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Abstract

This deliverable describes the game structures implemented in the TOC-
SIN project to find self-enforcing and stable international environmental
agreements. It presents the first results obtained with the use of these mod-
els. The document starts with a review of the different approaches that have
been proposed in the literature to represent in a game theoretic framework
the concept of self-enforcing or stable international environmental agree-
ment.

1 Introduction
The aim of the TOCSIN research program is to assess the benefits and costs of
possible self-enforcing technology-based international agreements involving the
EU, China and India with the aim of stabilizing the long term atmospheric con-
centrations of GHGs. One specific objective of the project is

To define the possible self-enforcing international agreements on GHG
emission abatement, taking into account their economic impacts, in-
cluding terms of trade changes, as well as the possible gains of multi-
lateral and bilateral collaborations, Clean Development Mechanisms
(CDM) and international emission trading (IET) in order to stimulate
RD&D cooperation and technology transfers toward China and In-
dia.

The purpose of this deliverable is twofold: (i) to explore and compare differ-
ent game theoretic models already proposed to study Self-Enforcing and Stable
Climate-Change Treaties and, (ii) to propose different ways to adapt these ap-
proaches to the needs of the TOCSIN project.
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The deliverable is organized as follows. Part-1 discusses the different game
theoretic approaches already proposed to study self enforcing International En-
vironmental Agreements (IEAs); Part-2 is a model of financial constraint in in-
tertemporal cooperative pollution management games, proposed by the TOCSIN
partners of HKBU; Part-3 discusses in more details the game models that are
implemented in the TOCSIN project. Part-4 shows the first experiments with a
budget sharing game implemented with the TOCSIN relevant data.

Part I

Review of IEA games
Self-enforcing1 or stable treaties on IEA have the property that no signatory has
a temptation to leave the agreement, which means in general that the terms of
the agreement must be either (i) a Nash (or Stackelberg) equilibrium in a prop-
erly defined noncooperative game of strategy or (ii) a stable solution in a suitably
defined cooperative game. It appears that there is considerable flexibility in the
way one can design these games and, depending on the design adopted, very dif-
ferent classes of equilibrium and stable solutions can be obtained, with outcomes
varying from very inefficient (that is very far from Pareto optimality) to “quasi
Paretian” or Pareto optimal.

In the forthcoming sections we propose a rapid survey of the game-theoretic
frameworks that have been proposed to study self-enforcing IEAs.

2 Players, payoffs, rules of the game
In this section we consider the general characteristics of the game models used to
represent an IEA. First we shall describe the players, their payoffs and the pro-
posed rules of the game. The players are countries or groups of countries. Their
actions are their GHG emission levels over a long term planning horizon or the
emission caps that they agree to observe (their actual emissions being the result
of emissions trading markets). The payoffs of the players are evaluated in terms
of welfare gains (or losses) associated with their common actions. These welfare
criteria can include the economic cost of climate change (cost-benefit (CB) frame-
work) or not, in which case a limit is imposed on the gobal cumulated emissions
(cost-effectiveness (CE) framework). The rules of the game can be diverse. They
are described in the following sections.

1This part has been contributed by Alain Haurie from ORDECSYS.
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2.1 Single level game (CB)
This is the basic model used by many authors to represent status quo (Chander and
Tulkens Chander and Tulkens (1992, 1995, 1997), Labriet and Loulou (2007))
as a reference point. There are I countries, indexed i = 1, . . . , I, that generate
emissions ei ∈ ℜ+. Benefits of emissions are denoted πi(ei), with π′i(ei) > 0,
π′′i (ei) < 0. Furthermore, associated with the total emission level, e = ∑

I
i=1 ei, one

defines the environmental damage cost of each country νi(e)≥ 0, with ν′i(e) > 0,
ν′′i (e)≥ 0. 2. For the game with payoffs,

Ji(e) = πi(ei)−νi(e), i ∈ I. (1)

A Nash equilibrium solution is an emission schedule e∗ = (ei : i ∈ I) such that

Ji(e∗) = max
ei

Ji([e∗−i,ei]) i ∈ I, (2)

where [e∗− j,e j] denotes the emission schedule where all players j 6= i observe e∗j
and player i chooses ei.

2.2 Two-level (two-stage) game with coalitions (CB)
This is the game theoretic framework introduced by Barrett Barrett (1994), used
by Botteon and Carraro (1998); Bosello et al. (2001); Buchner et al. (2005);
Carraro et al. (2003) and Kempfert (2005) and recently revisited by Kolstad and
Ulph (2008) from which we quote:

“...In stage (or level) 1, (membership game) each country decides
whether or not to join the agreement (an IEA). The result of this is
a set of signatories to the IEA and a set of fringe members, outside
the IEA. We seek a Nash equilibrium in “announcements” (ie, "in"
or "out") in which no country wishes to unilaterally leave or join the
coalition. In stage (or level) 2, (emission game) each non-signatory,
or fringe, country, denoted by superscript f , takes as given the emis-
sions of all other countries and chooses its emissions to maximize its
individual net benefit; the signatory countries, denoted by superscript
s, collectively choose their emissions to maximize the aggregate net
benefit of the signatory countries taking as given the emission strat-
egy of the non-signatories. The outcome of stage 2 is a Stackelberg
equilibrium involving the IEA (acting as one) as leader and the fringe

2Notice that this formulation can be used in a dynamic economic model (see Nordhaus and
Yang Nordhaus and Yang (1996) or Labriet and Loulou (2007)). The solution is then an open-
loop Nash equilibrium
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countries (acting as individuals) as followers...” ... “There are two
ways of defining the equilibrium of the membership game. The first,
as presented in Barrett Barrett (1994) borrows the concept of a stable
coalition from the literature on oligopoly and defines a stable IEA as
follows:

i.e. no signatory country has any incentive to unilaterally leave the
IEA, and no non-signatory has any incentive to unilaterally join the
IEA, taking as given the membership decisions of all other countries.
This definition is equivalent to saying that a stable IEA is a Nash
equilibrium of the membership game.

This might seem to be a simplistic notion of stability. In fact, other
authors have come up with more complex conditions for stability of
an IEA (eg, Chander and Tulkens, Chander and Tulkens (1994)),
including ways of committing countries to participate (eg, Carraro
and Siniscalco, Carraro and Siniscalco (1993)). What this definition
of stability gives us is a very basic, and perhaps weakest, concept of
what it takes to hold an agreement together. It is a good starting point
for explorations of the size of voluntary international environmental
agreements.”...

Note that in the papers by Carraro and Siniscalco (1993) or Kempfert (2005)
the solution to the second (lower) level game is not a Stackelberg equilibrium but
a Nash equilibrium where the signatory countries play as one player and each non
signatory is also one player. In Kolstad and Ulph (2008) the simple strategic
structure of the game considered makes also that the Stackelberg solution coin-
cides with a Nash equilibrium.

2.3 Three-level (three-stage) game with IET (CB)
This is the framework proposed by Helm (2003) whom we quote below:

“...Allowing for the possibility of international emissions trading, coun-
tries interaction may be thought of as a three-stage game.

In the first stage (level), countries decide on the establishment of a
trading system.

... In the second stage (level), ..., if countries have approved a trad-
ing system, they (non-cooperatively) choose tradable emission al-
lowances, denoted ωi ∈ ℜ. In this case, there is a third stage (level):
the trading of allowances on an international permit market, leading
to after-trade emission e∗i such that ∑

I
i=1 e∗i = ∑

I
i=1 ωi = ω.
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In the subgame perfect Nash equilibrium of this game, no country
wants to unilaterally change its allowance choice nor its decision
about the trading system so there is no need for binding agreements.
The resulting game is solved by backwards induction...”

The introduction of the “caps” as the strategic variables and the definition of actual
emissions as a result of an IET is very interesting as it permits the introduction of
terms of trade effects in the payoffs of the players (see also section 2.6).

2.4 Cooperative game solutions (CB)
Cooperative game solution concepts have been used in the context of IEAs by Chan-
der and Tulkens (1992, 1994) and implemented recently in the realm of a 15 re-
gion World MARKAL model by Labriet and Loulou (2007). Quoting from these
authors:

...Chander and Tulkens (1992, 1997) analyze the formation of the
grand coalition (cooperation among all countries). This “grand coali-
tion approach” relies on the ability to make transfers to ensure that
every region and possible coalition receives at least as much as it can
earn on its own. However, transfers are often criticized as being un-
realistic and some argue that transfers may be inadequate to offset the
incentives to free-ride (Bosello et al., 2001). However, transfers do
not need to be implemented through direct financial resource flows.
They could also be translated in technology transfers or projects im-
plemented jointly (investments from one region to another one), in an
international carbon tax or in an international tradable permit scheme,
where transfers are generated by the trade of carbon permits from the
agreed initial allocation of carbon. Dutta and Radner (2004), Dia-
mantoudi et al. (2002), Finus and Rundshagen (2002), Finus (2004),
Ioannidis et al. (2000), Missfeldt (1999) and Tulkens (1998) provide
very good reviews of the two approaches and help understand how
their premises, such as coalition unanimity, farsightedness, coordina-
tion of defectors, contribute to their different conclusions.

[...]

The concepts of cooperative agreements have some normative appeal
and possess some axiomatic properties, while the non-cooperative
branch is concerned with a more positive analysis of coalition forma-
tion (Finus and Rundshagen, 2002; Missfeldt, 1999). The choice of a
normative angle for the analysis of international climate agreement is
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consistent with MARKAL’s philosophy, which relies on optimal en-
ergy decision and is appropriate for prospective analysis. Moreover,
cooperative cost-sharing solutions are important since they may act
as focal points in negotiations.

