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Absiract

In this thesis we address the description of electrical transport properties of
disordered conductor-insulator composites, mostly by numerical Monte Carlo
simulations and analytical study of realistic tunnelling-percolation models.
Such composites are basically constituted by conducting particles dispersed
in an insulating matrix and present a conductor-insulator phase transition,
with critical exponent ¢, as the volume concentration of the conducting phase
x is decreased towards a critical concentration z.. Percolation theory shows
that close to this phase transition the conductivity X of the composite follows
a simple power-law

¥ =Yo(x — z.)", (1)

with a universal transport exponent t = ¢y ~ 2, independent of the detailed
characteristics of the system.

Two representative examples of such composite materials are conducting
polymers, used for example for anti-static purposes, electromagnetic inter-
ference shielding or current-limiting switches and thick-film resistors (TFRs)
used as resistors in electronic applications where high thermal, chemical, me-
chanical and aging stability are needed and as sensing elements for force and
pressure sensors. This work focuses mostly on TFRs, composed of a glassy
phase embedding small conducting grains, which are, from our point of view,
ideal model systems. They present a complex microstructure, due to segre-
gation of the conducting phase in the spaces left over in between the large
glassy regions, unusually large piezoresitive responses and are an important
class among the composite materials presenting universality-breakdown of
the critical transport exponent, showing values of t > tp, and as large as 10.
Experimentally, non-universal transport exponents have been repeatedly ob-
served, but we lack a theory accounting satisfactorily for this phenomenon.
A better understanding of this transport non-universality is the main issue
addressed in this thesis.

We formulate a lattice and a continuum model, aimed at describing the
transport properties of disordered conductor-insulator composites, present-
ing or not a segregated microstructure. Our main assumptions are that the
transport properties, close to the phase transition, are governed by the for-
mation of a percolating cluster of conducting particles and that the electrical
transport between the conducting particles is mainly governed by simple tun-
nelling. We also introduce segregation in the continuum model, which is the



Abstract

main interaction between the conducting and insulating phases considered
in this work.

In this framework, we present a complete study of segregation and its in-
fluence on the critical concentration z.. We show how the relative size of the
conducting and insulating particles changes the effectiveness of segregation.
Moreover we show that the critical concentration x, is not a monotonically
decreasing function of segregation, but presents a minimum, well before max-
imal segregation is reached, which is a result of broad technological interest.

Now, the main outcome of this work is a new interpretation of the experi-
mentally observed non-universality of the direct current transport exponent.
We show that realistic tunnelling-percolation models, although not present-
ing true non-universality of transport, lead to a transport exponent ¢ strongly
depending on the concentration of the conducting phase z, so that the con-
ductivity does, indeed, not follow a simple power-law. As t is experimentally
extracted by fitting the concentration dependence of the conductivity with
the simple power law of equation 1, apparent non-universal transport ex-
ponents will be obtained. This is what we call apparent non-universality,
which might be experimentally very difficult to distinguish from true non-
universality. We propose an analytical formula, containing only few param-
eters of our model, replacing the power-law of equation 1, which fits very
nicely some experimental measurements of the conductivity of conductor-
insulator composites.

Our models also account for the large increase of the piezoresistivity ex-
perimentally observed in conductor-insulator composites close to the percola-
tion threshold. But contrary to classical tunnelling-percolation predictions,
we show that more realistic models lead to a saturation of the piezoresis-
tivity close enough to the percolation threshold. This feature has not been
observed yet, but would be a direct confirmation of the scenario proposed in
this work for the appearance of transport non-universality.

Keywords: Percolation, thick-film resistors, conductor-insulator com-
posites,transport properties, DC conductivity, criticality, non-universality,
segregation, high-voltage trimming.



Résumé

Nous abordons, dans ce travail, la description des propriétés de transport
électrique de matériaux composites conducteur-isolant. Nos résultats pro-
viennent principalement de simulation Monte Carlo ainsi que d’études ana-
lytiques de modéles réalistes de percolation avec conduction par effet tunnel
(tunnelling-percolation). Ces matériaux composites sont constitués principa-
lement par des particules conductrices dispersées dans une matrice isolante
et présentent, lorsque 1’on diminue la concentration volumique x de la phase
conductrice vers une valeur critique x., une transition de phase conducteur-
isolant, avec exposant critique t. La théorie de la percolation stipule que,
prés de cette transition de phase, la conductivité du composite, X, suit une
loi de puissance de la forme

¥ =Yo(z — z.)t, (2)

avec un exposant critique t = ty ~ 2 universel, c¢’est-a-dire qui ne dépend
pas des caractéristiques détaillées du systéme.

Deux exemples types de tels matériaux composites sont les polymeéres
conducteurs et les résistances en couche épaisse (TFRs). Les premiers servent,
entre autres, comme protection antistatique, boucliers électromagnétiques et
limitateurs de courant, alors que les seconds sont utilisés en électronique,
lorsqu’une grande stabilité thermique, chimique, mécanique ou de vieillisse-
ment sont requises, ainsi que comme éléments actifs dans des senseurs de
force ou de pression. Dans ce travail nous nous intéressons particuliérement
aux TFRs, formés par une dispersion de fines particules conductrices dans
une phase vitreuse, qui nous semblent étre un systéme modéle idéal. Ils pré-
sentent en effet une microstructure complexe, de par la ségrégation de la
phase conductrice dans les interstices vides entre les grandes particules iso-
lantes, une piézorésistivité inhabituellement grande et forment une classe
importante parmi les matériaux composites présentant la rupture de 'uni-
versalité, avec des exposants critiques ¢t > tg allant jusqu’a t = 10. Alors que
la non-universalité a été expérimentalement obtenue a maintes reprises, il n’y
a toujours pas une théorie satisfaisante pour I'expliquer. Mieux comprendre
I'origine de cette non-universalité est le probléme central traité dans cette
thése.

Pour ce faire nous développons un modéle sur réseau et un modéle dans
le continu, visant la description des propriétés de transport électrique dans
les matériaux conducteur-isolant désordonnés, avec ou sans ségrégation. Les
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hypothéses de base de ce travail sont que, prés de la transition de phase, les
propriétés électriques sont dominées par la formation d’un cluster de par-
ticules conductrices qui percolent au travers de la phase isolante, et que la
conduction entre les particules conductrices est essentiellement dominée par
I’effet tunnel. Nous introduisons également la ségrégation dans le modéle
continu, qui est l'interaction principale entre les phases isolante et conduc-
trice que nous traitons dans ce travail.

Nous présentons, dans ce cadre, une étude compléte de la ségrégation et
de son influence sur la concentration critique x.. Nous montrons comment le
rapport de taille entre les particules conductrices et isolantes change 'effica-
cité de la ségrégation. Nous montrons également que la concentration critique
z. ne diminue pas de facon monotone avec la ségrégation, mais posséde un
minimum nettement avant la ségrégation maximale, un résultat d’'un intérét
technologique certain.

