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Abstract—Gossip algorithms have recently received significant
attention, mainly because they constitute simple and robust
algorithms for distributed information processing over networks.
However for many topologies that are realistic for wireless ad-hoc
and sensor networks (like grids and random geometric graphs),
the standard nearest-neighbor gossip converges very slowly.
A recently proposed algorithm called geographic gossip im-

proves gossip efficiency by a
p

n/ log n factor for random
geometric graphs, by exploiting geographic information of node
locations. In this paper we prove that a variation of geographic
gossip that averages along routed paths, improves efficiency by
an additional

p

n/ log n factor and is order optimal for grids and
random geometric graphs. Our analysis provides some general
techniques and can be used to provide bounds on the performance
of randomized message passing algorithms operating over various
graph topologies.

I. INTRODUCTION

Recently there has been significant interest in designing
completely distributed algorithms for disseminating and pro-
cessing information over graphs that model wireless sensor
and ad-hoc networks. In particular, the problem of computing a
global function of data that is distributed over a network, using
only localized message-passing, is fundamental for numerous
applications.
These problems and their connections to mixing rates of

Markov chains have been extensively studied starting with
the pioneering work of Tsitsiklis [18]. Earlier work studied
mostly deterministic protocols, known as average consensus
algorithms, in which each node communicates with each of
its neighbors in every round. More recent work (e.g. [9], [2],
[10]) has focused on so-called gossip algorithms, a class of
randomized algorithms that solve the averaging problem by
computing a sequence of randomly selected pairwise averages.
Gossip and consensus algorithms have been the focus of
renewed interest over the past several years [9], [3], [11],
[12], [1], [6], motivated by applications in sensor networks
and distributed control systems.
The simplest setup is the following: n nodes are placed on

a graph where edges correspond to reliable communication

Work performed in part while A.G. Dimakis was visiting EPFL.

links. Each node is initially given a scalar (which could
correspond to some sensor measurement like temperature) and
we are interested in solving the distributed averaging problem:
namely, to find a distributed message-passing algorithm by
which all nodes can compute the average of all n scalars. A
scheme that computes the average can easily be modified to
compute any linear function (projection) of the measurements
as well as more general functions. Further, the scalars can be
replaced with vectors and generalized to address problems like
distributed filtering and optimization as well as distributed de-
tection in sensor networks [17], [19], [15]. Random projections
computed via gossip, can be used for compressive sensing of
sensor measurements and field estimation as proposed in [14].
Gossip algorithms [9], [3] solve the averaging problem by

first having each node randomly pick one of their one-hop
neighbors and iteratively compute pairwise averages: Initially
all the nodes start with an estimate of the average being their
own measurement and update this estimate with a pairwise
average of current estimates with a randomly selected neigh-
bor, at each gossip round. An attractive property of gossip is
that no coordination is required for the gossip algorithm to
converge to the global average when the graph is connected
– nodes can just randomly wake up, select one of their one-
hop neighbors randomly, exchange estimates and update their
estimate with the average. We will refer to this algorithm as
standard or nearest-neighbor gossip.
A fundamental issue is the analysis of the performance

of such algorithms, namely the communication (number of
messages passed between one-hop neighboring nodes) re-
quired before a gossip algorithm converges to a sufficiently
accurate estimate. For energy-constrained sensor network ap-
plications, communication corresponds to energy consumption
and therefore should be minimal. Clearly the convergence
time will depend on the graph connectivity, and we expect
well-connected graphs to spread information faster and hence
require fewer messages to converge.
This question was first analyzed for the complete graph [9],

where it was shown that Θ(n log ε−1) gossip messages need
to be exchanged to converge to the global average within
ε accuracy. Boyd et al. [3] analyzed the convergence time



of standard gossip for any graph and showed that is closely
linked to the mixing time of a Markov chain defined on the
communication graph and further addressed the problem of
optimizing the neighbor selection probabilities to accelerate
convergence.
For certain types of well connected graphs (including

complete graphs, expander graphs and small world graphs),
standard gossip converges very quickly requiring the same
number of messages (Θ(n log ε−1)) as the fully connected
graph. Note that any algorithm that averages n numbers will
require Ω(n) messages.
Unfortunately, for random geometric graphs and grids,

which are the relevant topologies for large wireless ad-hoc
and sensor networks, standard gossip is extremely wasteful
in terms of communication requirements. For instance, even
optimized standard gossip algorithms on grids converge very
slowly, requiring Θ(n2 log ε−1) messages [3], [6]. Observe
that this is of the same order as the energy required for every
node to flood its estimate to all other nodes. On the contrary,
the obvious algorithm of averaging numbers on a spanning
tree and flooding back the average to all the nodes requires
only O(n) messages. Clearly, constructing and maintaining
a spanning tree in dynamic and ad-hoc networks introduces
significant overhead and complexity, but a quadratic number
of messages is a high price to pay for fault tolerance.
Recently Dimakis et al [6] proposed geographic gossip,

an alternative gossip scheme that reduces the number of
required messages by a

√
n/ logn factor over standard gossip

on random geometric graphs, with slightly more complexity
at the nodes. Assuming that the nodes have knowledge of
their geographic location and under some assumptions in the
network topology, greedy geographic routing can be used to
build an overlay network and a gossip algorithm that iteratively
averages any pair of nodes at the expense of routing the
estimates through the network. In [6] the authors show that
simple greedy routing towards a randomly selected position in
the deployment field introduces enough randomness and that
the benefit of fast mixing outweighs the extra cost of routing
by a factor of

√
n/ logn.

This paper: The main result of this paper is that geographic
gossip with the additional modification of averaging all the
nodes on the routed paths, requires a linear (in the number
of nodes) number of messages for random geometric graphs
and grids. Observe that averaging the whole route comes
almost for free in multihop communication, since a packet can
accumulate the sum and the number of nodes visted, compute
the average when it reaches its final destination and follow
the same route backwards to disseminate the average. More
precisely, we show that the expected number of messages,
i.e. the expected communication cost E(n, ε), required for
geographic gossip with path averaging to compute the average
(within ε accuracy) scales like Θ(n log ε−1) for grids and
random geometric graphs, with high probability over the graph
realization. Therefore, our algorithm scales optimally in n, for
any fixed accuracy ε. Note however that it is not necessarily
optimal as a joint function of ε and n.

Grid RGG
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Path T = Θ(
√

n log ε−1) T = Θ(
√
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averaging E = Θ(n log ε−1) E = Θ(n log ε−1)

TABLE I
PERFORMANCE OF DIFFERENT GOSSIP ALGORITHMS. T DENOTES

AVERAGING TIME (IN GOSSIP ROUNDS) AND E DENOTES EXPECTED

NUMBER OF MESSAGES REQUIRED TO ESTIMATE WITHIN ε ACCURACY.

The remainder of this paper is organized as follows: In
Section II-A we provide a precise problem statement, describe
existing gossip algorithms and their performance metrics. In
Section II-C we describe the proposed algorithm and state
our main results on its performance. Section III provides the
theoretical analysis of the algorithm and proofs of our main
results.

II. BACKGROUND AND SETUP

A. Model

1) Time model: We use the asynchronous time model [3],
which is well-matched to the distributed nature of sensor
networks. In particular, we assume that each sensor has an
independent clock whose “ticks” are distributed as a rate λ
Poisson process. However, our analysis is based on measuring
time in terms of the number of ticks of an equivalent single
virtual global clock ticking according to a rate nλ Poisson
process. An exact analysis of the time model can be found
in [3]. Our analysis is based on measuring time in terms of
the number of ticks of this (virtual) global clock and we will
refer to the time between two consecutive clock ticks as one
timeslot.
Throughout this paper we will be interested in minimizing

the number of messages without worrying about delay. We
can therefore adjust the length of the timeslots relative to
the communication time so that only one packet exists in
the network at each timeslot with high probability. Note that
this assumption is made only for analytical convenience; in
a practical implementation, several packets might co-exist in
the network, but the associated congestion control issues are
beyond the scope of this work.
2) Distributed averaging: At time-slot k = 0, 1, 2 . . ., each

node i = 1, . . . , n has an estimate xi(k) of the global average,
and we use x(k) to denote the n-vector of these estimates.
The ultimate goal is to drive the estimate x(k) to the vector
of averages x̄ave#1, where x̄ave : = 1

n

∑n
i=1 xi(0), and #1 is an

n-vector of ones.



For the algorithms of interest to us, the quantity x(k) for
k > 0 is a random vector, since the algorithms are randomized
in their behavior. Accordingly, we measure the convergence of
x(k) to x̄ave in the following sense [9], [3]:
Definition 1: Given ε > 0, the ε-averaging time is the

earliest time at which the vector x(k) is ε close to the
normalized true average with probability greater than 1 − ε:

Tave(n, ε) = sup
x(0)

inf
k=0,1,2...

{

P

(
‖x(k) − xave

#1‖
‖x(0)‖

≥ ε

)

≤ ε

}

,

(1)
where ‖ · ‖ denotes the $2 norm. Note that this is essentially
measuring a rate of convergence in probability.
We compare algorithms in terms of the amount of com-

munication required. More specifically, let R(k) represent the
number of one-hop radio transmissions required for a given
node to communicate with some other node in one time-slot.
In a standard gossip protocol, the quantity R(k) ≡ R is simply
a constant, whereas for our protocol, R(k) will be a random
variable (with identical distribution for each node). The total
communication cost, measured in one-hop transmissions, is
given by the random variable

C(n, ε) =

Tave(n,ε)∑

k=1

R(k) . (2)

We analyze the expected communication cost E(n, ε) =
E[R(k)]Tave(n, ε).

B. Graph topologies
We will analyze the performance of geographic gossip with

path averaging on grids and random geometric graphs. To
avoid edge effects our analysis will be performed on the torus
(for both grid and random geometric graphs); recent simulation
results show that the performance of the proposed algorithm
is similar for graphs on the plane.
Random geometric graphs have been popular models for

wireless network topologies [8], [13]. A random geometric
graph G(n, r) is formed by choosing n node locations uni-
formly and independently in the unit torus, with any pair
of nodes s and t connected if their Euclidean distance is
smaller than some transmission radius r It is well known [13],
[8], [7] that in order to maintain connectivity and minimize
interference, the transmission radius r(n) should scale like
Θ(

√
log n

n
). For the purposes of analysis, we assume that com-

munication within this transmission radius always succeeds.1

C. Proposed Algorithm
Geographic Gossip with path averaging: The proposed

algorithm combines gossip with greedy geographic routing.
One key assumption is that each node knows its location. In
addition, each node can learn the geographic locations of its
one-hop neighbors using a single transmission per node. Also
the nodes will need to know the size of the space they are

1However, we note that our proposed algorithm remains robust to commu-
nication and node failures.

Fig. 1. Example of geographic gossip with path averaging: The node with
inital value 3 selects a random position and places a target. Using (↔, $)-box
routing towards that target, all the nodes on the path replace their values with
the average of the four nodes.

embedded in. Note that while our analysis is for the unit torus
for grid and random geometric topologies, the algorithm can
be applied on any set of nodes embedded on some compact
region.
The algorithm operates as follows: at each timeslot one

random node activates and selects a random position (target)
on the unit torus (no node needs to be located there). It
then creates a packet that contains its current estimate of
the average, its position, the number of visited nodes so far
(one), the target location, and passes the packet to the nearest
neighbor that is closer to the target. As nodes receive the
packet, greedily forwarding it towards the target, they add
their value to the sum and increase the counter. When the
packet reaches its destination node (the one whose nearest
neighbors have larger distance to the target compared to it),
the destination node computes the average of all the nodes
on the path, and reroutes that information backwards on the
same route. It is not hard to show [6] that for G(n, r) when r

scales like Θ(
√

log n
n

), greedy forwarding succeeds with high
probability over graphs– in other words there are no large
’holes’ in the network. We will refer to this whole procedure
of routing a message and averaging on a random path as
one gossip round which lasts for one timeslot, after which
O(

√
n/ logn) nodes will replace their estimates with their

joint average (see Fig. 1 for a simple illustration).
Simplified routing: While greedy geographic routing will

have good performance in practice, we simplify the analysis by
using a slightly modified routing scheme we call (↔, ')-box
routing.
We will divide the unit torus in squares of size c log n

n .
It is well known [8], [13] that for a suitable constant c,
each of these squares will contain one or more nodes with
high probability (w.h.p.). In the appendix we prove a slightly
stronger regularity condition, that in fact the number of nodes
in each square will be Θ(log n) nodes w.h.p. We will refer



to random geometric graphs that satisfy this condition as
regular geometric graphs and prove our results when under
this regularity assumption.
By construction, the transmission radius r(n) is selected

so that a node can pass messages to all the nodes in the
four squares adjacent to its own. In our analysis, when a
node wakes up, it chooses uniformly at random its initial
direction : horizontal or vertical. (↔, ')-box routing operates
by passing messages from square to square, first horizontally
and then vertically ((',↔)-box routing routs vertically first).
Within each square the particular node is selected randomly
(see Fig. 1). (↔, ')-box routing resembles greedy geographic
routing but guarantees certain regularity that simplifies the
proof. A practical implementation of this routing scheme
would require the nodes to know the location and the size
of the boxes, which can be determined by the total number of
nodes and their own location.
The use of this routing scheme should be seen as a proving

technique (essentially binning the random geometric graph on
a grid) rather than an algorithm to use in practice. Under this
mapping, the performance analysis of gossip with (↔, ')-box
routing on a random geometric graphs can first rely on the
analysis of the same protocol on a grid topology.

III. ANALYSIS
A. Averaging scheme and eigenvalues.
Let x(t) denote the vector of estimates of the global

averages after the tth gossip round and x(0) the vector of
initial measurements. Any gossip algorithm can be described
by an equation of the form

x(t + 1) = W (t)x(t), (3)

where W (t) is the averaging matrix over the tth time round.
We start with the result of Boyd et al [2], that states that if
the matrices W (t) are selected i.i.d. from a family of matrices
that have the following three properties:
1) #1T W (t) = #1 (the random matrices preserve the total
sum of the numbers),

2) W (t)#1 = #1 (the random matrices have the all-one vector
as a fixed point),

3) ρ(W−#1#1T /n) < 1, where ρ denotes the spectral radius
and whereW := E[W (1)] = E[W (t)] is the expectation
of the averaging matrix,

then x(t) converges in expectation to x̄ave. Let µ2 be the
second largest eigenvalue in magnitude of E[W (t)T W (t)] (the
largest one being 1). If µ2 < 1, then x(t) converges in second
moment as well.
In our scheme, W is symmetric and doubly stochastic hence
ρ(W −#1#1T /n) = λ2(W), where λ2(W) is the second largest
eigenvalue in magnitude of W . Moreover, at any time t,
W (t) is a symmetric projection matrix so E[W (t)T W (t)] =
E[W (t)] = W as well, hence µ2 = λ2(W). So if λ2(W) < 1,
then x(t) converges to x̄ave in expectation and in second
moment. Furthermore, the value of λ2(W) controls the speed
of convergence; a straightforward extension of the proof of

Boyd et al [3] from the case of pairwise averaging matrices to
the case of symmetric projection matrices yields the following
key bound on the averaging time in terms of the spectrum of
the expected averaging matrix:

Tave(ε,W) ≤ 3 log ε−1

log( 1
λ2(W) )

≤ 3 log ε−1

1 − λ2(W)
. (4)

(There is also a lower bound of the same order.)

Consequently, the rate at which the spectral gap 1−λ2(W)
approaches zero, as n increases controls the averaging time.
For example, in the case of a complete graph and uniform
pairwise gossiping, one can show that λ2(W) = 1 − 1/n
so, as previously mentioned, this scheme’s averaging time
is O(n log ε−1). In pairwise gossiping, the convergence time
and the number of messages have the same order because
there are a constant number R of transmissions per time-slot.
Our scheme reaches the same efficiency even though one
round uses many messages for the path routing (on average√

n messages in the grid, and
√

n/ log n messages in the
regular geometric graph). The main results of this paper are
the following bounds on the averaging time and expected
communication cost:

Theorem 1 (Averaging time on grids): On a
√

n×
√

n torus
grid, the averaging time Tave(ε,W) of geographic gossip with
path averaging (using (↔, ')-box routing) is O(

√
n log(ε−1)).

Theorem 2 (Averaging time on random geometric graphs.):
Consider a random geometric graph G(n, r) on the unit torus
with r(n) = c

√
log n

n . With high probability over graphs, the
averaging time Tave(ε,W) of geographic gossip with path
averaging (using (↔, ')-box routing is O(

√
n log n log(ε−1)).

Corollary 1 (Expected communication cost): In both cases
(grids and regular geometric graphs), the expected communi-
cation cost E(n, ε) for geographic gossip with path averaging
is O(n log(ε−1)), where n is the number of nodes.

B. Sketch of the proofs
The main two steps in our proofs are the estimation of

the expected averaging matrix W and the upper bounding
of its second largest eigenvalue λ2(W). We first present the
techniques in the proof for the grid (Theorem 1) and then
refine the argument to establish Theorem 2.

The first step is to obtain good estimates on Wij for
any fixed pair of nodes (i, j). Contrary to standard nearest-
neighbor gossip, W in our models is a dense matrix (Θ(n2)
nonzero elements), because any pair of nodes can be averaged
in some routes. Moreover, close nodes will communicate a
lot more often than far away nodes because there are many
more possible routes averaging them together (see Fig. 2). To
take this phenomenon into account, the first part of the proof



consists in counting the routes averaging some fixed pair of
nodes (i, j). Placing our nodes on a torus greatly simplifies
this counting because the result only depends on the distance
and not on their location. We will have to count separately the
routes of different length, because the contribution of a route to
W is the inverse of its length. Indeed, if a route contains nodes
i and j and is of length $, thenWij = 1/$. Counting the routes
is easy on the grid but very difficult on a random geometric
graph with the distributed algorithm we propose. This is why
we study models and start by analyzing the grid case, which
will greatly help the analysis of the second model based on
regular geometric graphs. For random geometric graphs we
only obtain lower bounds on the entries of W , which still
suffice to guarantee a minimum level of information exchange
between the nodes.
To give a sense of the orders of magnitude of the

expectation matrices, let us take again the simple example
of a complete graph with uniform pairwise gossiping. Nodes
i and j communicate with probability 2/n2 because there
are n2/2 unordered pairs of nodes (with repetitions), and
Wij = 0.5 when i *= j, which implies thatWij = 1/n2 for all
such pair of nodes (i, j). One key part of our proof is showing
that for most2 pairs of nodes (i, j), Wij = Ω(1/n1.5) for path
averaging on the grid, and Wij = Ω(1/(n1.5

√
log n)) for

regular geometric graphs. Since these lower bounds are larger
than 1/n2, we expect a faster convergence in gossip with
path averaging compared to standard gossip. Notice however
that each gossip round costs O(

√
n) message transmissions

for the grid and O(
√

n
log n ) for the random geometric graph.

The second ingredient is using these lower bounds on the
entries of W to bound λ2(W). It is pretty surprising that one
can obtain asymptotically tight bounds on the spectral gap
of W when even determining the exact entries of the matrix
is very difficult. The main problem we need to overcome
is that far away nodes are not averaged together often. For
example, in the grid, consider the extreme case of a distance√

n between two nodes: a node i and a node j in a corner of the
grid when it is represented centered on i. There are only two
routes that will average them: the route that goes from i to j,
and the reverse one. These routes are selected with probability
1/n2 and Wij = 1/

√
n, implying thatWij = 2/n2.5. The key

idea is to notice that, although they do not directly exchange
information often, they both do communicate very often with
the node k that is half way between i and j (δ = 0.5). This
node k acts like a diffusion relay between i and j. Every node
can actually be seen as a relay for some far away pair of nodes,
in such a way that we can appropriately balance the relaying
load over all the nodes to obtain our bound. We use the the
Poincaré inequality of Diaconis and Stroock [5], [16] to use
the geometry of these relays and directly bound the spectral
gap of W .

2Provided that the distance between i and j is not larger than a fixed
constant fraction δ of the maximum possible distance
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Fig. 2. Behavior of Wi,j as a function of the distance in norm 1 between
i and j: f(δij ) = 1 − δij + δij ln δij .

C. Grid: proof of Theorem 1

1) Evaluating W: We work on a torus of size
√

n ×
√

n.
To each route r, we assign a generalized gossip n× n matrix
W (r) that averages the current estimates of the nodes on
the route. At each iteration t, we choose one of the two
shorstest routes starting from a random node I and ending at a
random destination node J (see Figure 3(a)). The pair (I, J) is
uniformly chosen, as well as the first direction: we flip a coin
and depending on the result of the coin toss, we choose to route
first horizontally and next vertically, which we will denote
by (↔, '), or conversely first vertically and next horizontally
(',↔). Consequently, at iteration t,W (t) = W r(t), where r(t)
was randomly chosen. We call R the route random variable.
As we choose the shortest route, the maximum number of
nodes a route can contain is

√
n if

√
n is odd,

√
n + 1 if

√
n

is even, which can be written as 2+
√

n/2, + 1 in short. We
need to define the shortest distance on a torus. To this end, we
introduce a torus short absolute value |.|T and a torus short
norm 1 ‖.‖1. For any algebraic value x on a one dimensional
torus (circle) and any vector i on a two dimensional torus,

|x|T = min(|x|, |x −
√

n|, |x +
√

n|)
‖i‖1 = |ix|T + |iy|T .

We call $ij = ‖j − i‖1 the L1 distance between nodes i and
j. The shortest routes between I and J have α = $IJ + 1 =
|Jx − Ix|T + |Jy − Iy|T + 1 nodes to be averaged, thus the
non-zero coefficients of their corresponding matrices W are
all equal to 1/α.
Lemma 1 (Expected W on the grid): The entries of the ex-

pectation of the gossip matrices averaging along the way verify

Wi,j ≥ 2

n2

(√
n − $ij − $ij ln

√
n

$ij

)
. (5)

Moreover, with δij = ‖j − i‖1/
√

n denoting the distance
between nodes i and j normalized by

√
n,

Wi,j ≥ 2(1 − δij + δij ln δij)

n
√

n
.

The intuition behind this result is that far away nodes are
less likely to be averaged out than neighboring ones (see
Figure 2).
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Fig. 3. (a) Shortest (↔, $)-path from I to J on a torus. (b) #ij = 5,
# = 9 nodes. There are # − #ij = 9 − 5 = 4 possible routes with exactly #
nodes going through node i then through node j. We admit only routes going
horizontally first then vertically .

Proof: Observing that E[W (R)|(↔, ')] = E[W (R)|(',↔
)] because the route from a node I to a node J horizontally
first has the same nodes as the route from J to I vertically
first, we get

W = E[W (R)]

=
1

2
E[W (R)|(↔, ')] +

1

2
E[W (R)|(',↔)]

= E[W (R)|(↔, ')].

So, for a given pair of nodes (i, j), we can compute the (i, j)th
entry of the matrix expectation W by systematically routing
first horizontally. Only the (↔, ')-routes which contain both
these two nodes i and j will have a non-zero contribution
in Wij . Pick such a route r, and call s(r) its starting node,
d(r) its destination node, and $(r) = $s(r)d(r) + 1 its number
of nodes. The (i, j)th entry of the corresponding averaging
matrix is W (r)

i,j = 1/$(r). We call R#
ij the set of (↔, ')-routes

with $ nodes passing by node i and by node j, and denote
x+ = max(x, 0). It is not hard to see that ($ − $ij)+ is the
number of routes of length $ passing by i first and j next (see
3(b)), so |R#

ij | = 2($− $ij)+. We thus have for any i *= j:

Wi,j =
∑

r W (r)
i,j P[R = r] = 1

n2

∑
r W (r)

i,j

=
1

n2

∑2"
√

n
2

#+1
#=#ij+1

|R!
ij |
#

= 2
n2

∑2"
√

n
2

#+1
k=#ij+1

k−#ij

k
,

from which we can deduce that for i *= j

Wi,j ≤ 2

n2

∫ √
n+2

#ij+1

x − $ij
x

dx

=
2

n2

(√
n − $ij + 1 − $ij ln

√
n + 2

$ij + 1

)

Wi,j ≥ 2

n2

∫ √
n

#ij

x − $ij
x

dx

=
2

n2

(√
n − $ij − $ij ln

√
n

$ij

)
.

Wi,j decreases from 2
n
√

n
to o( 1

n2 ) as a function of $ij . To
get a normalized expression with respect to

√
n, we use the

coefficient δij defined in the statement of Lemma 1.

2

n
√

n
(1 − δij + δij ln δij) ≤ Wi,j ≤

2

n
√

n

(

1 − δij + δij ln δij +
1√
n
− δij ln

√
n + 2

√
n + 1

δij

)

.

This establishes the claim. In particular, if δij = 1/2, then
Wi,j ∼ 1−ln 2

n
√

n
.

2) Bounding λ2(W): We need now to upperbound the
second largest eigenvalue in magnitude ofW , or equivalently,
the relaxation time 1/(1 − λ2(W)).
Lemma 2 (Relaxation time):

1

1 − λ2(W)
= O(

√
n). (6)

Proof: Since W is symmetric, all its eigenvalues are
real. The sum of all the entries along the lines of W without
counting the diagonal element is O(1/

√
n), whereas the

diagonal elements are Θ(1), so by Gershgorin bound [4], all
the eigenvalues of W are positive. In particular, the second
largest eigenvalue in magnitude is the second largest positive
eigenvalue.
We now use Poincaré inequality [5] (see also [4], p. 212-
213) to bound the spectral gap of W : Let P denote the
transition matrix of an irreducible reversible Markov chain
with stationary distribution π. In order to apply this theorem,
for each ordered pair of distinct nodes (i, j), choose one and
only one path γij = (i, i1, . . . , im, j) between i and j, and
define

|γij | =
1

π(i)pii1

+
1

π(i1)pi1i2

+ . . . +
1

π(im)pimj
. (7)

The Poincaré coefficient is

κ = max
edge e

∑

γij%e

|γij |π(i)π(j), (8)

and the theorem states that λ2(P ) ≤ 1 − 1
κ .

W is a doubly stochastic matrix, and therefore can be
regarded as a symmetric transition matrix of a fully con-
nected Markov chain. It is thus irreducible and reversible
with uniform stationary distribution π(i) = 1/n for all i.
For each ordered pair of distinct nodes (i, j), we choose a
2-hop path γij from i to j stopping by node k chosen to be
located approximatively half way between nodes i and j. To be
more precise, we define direction functions σx and σy , where
σx(i, j) = 1 (respectively, σy(i, j) = 1) if the horizontal
(resp., vertical) part of the route from i to j goes to the right
(resp., up) and σx(i, j) = −1 (resp., σy(i, j) = −1) if it goes
left (resp., down). The coordinates of node k in the torus are

kx =

(
ix + σx(i, j)+ |jx − ix|T

2
,
)

(mod
√

n)

ky =

(
iy + σy(i, j)+ |jy − iy|T

2
,
)

(mod
√

n).
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Fig. 4. (a) a is the maximum horizontal hop size between i and j; a =
&
√

n
2

'+1. b is the maximal horizontal hop size between k and j; b = &a
2
'+1.

The largest hop length in norm 1 is then #kj = 2(b−1) = 2&a
2
'. We conclude

that #kj ≤
√

n
2

+ 1. Here
√

n = 6, a = 4, b = 3 and max # = 4. (b) For a
given edge e there are 8 paths including e.

For each path we have:

|γij | =
1

π(i)Wi,k
+

1

π(k)Wk,j

= n

(
1

Wi,k
+

1

Wk,j

)

≤
2n2√n

1 − ln 2 − ε
, (9)

for any small ε ≥ 0 and with n large enough for 2(1 +
ln 2)/

√
n to be smaller than ε. Inequality (9) comes from our

choice of intermediate node k at mid-distance between nodes
i and j, which implies that each edge of γij is not longer than
$ ≤

√
n

2 + 1 in L1 distance (see Figure 4(a)), and from the
decrease of Wi,j with $ij . Inequality (11) with $ij =

√
n

2 + 1
gives a useful lower bound to the entries of W , which leads
to our upper bound (9) of |γij |:

Wi,j ≥ 1

n
√

n

(
1 − ln 2 − 2√

n
(1 + ln 2)

)
.

We can now compute the Poincaré coefficient:

κ = max
e

∑

γij%e

|γij |πiπj =
1

n2
max

e

∑

γij%e

|γij |. (10)

In our construction, we wisely balanced the relaying load over
all the edges of the graph: an edge e belongs to at most 8
paths! Note that even though there are only Θ(n) edges on the
original grid (and Θ(n2) paths), the graph that corresponds to
the markov chain defined by W has an edge between any two
nodes that can be averaged together and therefore has Θ(n2)
edges. This is the key reason that allows a constant number
of paths per edge and leads to fast averaging.
In particular, e can be followed by 4 different edges in a

path and can be preceded by 4 different edges as well (see
Figure 4(b)). Combining (9) and (10), we get that for n large
enough: κ ≤ 16

1−ln 2−ε

√
n. As a result, for n large enough,

λ2 ≤ 1 − 1−ln 2−ε
16

√
n

, which yields Lemma 2.

D. Regular geometric graph: proof of Theorem 2
1) Evaluating W: In this section, we work on a regular

geometric graph lying on a torus. In other words, we have k
boxes forming a torus grid like in previous section and k =
.
√

n/(α log n)/2 0 n/(α log n), for some α > 2. We first
need to show that the number of nodes in each box is Θ(log n)
with high probability:
Lemma 3 (Regularity of random geometric graphs):

Consider a random geometric graph with n nodes and
partition the unit square in boxes of size c log n

n
. Then, all

the boxes contain Θ(logn) nodes, with high probability as
n → ∞.
The proof of this lemma follows the standard [8], [13]
approach of using Chernoff lower and upper bounds on the
number of nodes on a particular box a union bound to make
a claim for all k boxes.
We use the (↔, ')-box routing scheme presented in Section

II-C and we can now establish a lower bound on the entries
of the expected averaging matrix:
Lemma 4 (Expected W on the regular geometric graph):

The expectation of the gossip matrices averaging along the
way on regular geometric graphs verify for any nodes i and
j belonging to different boxes

Wi,j ≥ 4a

b2

2

n2

(
√

k − $ij − $ij ln

√
k

$ij

)

, (11)

where $ij is the L1 distance between boxes b(i) and b(j).
We omit this proof due to space constraints. Note that there

are only a few modifications on the argument for the grid that
are sufficient to establish this lemma. The idea is to notice
that for any route r = (r1, r2, · · · , r#), we can attribute a box
route r̃ consisting of the boxes the nodes of r belong to. We
are therefore dealing with a case very similar to a grid of size
k = n/(α log n) boxes but the routes are no longer uniform
since each box contains a different number of nodes. However
using the regularity lemma, the number of nodes on each box
cannot vary too much and this suffices to establish the lower
bound.
2) Bounding λ2(W):
Lemma 5 (Relaxation time RGG):

1

1 − λ2(W)
= O(

√
n logn). (12)

Proof: We want use the weighted path upper bound
again: for each ordered pair of distinct nodes (i,j), we have to
define a path. There are two additional difficulties compared
to the grid case.
First we have to make sure that we can refine the trick of
creating two-hop paths from box level to node level without
overloading some edges. More precisely, an edge should not
be used more than a constant number of times (it was 8 for
the grid). It is actually possible to design such paths because
the number of nodes in the boxes does not vary more than
by a constant multiplicative factor b/a from one box to the
other. Let’s assume for simplicity that every box has log n
nodes. There are (log n)2 paths to find between nodes of box



1 and nodes of box 3, but happily enough there are (log n)2

edges between box 1 and box 2 and also between box 2 and
box 3 and these edges are uniformly shared out among the
nodes. Therefore, the box-path (box 1, box 2, box 3) can
correspond to (log n)2 node-paths all using different edges.
This path allocation technique can easily be extended to cases
where the boxes do not have the same number of nodes by
using some edges at most .b/a/ times each time it is used at
a box level.

Secondly, nodes that are in the same box do not average
together enough (Wij ! 2/(an2)). However they commu-
nicate often with nodes in their neighboring boxes. Just as
middle nodes are diffusion relays for far away nodes, here,
neighboring box’s nodes are relays for nodes that live in the
same box. So formally, if node i and node j are in the same
box, we design the path from i to j to be a two hop path
stopping at a node situated in the box above their box. By
sharing fairly the available relays, the short vertical edges
might be used in .b/a/ extra paths.
We can thus construct paths for any pair of nodes that will
use at most 9.b/a/ times each edge. The rest of the proof is
identical to the grid proof.
For each path we have:

|γij | =
1

π(i)Wi,k
+

1

π(k)Wk,j

= n

(
1

Wi,k
+

1

Wk,j

)

≤ cn2
√

n logn, (13)

for some constant c. Inequality 13 was obtained with the same
reasoning as in the grid. We therefore conclude, using the
Poincaré coefficient argument that κ ≤ 9. b

a
/c
√

n log n. As a
result, for n large enough, and some constant c′. λ2 ≤ 1 −

1
c′
√

n log n
, which yields the lemma.

IV. CONCLUSIONS

We introduced a novel gossip algorithm for distributed
averaging. The proposed algorithm operates in a distributed
and asynchronous manner on locally connected graphs and
requires an order-optimal number of communicated messages.
The execution of geographic gossip with path averaging relies
on knowledge of geographic locations; this location infor-
mation is independently useful and likely to exist in many
application scenarios. The key idea that makes path averaging
so efficient is the opportunistic combination of routing and
averaging.
We believe that the idea of greedily routing towards a

randomly selected target (and possibly processing information
on the routed paths) is a very useful primitive for designing
message-passing algorithms on networks that have planar
geometry. Other than computing linear functions, such path-
processing algorithms can be designed for information dissem-
ination or more general message passing computations such
as marginal computations or MAP estimates for probabilistic

graphical models. Processing and forwarding the messages on
random paths can avoid the diffusive nature of random walks
and accelerate the convergence of message-passing. We plan
to investigate such protocols in future work.
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