The definition of transfers between countries ... requires the analysis
of every possible coalition structure of the game, and therefore the be-
haviour of regions that are not members of the cooperative coalition
(equivalent to the definition of the threat in case of defection). We
adopt the γ-characteristic function proposed by Chander and Tulkens
(1997): when a subcoalition S forms, outsiders do not take particular
coalitional actions against or favouring S but adopt their individual
best reply strategies (individual Nash) and enjoy the cleaner environ-
ment induced by S’s actions. This means also that when a country
deviates, the whole agreement collapses and each country sticks to its
non-cooperative Nash strategy (Chander and Tulkens, 1992, 1997).
The γ-characteristic function is defined by:

vγ(S) = CPANE(S)−∑
i∈S

CNASH(i), (3)

with CPANE(S) the total discounted costs of S under Partial Agreement
Nash Equilibrium where regions of S cooperate and regions out of S
play their individual Nash strategy CNASH(i) the cost borne by region
i of S under its individual Nash strategy

In other words, the game assumes that emission leakage (more emis-
sions by outsiders) is unappropriate since it is self-punishing in the
context of global pollution. Moreover, the game implies for S a cer-
tain degree of pessimism, since S would be better off if the regions
outside would form one or more non-singleton coalitions and then
reduce more their emissions (Chander and Tulkens, 1997). The open-
loop information structure that we use corresponds to negotiations
that take place once: a binding agreement is signed in the first pe-
riod and remains valid until the end of the horizon. This assumption
is consistent with the perfect information and foresight characteristics
of MARKAL, as well as with the long-term nature of some energy de-
cisions. Thus, the problem is dynamic as regards MARKAL energy
decisions, but it is static from the point of view of gains and transfers:
gains and transfers are fixed for the entire time horizon and they can
be not renegotiated later.
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2.5 Correlated equilibrium and games with signaling (CB)
To our knowledge there are few models of IEAs that are using the paradigm of cor-
related equilibrium or of game with signaling, although these concepts have been
demonstrated to lead to interesting conclusions in theoretical economics (Aumann
(1974), Fudenberg and Tirole (1991)). An application to the allocation of permits
in the EU ETS has been proposed by Viguier et al. (2006). In a correlated equi-
librium one assumes that an umpire (the EU Commission or the UN IPCC) gives
to each player a recommendation on the strategy to adopt. These recommenda-
tions constitute a correlated equilibrium if adopting them is a Nash equilibrium
for the players. In a game with signaling an umpire sends a signal to the players
with a recommendation on the strategy to adopt depending on the signal received.
Again, playing according to these strategies would be a Nash equilibrium. These
concepts are attractive for the modeling of IEAs since, obviously, although no in-
ternational body can impose a solution to all countries, one can imagine the UN or
a dominant coalition of nations to play the role of the umpire distributing strategic
recommendations or signals.

2.6 Equilibrium with a coupled constraint (CE)
A different game format for IEA modeling has been proposed in Haurie et al.
(2006) and Carbone et al. (2003) based on the paradigm of a game with coupled
constraint introduced by Rosen (1965). The concept has the considerable advan-
tage to reconcile game theory with the cost-effectiveness framework. Instead of
evaluating the damages due to climate change one imposes a global limit on the
GHG concentration that will have to be taken into consideration in the definition of
the equilibrium solution. Let us quote from Drouet et al. (2007) where a dynamic
(two period) game with uncertainty on climate sensitivity (CS) is formulated:

The game is played over 2 periods t = 0,1. M is a set of m groups of
countries hereafter called players which must decide on the caps they
impose on their respective global emissions of GHGs in each period.
Let Ω be the set of possible realizations of the climate sensitivity (CS)
parameter values. We represent the uncertainty on this value as an
event tree as shown in Fig. 1.

Let π(ω) be the probability of realization ω ∈ Ω. We denote ē j(t,ω)
the cap decided by player j for period t and CS ω∈Ω. In period 0 the
CS is unknown, therefore the following equalities must be satisfied

ē j(0,ω) = ē j(0,ω′) ∀ j ∈M,∀ω,ω′ ∈Ω. (4)
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Figure 1: Climate sensitivity uncertainty

In period 1 the CS is known and each player adapts his decision
ē j(1,ω) to the observed realization ω. Depending on the realiza-
tion ω ∈ Ω, a global limit Ē(ω) will be imposed on the cumulative
emissions of both periods t = 0,1. Therefore the following coupled
constraints are binding all players together

∑
j∈M

1

∑
t=0

ē j(t,ω)≤ Ē(ω) ∀ω ∈Ω. (5)

Let ē(t,ω) =
{

ē j(t,ω)
}

j∈M denote the vector of emissions caps for
all players in period t, and CS value ω. Given these cap values a
general economic equilibrium is computed for the m-country which
determines a welfare gain for each player, hereafter called its payoff
at t,ω and denoted Wj(ē(t,ω)). Given a choice of emission programs
ē = {ē(t,ω)| : t = 0,1;ω ∈Ω} the expected payoff to player j is given
by

J j(ē) =
1

∑
t=0

∑
ω∈Ω

π(ω)Wj(ē(t,ω)) j ∈M. (6)

We assume that the players behave in a noncooperative way but are
bound to satisfy the global cumulative emissions constraints (5) that
are contingent to the realization ω of the CS.

Let us call E the set of emissions ē that satisfy the constraints (4) and
(5). Denote also [ē∗− j, ē j] the emission program obtained from ē∗ by
replacing only the emission programm ē∗j of player j by ē j.

Definition 1 The emission program ē∗ is an equilibrium under the
coupled constraints (5) if the following holds for each player j ∈M

ē∗ ∈ E (7)
J j(ē∗) ≥ J j([ē∗− j, ē j]) ∀ē j s.t. [ē∗− j, ē j] ∈ E . (8)
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Therefore, in this equilibrium, each player replies optimally to the
emission program chosen by the other players, under the constraint
that the global cumulative emission limits must be respected.

It is possible to characterize a class of such equilibria through a fixed
point condition for a best reply mapping defined as follows. Let r =
(r j) j∈M with r j > 0 and ∑ j∈M r j = 1 be a given weighting of the
different players. Then introduce the combined response function

θ(ē∗, ē;r) = ∑
j∈M

r jJ j([ē∗− j, ē j]). (9)

It is easy to verify that, if ē∗ satisfies the fixed point condition

θ(ē∗, ē∗;r) = max
ē∈E

θ(ē∗, ē;r), (10)

then it is an equilibrium under the coupled constraint.

Definition 2 The emission program ē∗ is a normalized equilibrium if
it satisfies (10) for a weighting r and a combined response function
defined as in (9).

The RHS of (10) defines an optimization problem under constraint.
Assuming the required regularity we can introduce a Kuhn-Tucker
multiplier λo(ω) for each constraint ∑

1
t=0 ē j(t,ω) ≤ Ē(ω) and form

the Lagrangian

L = θ(ē∗, ē;r)+ ∑
ω∈Ω

λ
o(ω)(Ē(ω)− ∑

j∈M

1

∑
t=0

ē j(t,ω)). (11)

Therefore, by applying the standard K-T optimality conditions we
can see that the normalized equilibrium is also the Nash equilibrium
solution for an auxiliary game with a payoff function defined for each
player j by

J j(ē)+ ∑
ω∈Ω

λ
j(ω)(Ē(ω)− ∑

j∈M

1

∑
t=0

ē j(t,ω)), (12)

where
λ

j(ω) =
1
r j

λ
o(ω), ω ∈Ω. (13)

This characterization has an interesting interpretation in terms of ne-
gotiation for a climate change policy. A common “tax” λo(ω) is de-
fined and applied to each player with an intensity 1

r j
that depends on

the weight given to this player in the global response function.
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In Haurie et al. (2006) the concept is integrated in an economic growth model à la
Ramsey. The interesting aspect of these models is that they reduce considerably
the “Prisoner’s dilemma” syndrome of the Nash equilibrium solution which is
present in most environmental game models (see section 9). Also they provide a
way to deal with the burden sharing issue, by distributing the weights given to the
different players in the search for a normalized equilibrium.

2.7 Equilibrium in a dynamic game with trigger strategies (CB)
This is the game used by Dutta and Radner (2004) to model a self-enforcing
IEA. The game is played over an infinite time horizon. It is dynamic as it takes
into account the GHG accumulation process, the damages for each period being
determined by the observed concentration. The threat strategy is a Markov (sub-
game perfect) Nash equilibrium (MNE). A Pareto optimal grand coalition strategy
(GPO) is obtained by maximizing a convex combination of the welfare of all coun-
tries. For some choice of the weighting the vector of values for the welfare of all
the countries will always dominate the vector of values for the MNE, whatever
the initial state of the game in the admissible domain. This permits an umpire to
propose the following trigger strategy which constitutes a subgame perfect equi-
librium in the dynamic game:

signal “0”: Start with the signal “0”. As long as everybody cooperates (signal 0)
play the GPO strategy;

signal “1”: As soon as a defection has been noticed, switch the signal to “1”
and recommend to play the MNE strategy forever (or for a sufficiently long
time).

For a discount rate close enough to 0, the dominance of the GPO value vector over
the MNE value vector will make such a strategy a subgame perfect equilibrium.
Note that this game structures can be interpreted as a variant of the paradigm of a
game with signaling.