La contribution la plus importante de ce travail est une nouvelle inter-
prétation de la non-universalité observée expérimentalement. Nous montrons
qu’'un modéle réaliste de tunnelling-percolation, méme s’il ne permet pas
d’obtenir une réelle non-universalité du transport, entraine un exposant cri-
tique t qui dépend fortement de la concentration de la phase conductrice .
Ainsi, la conductivité n’obéit en réalité pas & une simple loi de puissance.
Mais comme, expérimentalement, ¢ est obtenu en ajustant ’équation 2 aux
mesures de la conductivité en fonction de la fraction volumique z, des expo-
sants critiques apparemment non-universels peuvent étre obtenus. C’est ce
que nous avons appelé la non-universalité apparente, qu’il pourrait étre trés
difficile de distinguer expérimentalement de la non-universalité réelle. Nous
obtenons également une formule analytique, ne contenant que quelques pa-
ramétres de notre modéle, qui remplace la loi de puissance de I’équation 2 et
qui décrit parfaitement certaines mesures expérimentales de la conductivité
de composites conducteur-isolant.

La forte augmentation de la piézorésistivité, observée expérimentalement
prés du seuil de percolation des composites conducteur-isolant, est également
expliquée par nos modéles. Nous montrons néanmoins que, contrairement aux
prédictions du modéle classique de tunnelling-percolation, des modéles plus
réalistes impliquent une saturation de la piézorésistivité pour des concentra-
tions x suffisamment proches de x.. Cette saturation, qui n’a encore jamais
été observée, serait une confirmation directe du scénario que nous proposons
dans cette thése pour expliquer ’apparition de la non-universalité.

Keywords : Percolation, résistances en couche-épaisse, Composites conducteur-
isolant, propriétés de transport, conductivité DC, criticalité, non-universalité,
ségrégation, trimming a haute tension.
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Chapter 1

Infroduction

Composite materials (or composites) are nowadays of common use in many
industrial products. A composite is constituted of at least two different mate-
rials, a matrix and one or several fillers, remaining distinct, on a microscopic
length scale, in the final product. The aim of a composite is to benefit from
some physical or chemical properties of the different constituents to obtain
new materials with enhanced properties.

Wood or bones are examples of natural composites where the filler is a
fiber enhancing the material’s mechanical properties. Construction is maybe
the area where composites have been longest and most widely used. In-
deed bricks, concrete, cements and more recently carbon or glass fiber rein-
forced materials are all composites. From a broader perspective also mag-
netic recording media (tapes and disks), porous materials, foams, gels and
emulsions are diphasic composites.

Another important class of diphasic composite materials are conductor-
insulator composites, consisting of conducting particles embedded in an in-
sulating matrix. Conducting polymers are a very current example of such
composites, which combine relatively good electrical conductivity with the
ease of processing of the polymer matrix. Poorly conducting polymers can be
used for anti-static purposes, whereas good enough conductivity for applica-
tions such as electromagnetic interference shielding [1| can also be obtained.
The difference in thermal expansion of the conductive filler and the insulat-
ing polymer matrix can lead to very large positive temperature coefficients of
resistance (PTC) of the composite [2], used for current-limiting switches [3],
where local heating above the melting temperature of the matrix induces a
large increase in resistance.

There is another type of commonly used conductive composites, the so-
called thick-film-resistors (TFRs), composed of a glassy phase embedding
small conducting grains, usually ruthenium oxide (RuQOs2) or ruthenates such
as PbyRusO7. TFRs are used as resistors in electronic applications where
high thermal, chemical and aging stability is needed. They also present
a high piezoresistive response and are therefore widely used as force and
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pressure sensors.

Although those materials can seem quite different, they have one thing
in common: they all undergo a phase transition when the filler concentration
x is raised above some critical value x., corresponding to global connectivity
of the filler in the system. This phase transition is described by percolation
theory and characterized by a sudden change of some physical properties
of the composite, for example the insulator-metal transition in conductor-
insulator composites. Above this concentration, the current flows through
chains of neighbouring conducting particles, forming geometrically complex
paths connecting the edges of the system. For concentrations close but above
this threshold, the conductivity ¥ follows a power-law of the form

¥ = Yo(x — z.), (1.1)

where ¢ is the critical direct-current (DC) transport exponent and Xy a con-
stant prefactor. Classical percolation theory shows that this exponent is
universal, meaning that its value is independent of the microscopic details of
the system and takes the value t = ¢y & 2 [4] for three-dimensional systems.
Fortunately for this thesis, this is not the whole story. Experimental deter-
mination of this exponent for many different conductor-insulator composites
has shown that there are cases where the universality is broken, leading to
transport exponents different from the universal ¢3. A collection of such
exponents is shown in figure 1.1, where you can see that around half the ex-
ponents measured are relatively close to tg, but that the remaining exponents
take values mostly above 2 and as high as 10. Though some results of this
thesis are quite general, explaining the origin of this non-universality of the
DC transport exponent in conductor-insulator composites is its main aim.
There are already theories accounting for the appearance of non-universality
in conductor-insulator composites, but none agreeing satisfactorily with the
experimentally obtained exponents.

This thesis is also concerned with the particular microstructure of TFRs,
which appear in figure 1.1 as an important class of composites displaying non-
universal behaviour. Indeed TFRs consist of a mixture of a coarse glassy
powder (typical particle sizes of a few micrometers) with fine conducting
particles (10 — 100 nm in diameter), fired at around 850°C, leading to the
sintering of the glassy phase (softening of the glass, wetting and binding the
conducting particles together). The final composite nevertheless basically
conserves its initial geometrical structure, where the small conducting grains
are forced to occupy the empty spaces left between the much larger glass
particles. This phenomenon, called segregation, leads to a large decrease
in the critical concentration x. and is studied quite in detail in this thesis.
This is of particular technological interest as a low percolation threshold
usually diminishes the composite’s cost, but also helps preserving the initial
mechanical characteristics of the matrix.
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Figure 1.1: Collection of critical transport exponents ¢t and corresponding criti-
cal concentrations z. for various disordered conductor-insulator composites. The
dashed line denotes the universal value ¢y = 2. This figure is taken from Ref. [5].

Thesis overview

In the next chapter, I will introduce the basics of percolation theory, phase
transition and theoretical background of universality breakdown. I will also
rapidly present the pre-existing models of conduction in conductor-insulator
systems.

Then we will turn, in chapter 3 to a description of the thick-film resistors,
which are the composites guiding the theoretical work of this thesis. We will
examine their fabrication process, microstructure and transport properties.
We will discuss their mechanical, thermal and chemical properties and sta-
bility. We will also present in this chapter a study of the sensitivity of TFRs
to voltage pulses and discuss their use as model systems for our upcoming

3
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theoretical studies.

In chapter 4, I will present a tunnelling-percolation model on a square lat-
tice and show that tunnelling conduction does not lead to a true universality
breakdown, but to apparent non-universality. This apparent non-universality
reconciles semi-quantitatively the experimental and theoretical DC transport
exponents. Then in the second part of that chapter, the piezoresistivity of
the system will be examined for this same lattice model. We show in this
chapter how the piezoresistivity is a much more sensitive tool than conduc-
tivity measurements to verify the true critical behaviour of a system, which
is masked by apparent non-universality when looking at the conductivity. In-
deed, it is shown that the piezoresistivity undergoes a clearly visible crossover
between non-universal and universal behaviour as the percolation threshold
is approached from above.

At this point of the thesis, I leave simple lattice models behind to treat
more realistic continuum percolation models of conductor-insulator compos-
ites in the following two chapters. Chapter 5 is dedicated to the transport
properties in a semi-permeable concentric shell model, with tunnelling be-
tween the conducting particles as conduction mechanism, representing typ-
ically a dispersion of conducting particles in a polymer matrix. It is shown
that the transport exponent ¢ is in fact dependent on the conducting phase
concentration, leading again to apparent non-universality. We propose here
an analytical expression for the conductivity in such systems, replacing the
classical power law of equation 1.1 and leading to a new interpretation of
non-universality. This expression is used to fit the conductivity data of
a carbon-black/polymer composite, leading to values of the parameters in
very good accord with the expected ones. Then, towards the end of this
chapter, the piezoresistivity of this continuum tunnelling-percolation model
is studied, showing similar results to those obtained for the lattice model of
chapter 4.

In the last chapter before the conclusion, we turn to a closer descrip-
tion of thick-film resistors. We introduce a model of segregated tunnelling-
percolation in the continuum, specially designed to represent the conduction
in TFRs. To this aim, we reformulate the concentric-shell model of the pre-
ceding chapter, introducing large insulating spheres forcing the conducting
particles into the remaining voids. We study the influence of segregation on
the percolation threshold and show that there exists an optimal insulating
sphere volume fraction, minimizing the percolation threshold of the conduct-
ing phase. We then study the transport properties of this model, and find
that they remain basically unchanged compared to the non-segregated sys-
tems. We are indeed able to map the conductivity of the segregated systems
onto that of the non-segregated ones, simply by shifting the critical concen-
tration x. and using an appropriate renormalization of the conductivity. This
allows us to apply the theoretical results of the preceding chapter to obtain
a simple expression for the conductivity in segregated tunnelling-percolation

4
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1.2. List of symbols

systems. This expression is applied to experimental measurements of the
conductivity of TFRs, leading to values of the parameters of the model com-
pletely consistent with the theoretical expectations.

The last chapter is of course devoted to the conclusions drawn from this
work.

List of symbols

We give hereafter in table 1.1 a list of most symbols used in this thesis aimed
at simplifying the reading of this work.
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Table 1.1: This table contains the list and corresponding definition of most sym-
bols used in this thesis

Symbols from the Latin alphabet

Symbol Definition

a Mean nearest-neighbour distance, from center to center

d/2 is the thickness of the penetrable shell of the conducting particles
Dimensionality of the system

Distribution function of the local conductances ¢

Local conductance between two adjacent nodes

Conductance of the system between two opposite edges
Number of neighbouring nodes (degree)

Linear size of the system

Number of particles or nodes in the system

or in the one-dimensional channels (chapter 4)

Number of realizations of the system in numerical simulations
Probability of a bond (or site) to be occupied

DC transport critical exponent

>
S

local transport exponent such that ¥ oc (z — z.)!®)

o~
—~

8
N—

t*(x) | t"(z) =dIn(¥)/dIn(x — z.), same definition for t*(p)
t* value of t extracted by fitting the conductivity with the simple power-law
T Hard-core volume fraction of conductor particles
Symbols from the Greek alphabet
Symbol Definition
0(x) | Dirac delta function

n n=m=gp(o1+ d)3, the volume occupied by the conducting particles,
including the penetrable shell, 1o = %pga;’

0% Microscopic piezoresistivity

r Macroscopic piezoresistive factor of the system

A A =o01/(01 + d), the penetrability coefficient of the conducting particles

v Correlation length critical exponent

II(p) Probability to have a percolating cluster at bond concentration p

o1 Volume fraction of conducting particles with penetrable shell

b2 Volume fraction of insulating spheres

P p = N/L3, number density of conducting particles (ps for the insulating ones)

S Microscopic conductance between two adjacent particles in the
one-dimensional channels of chapter 4

by Conductivity of the system

o1 Diameter of the conducting particles

09 Diameter of the insulating particles
Heaviside step function

Tunnelling decay length
Correlation length

-2
ARG
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Chapter 2

Percolation basics

As outlined in the introduction, the conductor-insulator phase transition in
composite materials is described using percolation theory. This chapter is
aimed at giving the basic ideas needed to understand the remainder of this
thesis. Fortunately, although percolation theory is a very complex subject,
with very few analytical results, the basic ideas are simple. The reader inter-
ested in the field may start his readings with Stauffer and Aharony’s “intro-
duction to percolation theory” [4] containing also an extensive bibliography
on the subject and from which this second chapter is largely inspired.

Graph theory

Before turning to percolation theory, I first need to say a few words about
graphs. In 1736 Euler used graph theory to solve the problem nowadays
known as “the seven bridges of Konigsberg”. The city of Konigsberg lay in
Prussia on two islands and both riversides of the Pregel river. Seven bridges
were connecting the four parts of the city. The problem was to know whether
it was possible to walk around the city, crossing each bridge once but only
once. The map of the city drawn in Euler’s paper is shown in figure 2.1(a).

To solve this problem, Euler simplified it, keeping only its essential ab-
stract structure. He replaced each part of the city by a node (also called
vertex or site), shown as red discs in panel (b) of figure 2.1 and the bridges
linking the different parts of the city by edges (or bonds), shown as lines
connecting the vertices, mapping the problem into a graph. The position of
the nodes and the shape of the edges are completely irrelevant in a graph,
the only information left is connectivity between the vertices, so by this
mapping, Euler discarded all irrelevant information about the problem. A
graph is said to be connected if there is a path from any vertex to any other
one in the graph and the number of edges connected to a vertex is called its
degree. Fuler showed that there was no solution to this problem, there is no
Eulerian path on this graph. In fact he showed that an Eulerian path exists

7
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(b)

Figure 2.1: (a) Drawing of the city of Koénigsberg taken from Euler’s paper [6].
(b) Graph representation of the problem.

only if the graph is connected and if all nodes, except maximum two, have an
even degree. If there are nodes with an odd degree, they are the starting and
ending point of any Eulerian path. In Konigsberg’s graph, all five nodes have
an odd degree, and therefore the walk around the city is impossible. This is
the first use of graph theory for a demonstration. Let’s keep in mind here
that it shows that some properties of the system are completely determined
just by the connectivity information about the graph.

We call a cluster, a set of nodes forming a connected subgraph, meaning
that all nodes accessible from one certain vertex belong to the same cluster.
Two vertices are said to be adjacent (or neighbours in this work) if there is
an edge connecting them. As pointed out just above, a graph represents only
the geometrical connectivity pattern and can therefore be represented by an
N by N matrix A, called the adjacency matriz, where N is the number of

8
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nodes and

A, j) = 1 if there is an edge between vertices ¢ and j
77 =1 0 if there is no edge between vertices ¢ and j

A graph can also be represented by an adjacency list, a vector of size N
by M, where M is the highest degree of the graph. In this representation the
line ¢ contains a list of the vertices adjacent to node ¢. This representation
requires less storage space but is not practical for matricial calculations. In
our simulation codes we make use of both representations, depending on
which one is most appropriate.

Percolation theory

The basic ideas in percolation theory were born from a study of polymeriza-
tion reactions, where, at a certain extent of reaction, gelation occurs. The
gel point is a phase transition from liquid to gel, accompanied by an abrupt
change in physical properties of the polymer. How do we explain this, as
polymerization is a continuous phenomenon? Indeed, at the beginning of
the reaction we have only monomers, starting to bond together and form
dimers, trimers and larger polymers. As the average number of chemical
bonds for each monomer increases, large polymers link together and, at a
certain point, we will have formation of a giant molecule spanning the whole
system. Gelation was first attributed to the formation of an infinite poly-
mer network by Flory [7], and this sudden apparition of an infinitely large
molecule of course drastically changes the properties of the system, which
loses its ability to flow. Similarly, a classical problem in percolation theory
is the flow of a liquid through a porous material. In that case there is again
a phase transition at a certain pore volume fraction, below which no infinite
network of pores exists and the liquid is blocked, whereas above it, the liquid
can flow from hole to hole and make its way from one edge of the system to
the opposite. We see that in both cases the appearance of an infinite cluster
in the system leads to a phase transition. Percolation theory deals with the
number and properties of clusters on a graph, the appearance of a giant clus-
ter spanning the whole system when the density of edges is increased and
the macroscopic properties of the system close to this phase transition.

Bethe Lattice

It is easiest to enter into percolation theory by looking at a lattice model.
We can think here for example of the nodes as representing the monomers of
our above polymerization problem, and the edges being the chemical bonds
between them. In that case we would consider all nodes as being occupied
and monitor the state of the system with the bond concentration p, the

9
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probability that two neighbouring nodes are linked together by an edge.
This is called bond-percolation. There is a second class of lattice models,
called site-percolation, in which the nodes are occupied with probability p,
and an edge is present between any pair of occupied neighbouring nodes.

To get a good feeling with the basic mechanisms of percolation we will
first look at a very special lattice, called the Bethe lattice (or Cayley tree)
which is, to my knowledge, the only lattice, apart from the less interesting
one-dimensional case, on which the percolation problem is analytically solv-
able in a simple way [4]. Though bond and site percolation are very similar
on the Bethe lattice we will start by studying site percolation because it is
a little less ambiguous, notably when talking about cluster sizes.

A Cayley tree has, as its name indicates, a tree-like structure, with no
closed loops, and is constructed as follows. One starts with a central node,
from which k edges lead to its k neighbouring nodes (first generation). Then
again, k edges emanate from each node, one leading back to the central node
and the k — 1 others to new sites belonging to the second generation. This
branching process is repeated to infinity. Therefore all nodes in this structure
are equivalent and there are no closed loops because each time we reach a
node we can only go backwards or to new sites. This structure is presented
in figure 2.2 for k = 3.

Figure 2.2: Illustration of the structure of a Cayley tree with k£ = 3 neighbours

We are now interested in calculating the critical concentration p. at which

10
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an infinite cluster first appears. If I arrive at a node, the chance that I can
find a path to go on, or equivalently the mean number of paths leading from
there to the next generation of nodes is p(k — 1). At the next node I have
again the same situation, and therefore the mean number of paths leading
n steps further is [p(k — 1)]". From this it is clear that if p(k — 1) < 1 the
probability to find a path leading to infinity (n — oo) will be 0, whereas the
number of paths I can follow if p(k — 1) > 1 increases at each step, and an
infinite network will exist. We have therefore derived

1
Pe=T—7

k—1

But of course not all occupied sites are part of the infinite cluster. Let’s
calculate the strength P of the infinite cluster, being the probability that any
site belongs to the infinite cluster. We will do this in the special case when
k = 3 because it is easiest to solve and sufficient to show the behaviour of P.
Lets call ) the probability that a site is not connected to infinity through one
fixed neighbour. If this neighbour is occupied, then it is itself not connected
to infinity through one of its neighbours with probability @ (because all
sites are equivalent in the Cayley tree) and as it has 2 neighbours it is not
connected to infinity by any of them with probability Q2. On the other hand
this neighbouring site can also not lead to infinity because it is empty, with
probability 1—p. We therefore obtain Q = 1 —p+pQ?, having two solutions:
(Q = 1 corresponding to the absence of infinite network in the system, and
therefore associated with p < p., and Q = (1 — p)/p, corresponding to the
more interesting situation p > p.. Now the strength P of the infinite network
is obtained by substracting the probability that a site is occupied but not
connected to infinity by any of its neighbours, p@3, from the probability, p,
of a site to be occupied. Therefore we obtain:

Pzp—pQ?’:p[l—(l;]D)g]- (2.1)

If we now define the size s of a cluster by the number of nodes it contains,
we can obtain, by a calculation very similar to the above, the mean cluster
size S below the percolation threshold (p < p.),

_1+p
1—-2p

Above p. we have to be a little more careful because of the presence of the
infinite cluster, which is not done here. We now introduce the correlation
function g(r), the ‘probability that a site at distance r from an occupied site
is also occupied and belongs to the same cluster’ and the correlation length
¢, a measure of the average distance between two sites belonging to the same

11
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cluster:

C2 — Zr Tig(r) ’ (22)
> 9(r)

where r runs over all lattice sites. From the above definition of g(r) we see
that > g(r) = S, the average number of sites in a cluster. Equation 2.2
defining ( is valid for p < p. and can be generalized to p > p. by substracting
the contribution of the infinite cluster, replacing g(r) with g(r) — P? (the
same remark holds for the mean cluster size .S defined above the percolation
threshold as the mean size of the finite clusters). The correlation function is
straightforward in the Cayley tree, again because there are no closed loops.
Now if a node is ¢ generations away from the central node, the probability
that they belong to the same cluster is p’, and there are k(k — 1)*~! such
nodes, except for ¢ = 0 where there is just one node. We therefore obtain

;g(r) =1+ ; E(k—1)"1p' = 11_;;;6 =5, (2.3)

which generalizes the above result for S to any k. We now have to introduce
a notion of Euclidean distance on the Cayley tree. Indeed a Cayley tree can
be represented in an infinite-dimensional Euclidean space, where each new
generation of edges leads to an unexplored direction in space. Therefore if
each edge is of length 1, then the distance r between two nodes i generations
apart is calculated using the general Pythagoras’ theorem, holding r = v/i
(see Ref. [8]), so that

= i1 ds—~— . p+p/pe

Lo P p/pe (2.4)

(1=p/p)(1+p)
We can now extract from equations 2.1, 2.3 and 2.4 the asymptotic be-
haviours (close to the percolation threshold) of the infinite cluster strength,
mean cluster size and correlation length :

P o (p—p)° (2.5)
S |pc_p|_7
¢ o |pe—pl",

with 8 = 1,7 = 1 and v = 1/2 (for the Cayley tree with any k), called

the critical exponents. We see here a very general feature of percolation and
phase transitions in general, namely that most properties of interest, close to

12
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the phase transition, behave as simple power laws. Equation 2.5 is true only
above the percolation threshold, whereas equations 2.6 and 2.7 are valid on
both sides of the phase transition, with the same critical exponents. Here
we arrive at a fundamental observation: although the critical concentration
p. depends on k, the critical exponents are independent of the details of the
system considered and are therefore said to be universal. The exponents
usually depend solely on the dimensionality of the system, although it has
been shown that the exponents obtained for the Cayley tree are exact for
any system with dimension D > 6 (in such high dimensions, the loops in the
system become unimportant so that the geometry of the percolating cluster
not very different from that on the Cayley tree).

Scaling

We have now seen that close to the percolation threshold, quantities of in-
terest of an infinite system behave as power laws. In fact we can rewrite this
for a general property X as

X o (p— pe) X oc V. (2.8)

I have evidenced here that all properties behave as powers of the correlation
length, close to the percolation threshold. Why is this so? Well, we have seen
above that close to the percolation threshold, the properties are insensitive
to the details of the system. This is because they are dominated by the
geometry of the clusters. The geometry is itself controlled by (, which is a
measure of the mean cluster radius, the size of the inhomogeneities in the
system. This is why we expect the properties to depend solely on the length
scale (.

Now, what happens if we study the properties of a large but finite system
of linear size L? If L > ¢ we can subdivide the system in (L/¢)” boxes of
linear size ¢ (D being the dimensionality of the system). In each of those
boxes the geometry of the system is the same as in an infinite system, because
the size of the box is as large as the typical size of the inhomogeneities given
by ¢. Therefore in each box we will have X oc (X/¥, but X might also depend
on the number of such boxes, giving X (L,¢) = XV f1(L/C).

On the other hand, when L < (, the size of the inhomogeneities in the
system will be limited by the system size, and therefore we expect to have
the same dependence as above, but with L instead of ( so that we obtain
X(L,¢) = Lx/"V.

Those considerations can be summarized in a general scaling law

X(L,¢) = ¢V f(L)C), (2.9)

When L > (, all boxes of linear size ¢ are similar and therefore we expect
a property X to depend on the number of boxes as it would depend on the
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volume in a homogeneous system. We expect some properties, such as the
strength of the infinite cluster P or the mean cluster size S, to be independent
of the number of boxes (L/¢)P when L > (, so that f(z > 1) ~ constant.
Now, properties such as the mass of the infinite cluster (number of nodes in
the infinite cluster) are expected to scale as the number of boxes (L/¢)P,
whereas the length of the shortest path leading from one end of the system
to the other l,,,;, should depend linearly on L /(. From this we finally obtain
that

fL/¢>1) (?)DX

L x/v
fL/( k1) (C) (2.10)
with Dx a dimension between 0 and D determining how a property would
depend on the size of the system if it were homogeneous. Using ¢ « (p—p.) ™"
and the equations 2.10 for f, we can rewrite equation 2.9 as

— De *XJFVDXLDX L
X(L,¢) = { (pr/yp ) . zig . (2.11)

This scaling form has no formal demonstration, but agrees with all analyti-
cal and numerical results obtained so far. We see in this equation that the
correlation length is of particular interest, as it gives a crossover length be-
tween two distinct behaviours. The determination of the critical exponent v
is very important as the use of finite size scaling (studying the behaviour of
a quantity X on the percolation threshold as a function of the system size)
permits usually more accurate determination of the ratio x/v than separate
studies of the two exponents. In two-dimensional systems the correlation
length exponent is exactly known to be v = 4/3 and in three dimensions,
numerous estimates agree on the value v ~ 0.88 [9,10]. Estimates of v in
two to five dimensions can also be found in Ref. [11].

Square lattice

To get a better feeling about the scaling laws derived above, we will now
look at some more properties in lattice percolation, but this time in a two-
dimensional square lattice. We consider the bond percolation problem on a
square lattice of size L (taking the distance between two adjacent nodes to be
normalized to 1), as illustrated in figure 2.5. Each site has k = 4 neighbours,
and more generally in a D-dimensional hypercubic lattice k¥ = 2D. In two
dimensions the percolation threshold is p. = 0.5. In figures 2.3 and 2.4 1
have plotted some examples of bond percolation on the square lattice and
drawn the largest cluster in red, whereas all other clusters of size s > 2
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are shown in blue, isolated sites are not shown. In figure 2.3 I show three
different realizations of the bond percolation problem on a lattice of size
L = 30 and at three different concentrations p = 0.4, p = p. and p = 0.6.
The aim here is to show the influence of the correlation length ¢ on the
fluctuations. We see that at p = 0.4 the three realizations are very similar to
one another, with a largest cluster of approximately the same size in all three
cases. The same is true above the percolation threshold, at p = 0.6, where the
largest cluster percolates the system and occupies almost the whole lattice
with some holes of typically a few sites (corresponding to the length scale
¢). Now at p. the situation is quite different: the three realizations show
very different behaviours. In the left panel the largest cluster percolates the
system, whereas in the two others it does not. Considering its mass, we
can see that it is also very variable at this length scale (in a system of size
L = 30). This is of course due to the divergence of ¢, so that here the system
size L < (, so that we are unable to get a correct image of the geometry
of the percolating cluster. In fact, as shown in figure 2.4, the percolating
cluster at p. has inhomogeneities at all length scales. Its surface and interior
contains holes of all sizes, ranging up to the system size L, regardless of L.
It therefore presents a fractal geometry. Indeed, if we look at the strength
P of the percolating cluster we know from the above equations 2.5 and 2.10
that at p.

Pox L7P, (2.12)

and # = 5/36 in two dimensions, showing that the percolating cluster is
fractal. On the contrary if we look at the three panels of figure 2.4 for
p = 0.6, we see that the sizes of the inhomogeneities in the infinite cluster
are not changing with the system size, because L > (, at least for the
L = 30 and L = 60 cases. Therefore we have a constant strength of the
infinite cluster (P is independent of the system size in that case).

If we looked at the mass M = L%P of the system, we would find that
M o LP™. From the above results on P we immediately deduce that above
Pe, D = D, whereas at p,

D,, =D —j/v. (2.13)

Equation 2.13 is called a hyper-scaling relation because it links several critical
exponents and the dimensionality D of the system.

This change of the characteristics of the percolating cluster close to the
percolation threshold, and our inability to capture correctly its geometry in
a system of finite size, will lead to the increase of the intrinsic variability
of any property X measured in a system of finite size as p. is approached.
This remark makes it evident that the error on the value of any parameter
extracted from several realizations of a system of finite size will steadily
increase as p — pe.
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Indeed if X; is the value of the property X measured for a certain real-
ization of a system of finite size, we estimate X from the mean value X over
N, realizations:

=

X~ X = X;. (2.14)

1
Ny 4
7

The standard deviation of the distribution of X; is then given by

1 X

o(X) = \| ¥ =7 S (X - X)° (2.15)

i=1

and the standard deviation of the mean value X is then obtained from

o(X) = . (2.16)

As close to p. the variability, given by o(X) will increase, so will the error
on the average for which we used twice the standard deviation o(X). This
increase of the error bars will be repeatedly observed in our numerical sim-
ulation data of the conductivity and piezoresistivity of percolating systems,

obtained from mean values over several realizations of systems of finite size.

Random resistor networks

Now that we have some basics in percolation theory, we can turn to models
of the conductivity in heterogeneous disordered materials. We start again
on the square lattice, but we superimpose a conduction mechanism on the
bond-percolation problem. We now imagine that a bond between site ¢ and j
has conductivity g;; = 1 with probability p (occupied bond) and is otherwise
insulating (bond empty with probability (1 — p)). This problem can be
rewritten as choosing the conductance between any pairs of neighbouring
nodes from the distribution function

Y(g) = (1 —p)d(g) + ph(g) (2.17)

with h(g) = 6(¢g—1) and ¢ the Dirac delta function. We measure the conduc-
tance G of this system by applying a unit voltage between two opposite edges
(or surfaces in 3D) of the lattice and measuring the current flowing through
the lattice. This system, called a random resistor network (RRN), was stud-
ied numerically for the first time by Kirkpatrick in 1973 [12] and is illustrated
in figure 2.5. To avoid the geometrical dependence of the conductance we
use here the conductivity ¥ = GLP~2. Tt is obvious that this random re-
sistor network will also undergo a percolation transition at p. = 0.5, where
the conductivity of the system will vanish, as there will be no more infinite
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Figure 2.3: Bond-percolation on a square lattice of size L = 30. The largest
cluster in the system is shown in red, whereas the other clusters containing at
least two nodes are shown in blue. Three different realizations are shown for three
different concentrations, one above, one on and one below the percolation threshold
pe = 0.5.

cluster percolating the system for p < p.. We can write from what we have
learned in section 2.2.2

%= %o(p—pe) (2.18)

for an infinite system. ¢ is the direct current (DC) transport critical expo-
nent. In his paper Kirkpatrick found that ¢t = 1.6 0.2 in three-dimensional
systems and between 1 and 1.3 in two dimensions. More recent numeri-
cal studies have refined those estimates and we now currently admit that
t ~ 2 in three dimensions and ¢ ~ 1.3 in two dimensions. For example
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Figure 2.4: Bond-percolation on a square lattice. The largest cluster in the
system is shown in red, whereas the other clusters containing at least two nodes are
shown in blue. Three different system sizes L = 15, 30 and 45 are shown for two
concentrations, one above and one on the percolation threshold p. = 0.5.

Gingold [13]| obtained ¢ = 2.003 & 0.047 on a cubic lattice and Derrida
found t/v = 0.95 + 0.01 [14] and ¢/v = 2.2 £ 0.1 [15], in respectively two
and three dimensions, using a transfer matrix approach. Normand found
t/v = 0.9745 £ 0.0015 [16] for the square lattice. In the four last estimates
cited here it is t/v and not ¢ that was obtained, as finite size scaling was
used. The values ¢ ~ 2 (or 1.3) can be extracted using v = 0.88 (or 4/3) in
three (or two) dimensions.

We can note here that the conductivity increases much slower than the
strength of the percolating cluster. Indeed P ~ (p — p.)? with 3 = 5/36
and § = 0.41 in two and three dimensions respectively, compared to the
exponents for the conductivity that are much larger. In fact we even see
that P approaches p. with an infinite slope, whereas 3 with zero slope. This
is due to two reasons. First, close to p. only a tiny part of the percolating
network participates to the conductivity, as most of its mass is in so-called
dead ends, branches that lead nowhere. The current carrying part of the
infinite cluster is called the backbone and scales with a critical exponent
v(D—Dy) = 0.53(1.14) [11,17] in two (respectively three) dimensions, which
are larger than (3, showing that the mass of the backbone becomes negligible
compared to the mass of the percolation cluster as the percolation threshold
is approached. Second, the shortest path l,,;,, leading through the system
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Figure 2.5: [Illustration of a random resistor network on a square lattice. The
empty bonds are shown as dashed lines and the occupied ones as plain lines.

on the percolating cluster, becomes very tortuous close to p. and scales
as (p — pe)’=Pmin) with v(1 — Dypip) = —0.173(—0.33) in two (three)
dimensions [18], therefore diverging as p. is approached.

As any critical exponent, ¢ is universal, depending solely on the dimen-
sionality of the system, and not on its details such as the type of lattice
(square, triangular, honeycomb) or the conductances distribution function
h(g). It should even stay the same for non lattice (continuum) systems that
we will consider in section 2.4. To better understand where this universality
comes from and why it is sometimes broken, as was shown in figure 1.1, we
need to introduce some suitable tools to study analytically the conductivity
of percolating systems.

Effective medium theory

The effective medium theory (EMT) was introduced for random resistor net-
works by Kirkpatrick [12| and provides a simple tool to obtain approximate
solutions for the conductivity equations on a RRN which can be written as

zk:gij (Vi) -v() =0, (2.19)
j=1

where the sum runs over the k£ neighbours of node i, and V; is the voltage at
node i, as shown in figure 2.5. Those equations are simply the conservation
equations for the current at each node. The effective medium theory equation
is obtained by replacing the influence of the RRN on the current flowing
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through one particular g;; by an effective medium consisting of a network of
identical conductances having the mean conductance of the network G. The
condition that the fluctuations average out over a large region in the system
gives the EMT equation

0 G—g B
| dovto) 5t e = o (220)

where 1(g) is the distribution function of the conductances in the system,
as defined in equation 2.17. This equation gives the best first order ap-
proximation of the fluctuations stemming from the fact that not all links
in the network have the same conductance, 1)(g) # §(G). The derivation
of those equations can be found in [12]. Using ¢(g) = (1 — p)d(g) + ph(g)
equation 2.20 is easily transformed into

o g—G 1—p
| 49 e = e (2.21)

This equation is valid for the bond-percolation problem, but it can also be de-
rived in other cases, notably for site-percolation and continuum percolation.
Those generalizations can be found for example in the book of Sahimi [19],
containing a lot of applications of the effective medium theory.

Solutions of the EMT and universality

Equation 2.21 can be exactly solved in some cases, starting with the RRN
considered in section 2.3 characterized by h(g) = 6(g — go), all occupied links
having the same conductance gg. It is straightforward to obtain the solution
for G

p—2/k
1-2/k
showing that the critical exponent of the EMT is t = ¢y = 1 and the crit-
ical concentration p. = 2/k. Though this result doesn’t yield the correct
exponent ¢ for the conductivity of the original system (¢t = 1.3 or t = 2),
it nevertheless holds a solution qualitatively in agreement with percolation
theory. This solution again also yields the concept of universality, as p. is
dependent on the underlying lattice, but ¢ is not. Moreover, close enough
to the percolation threshold, this equation leads to the same p — p. depen-
dence with ¢ = 1 for any well-enough behaved h(g). Indeed we can rewrite
equation 2.21 as follows:

1-p 00 g+ (k/2-1)G - (k/2-1)G -G
(k2 1) /0 dg 1(9) g+ (/2-1)G

Y e k/2G
= /0 dg h(g) /(]dgh(g)g+(k/2_1)G

G =g (2.22)

(2.23)
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As the distribution function h(g) has to be normalized, we obtain

1—pc_G/ w3 k/2—1 _G/ 224

where the last equality holds close to p., when G ~ 0. Now if [dgh(g)/g is
finite the above equation will yield again G « (p — p.)!, so that we obtain
the universal behaviour of the conductance as long as h(g) decreases fast
enough for small values of g.

Distribution-induced non-universality

Kogut and Straley were the first ones to propose that non-universality could
be induced by the distribution function h(g) [20]. Indeed as we saw above
universality is obtained as long as [ dgh(g)/g is finite. Let’s see now what
happens if we take

h(g) = (1 —-a)g *O(1 - g) (2.25)

with © the heaviside step function defined as ©(z) = 1 for x > 0 and
©(z) = 0 for x < 0. This distribution function is normalized for all &« < 1 and
the parameter o controls the behaviour for limg_g h(g). We now study the
critical behaviour of the conductance GG, when p — p., using equation 2.24.

o0 1 _l-a <

g 00 for a >0

We therefore obtain again the universal behaviour for a < 0, but we have
a problem for v > 0, in which case we have to be a little more cautious
to obtain the behaviour of G. We start again from equation 2.24 but with-
out simplifying the denominator in the integral, which cannot be done if
J h(g)/gdg does not exist. To solve this, we separate the integral into two

parts, in which one of the terms in the denominator is dominant. Using
w = (k/2 — 1) we have

pe(p — pe) /wG h(g) /°° h(g)
R o — dg —22 dg —22
Gp(1 —p.) 0 gg+wG+ wG gg—l—wG

9 hlg) [, hlg)
~ /0 dng—l—/degg (2.27)

(wG)™™ 11—«
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where the last equality is obtained for small G and a > 0, so that we can
finally write

1 (2.28)

(p — pe) for a<0
G x
(p—pe)T-= for a>0

We see here the appearance of non-universality, induced by the anomalous
behaviour of the distribution function h(g) diverging for g — 0. This situ-
ation can be fairly well understood by noting that in equation 2.27 the non
universal behaviour can be obtained by looking solely at the second integral
in the first line, which is of the form

> h(g) -1
—=dg = (9" )g>G}-
/G q {g>G}

This integral is the mean value of the microscopic conductances with g > G,

noted here as <g>{g>G}, so that we can obtain from equation 2.27

G oc (p =) (9 )V pacy- (2.29)

We see here that the non-universality stems from the divergence of the mean
local conductivity, superimposed on top of the normal divergence of G
(p — pe)to (which has a geometrical origin). This can be understood as
follows: far above p. the conducting path is made of lots of parallel routes,
so that the current can avoid the very low local conductances. When p,. is
approached, there are more and more singly connected bonds, through which
the whole current has to flow, so that h(g) will be probed for lower values
of g. Therefore the non-universal behaviour is induced by the fact that the
mean value of the conductance the current has to flow through in the system
diverges as p. is approached.

This result has since been refined outside the frame of the EMT and it
was shown that the critical exponent ¢ of a D-dimensional system with a
distribution function h(g) behaving as in equation 2.25, is given by [21,22]

if (D—2 L
tZ{tO o FA TN (2.30)

(D—2w+ 1= if (D-2v+ 1 >t

l-«o

Continuum percolation

The random resistor network model allowed us to understand the power-law
dependencies of the properties on the system size and phase concentrations.
It also allowed us to understand how non-universality could stem from a very
broad distribution function of the microscopic conductances in the network,
h(g). Now, in order to justify the observed non-universality in real systems,
we have to show why RRN can be used as realistic models of disordered
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conductor-insulators and how diverging h(g) can be obtained in this frame-
work. In this section we will look at several models of continuum percolation
and try to answer those questions, and finally justifying our particular choice
of the tunnelling-percolation model as basis for this thesis.

Swiss cheese model

The first experimental measurement of the conductivity of a percolating
system was made by Last and Thouless in 1971 [23]. They measured the
conductivity of a colloidal graphite sheet with holes randomly punched in
it. In this experiment they showed that the conductivity indeed behaved
as (p — pe)t with 1 < ¢t < 2. In fact, as it is a two-dimensional system,
the exponent is ¢ = 1.3, but their results were not good enough to allow
a precise estimation of ¢t. Anyway, it is clear that the results obtained for
the RRN apply to this particular percolation material. The Swiss cheese (or
random void) model depicts this situation, but also the flow of a liquid in
a sedimentary rock. We note here that even though electrical conductivity
and liquid flow are similar, they are not completely identical phenomena.
Indeed the volume flowing through a cylinder of radius R is proportional to
R*, whereas the electrical current flow is proportional to the section x RZ.
This can lead, as stated below, to different critical exponents for those two
phenomena.

We consider a continuous conducting phase with randomly placed spher-
ical insulating inclusions. The insulating spheres are penetrable and can
therefore overlap and conduction takes place in the remaining free space.
Kerstein [24] showed that this continuum percolation problem was equiva-
lent to a bond percolation problem on the edges of the Voronoi tessellation
of the sphere centers. A tessellation is a decomposition of space into regions
that fill the whole space with no gaps and no overlaps and the Voronoi tes-
sellation considered here is formed by such regions consisting of all points
closer to the center of one sphere than to any other. The construction of the
model and its associated network is shown in figure 2.6 for two dimensions.
A similar construction can be done in three dimensions, where the cells of the
Voronoi tessellation are polyhedra, and the percolation problem is defined
on the edges of those polyhedra. As this problem can be mapped on a net-
work, it has the same geometrical critical exponents as a lattice percolation
problem (such as v, 8, Dy, etc.).

Now regarding the electrical transport, each bond of the tessellation net-
work has a conductivity depending on the width of the channel passing
between the insulating spheres. Close to the percolation threshold, the con-
ductivity is governed by very thin such paths, bottlenecks. It was shown
that the distribution function of those conductivities is precisely of the form
of equation 2.25, with @« = —1 and o = 1/3 in two and three dimensions
respectively [25]. This model therefore leads to a universal behaviour of
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Figure 2.6: Illustration of the Swiss-cheese model in two dimensions. The straight
lines show the bonds of the associated network, dotted lines are missing bonds. This
figure is taken from Ref. [25]

the conductivity ¥ in two dimensions, but to non-universality in three di-
mensions, giving ¢ = 2.38. In this same article it is also shown that this
model gives non-universal exponents for the flow of viscous fluids through
the system ¢t = 2.5 (t = 4.38) for a two-(three-)dimensional system.

In the framework of conductive composites, this model applies in prin-
ciple only to composites where the size of the conducting particles is much
smaller than the typical insulating grain size, so that the conducting phase
can be safely approximated by a continuum. This model has been gener-
alized to yield even larger ¢ exponents, but with no strong physical back-
ground [26]. Anyway, non-universality has been reported also for composites
whose microstructure cannot be described by a random-void construction,
as for the case of some carbon-black/polymer composites displaying ¢ values
much larger than ¢y (see figure 1.1).
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Inverted random void model

The inverted random void model is the same model as above, but with
the phases being exchanged. The current now flows through the spherical
inclusions and the remaining space is insulating. The mapping on a network
is now very simple. The nodes are the center of the spheres, and the edges
connect neighbouring overlapping spheres. The conductance of the bonds is
now affected by the range of overlap of neighbouring spheres. If the spheres
barely overlap, the resistance will be increased as the current has to flow
through a very thin region. This model again gives rise to a distribution
function of the form h(g) x g~¢, but with values of & too small to break the
universality of electrical transport [25].

This model could be a fairly good approximation for electrical conduction
in composite materials consisting of an insulating matrix filled with conduct-
ing particles, where transport would occur through contact. But as we have
seen, this model predicts a universal behaviour and is therefore unable the
account for the experimentally-observed non-universal transport exponents.
On the other hand the Swiss cheese model can lead to non-universality, but
to just one class of non-universality, with a fixed value for the transport ex-
ponent, ¢t = 2.38, again not accounting for the very broad range of observed
t values.

Tunnelling-percolation model

The tunnelling-percolation (TP) model was introduced by Balberg [27] to ex-
plain non-universality in conductor-insulator composites. He proposed that
the mechanism governing electrical conduction in most disordered conductor-
insulator composites was tunnelling. This model is somewhat similar to
the inverted random void except that the conduction between overlapping
spheres is by tunnelling, giving an exponential dependency of the conductiv-
ity on the distance between the particles. Indeed the tunnelling conductance
between two particles separated by a distance r is given by

g = goexp (—2r> (2.31)
3

where gg is a constant prefactor and £ the tunnelling decay factor, being
typically of the order of a few nanometers. In such a model, all particles are
electrically connected to all others, but because of the very rapid decay of the
tunnelling conductance with r, we consider that conduction is dominated by
nearest-neighbour tunnelling. Here we suppose that the conducting particles
are point-like (with diameter o1 = 0), therefore the distribution function of
the distance between nearest neighbouring particles is given by the Hertz-
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distribution |27, 28]

3r2 r3
P(r) = —5 exp (—a3> (2.32)
where a is the mean nearest-neighbour inter-particle distance. Balberg then
simplified this distribution function into its “one-dimensional form”, still car-
rying the essence of the problem P(r) = (1/a)exp(—r/a). Combining this
with equation 2.31 we can obtain

l—a g\ 3

h(g) = = with a=1—- = (2.33)
go \ 9o 2a

leading to non-universality for sufficiently small £/a values. The correspond-

ing transport exponent is t = v 4 2a/¢ which can take any value t > ¢y and

therefore account for all experimental ¢ values.

Why tunnelling transport mechanism?

The choice of tunnelling as dominating conduction mechanism to model dis-
ordered conductor-insulator composites is motivated by several studies. It
has been shown that the thermal and voltage [29,30] and ac stress [31] de-
pendencies of carbon-based disordered composites were well reproduced by
fluctuation-induced tunnelling. Also the piezoresistivity in ruthenium-based
metal-insulator composites supports a tunnelling conduction mechanism [32].
A study of field, temperature and stress dependence of graphite based con-
ducting polymers also leads to the conclusion that tunnelling processes are
of major importance above but close to the percolation threshold [33, 34].
Now in thick-film resistors, an extensive experimental study of their electri-
cal properties (thermal, field and frequency dependence of the conductivity,
dielectric constant, Hall mobility and Seebeck coefficient) was done by Pike
and Seager [35] and lead to tunnelling conduction as the only choice explain-
ing their experimental results.

A last important result supporting the tunnelling-percolation picture in
thick-film resistors is a study of piezoresistivity. Indeed, as we have seen, the
transport exponent, obtained from the tunnelling-percolation model, when
non-universal, depends on the mean nearest neighbour distance a. It can
therefore be changed by an applied external strain, leading to a charac-
teristic behaviour of the piezoresistivity I' as the percolation threshold is
approached [5]. It is easy to show (and we will come back to this later on,
in section 4.4.2) that

r Lo, b=t 9.34
a Fo—%ln(x—azc), t >t (2.34)
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which has been experimentally well confirmed and is a feature unique to the
tunnelling-percolation model [5]. All those experimental results therefore
comfort our choice to study models in which tunnelling is the dominating
transport mechanism.

Nevertheless there are still open questions with this tunnelling-percolation
model. First of all, in many composites, this model would predict values of
t =~ 50, taking reasonable values for a = 50 nm and £ = 1 nm, whereas the
largest ¢ values experimentally observed are of the order of t ~ 10 [36]. The
second issue is the one-dimensional form of the Hertz distribution function
that is used in the model. As we will see in more detail in chapter 4, this
was physically justified for the case of segregated conductor-insulator com-
posites [37], but has no physical origin in the non-segregated ones. Moreover,
even in the segregated composites, a more careful analysis of the situation
shows that this one-dimensional distribution function cannot be obtained in
real systems. Therefore we will study in this thesis the tunnelling-percolation
with more realistic nearest-neighbour distribution functions, on lattice and
in the continuum, trying to lift the weaknesses of the original tunnelling-
percolation model.
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Chapter 3

Thick-Film Resistors

In this chapter we will examine the principal experimental results obtained
for the electrical transport properties of Thick-Film Resistors (TFRs), which
are the materials guiding the theoretical work of this thesis. We will present
an experimental study of high-voltage trimming of TFRs and we will also
discuss their fabrication process and use as model systems for our upcoming
theoretical studies. These composites are of particular interest because they
are both widely used in applications and have several interesting theoreti-
cal features. