝ m−1/p, hence counteracting the increase of p in the
factor Cp of the values Ap ≥ 2 and Bp ≥ 4. This decrease of δ also favors BPDN, but since the
value A = A2 and B = B2 in (3) are bounded from below this effect is limited.

From this result, it is very tempting to chose an extremely large value for p in order to decrease
the noise error term (9). There are two problems with this. First, the instance optimality result
is not directly valid for p = ∞. Second, and more significantly, the necessity of satisfying RIPp

5A more precise formula can be established from [Spi71], i.e. |Γ(x)− ( 2π
x

)
1
2 (x

e
)x| ≤ 1

9x
( 2π
x

)
1
2 (x

e
)x for x ≥ 1.

6As soon as κ ≤ 2
3

√
m, i.e. m ≥ 9 if κ = 2, 1

p+1
+ κ 1√

m
≤ ( 1

p+1
+ κ 1√

m
)1/p ≤ 1 for p ≥ 2.
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implies that we cannot cannot take p arbitrarily large. Indeed, for a given oversampling factor
m/K, a SGR matrix Φ can be RIPp only over a finite interval p ∈ [2, pmax]. This implies that for
each particular reconstruction problem, there should be an optimal maximum value for p. We will
demomstrate this effect experimentally in Section 7.

We may notice finally that the error arising from the compressible status of the signal, i.e. the
compressibility error, is not significally reduced by increasing p when the number of measurement
is large. This makes sense since the `p norm touches only the fidelity term of the decoders and we
know that in the case where ε = 0, the compressibility error remains in the decoder BP [Can08].
However, because of the embedding of the `p-norms, i.e. ‖·‖p ≤ ‖·‖p′ if p ≥ p′ ≥ 1, increasing p
until pmax makes the fidelity term closer to the QC.

4 Answers from the Non Convex World

In this Section we provide some stability results for theoretical decoders inspired by the BPDQp

programs but minimizing the `0 “norm”. The framework is however less general than the one
of Section 3 since the absence of the `1 sparsity promoting measure forces us to consider the
reconstruction of exactly sparse signals only. We gives also some practical elements to numerically
solve these non-convex decoders. Pragmatically, this is actually the reason why we consider these
programs as important to study here.

Let x ∈ RN be a signal exactly sparse in the canonical basis Ψ = Id, i.e. ‖x‖0 ≤ K. This signal
is assumed as before acquired by m noisy measurements

y = Φx+ n,

for a certain sensing matrix Φ ∈ Rm×N and a noise n with power (or second moment) ‖n‖2 ≤ ε.
Theoretically, the decoder

∆
th

(y, ε) = arg min
u∈RN

‖u‖0 s.t. ‖y − Φu‖2 ≤ ε,

leads to a much smaller approximation error than the one provided by BPDN in Section 2 when Φ
satisfies the RIP.

Indeed, writing x∗ = ∆
th

(y, ε),
‖x− x∗‖2 ≤ 2√

1−δ ε.

This is easily obtained by observing that x − x∗ is 2K-sparse since ‖x∗‖0 ≤ ‖x‖0 because
x satisifies the fidelity constraint of the decoder. Therefore, if Φ is RIP of radius 0 < δ < 1,
‖x − x∗‖2 ≤ 1√

1−δ ‖Φ(x − x∗)‖2 ≤ 1√
1−δ

(‖Φx − y‖2 + ‖y − Φx∗‖2
) ≤ 2√

1−δ ε. For instance, for

δ = 0.2, 2√
1−δ ' 2.24, that is much lesser than the value 8.5 multiplying ε in Theorem 1!

When the noise n has a bounded pth moment, i.e. ‖n‖p ≤ ε, as ensured by Lemma 4 for ε = εp(α)
in the quantization model

y = yq = Qα[Φx] = Φx+ n,

the same stability can be proved for the decoders

∆
th

p(y, ε) = arg min
u∈RN

‖u‖0 s.t. ‖y − Φu‖p ≤ ε.
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The vector x − x∗p, with x∗p = ∆
th

p(y, ε), is 2K-sparse7. Therefore, if Φ is RIPp over 2K sparse
signals with constant δ for 2 ≤ p <∞,

‖x− x∗p‖2 ≤ 1
µp
√

1−δ ‖Φ(x− x∗p)‖p
≤ 1

µp
√

1−δ

(‖Φx− y‖p + ‖Φx∗p − y‖p
)

≤ 2√
1−δ

ε

µp
,

using the triangle inequality.
Therefore, the same ratio ε/µp is reached in the error bound for 2 ≤ p <∞. When measurements

are uniformly quantized by Qα, we can then apply the same arguments than in the end of Section
3.3 and observe that, as soon as Φ is RIPp,

‖x− x∗p‖2 ≤ 2C√
1−δ

α√
p+ 1

.

Intrinsically, δ is of course also function of p and m. Indeed, Proposition 1 teaches us that the
minimal number of measurement to guarantee the RIPp of radius δ is O

(
(δ−2K logN/K)

p
2

)
when

p ≥ 2. A small δ means thus a large measurement number m according to the approximative rule
δ ∝ m−1/p.

In other words, when the number of measurements m is sufficiently large compared to the
sparsity K, i.e. more than a few multiples of K, this oversampled situation allows the search for
an optimal p∗ > 2 compatible with the RIPp∗ of Φ and reducing the bound on the approximation
error.

The situation is even better than for the BPDQp decoder. Indeed, p is not altering explicitly
the factor 2C√

1−δ , as it was for value Ap and Bp in (9).

Remark : The `∞ case is somehow rehabilitated in the stability result compared to the one provided
in Theorem 2. Indeed, for p =∞, since ε∞ = α

2 , if Φ is RIP∞, i.e. if logm ≥ O(δ−2K logN/K) of
SGR matrix, there exist a ρ > 0 such that

‖x− x∗∞‖2 ≤ 2√
1−δ

ε∞(α)
µ∞

≤ ρα√
(1− δ) logm

.

Interestingly, the error is explictely divided by
√

logm. However, α may grow like
√

logm if
we fix for instance the rate (or bit budget) B at which we want to quantize the measurements.
Indeed, in that case, α ∝ E[‖Φx‖∞]/B, and Lemma 1 points out that there exist ρ′ such that
E[‖Φx‖∞] ≤ ρ′√logm.

Notice however that this effect could vanish with other random matrices such as the Bernoulli
generated matrix where each entry is ±1 with equal probability. In that case, ‖Φx‖∞ is upper
bounded by the constant ‖x‖1, i.e the maximum of Φx occurs when one row of Φ is the sign of
the x components. A this time, we do not know if such matrices verify the RIPp for 2 ≤ p ≤ ∞.
If it is the case, we could reach asymptotically exact recovery from quantized measurement when
m → ∞ whatever is the bin width α, and so, even for 1-bit quantization! Research is ongoing on
this aspect currently.

7Actually, for the quantization model with ε = εp(α), it is 2K-sparse with a probability higher than 1 − e−8

due to the stochastic validity of the bound εp(α) with κ = 2 (Lemma (7)) guaranteeing that x satisifies the fidelity
constraint.

15



5 Numerical Implementation

5.1 Proximal Optimization

The BPDQp (and BPDN) decoders are special case of a general class of convex problems [FS09,
CP08]

arg min
u∈H

f1(u) + f2(u), (P)

where H = RN is seen as an Hilbert space equipped with the inner product 〈u, v〉 =
∑

i uivi. We
denote by dom f = {x ∈ H : f(x) < ∞} the domain of any f : H → R. In (P), the functions
f1, f2 : H → R are assumed (i) closed convex functions which are not infinite everywhere, i.e.
dom f1, dom f2 6= ∅, (ii) dom f1 ∩ dom f2 6= ∅, and (iii) these functions are lower semi-continuous
(lsc) meaning that they respect lim infx→x0 f(x) = f(x0) for all x0 ∈ dom f . The class of functions
satisfying these three properties is denoted Γ0(RN ). For BPDQp, these two non-differentiable
functions are f1(u) = ‖u‖1 and f2(u) = ıT p(ε)(u) = 0 if u ∈ T p(ε) and ∞ else, i.e. the indicator
function of the set (or tube) T p(ε) = {u ∈ RN : ‖yq − Φu‖p ≤ ε}.

The problem (P) is related to the notion of Proximity operator introduced in [Mor62] as a
generalization of convex projection operator.

Definition 3 (Proximity operator [Mor62]). Let f ∈ Γ0(H). Then, for every x ∈ H, the function
z 7→ 1

2‖x−z‖2+f(z) achieves its infimum at a unique point denoted by proxf x. The uniquely-valued
operator proxf : H → H thus defined is the proximity operator of ϕ.

Since proxf z = arg minu 1
2‖z−u‖22 + f(u), it is clear that if f = ıC for some convex set C ⊂ H,

the proximity operator reduces to the orthogonal projection operator onto C. We will also use
the case where f(u) = ‖u‖1, for which the proxγf1 z is the componentwise soft thresholding of
z of threshold γ [FS09]. In addition, proximity operators of convex functions respect some nice
properties with respect to translation, conjugation with frame operators, dilation, etc. [CP08]

The solutions of problem (P) is also characterized by the following fixed point equation:

x solves (P) ⇔ x = (Id + β∂(f1 + f2))−1(x), for β > 0. (11)

The operator Jβ∂f = (Id +β∂f)−1 is called the resolvent operator associated to the subdifferential
operator ∂f , β is a positive scalar known as the proximal stepsize, and Id is the identity map on
H. We recall that the subdifferential of a function f ∈ Γ0(H) at x ∈ H is the set-valued map
∂f : H → 2H

∂f(x) = {u ∈ H : ∀z ∈ H, f(z) ≥ f(x) + 〈u, z − x〉} , (12)

where each element u of ∂f is called a subgradient. The resolvent operator is thus the proximity
operator of βf , i.e. Jβ∂f = proxβf .

The fixed point relation (11) suggests the iterative proximal point algorithm, defined by xn+1 =
(Id + β∂(f))−1(xn). The main difficulty with the method is that Id +β∂f may be hard to invert in
general, depending on the function f . This is for instance the case in most inverse problems arising
in image and signal processing. In problem (P) however, f = f1 + f2 with f1, f2 ∈ Γ0(H) so that
we can solve it by monotone operator splitting proximal methods [Com04]. Splitting methods for
problem (P) are algorithms that do not attempt to evaluate the resolvent mapping (Id +β∂f)−1 of
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the combined function f , but instead perform a sequence of calculations involving separately the
individual resolvent operators Jβ∂f1 and Jβ∂f2 . The latter are hopefully easier to evaluate.

Since for BPDQp, both f1 and f2 are non-differentiable functions of Γ0(H), we use the partic-
ular Douglas-Rachford, or Douglas/Peaceman-Rachford (DR), splitting. It provides the following
compact recursion formula [FS09]

u(t+1) = (1 − αt
2 )u(t) + αt

2 (2Sγ − Id) ◦ (2PTp(ε) − Id)(u(t)),

where αt ∈ (0, 2), ∀t ∈ N, γ > 0, Sγ = proxγf1 is the component-wise soft-thresholding operator
with threshold γ and PTp(ε) = proxf2 is the orthogonal projection onto the tube T p(ε). From
[Com04], one can show that the sequence (u(t))t∈N converges to some point u∗ and PTp(ε)(u∗) is a
solution of BPDQp. In the next Section, we provide a way to compute PTp(ε)(u∗) efficiently.

6 Projection onto `p ball via Newton’s method

The previous Section showed that each step of the Douglas-Rachford algorithm requires computa-
tion of proxf2 = PT p(ε) for T p(ε) = {u ∈ RN : ‖yq −Φu‖p ≤ ε}. We present here a way to compute
iteratively this projection for any 2 ≤ p ≤ ∞.

Setting Bp(y, ε) ⊂ Rm to be the `p ball of radius ε centered at y ∈ Rm, i.e.,

Bp(y, ε) = {y′ ∈ Rm : ‖y′ − y‖p ≤ ε},
we then have the composition relation f2(x) = (ıBp(yq,ε)◦Φ)(x). This composition is still compatible
with the computation of the proximity operator of f2 under the assumption that Φ is a frame.

Lemma 5. [FS09] Let a bounded affine operator A , Φ · − v, with v ∈ Rm, be associated to a
frame Φ of H = `2(Rm) with upper and lower bounds c1 and c2, i.e. c1 Id ≤ Φ ◦ Φ∗ ≤ c2 Id, and
f ∈ Γ0(H). Then, f ◦A ∈ Γ0(H). Moreover, if the frame is tight, i.e. if c1 = c2 = c > 0, then,

proxf◦Φ(x) = x+ c−1Φ∗ ◦ ( proxcf − Id
) ◦ (Φx− v). (13)

Otherwise, let 0 < inft µt ≤ supt µt < 2/c2 and define

u(t+1) = µt
(

Id−proxµ−1
t f

) ◦ (µ−1
t u(t) + Φ ◦ (x− Φ∗u(t))− v), (14)

p(t+1) = x− Φ∗u(t+1). (15)

Then u(t) → ū and p(t) → proxf◦Φ = x − Φ∗ū. More precisely, both u(t) and p(t) converge linearly
and the best convergence rate is attained for µt ≡ 2/(c1 + c2)

‖u(t) − ū‖ ≤ ( c2−c1c2+c1

)t‖u(0) − ū‖ . (16)

Therefore, in presence of a frame operator Φ ∈ Rm×N , which happens with very high probability
for a SGR matrix Φ, the problem of computing proxf2 may be reduced to computing the orthogonal
projection onto the `p ball PBp(yq,ε). Moreover, by simple recentering and normalization we can
consider projection onto the unit `p ball. Explicitly,

PBp(yq,ε)(y) = yq + εPBp
(y−yq

ε

)
,
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Figure 2: Projection onto `p ball for p = 2, 4,∞

where Bp = Bp(0, 1) is the centered, normalized ball. For p = 2 and p =∞ it is straightforward to
calculate the projection explicitly. In particular (assuming y is outside the unit `p ball of interest)
we have for p = 2

PB2(y) =
y

‖y‖2 ,

and for p =∞, component by component,

(PB∞(y))i =


1 if yi > 1,
yi if |yi| ≤ 1,
−1 if yi < −1.

For 2 < p <∞ no known closed form for the projection exists. Instead, we describe an iterative
method. Set fy(u) = 1

2‖u−y‖22 and g(u) = ‖u‖pp. First note that for y outside of the `p ball, i.e. for
‖y‖p > 1, the projection PBp will lie on the surface of the ball, not in the interior. The projection
is thus the solution of the contstrained optimization problem

PBp(y) = arg min
u
fy(u) s.t. g(u) = 1

As fy and g are both smoothly differentiable, according to the theory of Lagrange Multipliers,
for λ ∈ R, the solution u∗ ∈ Rm will satisfy the (m+ 1) scalar equations

∇fy(u∗) = λ∇g(u∗), (17)
g(u∗) = 1. (18)

Clearly, the point y and its projection u∗ belong to the same orthant of Rm, i.e. yiu∗i ≥ 0 for all
1 ≤ i ≤ m. Therefore, without loss of generality, we assume in the sequel that we are working in
the positive8 orthant ui ≥ 0 and yi ≥ 0.

We will express the previous equations as a single nonlinear multivariate equation, and then
use Newton’s method to achieve an iterative solution to it. First, let z = (u, λ) ∈ (R+)m×R define
the augmented variable space. Define F : Rm+1 → Rm+1 by

Fi(z) =

{
zi + p zm+1 z

p−1
i − yi if i ≤ m,(∑m

i=1 z
p
i

)− 1 if i = m+ 1.

8The solution of the actual orthant can be obtained with appropriate axis mirroring.
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It is easy to see that F (z) = 0 is equivalent to equations (17) and (18). Accordingly, the desired
projection u∗ will be given as the first m coordinates of the value z∗ solving F (z∗) = 0.

We apply straightforward Newton’s method. Given an initialization point z0, the successive
iterates are defined by

zn+1 = zn − J(zn)−1F (zn), (19)

where Jij = ∂Fi
∂zj

is the Jacobian of F .

Calculating each component shows that Jacobian has a simple block-invertible form that allows
efficient calculation of the inverse applied to any vector. In particular,

J =
(
D b
bT 0

)
,

where D ∈ Rm×m is a diagonal matrix with Dii(z) = 1 + p(p − 1)zm+1z
p−2
i , and b ∈ Rm with

bi(z) = pzp−1
i for 1 ≤ i ≤ m. Moreover, using the block inverse formula for block 2×2 matrices9

and writing b̄ = D−1b, we see

J−1 = 1
µ

(
µD−1 − b̄b̄T b̄

b̄T −1

)
,

where µ = bTD−1b = b̄TD b̄. Writing u ∈ Rm+1 as u = (~u, um+1)T , we have

J−1u = 1
µ

(
µD−1~u +

(
um+1 − b̄T~u

)
b̄

(b̄T~u− um+1)

)
, (20)

which can be computed efficiently as D is diagonal.
We initialize the first m components of z0 by computing the direct radial projection of y to the

`p ball, ~z 0 = y/‖y‖p. The m+ 1 component, the lagrange multiplier, is then initialized as the best
least squares solution of (17), i.e.

z0
m+1 = argmin

λ

m∑
i=1

(
yi − z0

i − λp(z0
i )p−1

)2 = ‖b(~z 0)‖−2
2

(
bT (~z 0)(y − ~z 0)

)
.

The algorithm is then run, using (20) to calculate each update step according to (19). We
terminate iteration when the norm of ‖F (zn)‖2 falls below a specified tolerance. In practice, we
find extremely rapid convergence, achieving results with error comparable to machine precision
with typically fewer than 10 iterations.

7 Experiments

For the first experiment, setting the dimension N = 1024 and the sparsity level K = 16, we
have generated 500 K-sparse signals with support selected uniformly at random in {1, · · · , N}.
The non-zero elements have been drawn from a standard Gaussian distribution N(0, 1). For each
sparse signal, m quantized measurements have been recorded as in model (1) with a SGR matrix

9See for instance page 125 of [Zwi03].

19



m/K

SN
R 

(d
B)

S
N

R
(d

B
)

m/K

BPDN

p = 3
p = 4

p = 10

24

28

32

36

10 15 20 25 30 35 40

(a)

m/K

st
an

da
rd

 d
ev

ia
tio

n 
SN

R 
(d

B)
S
td

[S
N

R
]
(d

B
)

m/K

BPDN

p = 3
p = 4

p = 10

1.2

1.4

1.6

1.8

10 15 20 25 30 35 40

(b)

Figure 3: Quality of BPDQp for different m/K and p. (a) Average SNR. (b) Standard deviation
of the SNR.

Φ ∈ Rm×N . The bin width has been set to α = ‖Φx‖∞/40. In Figure 3, we plot the average
quality of the reconstructions of BPDQp for various p ≥ 2 and m/K ∈ [10, 40]. We use the quality
metric SNR(x̂;x) = 20 log10

‖x‖2
‖x−x̂‖2 , where x is the true original signal and x̂ the reconstruction.

The different decoders become dominant from oversampling factors m/K increasing with p. This
confirms the fact that the noise error can be reduced when both p and m/K are high.

In the second experiment, we applied our methods to a model of undersampled MRI recon-
struction problem. Using an example similar to [LDP07], the original signal is a 256 by 256 pixel
“simulated angiogram” comprised of 10 randomly placed ellipses. The linear measurements are
the real and imaginary components of one sixth of the Fourier coefficients at randomly selected
locations in Fourier space, giving m = 2562/6 independent measurements. These are quantized
with a bin width α giving at most 12 quantization levels for each measurement. We use the Haar
wavelet transform as a sparsity basis. The measurement matrix is then Φ = FΨ, where Ψ is the
Haar matrix, and F is formed by the randomly selected rows of the Discrete Fourier Transform
matrix. The original image has K = 821 nonzero wavelet coefficients, giving an oversampling ratio
m/K = 13.3. In Figure 4, we show 100 by 100 pixel details of the results of reconstruction with
BPDN, and with BPDQ for p = 10. Note that we do not have any proof that the sensing matrix Φ
satisfies the RIPp (4). We nonetheless obtain similar results as in the previous 1-d example. The
BPDQ reconstruction shows improvements both in SNR and visual quality compared to BPDN.

8 Conclusion and Further Work

The objective of this paper was to show that the BPDN reconstruction program commonly used
in Compressed Sensing with noisy measurements is not always adapted to quantization distortion.
We introduced a new class of decoders, the Basis Pursuit DeQuantizers, and we have shown both
theoretically and experimentally that BPDQp exhibit an substantial reduction of the approximation
error in oversampled situations. An interesting question for further study would be to characterize
the evolution of the optimal moment p with the oversampling ratio. This would allow for instance
the selection of the best BPDQ decoder in function of the precise CS coding/decoding scenario.
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(a) Original image (b) SNR = 2.96 dB (c) SNR = 3.93 dB

(d) Zoom on (a) (e) Zoom on (b) (f) Zoom on (c)

Figure 4: Reconstruction from quantized undersampled Fourier measurements. (a) Original. (b)
BPDN. (c) BPDQ10. (d), (e) and (f) details on (a), (b) and (c) respectively.
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A Proof of Proposition 1

Before proving Proposition 1, let us recall some facts of measure concentrations [LT91, Led01].
In particular, we are going to use the concentration property of any Lipschitz function over Rm,

i.e. F such that
‖F‖Lip , sup

u,v ∈Rm, u 6=v

|F (u)− F (v)|
‖u− v‖2 < ∞.

If ‖F‖Lip ≤ 1, F is said 1-Lipschitz.
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Lemma 6 (Ledoux, Talagrand [LT91] (Eq. 1.6)). If F is Lipschitz with λ = ‖F‖Lip, then, for the
random vector ξ ∈ Rm with ξi ∼iid N(0, 1),

Pξ
[ |F (ξ)− µF | > r

] ≤ 2e−
r2

2λ2 , for r > 0,

with µF = E[F (ξ)] =
∫

Rm F (x) γm(x) dmx and γm(x) = (2π)−m/2 e−‖x‖
2
2/2.

A useful tool that we will use is the concept of a net. An ε-net (ε > 0) of A ⊂ RK is a subset
S of A such that for every t ∈ A, one can find s ∈ S with ‖t− s‖2 ≤ ε. In certain cases, the size of
a ε-net can be bounded.

Lemma 7 ([Led01]). There exists a ε-net S of the unit sphere of RK of size |S| ≤ (1+ 2
ε )
K ≤ e2K/ε.

We will use also this fundamental result.

Lemma 8 ([Led01]). Let S be a ε-net of the unit sphere in RK . Then, if for some v1, · · · , vk in
the Banach space B normed by ‖·‖B, we have 1− ε ≤ ∥∥∑k

i=1 sivi
∥∥
B
≤ 1 + ε for all s ∈ S, then

(1− β) ‖t‖2 ≤
∥∥ k∑
i=1

tivi
∥∥
B
≤ (1 + β) ‖t‖2,

for all t ∈ Rk, with β = 2ε
1−ε .

In our case, the Banach space B is `p(Rm) for 1 ≤ p ≤ ∞, i.e Rm equipped with the norm
‖u‖pp =

∑
i |ui|p. With all these concepts, we can now demonstrate the main proposition.

Proof of Proposition 1. Let p ≥ 1. We must prove that for a SGR matrix Φ ∈ Rm×N , i.e. with
Φij ∼iid N(0, 1), with the right number of measurements m, there exist a radius 0 < δ < 1 and a
constant µp > 0 such that

µp
√

1− δ ‖x‖2 ≤ ‖Φx‖p ≤ µp
√

1 + δ ‖x‖2, ∀x ∈ RN s.t. ‖x‖0 ≤ K. (21)

The outline of our proof is as follows. We will start with using the spherical symmetry of the
multivariate Gaussian to obtain a concentration result valid for any single unit norm vector. We
will extend this using the union bound to a result valid for an ε-net of a single unit sphere restricted
to support of size K. We will then apply Lemma 8 to get the bound involving the `2 norm. Finally
we will use the union bound again to obtain a result valid for all K-sparse vectors.

We begin with a unit sphere ST = {u ∈ RN : suppu = T, ‖u‖2 = 1} for a fixed support
T ⊂ {1, · · · , N} of size |T | = K. Let ST be an ε-net of ST . We consider the SGR random process
that generates Φ and, by an abuse of notation, we identify it for a while with Φ itself. In other
words, we define the random matrix Φ = (Φ1, · · · ,ΦN ) ∈ Rm×N where, for all 1 ≤ i ≤ N , Φj ∈ Rm

is a random vector of probability density function (or pdf ) γm(u) = Πm
i=1γ(ui) for u ∈ Rm and

γ(ui) = 1√
2π
e−u

2
i /2 (the standard Gaussian pdf). Therefore, Φ is related to the pdf γΦ = ΠN

j=1γ
m

and, for a given s ∈ ST ⊂ SK ,

PΦ

[ |F (Φs)− µF | > r
]

=
∫

Rm
dmφ1 · · ·

∫
Rm

dmφN
[
ΠN
i=1γ

m(φj)
]
iG(φs),
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with φ = (φ1, · · · , φN ) ∈ Rm×N , G = {y ∈ Rm : |F (y) − µF | > r}, and iG(y) the indicator of G
equals to 1 if y ∈ G and 0 elsewhere.

We show now that for any Lipschitz function F : Rm → R with λ = ‖F‖Lip,

PΦ

[ |F (Φs)− µF | > r
] ≤ 2e−

r2

2λ2 , for r > 0.

Indeed, taking a rotation matrix R ∈ RN×N such that Rs = e1 = (1, 0, · · · , 0)T ∈ RN (since
‖s‖2 = 1), since ΠN

i=1γ
m(φj) ∝ e−

P
j ‖φj‖22/2 = e−

P
ij |φij |2/2 is invariant under the rotation of the

rows of φ, the N changes of variables φj → φjR, i.e. φ→ φR, and the Lemma 6 lead to

PΦ

[ |F (Φs)− µF | > r
]

=
∫

Rm
dmφ1

[ ∫
Rm

dmφ2 · · ·
∫

Rm
dmφN ΠN

i=2γ
m(φj)

]
γm(φ1) iG(φe1)

=
∫

Rm
dmφ1 γ

m(φ1) iG(φ1)

= PΦ1

[ |F (Φ1)− µF | > r
] ≤ 2e−

r2

2λ2 .

The above holds for a single s. To obtain a result valid for all s ∈ ST we may use the union
bound. As |ST | ≤ e2K/ε by Lemma 7, setting r = εµF for ε > 0, we obtain

PΦ

[ |µ−1
F F (Φs)− 1| > ε

] ≤ 2 e2K/ε e−
ε2µ2

F
2λ2 , ∀s ∈ ST .

Taking now F (·) = ‖·‖p for 1 ≤ p ≤ ∞, we have µF = µp = E[‖ξ‖p] for a SGR vector ξ ∈ Rm.

The Lipschitz value is λ = λp = 1 for p ≥ 2, and λ = λp = m
2−p
2p for 1 ≤ p ≤ 2. Consequently,

(1− ε) ≤ ‖ 1
µp

Φs‖p ≤ (1 + ε), (22)

for all s ∈ ST , with a probability higher than 1− 2 exp(2K
ε −

ε2µ2
p

2λ2
p

).

We apply Lemma 8 by noting that, as s has support of size K, (22) may be written as

1− ε ≤ ‖
k∑
i=1

sivi‖p ≤ 1 + ε

where vi are the columns of 1
µp

Φ corresponding to the support of s (we abuse notation to let si
range only over the support of s). Then according to Lemma 8 we have, with the same probability
bound and with for (

√
2− 1)δ = 2ε

1−ε ,
√

1− δ ‖x‖2 ≤ (1− (
√

2− 1)δ) ‖x‖2 ≤ ‖Φx‖p ≤ (1 + (
√

2− 1)δ) ‖x‖2 ≤
√

1 + δ ‖x‖2, (23)

for all x ∈ RN with suppx = T .
The result can be made independent of the choice of T ⊂ {1, · · · , N} by considering that there

are
(
N
K

) ≤ (eN/K)K such possible supports. Therefore, applying again an union bound, (23) holds
for all K-sparse x in RN with a probability higher than

1− 2 e
K (1+log N

K
+2ε−1)−

ε2µ2
p

2λ2
p .
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To go further in the bounding of this probability, let us take first 2 ≤ p <∞ and m ≥ β−1 2p+1

with β−1 = p − 1. Lemma 2 (page 10) tells us that µp ≥ p−1
p νpm

1
p with νp =

√
2π−

1
2p Γ(p+1

2 )
1
p .

Remembering that ε = (
√

2−1)δ

2+(
√

2−1)δ
, a probability of success 1 − η(δ) with η < 1 is then guaranteed

if we select:

(i) for 1 ≤ p < 2, since λp = m
2−p
2p ,

m > 2
ε2ν2

p
( p
p−1)2

(
K (1 + log N

K + 2ε−1) + log 2
η

)
,

(ii) for 2 ≤ p <∞, since λp = 1,

m > 2
p
2

εpνpp
( p
p−1)p

(
K (1 + log N

K + 2ε−1) + log 2
η

) p
2 , (24)

Second, for p = ∞ for p = ∞, since there exists a ρ > 0 such that µ∞ ≥ ρ−1
√

logm, with
λ∞ = 1,

logm > 2ρ2

ε2

(
K (1 + log N

K + 2ε−1) + log 2
η

)
.

The complexities are finally deduced by isolating the values dependent on K, N and ε from the
others.

We may realize some remarks about the results and the requirements of the last proposition.
Notice first that for p = 2, we find the classical result proved in [BDD08], i.e. Φ satisfies the common
RIP = RIP2 with probability higher than 1− η if

m > 8
ε2
K (1 + log N

K + 2ε−1) + log 2
η .

Second, we observe also that the Euclidean case p = 2 provides the lowest bound on m. Indeed,
νp is a increasing function of p with for instance c1 = 0.7979 and c2 = 1. Therefore, in the range
1 ≤ p ≤ 2 where the complexity is constant since the exponents are not varying, the smallest
proportional factor (i.e. highest νp and lowest p

p−1 = 1 + 1
p−1) is reached for p = 2, at constant ε.

Finally, as for the comparison between the common RIP2 proof [BDD08] and the tight bound
found in [DT09], the requirements on the measurements above are possibly pessimistic, i.e. the
exponent p/2 occuring in (24) is perhaps too high. The tightening of the requirements should be
performed with more precise measure concentration tools that the ones used so far in this paper.
Proposition (4) has however the merit to prove that random Gaussian matrices satisfy the RIPp in
a certain range of dimensionality.

B Proof of Lemma 1

Proof. The result for p =∞ comes from [LT91] (see Eq (3.14)). For 1 ≤ p <∞, it is a specialization
of the results presented in [FWV07] (see Lemmata 1 and 2). Indeed, it is proved there that, for
any probabilistic distribution P, if ξ ∈ Rm is a random vector such that ξi ∼iid P, then, for g ∼ P,

lim
m→∞

m
− 1
p E[‖ξ‖p] = E[|g|p] 1

p ,
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and
lim
m→∞

m
1− 2

pVar[‖ξ‖p] =
Var[|g|p](

pE[|g|p] p−1
p
)2 ,

so that

lim
m→∞

√
Var[‖ξ‖p]
E[‖ξ‖p] = 0.

In other words, there exists a concentration phenomenon of E[‖ξ‖p] around the limit E[|g|p] 1
p as

m increases. The result follows then from Var[|g|p] = E[|g|2p]−E[|g|p]2 and by taking P = N(0, 1)
and computing explicitly E[|g|p]. Indeed,

E[|g|p] = 1√
2π

∫ ∞
−∞
|t|pe− 1

2
t2 dt = ( 2

π )
1
2

∫ ∞
0

tpe−
1
2
t2 dt = 2

p
2π−

1
2

∫ ∞
0

u
p−1
2 e−u du

= 2
p
2 π−

1
2 Γ(p+1

2 ).

C Proof of Lemma 2

Proof. Let ξ ∈ Rm be a SGR vector, i.e. ξi ∼iid N(0, 1) for 1 ≤ i ≤ m, and p ≥ 1. First, the
inequality E[‖ξ‖p] ≤ E[‖ξ‖pp]1/p follows from the application of the Jensen inequality ϕ

(
E[‖ξ‖p]

) ≤
E[ϕ(‖ξ‖p)] with the convex function ϕ(·) = (·)p.

Second, the lower bound on E[‖ξ‖p] arises from the observation that for f : R+ → R+ with

f(t) = t
1
p , and for a given t0 > 0,

f(t) ≥ f(t0) + f ′(t0) (t− t0) + p f ′′(t0) (t− t0)2, ∀t ≥ 0. (25)

Indeed, observe first that since f( tα) = α
− 1
p f(t) for α > 0, if the relation above is valid for one

t0 > 0, then it is also true for t′0 = αt0, i.e.

f(t) ≥ f(αt0) + f ′(αt0) (t− αt0) + p f ′′(αt0) (t− αt0)2,

where we took t → t/α in the previous relation. We can thus assume t0 = 1, so that, after some
simplifications, we have to prove

f(t) = t
1
p ≥ 2p−1

p t − p−1
p t2,

or equivalently,
t

1
p
−1 + p−1

p t ≥ 2p−1
p .

The LHS of this last inequality takes its minimum in t = 1 with value 2p−1
p , which provides the

result.
Let us define µ̄p = E[‖ξ‖pp]. We can rewrite (25) as

f(t) ≥ f(t0) + f ′(t0) (µ̄p − t0) + p f ′′(t0) (µ̄p − t0)2

+ f ′(t0) (t− µ̄p) + 2p f ′′(t0) (t− µ̄p)(µ̄p − t0)
+ p f ′′(t0) (t− µ̄p)2.
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Since µp = E[‖ξ‖p] = E[f(‖ξ‖pp)] and E[‖ξ‖pp − µ̄p] = 0, we find

µp ≥ f(t0) + f ′(t0) (µ̄p − t0) + p f ′′(t0) (µ̄p − t0)2 + p f ′′(t0) σ̄2
p,

= (t0)
1
p
−2 ( (2− 1

p) µ̄pt0 + (1
p − 1) (µ̄2

p + σ̄2
p)
)

writing σ̄2
p = E[(‖ξ‖pp − µ̄p)2] = Var[‖ξ‖pp]. The RHS of the last inequality is maximum for t0 =

µ̄p (1 + µ̄−2
p σ̄2

p). For that value, we get finally

µp ≥ E[‖ξ‖pp]
1
p
(
1 + E[‖ξ‖pp]−2 Var[‖ξ‖pp]

) 1
p
−1
.

Because of the decorrelation of the components of ξ, the last inequality simplifies into

µp ≥ m
1
p E[|g|p] 1

p
(

1 + m−1E[|g|p]−2 Var[|g|p] ) 1
p
−1
,

with g ∼ N(0, 1). From Appendix B, we know that E[|g|p] = 2
p
2 π−

1
2 Γ(p+1

2 ).
Moreover, using the following approximation of the Gamma function [Spi71]

|Γ(x)− (2π
x )

1
2 (xe )x| ≤ 1

9x (2π
x )

1
2 (xe )x,

valid for x ≥ 1, we observe

0.9 (2π
x )

1
2 (xe )x ≤ Γ(x) ≤ 1.1 (2π

x )
1
2 (xe )x,

that holds also if x = p+1
2 with p ≥ 1. Therefore,

E[|g|p]−2 Var[|g|p] =
(

1.1
0.92 ( e2)

1
p (2p+1

p+1 )p − 1
) ≤ 1.1

0.92 ( e2)
1
2 2p,

and finally
µp ≥ m

1
p E[|g|p] 1

p
(
1 + c 2p

m

) 1
p
−1

for a constant c = 1.1
0.92 ( e2)

1
2 < 1.584 < 2 independent of p and m.

D Proof of Lemma 3

Proof. Notice first that since J(λw) = λJ(w) for any w ∈ Rm and λ ∈ R, it is sufficient to prove
the result for ‖u‖2 = ‖v‖2 = 1.

The Lemma relies mainly on the geometrical properties of the Banach space `p = `p(RN ) for
p ≥ 2. In [Byn76, Xu91], it is explained that this space is p-convex and 2-smooth, i.e. there exist
constants mp,Mp > 0 such that for all x, y ∈ RN ,

‖x+ y‖pp ≥ ‖x‖pp + p 〈Jp(x), y〉 + mp ‖y‖pp, (p – convex)

‖x+ y‖2p ≤ ‖x‖2p + 2 〈J(x), y〉 + Mp ‖y‖2p, (2 – smooth)

where, for r ≥ 1, Jr is the duality mapping of gauge function t → tr−1. For the Hilbert space `2,
these two relations reduce of course to the polarization identity. For `p, Jr is the differential of 1

r‖·‖rp,
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i.e. (Jr(u))i = ‖u‖r−p |ui|p−1 signui, with the short hand J = J2. In addition, Mp = (p − 1) and
mp = (1 + tp−1

p )(1 + tp)1−p with tp the unique solution of the equation (p− 2) tp−1 + (p− 1)tp−2 = 1
for t ∈ (0, 1). Since (1 + tp)p−1 ≤ 2p−2(1 + tp−1

p ), we have mp ≥ 22−p.
The smoothness inequality involves

2 〈J(x), y〉 ≤ ‖x‖2p + (p− 1) ‖y‖2p − ‖x− y‖2p, (26)

where we used the change of variable y → −y.
Let us take x = Φu and y = tΦv with ‖u‖0 = s, ‖v‖0 = s′, ‖u‖2 = ‖v‖2 = 1, suppu ∩ supp v = ∅

and for a certain t > 0 that we will set later. Because Φ is assumed RIPp for s, s′ and s+ s′ sparse
signals, we deduce

2µ−2
p t |〈J(Φu),Φv〉| ≤ (1 + δs) + (p− 1)(1 + δs′)t2 − (1− δs+s′)(1 + t2),

where the absolute value on the inner product arises from the invariance of the RIP bound on (26)
under the change y → −y. The value µ−2

p |〈J(Φu),Φv〉| is thus bounded by an expression of type

f(t) = α+βt2

t with α, β > 0 for p ≥ 2 given by α = δs + δs+s′ and β = (p− 2) + (p− 1)δs′ + δs+s′ .
Since the minimum of f is 2

√
αβ, we get

|〈J(Φu),Φv〉| ≤ µ2
p

[
(δs + δs+s′)

(
(p− 2) + (p− 1)δs′ + δs+s′

)] 1
2 . (27)

In parallel, a change y → x+ y in (26) provides

2 〈J(x), y〉 ≤ −‖x‖2p + (p− 1) ‖x+ y‖2p − ‖y‖2p,

where we used the fact that 〈J(x), x〉 = ‖x‖2p. By suming this inequality with (26), we have

4 〈J(x), y〉 ≤ (p− 2)‖y‖2p + (p− 1) ‖x+ y‖2p − ‖x− y‖2p.

Using the RIPp on x = Φu and y = tΦv as above leads to

4µ−2
p t |〈J(Φu),Φv〉| ≤ (1 + δs′) (p− 2) t2 + (p− 1)(1 + δs+s′)(1 + t2) − (1− δs+s′)(1 + t2),

= p− 2 + p δs+s′ +
(

2(p− 2) + (p− 2)δs′ + p δs+s′
)
t2,

with the same argument as before to explain the absolute value. Minimizing over t as above gives

|〈J(Φu),Φv〉| ≤ 1
2 µ

2
p

[
(p− 2 + p δs+s′)

(
2(p− 2) + (p− 2)δs′ + p δs+s′

)] 1
2 . (28)

Together, (27) and (28) imply the desired result.

E Proof of Theorem 2

Proof. Let us write x∗p = x+h. We have to characterize the behavior of ‖h‖2. In the following, for
any vector u ∈ Rd with d ∈ {m,N}, we define uA as the vector in Rd equal to u on the index set
A ⊂ {1, · · · , d} and 0 elsewhere.
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We define T0 = suppxK and a partition {Tk : 1 ≤ k ≤ d(N − K)/K e} of the support of
hT c0 . This partition is determined by ordering elements of h off of the support of xK in decreasing
absolute value. We have |Tk| = K for all k ≥ 1, Tk ∩ Tk′ = ∅ for k 6= k′, and crucially that
|hj | ≤ |hi| for all j ∈ Tk+1 and i ∈ Tk. We will frequently use the relation

‖z‖1 ≤
√
K‖z‖2 (29)

which follows from the Cauchy-Schwartz inequality, valid for vectors z with support of size K.
We start from

‖h‖2 ≤ ‖hT01‖2 + ‖hT c01‖2, (30)

with T01 = T0 ∪ T1, and we are going to bound separately the two terms of the RHS.
For all j ∈ Tk+1, we have |hj | ≤ 1

K ‖hTk‖1 and therefore ‖hTk+1
‖2 ≤ K− 1

2 ‖hTk‖1. Consequently,

‖hT c01‖2 ≤
∑
k≥2

‖hTk‖2 ≤ K−
1
2

∑
k≥1

‖hTk‖1 ≤ K−
1
2 ‖hT c0 ‖1. (31)

But ‖hT c0 ‖1 cannot be very large if x∗p arises from a `1 minimization. As ε is set such that x is a
feasible point of the fidelity constraint in ∆p(y, ε), the solution x∗p must have a lower `1 norm than
x. This implies

‖x‖1 ≥ ‖x+ h‖1 = ‖(x+ h)T0‖1 + ‖(x+ h)T c0 ‖1 ≥ ‖xT0‖1 − ‖hT0‖1 + ‖hT c0 ‖1 − ‖xT c0 ‖1, (32)

implying

‖hT c0 ‖1 ≤ ‖hT0‖1 + ‖x‖1 − ‖xT0‖1 + ‖xT c0 ‖1 = ‖hT0‖1 + 2‖xT c0 ‖1 ≤
√
K ‖hT01‖2 + 2‖xT c0 ‖1. (33)

where we use (29) for the last inequality. Inequalites (31) and (33) together imply

‖h‖2 ≤ ‖hT01‖2 + ‖hT c01‖2 ≤ 2‖hT01‖2 +
2√
K
‖xT c0 ‖1

Using 29 and noting that ‖xT c0 ‖2 = e0(K), this becomes

‖h‖2 ≤ 2‖hT01‖2 + 2e0(K)

Let us bound now ‖hT01‖2 by using the RIPp. From the definition of the mapping J , we have

‖ΦhT01‖2p = 〈J(ΦhT01),ΦhT01〉 = 〈J(ΦhT01),Φh〉 −
∑
k≥2

〈J(ΦhT01),ΦhTk〉.

By the Hölder inequality with r = p
p−1 and s = p,

〈J(ΦhT01),Φh〉 ≤ ‖J(ΦhT01)‖r‖Φh‖s = ‖ΦhT01‖p‖Φh‖p
≤ 2 ε ‖ΦhT01‖p ≤ 2 ε µp (1 + δ2K)

1
2 ‖hT01‖2,

since ‖Φh‖p ≤ ‖Φx− y‖p + ‖Φx∗p − y‖p ≤ 2ε. Using Lemma 3, we know that, for k ≥ 2,

|〈J(ΦhT01),ΦhTk〉| ≤ µ2
pCp(δK , δ2K , δ3K) ‖hT01‖2 ‖hTk‖2,
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so that, using again the RIPp of Φ,

(1− δ2K)µ2
p ‖hT01‖22 ≤ ‖ΦhT01‖2p

≤ 2 ε µp (1 + δ2K)
1
2 ‖hT01‖2 + µ2

pCp ‖hT01‖2
∑
k≥2

‖hTk‖2

≤ 2 ε µp (1 + δ2K)
1
2 ‖hT01‖2 + µ2

pCp ‖hT01‖2
( ‖hT01‖2 + 2e0(K)

)
.

After some simplifications, we get finally

‖h‖2 ≤ 2(Cp+1−δ2K)
1−δ2K− Cp

e0(K) + 4
√

1+δ2K
1−δ2K− Cp

ε
µp
.

F Proof of Lemma 4

Proof. For a random variable u ∼ U([−α
2 ,

α
2 ]), we compute easily that E[|u|p] = αp

2p(p+1) and

Var[|u|p] = α2pp2

22p(p+1)2(2p+1)
. Therefore, for a random vector ξ ∈ Rm with components ξi independent

and identically distributed as u, E[‖ξ‖pp] = αp

2p(p+1)m and Var[‖ξ‖pp] = α2pp2

22p(p+1)2(2p+1)
m.

To prove the probabilistic inequality below (7), we define, for 1 ≤ i ≤ N , the positive random
variables Zi = 2p

αp
|ξi|p bounded on the interval [0, 1] with E[Zi] = (p+1)−1. Denoting S = 1

m

∑
i Zi,

the Chernoff-Hoeffding bound [Hoe63] tells us that, for t ≥ 0,

P
[
S ≥ (p+ 1)−1 + t

] ≤ e−2t2m.

Therefore,
P
[‖ξ‖pp ≥ αp

2p(p+1) m+ αp

2p tm
] ≤ e−2t2m,

which gives, for t = κm−
1
2 ,

P
[‖ξ‖pp ≥ ζp + αp

2p κm
1
2
] ≤ e−2κ2

.

The limit value of (ζp + αp

2p κm
1
2 )1/p when p→∞ is left to the reader.
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