The interesting feature of this model is that it takes into account the dynamic
structure of the game and it proposes a subgame perfect solution, i.e. a solution
which is “renegotiation proof”. Furthermore, the stable equilibrium solution is
also Pareto optimal! Unfortunately the computational aspects are not very attrac-
tive. The solution obtained in Dutta and Radner (2004) is based on a dynamic
programming approach which is implementable only for models with very few
“state variables”.
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2.8 Dynamic game with stable cooperative solutions (CB)
In a similar vein the models proposed by Petrosjan and Zaccour (2003) and Pet-
rosjan and Yeung (2007) deal with the regularization of a cooperative solution in
a dynamic game setting. Quoting from these authors:

A particularly stringent condition (subgame consistency) is required
for a dynamically stable cooperative solution in stochastic differen-
tial games. A cooperative solution is subgame consistent if the solu-
tion optimality principle is maintained in any subgame which starts
at a later time with any feasible state brought about by prior opti-
mal behaviors. Since all players are guided by the same optimality
principle at each instant of time, they do not possess incentives to
deviate from the previously adopted optimal behavior throughout the
game. In this paper an optimality principle which shares the expected
gain from cooperation proportional to the nations’ relative sizes of ex-
pected noncooperative payoffs is adopted and a payment mechanism
which ensures a subgame-consistent solution is explicitly derived.

The interesting aspect of this approach is that it proposes conditions for dynamic
stability of the negotiated treaty. As for the Dutta-Radner model, this solution
concept is based on a dynamic programming argument which is very difficult
(impossible) to implement in a large scale model.

Part II

On Financial Constraint in
Intertemporal Cooperative Pollution
Management Games
Under dynamic cooperation, it has been shown that given subgame-consistent im-
putations satisfying group optimality and individual rationality throughout the co-
operative trajectory, no rational players will deviate from the cooperative path.
However, in reality low income nations may have financial constraint. In partic-
ular initial investment in pollution abatement and technology transfer under the
new cooperation scheme may bring GDP down to a level below subsistence. In-
ability to borrow funds in the initial stage may force these nations to back off from
cooperation. Refusal of participation by low income nations presents a stumbling
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block to successful cooperation in pollution management. This part of the de-
liverable examines conditions leading to the need for borrowing in intertemporal
cooperative pollution management games.3

3 Motivation
Cooperative differential games represent a complex form of optimization anal-
ysis. This complexity leads to great difficulties in the derivation of satisfactory
solutions. The recent work of Yeung and Petrosyan (2004 and 2006) developed
a generalized method for the derivation of analytically tractable time-consistent
solutions. One of the most commonly used assumptions to handle deviation of
players from the cooperative path is that cooperation will break down and play-
ers would revert to non-cooperative behaviors if deviations occur. Given that
subgame-consistent imputations satisfying group optimality and individual ratio-
nality throughout the cooperative trajectory, no rational players will deviate from
the cooperative path.

In reality low income nations may have financial constraints. In particular
initial investment in pollution abatement and technology transfer under the new
cooperation scheme may bring GDP down to a level below subsistence. Inabil-
ity to borrow funds in the initial stage may force these nations to back off from
cooperation. Refusal of participation by low income nations presents a stumbling
block to successful cooperation in pollution management.

In this article conditions leading to the need for borrowing in intertemporal
cooperative pollution management games are examined. In Section 2 we present
the issue of financial constraint in a discrete-time framework. Simple illustrations
of financial constraint in cooperative pollution management are given in Section 3.
Section 4 presents a continuous-time analog. In Section 5, the analysis is applied
to an existing differential game of pollution management. Section 6 concludes the
paper.

4 Financial Constraint in Cooperative Games Over
Time

To present the issue of financial constraint in a comprehensive and rigorous frame-
work we consider the general n−nation nonzero-sum dynamic game with initial
state x0 and played over T stages. The state space of the game is X ∈ Rm, and the

3This part has been contributed by David W. K. Yeung and Cynthia Y. X. Zhang of Center of
Game Theory and Department of Decision Science, Hong Kong Baptist University.
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state dynamics of the game is characterized by:

xk+1 = fk[xk,u1
k ,u

2
k , · · · ,un

k ], (14)

for k ∈ {1,2, · · · ,T} ≡ K and initial state x0 given. Here ui
k ∈ Rmi is the control

vector of nation i at stage k.
The objective of nation i is

T

∑
k=1

gi
k[xk,u1

k ,u
2
k , · · · ,un

k ,xk+1]
(

1
1+ r

)k−1

, i ∈ {1,2, · · · ,n} ≡ N. (15)

Let {φi
k(xk, for k∈K and i∈N} denote a set of strategies leading to a feedback

Nash equilibrium, the game equilibrium state trajectory can be obtained as:

xk+1 = fk[xk,φ
1
k(xk),φ2

k(xk), · · · ,φn
k(xk)], (16)

for k ∈ {1,2, · · · ,T} ≡ K and x0 is given,
We denote the process satisfying (16) by { x̂k}T

k=1. The noncooperative payoff
of nation i over the stages from h to T can be expressed as:

V i(h, x̂h) =
T

∑
k=h

gi
k[x̂k,φ

1
k(x̂k),φ2

k(x̂k), · · · ,φn
k(x̂k)]

(
1

1+ r

)k−1

, (17)

for i ∈ N and h ∈ {1,2, · · · ,T}.
Under cooperation group rationality required the nations to maximize their

joint payoff
T

∑
k=1

n

∑
j=1

g j
k[xk,u1

k ,u
2
k , · · · ,un

k ,xk+1]
(

1
1+ r

)k−1

(18)

subject to (14).
Let {ψi

k(xk), for i ∈ N} denote a set of strategies leading to a solution of the
optimal control problem (14) and (18), and let

{
x∗k
}T

k=1 denote the optimal co-
operative path. The total cooperative payoff over the stages from h to T can be
expressed as:

W (h,x∗h) =
T

∑
k=h

n

∑
j=1

g j
k[x
∗
k ,ψ

1
k(x
∗
k),ψ

2
k(x
∗
k), · · · ,ψn

k(x
∗
k)]
(

1
1+ r

)k−1

, (19)

for i ∈ N and h ∈ {1,2, · · · ,T}.
Let Bi

k denote the payment that nation i will received for stage k under the
cooperative agreement. The imputation to nation i over the stages from h to T can
be expressed as:

ξ
i(h,x∗h) =

T

∑
k=h

Bi
k

(
1

1+ r

)k−1

, (20)
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for i ∈ N and h ∈ {1,2, · · · ,T}.
Often a side-payment

ϖ
i
k = Bi

k−gi
k[x
∗
k ,ψ

1
k(x
∗
k),ψ

2
k(x
∗
k), · · · ,ψn

k(x
∗
k)],

for k ∈ {1,2, · · · ,T} will be given to nation i to yield the cooperative imputation.
Since an imputation satisfies group and individual rationalities, we have:

(i) W (h,x∗h) =
n
∑
j=1

ξ j(h,x∗h), and

(ii) ξi(h,x∗h)≥ V i(h,x∗h), for i ∈ N and h ∈ {1,2, · · · ,T}.

In a noncooperative equilibrium, the payoff received by nation i over the stages
from 1 to τ can be expressed as:

τ

∑
k=1

gi
k[x̂k,φ

1
k(x̂k),φ2

k(x̂k), · · · ,φn
k(x̂k)]

(
1

1+ r

)k−1

= V i(t0,x0)−V i(τ, x̂τ), τ ∈ {1,2, · · · ,T} (21)

The cooperative payoff received by nation i over the stages from 1 to τ can be
expressed as:

τ

∑
k=1

Bi
k

(
1

1+ r

)k−1

= ξ
i(t0,x0)−ξ

i(τ,x∗τ). (22)

If nation i’s cooperative payoff i over the stages from 1 to τ is smaller than his
noncooperative payoff i over the stages from 1 to τ, that is

ξ
i(t0,x0)−ξ

i(τ,x∗τ)− [V i(t0,x0)−V i(τ, x̂τ)]≤ 0. (23)

The present value of surplus /deficit of cooperative income over non-cooperative
income of the low-income developing country after τ years is then represented by
the Right-hand-side of (23). If the noncooperative payoff represents a subsistence
level of payoff, the nation involved would have to borrow.

If the maximum borrowing that nation i can made is M̄i, and the condition

ξ
i(t0,x0−ξ

i(τ,x∗τ)− [V i(t0,x0)−V i(τ, x̂τ)]≤−M̄i, (24)

appears at τ ∈ {1,2, · · · ,T} it cannot finance the deficit and would reject the opti-
mality principle leading to the imputation ξi(τ,x∗τ).

The failure of some (developing) nations to finance deficits may create se-
vere strain on the cooperative scheme. Often these nations would request to be
exempted from carrying out the optimal strategies (as in the case of the Kyoto
Protocol). This is certainly a suboptimal arrangement and could reduce the gain
from cooperation substantially. As a result financial aid may be considered to be
given to these participants (with repayment made later) so that they can carry out
the optimal strategies.
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5 Financial Constraint in Cooperative Pollution Man-
agement: Simple Illustrations

Consider the case where there are four groups of nations IC1, IC2, DC, NIC in-
volved in a cooperative pollution management scheme.

IC-1: North American Industrialized Country;

IC-2: EU industrialized Country;

NIC: Newly industrializing country, like China, Mexico, Brazil, Russia or Turkey

DC: Low income developing countries, like India or Pakistan.

The net benefits/revenue (in terms of billion dollars) under non-cooperation
and cooperation are given in Table 1 which yield the following Table 2 showing
the Surplus/Deficit for each player at each period.

Table 1: Net benefits/revenue in current value, with discount rate 0.05.

2010 2011 2012 2013 2014 2015
IC1 3451 3400 3245 3189 3106 3100
IC2 2451 2344 2302 2291 2289 2280
DC 807 825 857 867 881 885
NIC 1103 1178 1227 1250 1261 1270
IC1(coop) 3300 3321 3500 3597 3612 3620
IC2(coop) 2339 2400 2412 2435 2456 2460
DC(coop) 737 799 950 1024 1033 1040
NIC(coop) 997 1214 1305 1387 1460 1470

Table 2: Surplus/deficit in current value, with discount rate 0.05.

