
How Live Can a Transactional Memory Be?∗

Rachid Guerraoui Michał Kapałka

February 18, 2009

Abstract

This paper asks how much liveness a transactional mem-
ory (TM) implementation can guarantee. We first devise
a formal framework for reasoning about liveness prop-
erties of TMs. Then, we prove that the strongest liveness
property that a TM can ensure in an asynchronous system
with transaction crashes is a property that we call global
progress. This property is analogous to lock-freedom for
shared-memory objects and is indeed guaranteed by cer-
tain TM implementations, e.g., OSTM [7]. We also prove
that the presence of zombie transactions, which perform
infinitely many operations but never attempt to commit,
does not impact our result. In fact, we show that zombie
transactions are, in a precise sense, equivalent to crashed
transactions.

1 Introduction

Transactional memory (TM) [14, 20] is a promising
paradigm that aims at bringing efficient concurrent pro-
gramming to non-expert programmers. Basically, a TM
allows processes (threads) of an application to commu-
nicate by executing lightweight, in-memory transactions.
Each transaction accesses shared data and then either
commits or aborts. When it commits, the transaction
appears to the application as if all its operations were
executed atomically, at some single and unique point in
time. When it aborts, however, all the changes done
to the shared state by the transaction are rolled back
and are never visible to other transactions. The TM
paradigm is considered as easy to use as coarse-grained
locking, and has some potential for exploiting the un-
derlying multi-core architectures as efficiently as hand-
crafted, fine-grained locking that is often an engineer-
ing challenge. It is thus not very surprising to see a
large body of work dedicated to implementing the TM
paradigm and reducing its overheads.

Some recent work has also been devoted to formally
defining the semantics of TM and determining the in-
herent limitations of the paradigm. For example, a cor-
rectness condition for TMs has been proposed in [9],
and the programming language level semantics of spe-
cific classes of TM implementations has been given, e.g.,
in [22, 15, 1, 18, 17]. Also, the progress semantics of
∗EPFL Technical Report LPD-REPORT-2009-001. Submitted for pub-

lication.

two classes of TM implementations, obstruction-free and
lock-based TMs, has been formalized in [8, 10]. All those
papers, however, focus on safety.1

In this paper, we ask the question of how much live-
ness a TM implementation can guarantee, and make a
first step towards answering that question. We consider
here two kinds of transaction failures: crashed and zombie
transactions. Ensuring liveness despite crashes models
the requirement that a long delay of a transaction, due
to preemption, page faults, or I/O, should not hamper
the progress of other, concurrent transactions. Zombie
transactions, which keep executing operations but never
attempt to commit, can result from bugs in the user appli-
cation (e.g., infinite loops) or even malicious behavior of
some processes. Ensuring liveness despite their existence
seems also very desirable.

At first sight, the question of how live a TM can
be might seem trivial when there are no zombie
transactions—one could think of treating an entire trans-
action as a single operation on some shared object and
then apply the classical formalism of the wait-free hi-
erarchy of objects [12]. Then, for example, implement-
ing even the very strong liveness property such as wait-
freedom [12] would be possible in a system that provides
shared objects with sufficient power, e.g., the now ubiq-
uitous compare-and-swap. This is, however, a wrong ab-
straction: transactions are not black-box operations on
some shared object, because the result of every operation
a transaction executes is visible to the user application.
Indeed, we show that some liveness properties (such as
wait-freedom) cannot be ensured by any TM in an asyn-
chronous system, regardless of the objects used by the
TM implementation.

We first focus on asynchronous systems in which all
transaction failures are due to crashes, and we prove
that, roughly speaking, the strongest liveness property
that can be ensured by a TM in such a system is
global progress—a property analogous to lock-freedom for
shared-memory objects. There indeed exist nonblock-
ing TM implementations that ensure global progress, e.g.,
OSTM [7], which thus can be thought of as optimal with
respect to liveness.

To prove the result, we first identify a property (of a
TM liveness property) that we call (n − 1)-prioritization
(where n is the number of processes of an application,

1The progress properties defined in [8, 10] are, in fact, also safety (not
liveness) properties.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147948622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i.e., the maximum number of transactions that can be
concurrent at any time), and show that every TM live-
ness property that is not (n− 1)-prioritizing is weaker than
global progress, which, as we show, can be ensured in an
asynchronous system with transaction crashes. We also
prove that every TM liveness property that is nonblock-
ing and (n − 1)-prioritizing is impossible to implement
in such a system. (Intuitively, a TM liveness property is
nonblocking if it ensures progress of any transaction that
runs alone, i.e., without any concurrent non-faulty trans-
actions.) The (n− 1)-prioritization property is thus a nec-
essary and, within the class of nonblocking TM liveness
properties, sufficient condition for a TM liveness prop-
erty to be impossible to implement in an asynchronous
system with transaction crashes—a result interesting in
its own right.

Intuitively, a TM liveness property is (n − 1)-
prioritizing if it specifies, for some execution involving
infinitely many transactions, a set of n − 1 transactions
that have high priority. The property then requires that
in this specific execution at least one of the high-priority
transactions must commit. The reason why every non-
blocking, (n− 1)-prioritizing TM liveness property is im-
possible to implement is intuitively the following. Any
process that executes infinitely many transactions can
prevent all the other n − 1 processes from committing
any transaction. For example, if n concurrent transac-
tions first read a value v from a shared variable x and
then they all write to x a value different than v, then
only one of those transactions can commit—otherwise,
the safety property of the TM (opacity [9] or even serializ-
ability [19, 4]) would be violated. Hence, if at most n− 1
transactions have high priority, they can all be prevented
from committing.

We then ask whether the presence of zombie transac-
tions change, in terms of computability, the ability of a
TM to guarantee a given liveness property. Maybe sur-
prisingly, the answer is “no”. First, we prove that global
progress can still be ensured even if transactions can be
zombies. (In fact, OSTM already tolerates zombie trans-
actions, although this has not been formally shown.) Sec-
ond, we show that every TM implementation M that
ensures some well-formed liveness property L and toler-
ates zombie transactions, but does not tolerate transac-
tion crashes, can be transformed into a TM implemen-
tation M′ that ensures L while tolerating both zombie
and crashed transactions. (Roughly speaking, a live-
ness property is well-formed if it does not guarantee
more when there is more concurrency between transac-
tions. Every liveness property ensured by existing TMs
is, in fact, well-formed.) Intuitively, the transformation
from M to M′ basically “changes” crashed transactions
into zombies by inserting periodically into every pend-
ing transaction some operations that cannot be observed
by the user application. Those transactions are then ex-
ecuted by M. The major technical difficulty here has to
do with the fact that there is no way to force a crashed
transaction to keep executing those inserted operations.

We circumvent the problem by replicating M onto each
process, and make this process execute transactions of all
the processes of the application on its local replica of M.2

Then, even if some process (and its transaction) crashes,
the other processes can still make the crashed transac-
tion execute operations. (Of course, the replicas at non-
crashed processes have to be kept in sync.)

To prove these results, we needed first to devise a the-
oretical framework for reasoning about the liveness of a
TM implementation. In particular, we defined what a TM
liveness property is precisely, in a way that (1) abstracts
only the key aspects of the liveness semantics of a TM,
thus simplifying the formal reasoning about TM liveness
properties, and (2) allows describing the liveness guaran-
tees of existing TMs. We believe the framework to be an
important contribution in its own right.

To summarize, this paper addresses the question of
how much liveness a TM implementation can ensure in
an asynchronous system. We define precisely the notion
of a TM liveness property, prove that the strongest (non-
blocking) TM liveness property that can be ensured in an
asynchronous system with transaction crashes is global
progress (a property of some existing TMs), and show
that considering zombie transactions does not change in
a fundamental way the implementability of TM liveness
properties.

Roadmap. The rest of the paper is organized as follows.
Section 2 defines our TM system model. Section 3 defines
the notion of a TM liveness property and gives several
examples of TM liveness properties ensured by existing
TM implementations. Section 4 determines the strongest
(nonblocking) TM liveness property that can be ensured
in an asynchronous system with transaction crashes. Sec-
tion 5 discusses zombie transactions. Finally, Section 6
discusses our results and provides a number of open
questions.

2 Model

Processes and transactions. We assume an asyn-
chronous, shared memory system of n processes p1, . . . , pn
that communicate by executing transactions. Each trans-
action has a unique transaction identifier from infinite set
T = {T1, T2, . . .}. We say that a transaction Ti (i.e., a
transaction with identifier Ti) performs an action, mean-
ing that some process pk performs this action within the
transactional context of Ti.

Each transaction Ti may perform any number of opera-
tions on transactional objects (or t-objects, for short). Trans-
action Ti may also issue special operations: tryC(Ti) and
tryA(Ti). Operation tryC(Ti) is a request to commit Ti.
When tryC returns value Ci, this means that Ti is commit-
ted. Once a transaction is committed, it can no longer per-
form any action. Operation tryC(Ti) can also return value

2The idea here is similar to that behind the universal construc-
tion [12].

2

Ai, which means that Ti has been aborted. An aborted
transaction continues its execution (after a roll-back) and
may eventually commit. Operation tryA(Ti), which al-
ways returns value Ai, is a request to abort transaction
Ti. In fact, we assume that every operation of a transac-
tion Ti can return the special value Ai. If Ti is aborted, Ti
is restarted by the TM.3

An event is any invocation or response of an operation
issued by any transaction (i.e., by the process executing
this transaction). A response event that returns value Ck
or Ak (for any k) is called, respectively, a commit event and
abort event.

A TM implementation is any algorithm that implements
the operations issued by transactions, using a number of
base objects (e.g., provided in hardware). This algorithm is
executed by the same processes that execute transactions.
We call the operations executed by processes on base ob-
jects steps.

Histories. Let M be any TM implementation. A history
(of M) is a sequence of all (1) events that were issued on,
or received from, M by all transactions, and (2) steps of
M executed by transactions (processes), in a given run (of
an application/system). We assume here that every event
or step e can be assigned a point in time when e was exe-
cuted, and that all events and steps (in a given run) can be
totally ordered according to their execution time. (If sev-
eral events or steps are executed at the same time, e.g., on
multi-processor systems, they can be ordered arbitrarily.)

Let H be any history. We denote by H|pi and H|Tk the
longest subsequence of H that contains only events and
steps of, respectively, process pi and transaction Tk. We
say that a transaction Tk is in H, and write Tk ∈ H, if
H|Tk is a non-empty sequence. We say that a transaction
Tk ∈ H is committed (in H), if H|Tk contains operation
tryC(Tk) returning value Ck. We say that a transaction
Tk ∈ H is pending (in H), if Tk is not committed in H.

Let Ti and Tk be any two transactions in H. We say that
Ti precedes Tk (in H), if Ti is committed and the last event
of Ti precedes the first event of Tk. If neither Ti precedes
Tk, nor Tk precedes Ti, then we say that Ti and Tk are con-
current (in H). If Q is a subset of the set of transactions in
H, then we denote by CommittedH(Q) the subset of those
transactions in Q that are committed in H.

We assume that every history H is well-formed: (1) ev-
ery transaction Tk ∈ H is executed only by a single pro-
cess (i.e., (H|pi)|Tk is non-empty only for one process pi),
(2) no two transactions executed in H by the same process
are concurrent, and (3) if a transaction Tk ∈ H is commit-
ted, then no event follows operation tryC(Tk) returning
Ck in H|Tk.

We denote by p(Tk) the process that executes Tk in H,
i.e., a process pi such that (H|pi)|Tk = H|Tk.

Let Ti be any transaction in H and t be any time. We
say that Ti has started by t (in H) if the first event of Ti in

3In our model, to avoid the restart of an aborted transaction Ti , the
application may simply invoke tryC(Ti) immediately after Ti aborts, i.e.,
commit an empty transaction Ti that modifies no t-objects.

H is executed before time t. We say that Ti is pending at
t if (1) Ti is started by t, and (2) Ti either is pending in H
or the response event of operation tryC(Ti) that returns
value Ci is executed after t.

Sub-transactions. Let H be any history of a TM imple-
mentation M and Tk be any transaction in H. We divide
Tk into one or more sub-transactions,4 denoted by T1

k , . . . ,
Tm

k , such that every sub-history H|T1
k , . . . , H|Tm−1

k ends
with a response event of an operation that returns value
Ak. That is, every sub-transaction of Tk, except possi-
bly Tm

k , is itself an aborted transaction. Basically, sub-
transactions of Tk represent the subsequent retries of the
computation of Tk after aborts of Tk. Note, however, that
each sub-transaction of Tk may perform different opera-
tions on different t-objects.

Correctness condition. We assume that every TM imple-
mentation M ensures opacity [9]. Intuitively, this means
that in every history H of M, every sub-transaction (of
any transaction) appears as if it was executed at some
single, unique point in time between its first and its last
event. In particular, this means that every sub-transaction
in H (even an aborted one) observes a consistent state of
the system and does not observe any changes done by
any aborted sub-transaction.

Crashes and zombie transactions. A system is crash-
prone if any process in this system can, at any time, fail
by crashing. Once a process pi crashes, pi does not per-
form any further actions. A system in which no process
ever crashes is called crash-free.

We assume that a process pi that does not crash keeps
executing steps forever (those can be, e.g., no-ops when
pi does not execute any transaction). Hence, if H is any
infinite history, then H|pi is infinite for every process that
does not crash—we say then that pi is correct in H.

For every infinite history H (of any TM implementa-
tion) we specify a set Z(H) of zombie transactions. If
a transaction Ti ∈ H is a zombie transaction, and Ti is
not blocked inside any operation infinitely long, then Ti
executes infinitely many operations in H but never in-
vokes operation tryC(Ti). Hence, a zombie transaction
can never be committed in any history. We assume that
the number of operations a single sub-transaction can ex-
ecute is not bounded. That is, a transaction can be de-
tected as a zombie only when it executes infinitely many
operations.

Let H be any infinite history. We say that a transaction
Tk ∈ H is correct in H if either (1) Tk is committed, or
(2) sub-history H|Tk is infinite (i.e., process p(Tk) is cor-
rect in H) and Tk is not a zombie. A transaction that is not
correct is called faulty. We assume that a correct trans-
action Tk can invoke operation tryA(Tk) infinitely many
times only if Tk is returned Ak from infinitely many oper-
ations different than tryA(Tk).

Let Q be any subset of the set of transactions in history

4Sub-transactions are not nested transactions. For simplicity, we do
not consider nesting of transactions within our model.

3

H. We denote by CorrectH(Q) the subset of those transac-
tions in Q that are correct in H.

3 TM Liveness

Intuitively, a TM liveness property describes which of the
transactions in a history H have to (eventually) commit.
A base of our formal definition of a TM liveness property
are the following intuitive requirements, which should be
satisfied by every TM liveness property L: First, L should
be indeed a liveness property: L can be violated only in
infinite histories, and only by transactions that are pend-
ing in those histories. In particular, any history in which
all transactions are committed must ensure L. Hence, we
require that (roughly speaking) if a history H ensures L,
then every suffix of H also ensures L. Second, L can only
restrict correct transactions: a faulty transaction Ti may
perform too few steps to reach its commit phase, or cease
to invoke operation tryC(Ti) (in which case the TM im-
plementation cannot commit Ti). Third, L should not
depend on the exact interleaving of steps of concurrent
transactions: indeed, L should not depend on something
that an application that uses a TM (or even the TM im-
plementation itself) has little influence on. We also fo-
cus in this paper on properties that are not functions of
the sets of t-objects accessed by transactions and, in par-
ticular, of the conflicts between transactions. That is, we
want to provide certain liveness guarantees regardless of
what computations are performed by transactions. This
is important because conflicts are virtually unavoidable,
especially false conflicts, which are caused by the inter-
nal mechanisms of a TM and thus are not directly visible
outside of a TM implementation.

In this section, we give a definition of the notion of a
TM liveness property and illustrate it with a series of ex-
amples.

3.1 Definition of TM Liveness

Let H be any history and t be any time. Let t′ be the near-
est time after t (if any) at which no transaction is pend-
ing. (Time t′ can be thought of as the next quiescence
time after t.) Consider the set Q of transactions in H that
are pending at some time between t′ and t. Observe first
that all transactions in Q are directly or indirectly con-
current (we formalize this notion in the next paragraphs).
Roughly speaking, a TM liveness property L specifies, for
every such set Q of concurrent transactions, possible sub-
sets of the correct transactions from set Q that have to be
committed in history H. If those transactions (and pos-
sibly other ones) are indeed committed in H, then H en-
sures L. More formally:

Definition 1 A TM liveness property L is any function L :
2T 7→ 22T such that S ⊆ C for every set S ∈ L(C).

Let H be any history and t be any point in time. We de-
note by ConcurrH(t) the (minimal) set C of transactions

defined recursively in the following way: (1) if a trans-
action Ti ∈ H is pending at t, then Ti ∈ ConcurrH(t),
and (2) if a transaction Tk ∈ H is pending after t and
is concurrent to some transaction in ConcurrH(t), then
Tk ∈ ConcurrH(t).

Definition 2 A history H ensures a TM liveness property L
if, for every time t, if Q = ConcurrH(t) and C = CorrectH(Q)
then CommittedH(C) ⊇ S for some set S ∈ L(C).

Definition 3 A TM implementation M ensures a TM live-
ness property L, if every history H of M ensures L.

Definition 4 Let L and L′ be any two TM liveness properties.
We say that L is weaker than L′ if every history that ensures
L′ also ensures L.

3.2 Examples of TM Liveness Properties

We give here examples of common TM liveness proper-
ties.

Total progress. Intuitively, a TM implementation M en-
sures total progress (analogous to wait-freedom for shared-
memory objects, when considered in a crash-prone sys-
tem), if in every infinite history of M every correct trans-
action eventually commits. More formally, total progress
is the function L♦p(C) = {C}. It is worth noting that ev-
ery TM liveness property is weaker than L♦p.

Implementing a TM that guarantees total progress in a
crash-prone system is, in general, impossible (we prove
it in Section 4). However, if crashes of transactions can
be (eventually) detected, one can ensure total progress
(with no zombie transactions) by, e.g., combining an
obstruction-free TM implementation (e.g., DSTM [13])
with a wait-free contention manager [11].

Ensuring total progress in a crash-free system without
zombie transactions is possible (e.g., a simple TM that
synchronizes all transactions using a single global lock
and thus never aborts a transaction). However, none
of the major existing TM implementations ensures total
progress.

Theorem 5 An infinite history H ensures L♦p if, and only if,
every correct transaction in H is committed in H.

Proof. (⇒) Let H be any history that ensures L♦p and Tk
be any correct transaction in H. Let t be any time at which
Tk is pending in H, and C = CorrectH(ConcurrH(t)).
Clearly, Tk must be in set C. Because L♦p(C) = {C},
CommittedH(C) must be the entire set C, and so Tk ∈ C
must be committed in H.

(⇐) Let H be any history in which every correct
transaction is committed. Let t be any time and C =
CorrectH(ConcurrH(t)). Because every transaction in C is
committed, CommittedH(C) = C ∈ L♦p(C). �

Global progress. Intuitively, a TM implementation M en-
sures global progress (analogous to lock-freedom for shared-
memory objects, when considered in a crash-prone sys-
tem), if in every infinite history of M, in which there is

4

a pending correct transaction, there are infinitely many
committed transactions. More formally, global progress
is the function L♦g(C) =

{{
Ti1
}

,
{

Ti2
}

, . . .
}

, where Ti1 ,
Ti2 , . . . are all elements of set C.

In a crash-prone system, global progress is ensured by
so-called lock-free TM implementations such as OSTM [7].
We give a simple TM implementation that guarantees
global progress in Appendix A. In a crash-free system,
global-progress could be ensured by a lock-based TM im-
plementation; however, we do not know of any such TM
(implementations such as TL2 [5], TinySTM [6], or Swis-
sTM [2] allow livelock situations—scenarios in which
two concurrent correct transactions are pending forever).

Theorem 6 An infinite history H ensures L♦g if, and only
if, whenever there is a pending correct transaction in H, then
infinitely many transactions are committed in H.

Proof. (⇒) Let H be any infinite history that ensures
L♦g. Assume that there is a pending correct transac-
tion Tk in H. By contradiction, assume that after some
time t no transaction commits. Because Tk is pending,
set Q = CorrectH(ConcurrH(t′)), where t′ > t, contains
at least transaction Tk. Hence, by L♦g, some transaction
from Q must be committed in H—a contradiction.

(⇐) Let H be any infinite history. If H has no pend-
ing correct transaction, then H trivially ensures L♦g. As-
sume then that H contains a pending correct transac-
tion Tk and there are infinitely many committed trans-
actions in H. But then, for every time t, set Q =
CorrectH(ConcurrH(t)) contains either (1) only commit-
ted transactions, or (2) some pending transactions and
infinitely many committed transactions. In both cases
property L♦g is ensured. �

Solo progress. Intuitively, a TM implementation M en-
sures solo progress (analogous to obstruction-freedom for
shared-memory objects, when considered in a crash-
prone system), if in every infinite history H of M ev-
ery correct transaction that eventually runs alone for suf-
ficiently long time commits. The classical meaning of
the term “alone” (as used by obstruction-freedom [3])
is “with no other transaction taking steps concurrently”.
Zombie transactions, however, have never been consid-
ered before in this context. In the following definition,
we assume that a transaction Ti is alone if Ti is concur-
rent only to incorrect (crashed or zombie) transactions. In
a system without zombie transactions, this is equivalent
to saying “with no transaction other than Ti taking steps
concurrently” (as we prove below). More formally, solo
progress is the following function:

L♦s(C) =

{
{C} if |C| = 1
{∅} otherwise

In a crash-prone system without zombie transactions,
solo progress is ensured by TM implementations such as
DSTM [13], RSTM [16] (with its nonblocking backend),
or NZTM [21]. In a crash-free system, solo progress is

ensured by most (if not all) lock-based TM implemen-
tations, e.g., TL2 [5], TinySTM [6], or SwissTM [2]. (In
fact, the progress semantics of those TMs, as formalized
in [10], is stronger than solo progress in a crash-free sys-
tem.) However, only lazy-acquire TMs, such as TL2, en-
sure solo progress with zombie transactions.

Theorem 7 An infinite history H without zombie transac-
tions ensures property L♦s if, and only if, every correct trans-
action in H that from some point in time runs alone, i.e., with-
out other transactions concurrently executing steps, eventually
commits.

Proof. (⇒) Let H be any infinite history without zombie
transactions that ensures property L♦s. By contradiction,
assume that there is a correct transaction Tk ∈ H, such
that Tk executes steps alone from some time t but Tk is
pending. That is, no transaction other than Tk executes
any step after t. But then, no transaction that is con-
current to Tk is correct, and so CorrectH(ConcurrH(t)) =
{Tk}. Hence, because L♦s({Tk}) = {{Tk}}, Tk must be
committed in H—a contradiction.

(⇐) Let H be any infinite history without zombie trans-
actions. If every correct transaction is committed in H,
then H trivially ensures L♦s. Assume then that there is
a pending correct transaction Tk in H and that, for ev-
ery time t, some transaction other than Tk takes a step
after t. But then, for every time t at which Tk is pend-
ing, set CorrectH(ConcurrH(t)) contains some transaction
other than Tk, and so L♦s is ensured. �

3.3 Classes of TM Liveness Properties

Intuitively, we say that a TM liveness property L is non-
blocking if L ensures progress for every transaction that
runs alone, i.e., with no concurrent correct transactions.
More formally, we say that a TM liveness property L is
nonblocking if, for every transaction Ti ∈ T , L({Ti}) =
{{Ti}}.

Intuitively, we say that a TM liveness property L is well-
formed if L does not guarantee more when the number of
concurrent transactions increases. More precisely, we say
that L is well-formed if, for every finite set Q ⊂ T , every
subset Q′ of Q, and every element S in L(Q), set S ∩Q′ is
a subset of some element in L(Q′).

Local progress, global progress, and solo progress are
all nonblocking and well-formed TM liveness properties.

4 Ensuring TM Liveness with
Crashes

In this section, we prove that the strongest nonblock-
ing property that can be ensured in a crash-prone sys-
tem is global progress. We first identify a class of TM
liveness properties that we call (n− 1)-prioritizing. Intu-
itively, every (n− 1)-prioritizing TM liveness property L
is characterized by an infinite set C ⊆ T and a subset

5

P ⊂ C of size n− 1. Then, if transactions in set C are cor-
rect and (indirectly) concurrent in some history H (i.e.,
CorrectH(ConcurrH(t)) = C at some time t), then for his-
tory H to ensure L at least one of the transactions in set P
must be committed in H. In a sense, P is a set of transac-
tions with higher priority, and one of those transactions
has to commit in the (single) scenario described by set C.

We then prove that (1) every TM liveness property that
is not (n− 1)-prioritizing is weaker than global progress,
and (2) a nonblocking TM liveness property L can be en-
sured in a crash-prone system if, and only if, L is not
(n− 1)-prioritizing.

More formally, let L be any TM liveness property. We
say that L is (n− 1)-prioritizing, if there exists an infinite
subset C of set T and a subset P of C of size n− 1, such
that, for every non-empty set S in L(C), P ∩ S 6= ∅.

Theorem 8 Every TM liveness property that is not (n− 1)-
prioritizing is weaker than L♦g.

Proof. Let L be any nonblocking TM liveness property.
By contradiction, assume that L is not (n− 1)-prioritizing
and L is not weaker than L♦g.

Because L is not weaker than L♦g, there exists a history
H such that H ensures L♦g and H does not ensure L. Be-
cause H does not ensure L, there is a time t such that, if
C = CorrectH(ConcurrH(t)), then CommittedH(C) 6⊇ S for
every S ∈ L(C). Note first that if C is a finite set, then
L♦g requires that all transactions in C are committed, i.e.,
that CommittedH(C) = C. That is, if C is a finite set, then
L cannot be violated in H at time t. Hence, C is an infinite
set. Denote by P the set of transactions in C that are pend-
ing in H. Because H ensures L♦g and because at most n
transactions can be concurrent, the size of set P is at most
n− 1. Clearly, all transactions in set C− P are committed
in H.

Let P′ be any set such that P ⊆ P′ ⊆ C and the size of P′

is n− 1. Because L is not (n− 1)-prioritizing, there exists
an element S ∈ L(C) such that P′ ∩ S = ∅. But then,
because S ⊆ C, set CommittedH(C) = C− P ⊇ C− P′ is a
superset of S—a contradiction. �

Before we prove the other key theorem of this section,
we prove the following two auxiliary lemmas (each, in
fact, interesting in its own right).

Lemma 9 For every TM implementation M that ensures any
nonblocking TM liveness property, and for every pair of sets
P and C, where P ⊂ C ⊆ T , |C| = ∞, and |P| = n − 1,
there exists an infinite history H of M and a time t such that
CorrectH(ConcurrH(t)) = C and all transactions from set P
are correct and pending in H.

Proof. Let M be any TM implementation that ensures
some nonblocking TM liveness property L. Recall that n,
the number of processes, is also the maximum number of
transactions that can be concurrent at any time. Consider
a history H of M generated in the following execution
(initially, k = 0; x is some t-object initialized to 0):

1. Transactions T1, . . ., Tn−1 read x.

2. Transaction Tn+k reads some value v from t-object x
and writes value 1− v to x. Then, Tn+k attempts to
commit. If Tn+k aborts, Tn+k is restarted and exe-
cuted until it commits. No transaction executes steps
concurrently to Tn+k.

3. Transactions T1, . . ., Tn−1 write value 1− v to x and
attempt to commit. If all of them abort, go to step 1
with k← k + 1.

Assume first, by contradiction, that, for some k, trans-
action Tn+k is pending in H. But then, transactions T1,
. . ., Tn−1 are faulty in H, and so CorrectH(ConcurrH(t)) =
{Tn+k} for some time t. Hence, as M ensures L that is
nonblocking, Tn+k must be committed in H—a contradic-
tion.

Assume then, by contradiction, that some transaction
Tm, 1 ≤ m ≤ n − 1, commits. Let Tn+w be the latest
transaction Tn+k that precedes Tm, and vw be the value
written to t-object x by Tn+w. Until Tm reads x, there is
no concurrent transaction that writes to x. Hence, be-
cause M ensures opacity and because the future opera-
tions of transactions are not known in advance to the TM,
Tm must read vw from x. Then, Tm writes value 1− vw to
x and commits. But transaction Tn+w+1 also reads value
vw from x and writes 1− vw to x, and no transaction con-
current to Tm or Tn+w+1 writes back value vw to x. Hence,
there is no way to order transactions Tm and Tn+w+1, and
so opacity is violated—a contradiction.

Therefore, history H of M is infinite, and H contains
n− 1 correct and pending transactions T1, . . ., Tn−1. �

Lemma 10 There exists a TM implementation that ensures
global progress in a crash-prone system with zombie transac-
tions.

OSTM [7] is a TM implementation that ensures global
progress in a crash-prone system, even with zombie
transactions. However, we do not know whether this
has been formally proved. Therefore, for completeness,
we present in Appendix A a simple TM implementation,
and we prove that this TM ensures opacity and global
progress in a crash-prone system with zombie transac-
tions. (It is worth noting that proving this is a technical
challenge even for such a simple algorithm.)

Theorem 11 A nonblocking TM liveness property L can be
ensured by a TM implementation in a crash-prone system if,
and only if, L is not (n− 1)-prioritizing.

Proof. (⇒) Let L be any nonblocking, (n− 1)-prioritizing
TM liveness property. Hence, there exists an infinite set
C ⊆ T and a set P ⊂ C of size n− 1 such that P ∩ S 6= ∅
for every S ∈ L(C). By contradiction, assume that there
is a TM implementation M that ensures L in a crash-
prone system. By Lemma 9, and because L is nonblock-
ing, there exists a history H of M and a time t such that
CorrectH(ConcurrH(t)) = C and all transactions from set
P are correct and pending in H. But then, for every

6

S ∈ L(C), P ∩ S 6= ∅ and so CommittedH(C) 6⊇ S. Hence,
H violates L—a contradiction.

(⇐) Let L be any nonblocking TM liveness property
that is not (n− 1)-prioritizing. By Theorem 8, L is weaker
than L♦g. But, by Lemma 10, L♦g can be implemented in
a crash-prone system. Hence, L can also be ensured in a
crash-prone system. �

Corollary 12 Global progress is the strongest nonblocking
TM liveness property that can be ensured by any TM in a
crash-prone system.

5 Zombie Transactions

In this section, we prove that, in the computability sense,
zombie transactions are neither easier nor more difficult
to deal with than crashed transactions. We first show
how to transform a TM implementation that works only
in a crash-free system but tolerates zombie transactions
into a one that works in a crash-prone system (and en-
sures the same TM liveness property). The transforma-
tion assumes well-formed TM liveness properties (we
discuss this assumption in Section 6). Given that, as we
showed in Section 4, global progress can be implemented
in a crash-prone system with zombie transactions, the
strongest well-formed, nonblocking TM liveness prop-
erty that can be ensured in a crash-prone system (with
or without zombie transactions) is also global progress.

Theorem 13 Given any TM implementation M that ensures
any well-formed TM liveness property L in a crash-free system
with zombie transactions, we can devise a TM implementation
M′ that ensures L in a crash-prone system (with zombie trans-
actions).

Proof. (sketch; a full proof is in Appendix B) Let L be any
TM liveness property and M be any TM implementation
that ensures L in a crash-free system with zombie trans-
actions. For simplicity, but without loss in generality, as-
sume that M is a deterministic algorithm. We build a TM
implementation M′ (Algorithms 1 and 2) that ensures L
in a crash-prone system (with zombie transactions).

The intuition behind implementation M′ is the follow-
ing. We replicate M into every process, i.e., we make each
process pi execute its local copy Mi of M. Within the in-
stance Mi, process pi simulates every process pm (corou-
tine simulate(m)) by executing steps of the simulated pro-
cesses in a round-robin, deterministic way (line 4). (For
simplicity, we assume within this proof that events are
also steps.)

The execution of M′ is divided into rounds. In each
round, processes simulate a single process pm (common
to all processes, because M′ is deterministic) executing
a single operation in an instance of TM implementation
M. The processes first agree (using consensus5 objects

5A consensus object implements an operation propose that takes a
proposed value as an input, and returns a decision value. It allows pro-
cesses to agree (decide) on a single value chosen from the values those
processes have proposed.

Algorithm 1: A transformation of a TM implementa-
tion M that tolerates zombie transactions into a TM
implementation M′ that tolerates crashed and zombie
transactions (code for process pi); continues in Algo-
rithm 2.

uses: C[1, . . . , n][1, . . .]—(infinite) array of consensus
objects, T[1, . . . , n]—array of registers,
Mi—instance of M local to pi (other variables
are also local to pi)

initially: T[1, . . . , n] = (⊥, 0), last-ts = 0, round = 1,
ts = 1

upon operation op by transaction Tk do1

T[i]← (op, ts); ts← ts + 1;2

retval← ⊥;3

while retval = ⊥ do for m← 1 to n do execute4

next step of coroutine simulate(m);
return retval;5

coroutine simulate(m)6

op← get-next-operation(m, false);7

s← simulate-operation(m, op);8

if s is a commit event then goto line 7;9

if s is an abort event then goto line 23;10

op← get-next-operation(m, true);11

s← simulate-operation(m, op);12

if s is a commit event then goto line 7;13

if s is an abort event then14

if op 6= ⊥ then goto line 11;15

while true do16

op← get-next-operation(m, true);17

if op 6= ⊥ then break;18

simulate-operation(m, op);19

if m = i then retval← Ak;20

goto line 23;21

goto line 11;22

op← get-next-operation(m, true);23

if op 6= ⊥ then24

simulate-operation(m, 〈tryA〉);25

goto line 12;26

s← simulate-operation(m,⊥);27

goto line 23;28

in array C) on the next operation to be executed by pm,
i.e., an operation of a transaction at pm (function get-next-
operation), and then they execute this operation (function
simulate-operation). The steps executed by a process pi in
a given round, on behalf of a simulated process pm, are
interleaved (in a deterministic way; see line 4) with the
steps executed by pi in other rounds on behalf of simu-
lated processes other than pm. Mi. Note also that dif-
ferent processes may be in different rounds at any given
time.

When any transaction Tk, executed by a process pi, in-
vokes an operation op on M′, process pi first announces

7

Algorithm 2: The second part of Algorithm 1

function get-next-operation(m, allow-dummy-op)1

repeat2

simulate one step of process pm in Mi;3

(op, ts)← T[m];4

if ts ≤ last-ts then (op, ts)← (⊥,⊥);5

(op, ts)← C[m, round].propose((op, ts));6

round← round + 1;
until allow-dummy-op or op 6= ⊥ ;7

if op 6= ⊥ then last-ts← ts;8

return op;9

function simulate-operation(m, op)10

if op 6= ⊥ then simulate invocation of op by11

process pm in Mi;
else simulate invocation of dummy operation12

〈read x〉 by process pm in Mi;
repeat13

simulate one step s of process pm in Mi;14

until s is a response event ;15

if m = i and op 6= ⊥ then16

retval← return value in s;17

return s;18

this operation (line 2). Then, pi continues (or starts) sim-
ulating all processes within its instance Mi of M (line 4).
Operation op is eventually decided in some round r by
consensus object C[r] (line 6), and executed within Mi.
Once op returns in Mi, the return value is stored in
variable retval and eventually returned to transaction Tk
(line 5).

Because TM implementation M does not tolerate
crashes, we need to ensure, at every correct process pi
that executes infinitely many steps of M, that (1) every
process simulated by pi in instance Mi executes infinitely
many steps, and (2) every transaction that is pending for-
ever, and that is not blocked by Mi inside an operation in-
finitely long, executes infinitely many operations. Prop-
erty (1) is satisfied because pi simulates steps of all pro-
cesses within Mi in a round-robin fashion (and because
pi is correct).

To ensure property (2), we make pi periodically insert
a dummy operation (read x, for some t-object x) into every
pending transaction that does not announce a new oper-
ation in array T (line 27). A dummy operation does not
change the state of any t-object. If a dummy operation
inserted into a transaction Tk returns an abort event, the
abort event is propagated to Tk as a response to the next
operation invoked by Tk (line 20).

There is one subtlety here. If a dummy operation is
inserted into a transaction Tk at the beginning of some
sub-transaction Tm

k of Tk, then a sub-transaction Tl
j that

precedes Tm
k in a history of M′ can become concurrent

to Tm
k in some instance of M. In this case, M′ could vi-

olate opacity. We prevent this problem in the following
way. If one or more dummy operations are executed by

Tk (in some instance Mi of M) just after an operation of Tk
that returns an abort event (i.e., at the beginning of a sub-
transaction of Tk), and Tk issues an operation op on M′, we
first make Tk execute (in Mi) operation tryA(Tk). Hence,
we create a separate sub-transaction of Tk, which we call
a dummy sub-transaction, that consists only of dummy op-
erations followed by operation tryA. Once a dummy sub-
transaction is aborted, operation op of Tk can be executed
in Mi, within a new sub-transaction. �

Corollary 14 The strongest nonblocking, well-formed TM
liveness property that can be ensured by any TM implemen-
tation in a system with zombie transactions is global progress.

6 Discussion

This paper addresses the question of how much liveness
a TM implementation can ensure. We define precisely the
notion of a TM liveness property, prove that the strongest
(nonblocking) TM liveness property that can be ensured
in an asynchronous system with transaction crashes is
global progress, and show that considering zombie trans-
actions does not change in a fundamental way the imple-
mentability of TM liveness properties. As we pointed out
in the introduction, these are preliminary steps towards
understanding TM liveness. In the following, we dis-
cuss the major assumptions underlying our results, and
present some open questions.

First, when proving that every TM liveness property
L that is (n − 1)-prioritizing is impossible to implement
in a crash-prone system, we assumed that L is nonblock-
ing. There are indeed TM liveness properties that are
(n − 1)-prioritizing, blocking, and impossible to imple-
ment with transaction crashes, e.g., a property L such
that: L(C) = {∅} if C contains a transaction T1 and
L(C) = {C} otherwise. However, there are also TM live-
ness properties that are (n − 1)-prioritizing (and block-
ing) and that can be implemented in a crash-prone sys-
tem, e.g., L(C) = {C} if C = Q and L(C) = {∅} other-
wise, where Q is some predefined infinite set of transac-
tions: all transactions in Q have high-priority—they must
all be committed in the execution defined by set Q, but a
TM implementation may simply prevent such an execu-
tion by blocking or aborting some transactions forever. In
particular, a TM that blocks every transaction infinitely
long ensures L, yet it can trivially be implemented in a
crash-prone system.

Second, the transformation from a TM implementation
M that ensures some property L in a crash-free system
with zombie transactions to a TM implementation M′

that ensures L in a crash-prone system assumed that L
is well-formed. The transformation does not work for in-
stance if L ensures progress for a transaction Tk only if Tk
is concurrent to some other transaction, and not when Tk
runs alone. This is because the transactions that are con-
current in the transformed implementation M′ might be
executed sequentially by the base implementation M. On

8

the one hand, it is difficult to see any useful TM liveness
property that would not be well-formed and nonblock-
ing. Indeed, the TM liveness properties that we present
in this paper, and which are ensured by most TM imple-
mentations to date, are all well-formed and nonblocking.
On the other hand, it is intriguing to determine the pre-
cise impact of those assumptions on the results presented
in this paper.

Another interesting direction is related to complexity.
Indeed, we proved the equivalence of crashed and zom-
bie transactions. However, the inherent cost, in terms of
time and space complexity, of ensuring a given TM live-
ness property might be different for systems with crashed
and zombie transactions. Whether it is indeed the case is
an open question.

References

[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Seman-
tics of transactional memory and automatic mutual
exclusion. In POPL, 2008.

[2] A. D. Rachid Guerraoui and M. Kapałka. Stretching
transactional memory. In PLDI, 2009.

[3] H. Attiya, R. Guerraoui, and P. Kouznetsov. Com-
puting with reads and writes in the absence of step
contention. In DISC, 2005.

[4] P. A. Bernstein and N. Goodman. Multiversion
concurrency control—theory and algorithms. ACM
Transactions on Database Systems, 8(4):465–483, 1983.

[5] D. Dice, O. Shalev, and N. Shavit. Transactional lock-
ing II. In DISC, 2006.

[6] P. Felber, T. Riegel, and C. Fetzer. Dynamic perfor-
mance tuning of word-based software transactional
memory. In PPoPP, 2008.

[7] K. Fraser. Practical Lock-Freedom. PhD thesis, Univer-
sity of Cambridge, 2003.

[8] R. Guerraoui and M. Kapałka. On obstruction-free
transactions. In SPAA, 2008.

[9] R. Guerraoui and M. Kapałka. On the correctness of
transactional memory. In PPoPP, 2008.

[10] R. Guerraoui and M. Kapałka. The semantics of
progress in lock-based transactional memory. In
POPL, 2009.

[11] R. Guerraoui, M. Kapałka, and P. Kouznetsov.
The weakest failure detectors to boost obstruction-
freedom. Distributed Computing, 20(6):415–433, 2008.

[12] M. Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and Systems,
13(1):124–149, Jan. 1991.

[13] M. Herlihy, V. Luchangco, M. Moir, and W. N.
Scherer III. Software transactional memory for
dynamic-sized data structures. In PODC, 2003.

[14] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures.
In ISCA, 1993.

[15] S. Jagannathan, J. Vitek, A. Welc, and A. Hosking.
A transactional object calculus. Science of Computer
Programming, 57(2):164–186, 2005.

[16] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya,
D. Eisenstat, W. N. Scherer III, and M. L. Scott. Low-
ering the overhead of software transactional mem-
ory. In TRANSACT, 2006.

[17] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-
Tabatabai, R. L. Hudson, B. Saha, and A. Welc.
Practical weak-atomicity semantics for java stm. In
SPAA, 2008.

[18] K. F. Moore and D. Grossman. High-level small-step
operational semantics for transactions. In POPL,
2008.

[19] C. H. Papadimitriou. The serializability of concur-
rent database updates. Journal of the ACM, 26(4):631–
653, 1979.

[20] N. Shavit and D. Touitou. Software transactional
memory. In PODC, 1995.

[21] F. Tabba, C. Wang, J. R. Goodman, and M. Moir.
NZTM: nonblocking zero-indirection transactional
memory. In TRANSACT, 2007.

[22] J. Vitek, S. Jagannathan, A. Welc, and A. Hosking.
A semantic framework for designer transactions. In
ESOP, 2004.

9

Appendix

A A TM Implementation that
Ensures Global Progress in a
Crash-Prone System with Zombie
Transactions

An example TM implementation that ensures global
progress in a crash-prone system (with zombie transac-
tions) is shown in Algorithm 3. (Note that the algorithm
is not meant to be practical—it is presented here for the
sole purpose of proving Lemma 10.) The intuition behind
the algorithm is the following (a proof of correctness fol-
lows). When a sub-transaction Tl

k executed by a process
pi invokes its first operation, pi takes a snapshot of all cur-
rent states of t-objects and stores those states in the next
available slot of array S (lines 7–8). Process pi searches
for an available slot s by scanning array A of test-and-set
objects6 (lines 4–6). If A[s] = 1, then slot s is being used
by some process, and exclusive to this process; otherwise
it is available. Once pi verifies that the snapshot is consis-
tent (line 9), pi can execute all subsequent operations of
Tl

k on the snapshot.
If Tl

k invokes operation tryC(Tk), then pi tries to atom-
ically change the current snapshot by updating the value
(state) of compare-and-swap object7 C to point to the slot
of pi in array S (line 14). The update will be successful
only if no other process committed a transaction concur-
rently to Tl

k. If pi succeeds in updating C, pi releases the
slot of S that contains the old snapshot of t-object states
(the one pi read at the beginning of sub-transaction Tl

k).
Otherwise, pi releases its own slot.

Denote Algorithm 3 by M. We prove that M ensures
opacity and global progress in a crash-prone system with
zombie transactions.
Opacity. Let H be any history of M. Observe first
that each object A[s] acts as a lock for the registers
S[s][1, . . . , K]. That is, if a sub-transaction Tl

k is returned
1 from operation test-and-set invoked in line 4 on object
A[s], then no other sub-transaction can modify any reg-
ister S[s][1, . . . , K] until Tl

k executes line 16 or line 20.
Hence, registers S[s][1, . . . , K] can be thought of as local
to Tl

k during all operations of Tl
k that return values differ-

ent than Ak and Ck.
Therefore, we can view any sub-transaction Tl

k (exe-
cuted by a process pi) in H as a sequence of read oper-
ations on all t-objects (reading S[cl

k][1, . . . , K] in line 8),
6A test-and-set object implements operations: (1) test-and-set that

atomically reads the state of the object, changes the state to value 1,
and returns the state read, and (2) reset that sets the state of the object to
0.

7A compare-and-swap object implements an operation
compare-and-swap(v, v′) that atomically changes the state of the ob-
ject from value v to v′; the operation returns true if the change was
successful, and false otherwise. It is also possible to read the state of a
compare-and-swap object.

Algorithm 3: A TM implementation that ensures L♦g
(code for each process pi; x1, . . . , xK are t-objects im-
plemented by the algorithm)

uses: A[1, . . . , n + 1]—array of test-and-set objects,
S[1, . . . , n + 1][1, . . . , K]—array of registers,
C—unbounded compare-and-swap object
(other variables are local to process pi)

initially: A[1] = 1, A[2, . . . , n + 1] = 0, S[1][m] = the
initial state of t-object xm (for m = 1, . . . , K),
C = (1, 1), sloti = ⊥ (at every process pi)

upon operation op on t-object xm by transaction Tk do1

if sloti = ⊥ then2

sloti = 1;3

while A[sloti].test-and-set = 1 do4

sloti ← sloti + 1;5

if sloti > n + 1 then return abort(Tk);6

(curri, veri)← C.read();7

for r = 1 to K do S[sloti][r]← S[curri][r];8

if C.read() 6= (curri, veri) then return9

abort(Tk);
return S[sloti][m].op;10

upon tryA do11

return abort(Tk);12

upon tryC do13

s← C.compare-and-swap((curri, veri),14

(sloti, veri + 1));
if not s then return abort(Tk);15

A[curri].reset();16

sloti ← ⊥;17

return Ck;18

function abort(Tk)19

if sloti 6= ⊥ and sloti ≤ n + 1 then A[sloti].reset();20

sloti ← ⊥;21

return Ak;22

and a sequence of one or more write operations on ev-
ery t-object xm (writing S[sloti][m] in line 8 and line 10).
Hence, Tk

l first reads from every t-object xm, then writes
to every t-object xm, and then writes to some t-objects.
Without loss in generality, we can assume that each value
written to a t-object is unique, i.e., that we can identify
the writer transaction of every value read by a transac-
tion. We prove that H ensures opacity by using the graph
characterization of opacity introduced in [9].

Let Q denote the set of sub-transactions in H that re-
ceived value true from the compare-and-swap operation ex-
ecuted in line 14. (Clearly, every sub-transaction that is
committed in H is in Q.) Let Q′ denote the set of non-
committed sub-transactions in Q.

Let Tl
k be any sub-transaction executed by any pro-

cess pi. Denote by cl
k and vl

k the values of variables
curri and veri read by pi in line 7 within the first opera-
tion of Tl

k (assume vl
k = ∞ if Tl

k has not executed line 7

10

within its first operation in H). Let� be any total order
on sub-transactions in H such that, for every two sub-
transactions Tm

k and Tl
j in H, if (1) Tm

k ∈ Q and vm
k < vl

j,

(2) Tl
j ∈ Q and vm

k ≤ vl
j, or (3) Tm

k precedes Tl
j in H, then

Tm
k � Tl

j . It is straightforward to see that such a total or-

der exists. Indeed, (1) if Tm
k precedes Tl

j in H then vm
k ≤ vl

j,

if Tm
k /∈ Q, or vm

k < vl
j if Tm

k ∈ Q, and (2) if vm
k = vl

j, then

Tm
k and Tl

j cannot be both in Q (i.e., they cannot be both
returned true in line 14).

Let G be the opacity graph OPG(H,�, Q′). History
H ensures opacity if, and only if, G is well-formed and
acyclic. (For the definitions of the terms we use here, refer
to [9].)

Claim 15 If the state of object C is (c, v) 6= (1, 1) at some time
t, then every value in S[c][1, . . . , K] at time t has been written
by a sub-transaction that was returned value true in line 14
before t.

Proof. The claim trivially holds while C = (1, 1), i.e., C
is in its initial state. Assume that the state of C at some
time t is (c, v), and that every value in S[c][1, . . . , K] at
time t is indeed a value written by some sub-transaction
Tl

k that was returned value true in line 14 before t. Let
t′ be at time at which the state of C is changed by some
sub-transaction Tu

w from (c, v) to (c′, v′). Because regis-
ters S[c′][1, . . . , K] are all written to by Tu

w and cannot be
changed by any other sub-transaction until time t′, and
because Tu

w must be returned value true in line 14 before
t′, the claim also holds at t′.

Let then t′′ be any time between t and t′. Sub-
transaction Tl

k must have set the state of A[c] to 1, and Tl
k

could not change A[c] thereafter. The state of A[c] can be
changed only by a sub-transaction that changes the state
of C. Hence, A[c] = 1 at t′′. But then no sub-transaction
can have its slot variable equal to c at t′′, and so no sub-
transaction can change any value in S[c][1, . . . , K] at time
t′′. Hence, the claim holds also at t′′ and, by extension, at
any time. �

By contradiction, assume that G is not well-formed.
That is, there is a sub-transaction Tl

k that reads some value
q from some register S[cl

k][m], and q is written to S[cl
k][m]

by some sub-transaction Tu
w that is not in set Q. But then,

because Tl
k reads cl

k in line 7, and by Claim 15, Tu
w must be

in set Q—a contradiction.
By contradiction, assume that there is a cycle L in G.

Hence, there are some two sub-transactions Tl
k and Tu

w
such that Tl

k � Tu
w and there is an edge from Tu

w to Tl
k.

Clearly, the edge cannot be labelled Lrt because if Tu
w pre-

cedes Tl
k in H, then Tu

w � Tl
k.

Assume that Tl
k reads from some register S[cl

k][m] value
q that is written by Tu

w. Hence, Tu
w must be in set Q.

Clearly, it is impossible that Tl
k precedes Tu

w, as then
Tl

k would read q before Tu
w event starts. But then, by

Claim 15 and because Tu
w increases the version number

field of C when Tu
w executes line 14, vu

w < vl
k—a contra-

diction with the assumption that Tl
k � Tu

w.

Assume then that there is an edge labelled Lww from
Tu

w to Tl
k. That is, Tu

w is in set Q, and there is a sub-
transaction Tx

z in H such that Tu
w � Tx

z , and Tx
z reads from

some register S[cx
z][m] a value q that is written to S[cx

z][m]
by Tl

k. Observe first that if vx
z = vu

w, then Tx
z cannot be

in set Q. Hence, because Tu
w � Tx

z , vu
w < vx

z . Because
Tx

z reads value q that is written by Tl
k, sub-transaction Tl

k
must be in set Q and Tl

k must execute line 14 after Tu
w ex-

ecutes line 14. But then, vl
k must be larger than vu

w—a
contradiction with the assumption that Tl

k � Tu
w.

Global progress. By contradiction, assume that there is
a history H of M that violates global progress. That is,
there is a time t, such that every transaction from set
C = CorrectH(ConcurrH(t)) is pending in H (and C 6= ∅).
Hence, no transaction commits after t.

Let Tk be any transaction in C, executed by some pro-
cess pi, and Tm

k be any sub-transaction of Tk that invokes
its first operation after t. Observe first that Tm

k cannot be
blocked by M inside any operation infinitely long. Hence,
because Tk is a correct transaction, Tm

k must be aborted.
Let cm

k be the value read by pi executing Tm
k from object

C in line 7. Because no transaction commits after time t,
no process changes the state of object C after t. Hence,
when Tm

k reaches line 14, C still contains value cm
k . There-

fore, Tm
k cannot abort in line 6 and Tm

k must be returned
true from operation compare-and-swap in line 14, and so
Tm

k cannot abort—a contradiction.

B Proof of Correctness of the
Transformation Shown in
Algorithms 1 and 2

We prove here the correctness of the TM implementation
M′ shown in Algorithms 1 and 2, which transforms a TM
implementation M that ensures a well-formed TM live-
ness property L in a crash-free system with zombie trans-
action into a TM implementation M′ that ensures L in a
crash-prone system.

Opacity. Let H be any history of TM implementation M′,
and Tk be any transaction in H executed by some pro-
cess pi. Observe first that if Tk invokes an operation op
and is returned a value v which is different than Ak (an
abort event of Tk), then Tk also invokes op in instance Mi
and is returned v from Mi. Moreover, if Tk invokes an
operation op′ after executing op, and op′ returns a non-
Ak value, then also in instance Mi transaction Tk executes
first op, and then op′. It is possible that in Mi transaction
Tk executes some dummy operations between op and op′;
however, none of those dummy operations returns Ak—
otherwise, op′ would also be returned Ak.

Therefore, for every sub-transaction Tm
k of Tk there is a

corresponding sub-transaction Tc
k in history Hi of instance

Mi, i.e., a sub-transaction Tc
k such that Tc

k invokes its first
operation after Tm

k invokes its first operation, Tc
k returns

from its last operation before Tm
k returns from its last op-

11

eration, and Tc
k executes all the operations of Tm

k (in the
same relative order and returning the same values) that
did not return value Ak. Moreover, Tc

k is aborted if, and
only if, Tm

k is aborted or pending (if Tc
k is returned Ak

from a dummy operation, then Tm
k is returned Ak from

its next operation).

Let op and op′ be any two executions of some opera-
tions (possibly by different transactions) in history H. As-
sume that op′ is invoked after op returns, and that both op
and op′ return events assigned to variable retval in line 17.
Hence, both op and op′ have to be decided by some con-
sensus objects C[r] and C[r′], respectively. But because
processes traverse array C always towards larger round
numbers, and because every consensus object can decide
only one operation, r must be lower than r′. Therefore,
the order of those operations in H that do not return an
abort event assigned in line 20 is preserved in the history
of every instance Mi, i = 1, . . . , n.

The algorithm of M′ is deterministic, each instance Mi,
i = 1, . . . , n, is deterministic, and processes agree on the
order of invocation events through the consensus array
C. Therefore, for any two instances Mi and Mj, i, j =
1, . . . , n, either the history of Mi is a prefix of the history
of Mj or vice versa. Let then Ms be an instance which
history Hs has the maximum length. Because Ms ensures
opacity, Hs also ensures opacity.

Let Tl
j and Tm

k be any sub-transactions in H such that Tl
j

precedes Tm
k . Let Tu

j and Tw
k be the sub-transactions in Hs

corresponding to, respectively, Tl
j and Tm

k . If Tl
j is com-

mitted or Tl
j is returned an abort event assigned to vari-

able retval in line 17, then it is easy to see that Tu
j must

precede Tw
k in Hs. Indeed, the last operation of Tm

k and
the first operation of Tl

j must return an event returned by
Ms (and assigned to retval in line 17), and so the order
of those operations must be the same in Hs as in H. As-
sume then that Tl

j is returned an abort event assigned to

retval in line 20. (Note that Tl
j cannot be pending in H, as

then Tl
j could not precede Tm

k .) Hence, the last operation
of sub-transaction Tu

j is a dummy operation that returns
an abort event. This dummy operation must be decided
by some consensus object C[r], and must be executed by
process p(Tl

j) before an abort event is returned to Tl
j . Be-

cause the first operation op of Tm
k is invoked after the last

event of Tl
j , and because op cannot return an abort event

assigned to retval in line 20, operation op has to be decided
by some consensus object C[r′] such that r′ > r. Hence,
sub-transaction Tu

j must precede Tw
k in Hs.

Let H′ be a history obtained from H by replacing ev-
ery invocation event of an operation that returns an abort
event assigned to variable retval in line 20 with an in-
vocation event of a dummy operation. Clearly, H en-
sures opacity if, and only if, H′ ensures opacity. In-
deed, if an operation returns an abort event, its seman-
tics is the same regardless of the operation. Let H′s be a
history obtained from Hs by removing events of (1) all

dummy operations that do not return an abort event and
(2) all dummy transactions. A dummy operation cannot
be the first operation of a non-dummy sub-transaction
in Hs, and a dummy operation that does not return an
abort event cannot be the last operation of any commit-
ted or aborted sub-transaction in Hs. Hence, the prece-
dence relation among non-dummy transactions in Hs is
the same in H′s. Therefore, because dummy operations
and dummy transaction do not change the state of any
t-object, and because history Hs ensures opacity, H′s must
also ensure opacity. But then, history H must ensure
opacity, because H′|pi = H′s|pi for every process pi (i.e.,
histories H′ and H′s are equivalent), and the precedence
relation between transactions in H′ is preserved in H′s.

TM liveness. By contradiction, assume that M′ does
not ensure TM liveness property L. That is, there is
a history H of M′ and a time t, such that, if Q =
CorrectH(ConcurrH(t)) and C = CommittedH(Q), then C
is not a superset of any element of L(Q). Let P be the
set of pending transactions in Q. Clearly, P contains at
least one transaction; otherwise, L could not have been
violated in H.

Consider any transaction Tk ∈ Q executed by some
process pi. When Tk invokes an operation op, operation
op is announced in register T[i] with some timestamp ts
(larger than the timestamp of a previously announced op-
eration at pi, if any) at some time t. Hence, every process
pm that invokes function get-next-operation within corou-
tine simulate(i) after time t will read in line 4 value (op, ts)
and will not reject the value in line 5. Therefore, eventu-
ally value (op, ts) must be decided by some consensus ob-
ject C[r] (by the properties of consensus), and so process
pi eventually executes op on behalf of Tk in instance Mi.

Consider any process pm that executes any of the trans-
actions in set P. Clearly, pm goes through infinitely many
rounds, and eventually is returned in line 6 value (op, ts)
from consensus object C[r]. Hence, pm eventually invokes
operation op on behalf of transaction Tk in instance Mm.
That is, every transaction in Q is executed in instance Mm
at every process pm that executes a transaction from set
P.

Let pm be any process that executes any transaction Tk
in set P. Let Hm denote the history of instance Mm at pm.
Note first that Hm|ps is infinite for every simulated pro-
cess ps and that every transaction that is pending in Hm
either performs infinitely many operations or executes
infinitely many steps within some operation that never
returns. This is because process pm is correct, and pm
executes steps on behalf of every (simulated) process in
instance Mm. Moreover, if a transaction Tl does not an-
nounce any operation in array T after some time, then
pm assumes the dummy operation read x to be executed
periodically by Tl . Hence, every transaction that crashes
becomes a zombie in history Hm.

Because Mm eventually executes all transactions from
set Q, and Mm eventually does not execute any transac-
tions that are not from set Q, there exists a time tm, such

12

that set Qm = CorrectHm(ConcurrHm(tm)) is a subset of Q.
Clearly, P is a subset of Qm. Hence, because L is a well-
formed TM liveness property, CommittedHm(Qm) (which
does not contain any transaction from P) cannot be a su-
perset of any element of L(Qm). Therefore, Mm violates
L—a contradiction.

13