2010 2011 2012 2013 2014 2015
IC1 -151 -79 255 408 506 510
IC2 -112 56 110 143 167 180
DC -70 -26 93 157 152 155
NIC -106 36 78 137 199 200
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The figures in Tables 1 and 2 are constructed to provide numerical examples
for illustration. Given actual noncooperative payoffs and agreed upon cooperative
payoffs, the financial constraint problem facing an individual country could be
delineated as in subsections 5.1 and 5.2 below.

5.1 The low-income developing country
The low-income developing country’s non-cooperative payoff for period from
2010 to 2015 is:

V DC(2010, x̂2010) =
2015

∑
k=2010

gDC
k

(
1

1+0.05

)k−2010

= 807+825× (
1

1+0.05
)

+857× (
1

1+0.05
)2 +867× (

1
1+0.05

)3 +881× (
1

1+0.05
)4 +885× (

1
1+0.05

)5

= 4537. (25)

The low-income developing country’s non-cooperative payoff for periods [2011−
2015], [2012−2015], [2013−2015] and [2014−2015] are respectively:

V DC(2011, x̂2011) = 3730
V DC(2012, x̂2012) = 2944
V DC(2013, x̂2013) = 2167
V DC(2014, x̂2014) = 1418
V DC(2015, x̂2015) = 693.

The low-income developing country’s cooperative payoff for period from 2010
to 2015 is:

ξ
DC(2010,x∗2010) =

2015

∑
k=2010

BDC
k

(
1

1+0.05

)k−2010

= 737+799× (
1

1+0.05
)+950× (

1
1+0.05

)2 +1024× (
1

1+0.05
)3

+1033× (
1

1+0.05
)4 +1040× (

1
1+0.05

)5

= 4910. (26)

The low-income developing country’s cooperative payoff for periods [2011−
2015], [2012−2015], [2013−2015] and [2014−2015] are respectively:

ξ
DC(2011,x∗2011) = 4173

ξ
DC(2012,x∗2012) = 3412

ξ
DC(2013,x∗2013) = 2550

ξ
DC(2014,x∗2014) = 1665,

ξ
DC(2015,x∗2015) = 815.
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The present value of surplus /deficit of cooperative income over non-cooperative
income of the low-income developing country after years 1,2,3,4 and 5 are:

ξ
DC(2010,x∗2010)−ξ

DC(2011,x∗2011)− [V DC(2010, x̂2010−V DC(2011, x̂2011)
= 4910−4173− [4537−3730] =−70
ξ

DC(2010,x∗2010)−ξ
DC(2012,x∗2011)− [V DC(2010, x̂2010−V DC(2012, x̂2011)

= 4910−3412− [4537−2944] =−95
ξ

DC(2010,x∗2010)−ξ
DC(2013,x∗2011)− [V DC(2010, x̂2010−V DC(2013, x̂2011)]

= 4910−2550− [4537−2167] =−10
ξ

DC(2010,x∗2010)−ξ
DC(2014,x∗2011)− [V DC(2010, x̂2010−V DC(2014, x̂2011)]

= 4910−1665− [4537−1418] = 126
ξ

DC(2010,x∗2010)−ξ
DC(2015,x∗2011)− [V DC(2010, x̂2010−V DC(2015, x̂2011)]

= 4910−815− [4537−693] = 251.

If the low-income developing country’s non-cooperative payoff represents the
subsistence level the low-income developing country would have to borrow. If the
borrowing constraint of the DC is 95 (billion dollars), the cooperative scheme is
unaffordable.

5.2 North American industrialized country
The North American industrialized country’s non-cooperative payoff for period
from 2010 to 2015 is:

V IC1(2010, x̂2010 =
2015

∑
k=2010

gIC1
k

(
1

1+0.05

)k−2010

= 3451+3400× (
1

1+0.05
)+3245× (

1
1+0.05

)2 +3189× (
1

1+0.05
)3

+3106× (
1

1+0.05
)4 +3100× (

1
1+0.05

)5 = 17370.

The North American industrialized country’s non-cooperative payoff for pe-
riods [2011−2015], [2012−2015], [2013−2015] and [2014−2015] are respec-
tively:

V IC1(2011, x̂2011 = 13919
V IC1(2012, x̂2012 = 10681
V IC1(2013, x̂2013 = 7738
V IC1(2014, x̂2014 = 4984
V IC1(2015, x̂2015 = 2429.
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The North American industrialized country’s cooperative payoff for period from
2010 to 2015 is:

ξ
IC1(2010,x∗2010) =

2015

∑
k=2010

Bi
k

(
1

1+0.05

)k−2010

= 3300+3321× (
1

1+0.05
)

+3500× (
1

1+0.05
)2 +3597× (

1
1+0.05

)3

+3612× (
1

1+0.05
)4 +3620× (

1
1+0.05

)5 = 18553.

The North American industrialized country’s cooperative payoff for periods [2011−
2015], [2012−2015], [2013−2015] and [2014−2015] are respectively:

ξ
IC1(2011,x∗2011) = 15253

ξ
IC1(2012,x∗2012) = 12090

ξ
IC1(2013,x∗2013) = 8915

ξ
IC1(2014,x∗2014) = 5808

ξ
IC1(2015,x∗2015) = 2836.

The present value of surplus /deficit of cooperative income over non-cooperative
income of North American industrialized country after years 1,2,3,4 and 5 are:

ξ
IC1(2010,x∗2010)−ξ

IC1(2011,x∗2011)− [V IC1(2010, x̂2010−V IC1(2011, x̂2011)]
= 18553−15253− [17370−13919] =−151
ξ

IC1(2010,x∗2010)−ξ
IC1(2012,x∗2012)− [V IC1(2010, x̂2010−V IC1(2012, x̂2012)]

= 18553−12090− [17370−10681] =−226
ξ

IC1(2010,x∗2010)−ξ
IC1(2013,x∗2013)− [V IC1(2010, x̂2010−V IC1(2013, x̂2013)]

= 18553−8915− [17370−7738] = 6
ξ

IC1(2010,x∗2010)−ξ
IC1(2014,x∗2014)− [V IC1(2010, x̂2010−V IC1(2014, x̂2014)]

= 18553−5808− [17370−4984] = 359
ξ

IC1(2010,x∗2010)−ξ
IC1(2015,x∗2015)− [V IC1(2010, x̂2010−V IC1(2015, x̂2015)]

= 18553−2836− [17370−2429] = 776.

If the North American industrialized country are above subsistence level and
its borrowing constraint is above 226, the cooperative scheme is feasible.

Similarly, the above results could be computed for the EU industrialized coun-
try (IC-2) and the newly industrialized country (NIC).

6 A Continuous-time Analog
Consider the general n−person nonzero-sum differential game with initial state x0
and duration T − t0 involving n nations. The state space of the game is X ∈ Rm,
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with permissible state trajectories {x(s), t0 ≤ s ≤ T }. The state dynamics of the
game is characterized by the vector-valued differential equations:

ẋ(s) = f [s,x(s),u1(s),u2(s), · · · ,un(s)], x(t0) = x0, (27)

where ui(s) ∈ Rmi is the control vector of nation i.
The objective of nation i isZ T

t0
gi[s,x(s),u1(s),u2(s), · · · ,un(s)]e−r(s−t0)ds+ e−r(T−t0)qi(x(T )), (28)

for i ∈ {1,2, · · · ,n} ≡ N
Let {φi(s,x), for i ∈ N} denote a set of strategies leading to a feedback Nash

equilibrium, the game equilibrium state trajectory can be obtained as:

ẋ(s) = f{s,x(s),φ1[s,x(s)],φ2[s,x(s)], · · · ,φn[s,x(s)]},

x(t0) = x0. (29)

We denote the solution to (29) by { x̂(s)}T
s=t0 , and use the terms x̂(s) and x̂s inter-

changeably. The noncooperative payoff of nation i over the interval [t,T ] where
t ∈ [t0,T ] is:

V i(t, x̂t) =
Z T

t
gi[s, x̂(s),φ1(s, x̂(s)),φ2(s, x̂(s)), · · · ,φn(s, x̂(s))]e−r(s−t0)ds

+e−r(T−t0)qi(x̂(T )), (30)

for i ∈ N, and x(t) = x̂t .
Under cooperation group rationality required the nations to maximize their

joint payoffZ T

t0

n

∑
j=1

g j[s,x(s),u1(s),u2(s), · · · ,un(s)]e−r(s−t0) ds+
n

∑
j=1

e−r(T−t0)q j(x(T ))

(31)
subject to (27).

Let {ψi(s,x), for i∈N} denote a set of strategies leading to an optimal control
solution of the problem (27) and (31), and let {x∗(s)}T

s=t0 denote the optimal
cooperative path. The total cooperative payoff over the interval [t,T ] where t ∈
[t0,T ] is:

W (t,x∗t ) =
Z T

t

n

∑
j=1

g j[s,x∗(s),ψ1(s,x∗(s)),ψ2(s,x∗(s)), · · · ,ψn(s,x∗(s))]e−r(s−t0)ds

+
n

∑
j=1

e−r(T−t0)q j(x∗(T )). (32)
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Let ξi(τ,x∗τ)=
R T

τ
Bi(s)e−r(s−τ)ds+qi(x∗T ) denote the imputation to nation i under

cooperation over the time interval [τ,T ] along the cooperative path {x∗τ}T
τ=t0 for

τ ∈ [t0,T ]. Often an instantaneous side-payment

ϖi(s) = Bi(s)−gi[s,x∗(s),ψ1(s,x∗(s)),ψ2(s,x∗(s)), · · · ,ψn(s,x∗(s))],

for i ∈ N and s ∈ [t0,T ), will be given to nation i to yield the cooperative imputa-
tion.

Since an imputation satisfies group and individual rationalities, we have:

(i) W (τ,x∗τ) =
n
∑
j=1

ξ j(τ,x∗τ), and

(ii) ξi(τ,x∗τ)≥ V i(τ,x∗τ), for i ∈ N.

In a noncooperative equilibrium, the payoff received by nation i in the interval
[t0,τ] can be expressed as:Z

τ

t0
gi[s, x̂(s),φ1(s, x̂(s)),φ2(s, x̂(s)), · · · ,φn(s, x̂(s))]e−r(s−t0)ds

= V i(t0,x0)−V i(τ, x̂τ). (33)

The cooperative payoff received by nation i in the interval [t0,τ] can be expressed
as: Z

τ

t0
Bi(s)e−r(s−t0)ds = ξ

i(t0,x0)−ξ
i(τ,x∗τ). (34)

If nation i’s cooperative payoff in the interval [t0,τ] is smaller than his noncooper-
ative payoff in the interval [t0,τ], that is

ξ
i(t0,x0)−ξ

i(τ,x∗τ)− [V i(t0,x0)−V i(τ, x̂τ)]≤ 0. (35)

The present value of surplus /deficit of cooperative income over non-cooperative
income of the low-income developing country at time τ is then represented by
the Right-hand-side of (23). If the noncooperative payoff represents a subsistence
level of payoff, the nation involved would have to borrow.

If the maximum borrowing that nation i can made is M̄i, and the condition

ξ
i(t0,x0)−ξ

i(τ,x∗τ)− [V i(t0,x0)−V i(τ, x̂τ)]≤−M̄i, (36)

appears at τ ∈ [t0,T ] it cannot finance the deficit and would reject the optimality
principle under cooperation. This analysis was first proposed in Yeung (2008).
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7 Financial Constraint in Cooperative Differential
Game of Pollution Management

In this section we consider financial constraint in the deterministic version of the
Yeung and Petrosyan (2008) cooperative stochastic differential game of trans-
boundary industrial pollution.

7.1 Game Formulation
7.1.1 The Industrial Sector

Consider a multinational economy which is comprised of n nations. To allow
different degrees of substitutability among the nations’ outputs a differentiated
products oligopoly model has to be adopted. The differentiated oligopoly model
used by Dixit (1979) and Singh and Vives (1984)) in industrial organizations is
adopted to characterize the interactions in this international market. In partic-
ular, the nations’ outputs may range from a homogeneous product to n unre-
lated products. Specifically, the inverse demand function of the output of nation
i ∈ N ≡ {1,2, · · · ,n} at time instant s is

Pi(s) = α
i−

n

∑
j=1

β
i
jq j(s), (37)

where Pi(s) is the price of the output of nation i, q j(s)is the output of nation j,
αiand βi

j for i ∈ N and j ∈ N are positive constants. The output choice q j(s) ∈
[0, q̄ j] is nonnegative and bounded by a maximum output constraint q̄ j. Output
price equals zero if the right-hand-side of (37) becomes negative. The demand
system (37) shows that the economy is a form of differentiated products oligopoly
with substitute goods. In the case when αi = α j and βi

j = β
j
i for all i∈N and j∈N,

the industrial outputs resemble a homogeneous good. In the case when βi
j = 0

for i 6= j, the n nations produce n unrelated products. Moreover, the industry
equilibrium generated by this oligopoly model is computable and fully tractable.

Industrial profits of nation i at time s can be expressed as:

πi(s) = [αi−
n

∑
j=1

β
i
jq j(s)]qi(s)− ciqi(s)− vi(s)qi(s), i ∈ N. (38)

where vi(s)≥ 0 is the tax rate imposed by government i on its industrial output
at time s and ci is the unit cost of production. At each time instant s, the industrial
sector of nation i ∈ N seeks to maximize (38). Note that each industrial sector
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would consider the information on the demand structure, each other’s cost struc-
tures and tax policies. The first order condition for a Nash equilibrium for the n
nations economy yields

n

∑
j=1

β
i
jq j(s)+β

i
iqi(s) = α

i− ci− vi(s), i ∈ N. (39)

With output tax rates v(s) = {v1(s),v2(s), · · · ,vn(s)} being regarded as parame-
ters (5.3) becomes a system of equations linear in q(s) = {q1(s),q2(s), · · · ,qn(s)}.
Solving (39) yields an industry equilibrium:

qi(s) = φi
i(v(s)) = ᾱ

i + ∑
j∈N

β̄
i
j v j(s), (40)

where ᾱi and β̄i
j, for i∈N and j ∈N, are constants involving the model parameters

{β1
1,β

1
2, · · · ,β1

n;β
2
1,β

2
2, · · · ,β2

n; · · · ;β
n
1,β

n
2, · · · ,βn

n},

{α1,α2, · · · ,αn} and {c1,c2, · · · ,cn}.
One can readily observe from (39) that an increase in the tax rate has the same

effect of an increase in cost. Ceteris paribus, an increase in nation i’s tax rate
would depress the output of industrial sector i and vice versa. Given that outputs
are substitutable products and the linear demand functions (37) industrial sector
i’s output and nation j’s tax rate, where j 6= i, are positively related.

7.1.2 Local and Global Environmental Impacts

Industrial production emits pollutants into the environment. The emitted pollu-
tants cause short term local impacts on neighboring areas of the origin of produc-
tion in forms like passing-by waste in waterways, wind-driven suspended particles
in air, unpleasant odour, noise, dust and heat. For an output of qi(s) produced by
nation i, there will be a short-term local environmental impact (cost) of εi

iqi(s) on
nation i itself and a local impact of εi

jqi(s) on its neighbor nation j. Nation i will
receive short-term local environmental impacts from its adjacent nations measured
as ε

j
i q j(s) for j ∈ K̄i. Thus K̄i is the subset of nations whose outputs produce lo-

cal environmental impacts to nation i. Moreover, industrial production would also
create long-term global environmental impacts by building up existing pollution
stocks like Green-house-gas, CFC and atmospheric particulates. Each govern-
ment adopts its own pollution abatement policy to reduce the pollution stock. Let
x(s)⊂ R+ denote the level of pollution at time s, the dynamics of pollution stock
is governed by the differential equation:

ẋ(s) =
[ n

∑
j=1

a jq j(s)−
n

∑
j=1

b ju j(s)[x(s)]1/2−δx(s)
]

, x(t0) = xt0, (41)
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where a jq j is the amount added to the pollution stock by a unit of nation j’s
output,

u j(s) is the pollution abatement effort of nation j,
b ju j(s)[x(s)]1/2 is the amount of pollution removed by u j(s) unit of abatement

effort of nation j, and δ is the natural rate of decay of the pollutants.

7.1.3 The Governments’ Objectives

The governments have to promote business interests and at the same time handle
the financing of the costs brought about by pollution. In particular, each govern-
ment maximizes the net gains in the industrial sector minus the sum of expen-
ditures on pollution abatement and damages from pollution. The instantaneous
objective of government i at time s can be expressed as:

[αi−
n

∑
j=1

β
i
jq j(s)]qi(s)− ciqi(s)− ca

i [ui(s)]2− ∑
j∈K̄i

ε
j
i [q j(s)]−hix(s), i ∈ N, (42)

where ca
i [ui(s)]2 is the cost of employing uiamount of pollution abatement effort,

and hix(s) is the value of damage to country i from x(s) amount of pollution.
The governments’ planning horizon is [t0,T ]. It is possible that T may be very

large. At time T , the terminal appraisal associated with the state of pollution is
gi[x̄i− x(T )] where gi ≥ 0 and x̄i ≥ 0. The discount rate is r. Each one of the
n governments seeks to maximize the integral of its instantaneous objective (42)
over the planning horizon subject to pollution dynamics (41) with controls on the
level of abatement effort and output tax.

By substituting qi(s), for i ∈ N, from (40) into (41) and (42) one obtains a
differential game in which government i ∈ N seeks to:

max
vi(s),ui(s)


TZ

t0

[(
α

i−
n

∑
j=1

β
i
j[ᾱ

j + ∑
h∈N

β̄
j
h vh(s)]

)
[ᾱi + ∑

h∈N
β̄

i
h vh(s)]− ci[ᾱi + ∑

j∈N
β̄

i
j v j(s)]− ca

i [ui(s)]2

− ∑
j∈K̄i

ε
j
i [ᾱ

j + ∑
`∈N

β̄
j
` v`(s)]−hix(s)

]
e−r(s−t0)ds−gi[x(T )− x̄i]e−r(T−t0)

}
(43)

subject to

ẋ(s) = [
n

∑
j=1

a j[ᾱ j + ∑
h∈N

β̄
j
h vh(s)]−

n

∑
j=1

b ju j(s)[x(s)]1/2−δx(s) ] (44)
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with x(t0) = xt0 .
In the game (43)-(44) one can readily observe that government i’s tax pol-

icy vi(s) is not only explicitly reflected in its own output but also on the outputs
of other nations. This modeling formulation allows some intriguing scenario to
arise. For instance, an increase of vi(s) may just cause a minor drop in nation
i’s industrial profit but may cause significant increases in its neighbors’ outputs
which produce large local negative environmental impacts to nation i. This results
in nations’ reluctance to increase or impose taxes on industrial outputs.

7.2 Noncooperative and Cooperative Outcomes
The payoff function V i(t, x̂t) of player i in a feedback Nash equilibrium of the
game (43)-(44) can be obtained as

Proposition 1 for i ∈ N and t ∈ [t0,T ]

V i(t, x̂t) = [Ai(t)x̂t +Ci(t)] e−r(t−t0), (45)

where {A1(t),A2(t), · · · ,An(t)} satisfying the following set of constant coefficient
quadratic ordinary differential equations:

Ȧi(t) = (r +δ) Ai(t)−
b2

i
4ca

i
[Ai(t)]2−Ai(t)

n

∑
j = 1
j 6= i

b2
j

2ca
j
A j(t)+hi ,

Ai(T ) =−gi;

for i ∈ N,
and {Ci(t); i ∈ N} is given by

Ci(t) = er ( t−t0)

 tZ
t0

Fi(y)e−r(y−t0)dy+C0
i

 , (46)

where

C0
i = gix̄ie−r ( T−t0)−

TZ
t0

Fi(y)e−r(y−t0)dy,

Fi(t) =−
(

α
i−

n

∑
j=1

β
i
j{ᾱ j +

n

∑
h∈Ni

β̄
j
h [α̂h + ∑

k∈N
β̂

h
k Ak(t)]} )

( ᾱ
i + ∑

h∈N
β̄

i
h [α̂h + ∑

k∈N
β̂

h
k Ak(t)] )+ ci{ᾱi− ∑

j∈N
β̄

i
j [α̂ j + ∑

k∈N
β̂

j
k Ak(t)]}
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+ ∑
j∈K̄i

ε
j
i {ᾱ

j + ∑
`∈N

β̄
j
` [α̂` + ∑

k∈N
β̂

`
k Ak(t)]}

−Ai(t) [
n

∑
j=1

a j{ᾱ j + ∑
h∈N

β̄
j
h [α̂h + ∑

k∈N
β̂

h
k Ak(t)]} ] .

Proof. Follow Yeung and Petrosyan (2008).
Solving the feedback Nash equilibrium pollution dynamics yields the state

trajectory:

x̂(t) = e

[R t
t0

[
n
∑

j=1

b2
j

2ca
j

A j(s)−δ]ds

]
x0 +

Z t

t0

n

∑
j=1

a j{ᾱ j + ∑
h∈N

β̄
j
h [ ˆ̂α

h
+ ˆ̂

β
h

Ah(s)]}e

[R s
t0

[δ−
n
∑

j=1

b2
j

2ca
j

A j(τ)]dτ

]
ds

 ,

(47)

for t ∈ [t0,T ].
Now consider the case when all the nations want to cooperate and agree to act

so that an international optimum could be achieved.
To secure group optimality the participating nations seek to maximize their

joint payoff by solving the following optimal control problem:

max
v1,v2,···,vn;u1,u2,···,un


TZ

t0

n

∑
`=1

[(
α

`−
n

∑
j=1

β
`
j[ᾱ

j + ∑
h∈N

β̄
j
h vh(s)]

)
[ᾱ` + ∑

h∈N
β̄

`
h vh(s)]

−c`[ᾱ` + ∑
j∈N

β̄
`
j v j(s)]− ca

` [u`(s)]2− ∑
j∈K̄`

ε
j
`[ᾱ

j + ∑
k∈N

β̄
j
k vk(s)]−h`x(s)

 e−r(s−t0)ds

−
n

∑
`=1

g`[x(T )− x̄`]e−r(T−t0)

}
(48)

subject to (44). The total cooperative payoff W (t,x∗t ) can be obtained as

Proposition 2
W (t,x∗t ) = [A∗(t)x∗τ +C∗(t)] e−r(t−t0), (49)

with

A∗(t) = AP
∗ +Φ∗(t) [ C̄∗−

tR
t0

n
∑
j=1

b2
j

2ca
j
Φ∗(y)dy ]−1 , and

C∗(t) = er ( t−t0) [
tZ

t0

F∗(y)e−r(y−t0)dy+C0
∗ ] ,
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where Φ∗(t) = exp{
tR

t0
[

n
∑
j=1

b2
j

2ca
j
AP
∗ +(r +δ) ] dy } ,

C̄∗ =
−Φ∗(T )

(AP
∗ +

n
∑
j=1

g j)
+

TZ
t0

n

∑
j=1

b2
j

2ca
j
Φ
∗(y)dy,

AP
∗ (t) = { (r +δ) − [ (r +δ)2 +4

n

∑
j=1

b2
j

2ca
j

n

∑
j=1

h j ]1/2 }

/
n

∑
j=1
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j

ca
j

,

F∗(t) =

−
n
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[ ( α
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n

∑
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β
`
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β̄

j
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h
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β
h

A∗(t)]} ){ᾱ` + ∑
h∈N
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`
h [ ˆ̂α

h
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β
h

A∗(t)]}

−c{` ᾱ
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j∈N
β̄

`
j [ ˆ̂α

j
+ ˆ̂

β
j
A∗(t)]}− ∑

j∈K̄`

ε
j
`{ᾱ

j + ∑
k∈N

β̄
j
k [ ˆ̂α

k
+ ˆ̂

β
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A∗(t)]} ]

−A∗x(t) [
n
∑
j=1

a{j ᾱ
j + ∑

h∈N
β̄

j
h [ ˆ̂α

h
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β
h

A∗(t)]} ] , and

C0
∗ =

n

∑
j=1

g jx̄ je−r ( T−t0)−
TZ

t0

F∗(y)e−r(y−t0)dy.

Proof. Follow Yeung and Petrosyan (2008).
Solving the cooperative pollution dynamics yields the cooperative state trajec-

tory:

x∗(t) = e

[ R t
t0

[
n
∑

j=1

b2
j

2ca
j
A∗(s)−δ]ds

]

[ xt0 +
Z t

t0

n

∑
j=1

a j{ᾱ j + ∑
h∈N

β̄
j
h [ ˆ̂α

h
+ ˆ̂

β
h

A∗(s)]}e
[

R s
t0

[δ−
n
∑

j=1

b2
j

2ca
j
A∗(τ)]dτ

]
ds

]
,

(50)
for t ∈ [t0,T ].

Since nations are asymmetric and the number of nations may be large, a rea-
sonable solution optimality principle for gain distribution is to share the expected
gain from cooperation proportional to the nations’ relative sizes of expected non-
cooperative payoffs. As mentioned before, a stringent condition – subgame con-
sistency – is required for a credible cooperative solution. In order to satisfy the
property of subgame consistency, this optimality principle has to remain in ef-
fect throughout the cooperation period. Hence the solution imputation scheme
{ξi(τ,x∗τ); for i ∈ N} has to satisfy:
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Condition 1

ξ
i(τ,x∗τ) = V i(τ,x∗τ)+

V i(τ,x∗τ)
n
∑
j=1

V j(τ,x∗τ)

[
W (τ,x∗τ)−

n

∑
j=1

V j(τ,x∗τ)

]

=
V i(τ,x∗τ)

n
∑
j=1

V j(τ,x∗τ)
W (τ,x∗τ), (51)

for i ∈ N, x∗τ ∈ X∗τ and τ ∈ [t0,T ].

One can easily verify that the imputation scheme in Condition 1 satisfies individ-
ual rationality and group rationality.

7.3 Financial Constraint in Cooperative Pollution Management

Substituting ξi(τ,x∗τ) = V i(τ,x∗τ)
n
∑

j=1
V j(τ,x∗τ)

W (τ,x∗τ) into (35) the deficit/surplus condition

at time τ ∈ [t0,T ] can be expressed as:

ξ
i(t0,x0−ξ

i(τ,x∗τ)− [V i(t0,x0−V i(τ, x̂τ)], (52)

for i ∈ N and τ ∈ [t0,T ].
Invoking Propositions 4.1 and 4.2, (52) can be written as:

[Ai(t0)x0 +Ci(t0)]
n
∑
j=1

[A j(t0)x+C jt0)]
[A∗(t0)x0 +C∗(t0)]

−e−r(τ−t0) [Aiτ)x∗τ +Ciτ)]
n
∑
j=1

[A jτ)x∗τ +C jτ)]
[A∗(τ)x∗τ +C∗(τ)]

+e−r(τ−t0)[Ai(τ)x̂τ +Ci(τ)] − [Ai(t0)x0 +Ci(t0)]≥ 0, i ∈ N. (53)

Note that A∗(τ), C∗(τ), x∗(τ), A j(τ), C j(τ) and x̂(τ) for j ∈ N and τ ∈ [t0,T ]
are obtained in explicitly computable form. Using (53) one can readily check the
deficit/surplus of players along the cooperative trajectory {x∗(τ)}T

τ=t0 .
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8 Conclusions for Part-2
Cooperation in environmental control is urgently needed for the current damaging
climate change scenario. Under dynamic cooperation, it has been shown that
given subgame-consistent imputations satisfying group optimality and individual
rationality throughout the cooperative trajectory, no rational players will deviate
from the cooperative path.

However, in reality low income nations may have financial constraint. In par-
ticular initial investment in pollution abatement and technology transfer under the
new cooperation scheme may bring GDP down to a level below subsistence. In-
ability to borrow funds in the initial stage may force these nations to back off from
cooperation. Refusal of participation by low income nations presents a stumbling
block to successful cooperation in pollution management.

This part has examined conditions leading to the need for borrowing in in-
tertemporal cooperative pollution management games. The issue is expounded in
both the continuous-time and discrete-time frameworks.

Part III

An operational dynamic game
framework
9 Issues in a game theoretic approach to IEAs

9.1 Choice of a proper game structure
The rapid overview4 of the different game formulations used to model IEAs shows
different important issues that we summarize below.

Cost-benefit vs. cost-effectiveness. In general the game theoretic approaches to
model IEAs use a cost-benefit framework where the economic cost of emis-
sions abatement is balanced with the benefits obtained from a reduction of
the economic loss due to climate change. In practice it is much easier to
assess the abatement cost than the damage cost due to climate change5.

4This part has been contributed by Alain Haurie, Laurent Drouet, Marc Vielle and Jean-
Philippe Vial from ORDECSYS and EPFL and Valentina Bosetti from FEEM.

5It is particularly true when one considers that the major impact of climate change will be on
eco-systems; the economic value of maintaining the current biodiversity is not assessed currently.
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Prisoner’s dilemma as a status quo. Normally, in a cost-benefit approach the
modelers take a noncooperative Nash equilibrium solution as the status quo
situation, and in general, the outcome is very bad in terms of global welfare.
This disastrous situation when there is no agreement means that the equi-
librium status quo can be taken as a credible threat to support an efficient
IEA. This is the argument in the model of Dutta & Radner Dutta and Radner
(2004). In Figs. 2 and 3 below we reproduce some outputs obtained from
WITCH, a multi-region economic growth model designed for international
climate policy assessment and which will be used in TOCSIN. One may ob-
serve that the non-cooperative solution with climate feedback is almost the
same, in terms of global emissions, as the one without climate feedback,
which is indeed an extreme case of prisoner’s dilemma. The cooperative
solution with climate feedback generates a much lower emission path.

Figure 2: Non-coop. vs. cooperation in WITCH.

IETS. An important dimension of IEAs is the possibility to implement an interna-
tional emissions trading scheme (IETS) which will redistribute the benefits
of the common abatement policy. This is an important component of the
results obtained when applying the concept of normalized equilibrium in a
game with a coupled emission constraint (Haurie et al. (2006) or Drouet
et al. (2007)). The key strategic variable is then the choice of a cap for a
country. The actual emissions could then be at a level below or above the
cap, the difference being sold or bought on the ET market.

Leader-follower relationship. Some actors will have the role of leaders, an-
nouncing their actions first and leaving the other actors react. OPEC is the
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Figure 3: Effect of climate feedback.

archetypal leader in the World oil price game. As proposed in Kolstad and
Ulph (2008), the signatories of an IEA could also be a Stackelberg leader
in the emission game.

Uncertainty and timing. The climate sensitivity and hence the impact of anthro-
pogenic climate change is still largely unknown, the access to a “backstop
technology” permitting a carbon free economy at a low cost could occur
in a not so distant future. These uncertain elements should be taken into
account in an IEA. Stochastic or “robust” game models should therefore be
introduced.

Umpire. IEAs negotiations take place in the framework of international organiza-
tions. EU Commission or UNO are possible “umpires” which could guide
the equilibrium choice of competing countries in the reaching of a common
global environmental target.

9.2 Choice of assessment tools
In TOCSIN we use a combination of a bottom-up, technology rich model (TIAM),
a top-down macro-economic model (GEMINI-E3) and the WITCH aggregate
multi-region optimal economic growth model with endogenous technical progress
model.

Techno-economic model. TIAM is the last avatar in the MARKAL family of
models. It includes a description of the carbon cycle and of the forcing of
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GHG concentration, with a complete description of the energy systems of
different world regions in order to satisfy demands in energy services that
are elastic to the price of energy. The model will compute a partial economic
equilibrium, via an ad-hoc linear program.

General equilibrium model. GEMINI-E3 is a computable general equilibrium
model which represents also the economies in different world regions. A
static general economic equilibrium is obtained at each time period. The
links between periods is defined exogenously via the parameters determin-
ing savings and investments in the economies.

Optimal growth model. WITCH is a Regional Integrated Assessment Hard-Link
Hybrid Model. Its top-down component consists of an intertemporal opti-
mal growth model in which the energy input of the aggregate production
function has been expanded to give a bottom-up like description of the en-
ergy sector. World countries are grouped in twelve regions that strategi-
cally interact following a game theoretic structure. A climate module and
a damage function provide the feedback on the economy of carbon dioxide
emissions into the atmosphere. The model is structured so as to provide
normative information on the optimal responses of world economies to cli-
mate damages and to model the channels of transmission of climate policy
to the economic system.

9.3 Computation of equilibrium solutions
In this section one recalls the different methods available for the computation of
equilibrium solutions in different types of models.

Cobweb and relaxation Methods. It is the method used in WITCH to compute
a Nash equilibrium in IEAs involving groups of countries. Although the
method is not guaranteed to converge, it seems to work efficiently in WITCH
(Kempfert , 2005).

The game theoretic setup of the WITCH model makes it possible to cap-
ture the non-cooperative nature of international relationships. Free riding
behaviours and strategic inaction induced by the presence of a global ex-
ternality are explicitly accounted for in the model. Climate change is the
major global externality, as GHG emissions produced by each region indi-
rectly impact on all other regions through the effect on global concentra-
tions and thus global average temperature. The model features other eco-
nomic externalities that provide additional channels of interaction. Energy
prices depend on the extraction of fossil fuels, which in turn is affected by
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consumption patterns of all regions in the world. International knowledge
and experience spillovers are two additional sources of externalities. By in-
vesting in energy R&D, each region accumulates a stock of knowledge that
augments energy efficiency and reduces the cost of specific energy tech-
nologies. The effect of knowledge is not confined to the inventor region but
it can spread to other regions. Finally, the diffusion of knowledge embod-
ied in wind and solar experience is represented by learning curves linking
investment costs with world, and not regional, cumulative capacity. Increas-
ing capacity thus reduces investment costs for all regions. These external-
ities provide incentives to adopt strategic behaviours, both with respect to
the environment (e.g. GHG emissions) and with respect to investments in
knowledge and carbon free but costly technologies. In order to represent
strategic behaviours, the model is solved as a non-cooperative game. The
solution is found when all regions’ strategies are a best response to other
regions’ best responses. The solution is found using an iterative algorithm
that is solved recursively and yields an Open Loop Nash Equilibrium.

Using WITCH, we can evaluate the responsiveness of the economy to a
global cap on concentration/radiative forcing or temperature. The prob-
lem is solved in two steps. In the first step the global path of emissions
in line with the climate target has to be defined, by running the coopera-
tive version of the model with the imposed climate cap. Once the optimal
global path of emissions is defined, in the second step optimal emissions for
each period are shared across regions on the basis of an allocation scheme
(e.g. contraction and convergence, equal per capita, etc.). The model is
run again now assuming that countries cooperate on the climate externality
only (each country is constrained to the defined level of emissions in each
period) while they do not cooperate on all the other externalities (each of
the twelve region optimizes its own welfare given the constraint on emis-
sions). Each country can optimally choose its own level of emissions giving
the constraint by selling/buying emissions on a global carbon market. An
additional possibility is to allow for banking of emissions, this enables us
to model an optimal flexibility of emission reduction (borrowing being not
allowed given the restrictions envisaged in the Kyoto protocol).

When a cap on emission (CAP) is included and banking is active an ad-
ditional equation is allowed in the WITCH model, constraining emissions,
given the possibility to save, sell and buy permits:

C2(n, t) = CAP(n, t)+NIP(n, t)−SAV (n, t). (54)

Saved permits can be banked and used in later periods. In addition, carbon
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permits revenues/expenses enter the budget constraint:

C(n, t) = Y (n, t)− IC(n, t)− IR&D,EN−∑
j

IR&D, j(n, t)

−∑
j

I j(n, t)−∑
j

O&M j(n, t)− p(t)NIP(n, t). (55)

More can be found in Bosetti et al. (2008).

Linear Programming. MARKAL, TIMES and TIAM use linear programming
to solve partial equilibrium problems. When different countries are repre-
sented within a linear programming framework, the Nash equilibrium so-
lutions are easily obtained through reduced size linear programs. This is
demonstrated in Labriet and Loulou (2007) where the damage functions
for each country (group of countries) is approximated by a linear function
of the cumulative global emissions. The Nash equilibrium in a CB frame-
work is again an extreme example of prisoner’s dilemma. When one uses
a cost-effectiveness approach and one computes a normalized equilibrium,
the equilibrium solution will coincide with a Pareto optimal solution. This
is shown below for a game with m players (I = 1, . . . ,m):

Nash equilibrium in CB Let c jx j and A jx j = b j be the payoff and the local
constraints of country j = 1, . . . ,m. Let ∑

m
i=1 D j

i xi be the damage cost
function for country j (in Labriet and Loulou (2007) this damage
cost is proportional to the cumulative GHG emissions). In a Nash
equilibrium solution, each player j solves an LP defined as

max
x j:A jx j=b j

c jx j−
m

∑
i=1

D j
i xi (56)

But, because of the decomposable structure of a linear cost function,
this is equivalent to

max
x j:A jx j=b j

c jx j−D j
jxi (57)

and the part of the damage cost due to the other emitters is a fixed
cost that does not enter into the decision making. This explains the
extreme “Prisoner’s dilemma” behavior of Nash equilibrium in linear
energy-environment models like MARKAL or TIAM.

Normalized Nash equilibrium in CE Let c jx j and A jx j = b j be the pay-
off and the local constraints of country j = 1, . . . ,m. Let

m

∑
j=1

B jx j = e
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be the coupled constraints. The optimality conditions for a normalized
equilibrium, with weighting r = (ri : i ∈ I), are equivalent to solving
the following problems

max
xi:Aixi=bi

cixi +
1
ri

λ
T
0 (

m

∑
j=1

B jx j− e), i ∈ I (58)

0 = λ
T
0 (

m

∑
j=1

B jx j− e). (59)

Because of the linearity of the coupled constraint the maximization in
(58) can be replaced by maxxi:Aix j=bi cixi + 1

ri
λT

0 Bixi and the optimality
conditions are equivalent to

max
xi:Aix j=bi

ri cixi +λ
T
0 Bixi, i ∈ I (60)

0 = λ
T
0 (

m

∑
j=1

B jx j− e). (61)

But this is exactly the optimality conditions for a Pareto optimal solu-
tion obtained with the weighting ri > 0 i ∈ I. Therefore, the normal-
ized equilibrium solution has the property of being efficient when the
game is formulated in a linear programming framework.

The LP framework pushed to the extreme the difference between Nash equi-
librium in a CB context and normalized equilibrium in a CE context. The
first one is very inefficient and the second one is Pareto optimal.

Nonlinear Complementarity Method. The optimizer PATH solves nonlinear com-
plementarity problems. It is used in GEMINI-E3 to compute a general eco-
nomic equilibrium.

PATH can be used also to compute normalized equilibrium solutions in
games with coupled constraints. Indeed the equilibrium for the auxiliary
game defined in Eqs. (12) –(13) is characterized by the following non linear
complementarity problem

0 = ē j(t,ω))T ∂

∂ē j(t,ω)

[
J j(ē)+ ∑

ω∈Ω

1
r j

λ
o(ω)(Ē(ω)−∑

i∈M

1

∑
t=0

ē j(t,ω))

]
,

i ∈M, ω ∈Ω (62)

and

0 =
1
r j

λ
o(ω)(Ē(ω)− ∑

j∈M

1

∑
t=0

ē j(t,ω)), ω ∈Ω. (63)
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with

0≥ Ē(ω)− ∑
j∈M

1

∑
t=0

ē j(t,ω), ω ∈Ω. (64)

This is a problem that PATH solves routinely.

Oracle method for VIs. In Drouet et al. (2007) a set of normalized equilibria
has been computed for the problem described by Eqs. (4)–(13) when the
payoff to each country is obtained from simulations of general economic
equilibrium performed with GEMINI-E3. Notice that in this game formu-
lation the players payoffs are nonlinear functions of the strategic cap deci-
sions. Due to trade effects and in particular due to the IET implementation
there are also cross effects and a normalized equilibrium will differ from a
Pareto solution, but not very much.

An oracle based optimization (OBO) is used in Drouet et al. (2007) to solve
the variational inequality which characterizes the normalized equilibrium
associated with a given weighting of the players. This approach permits
an extension of the method to a class of problems where the payoffs are
computed via large-scale simulations obtained from bottom-up or top-down
models.

In the last chapter of this report we present the implementation of the ho-
mogenous version of the oracle based method. This is a an improvement
over the method that was originally used in Drouet et al. (2007). This ho-
mogenous version has better convergence properties and will provide an ef-
fective tool to solve non-cooperative games where the payoffs are obtained
from simulations of TIMES and GEMINI-E3.

9.4 An interpretation in terms of distribution of a global al-
lowance

Consider an m-player concave game à la Rosen with payoff functions

ψ j(x1,x2, . . . ,xm), x j ∈ X j j = 1, . . . ,m, (65)

and a coupled constraint. When the coupled constraint is separable among players,
i.e. when it takes the form

m

∑
j=1

ϕ j(x j) = e, (66)

the coupled equilibrium can be interpreted in an interesting way.
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Case1: e is scalar Consider e as being a global allowance and call ϖ j ≥ 0 the
fraction of this allowance given to player j, with ∑ϖ j = 1. Then define the game
with payoffs and decoupled constraints

ψ j(x1,x2, . . . ,xm), x j ∈ X j ϕ j(x j)≤ ϖ je j = 1, . . . ,m. (67)

A Nash equilibrium for this game is characterized, under the usual regularity con-
ditions, by the following conditions

max j ψ j(x1, . . . ,x j, . . . ,xm)−λ jϕ j(x j) (68)
λ j ≥ 0 (69)
0 = λ j(ϕ j(x j)−ϖ je). (70)

Now assume that at the equilibrium solution all the constraints are active and
hence all the λ j are > 0. Since the multipliers are scalars they can be written in
the form

λ j =
λ0

r j
, (71)

by taking

λ0 =
m

∑
j=1

λ j (72)

and defining

r j =
λ0

λ j
, j = 1, . . . ,m. (73)

The assumption of active constraints at equilibrium leads to

λ0 > 0 and
m

∑
j=1

ϕ j(x j)− e = 0. (74)

Therefore the conditions for a normalized coupled equilibrium are met.

Case 2: e is a vector When the constraint is non scalar we cannot check for a
normalized equilibrium but we can show that the conditions for a coupled equi-
librium still hold. Indeed, assume that (x∗1,x

∗
2, . . . ,x

∗
m) is an equilibrium for the

decentralized game associated with the repartition ϖ, and assume that this strat-
egy vector is not an equilibrium for the game with coupled constraint. This means
that, for at least one player j there exists a strategy x j ∈ X j such that

ϕ j(x∗j)+
m

∑
i 6= j

ϕi(x∗i )≤ e (75)
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and for which

ψ j(x∗1, . . . ,x j, . . . ,x∗m) > ψ j(x∗1, . . . ,x
∗
j , . . . ,x

∗
m). (76)

However, since all the constraints are active in the decentralized equilibrium, the
condition (75) becomes

ϕ j(x∗j)≤ ϖ je.

Therefore one has now a contradiction with the decentralized equilibrium condi-
tion.

Part IV

Experiments with a budget sharing
game
We implement a budget sharing game where a set of GEMINI-E3 simulations
determine welfare gains for the regions that play the game. One uses the sharing
of the total allowance or quotas as a way to introduce a coupled constraint in the
game.

The regions are:

Regions Countries

IC1 USA, Canada, Australia & New-Zealand
IC2 European Union, Switzerland and Japan
NIC Russia, Rest of Europe, China, Brazil, Mexico

Venezelua, Turkey, Middle-East
DCS Africa, India, Latin America, Asia, South America

We assume that the international negociations decide a radiative forcing con-
straint in 2100 of a level of 3.5W/m2. This constraint corresponds to about a 2.5
degrees Celsius temperature change from the preindustrial era. We computed the
corresponding greenhouse gases cumulative emissions with the help of climate
module of the TIAM model. We then computed the total emission budget over the
period 2005–2050 which is around 519 GtC-eq. This total budget will be allocated
to the 4 groups of nations, according to some equity rule.

Each region should decide how much quotas that it should have in each period
while respecting a global limit on its cumulated emissions over the period 2005–
2050 corresponding to its allocation of the global emission budget. As seen in
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Table 3: Quotas Allocations per regions (GtC-eq)

Allocation rule IC1 IC2 DCS NIC Total

Emission 129 95 133 162 519
Contract & Convergence in 2050 88 78 151 202 519
50%Pop + 50%Emi 79 72 200 168 519
Contract & Convergence in 2100 67 62 202 188 519
50%Pop + 25% Emi + 25%GDP 57 46 212 204 519

Table 3, we have defined several possible allocations following different rules,
such as grandfathering, ability to pay, equity. . .

Figure 4 shows the global emissions when the regions are playing the game. A
first interesting result is that the abatement dynamics do not depend on the initial
allocations; we observe a similar curve for each allocation rule. CO2 prices are
not very high and are similar along the path as shown in Figure 5.

Figure 4: Emissions

We computed an indicator to highlight the temporal allocation of the different
regions. If the indicator αt

i is positive in period t, the region would like to allocate
more in this period and conversely if negative.

α
t
i =

qt
i

∑ j qt
j
−1,∀i ∈ {IC1, IC2,NIC,DCS}
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Figure 5: CO2 prices in USD2001

where qt
i is the quotas of the region i at period t. Figure 6 shows this indicator

for the chosen allocation rules. We can see that IC1 and IC2 want to allocate
during the first period while the NIC and DCS regions prefer to allocate in the last
period.

Figure 7 shows the total surplus of the regions. IC1 and C2 surpluses have
a reduced variation domain between -0.5% and 0.5%. On the contrary NIC and
DCS have very changing allocations. NIC have always a negative surplus which
comes due the fact that Middle-East and Russia belong to this region and lose
revenues anyway thanks to the diminishing overall energy demand.

We try to find an allocation that minimizes the losses of surplus for each region
(called “min surplus”). We then obtain a new allocation. The resulting surpluses
show a loss of less than 3% of total final consumption for all the regions, which
seems acceptable for all.

The following table shows the “minmax loss-surplus” allocation. We can com-
pare this allocation to the ones we have tested: the closest is “contract and conver-
gence 2050”. The main difference is that we give more weight to the NIC region,
and we then compensate the revenue losses from the energy exporters.

10 Conclusion
In this project we have identified two classes of dynamic games that could be used
to assess the policies of R&D cooperation between EU and China or India in the
context of the post 2012 climate negotiations:
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Figure 6: Allocation indicator

Figure 7: Surplus over consumption (%)
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Table 4: New quotas allocations per regions (GtC-eq)

Allocation rule IC1 IC2 DCS NIC Total

Loss surplus 86 49 155 229 519
Contract & Convergence in 2050 88 78 151 202 519

(i) A dynamic cooperative game with side payments permitting the establishment
of a subgame consistent agreement that should not be rejected by the parties;

(ii) A two stage game where, in a first phase a global emissions budget is defined
for the period 2005-2050 and this budget is split among different groups
of countries sharing a common economic interest, while in a second phase,
each group of countries decides in a non-cooperative manner, the timing of
the use of these quotas on an international emissions trading scheme.

The first model could be implemented, using the cost-benefit version of TIAM.
However for the purpose of TOCSIN we have implemented a Rosen normalized
equilibrium solutions in a game where the payoffs are obtained from a large scale
macro-economic simulation model.

The first simulations that we have realized show that the world GHG abate-
ment schedule is independent of the quotas allocation, and thus we can have a
multistage negotiation. The obtained welfare gains are very sensitive for newly
industrialized countries (NIC) and developing countries (DCS) due to the loss of
the terms of trade for energy exporting countries. Finally, with all these tested
alloctions, we are able to find a solution which minimizes the maximum loss of
surplus for all regions, thus creating a potentially attractive starting point for a
stable post-Kyoto deal.
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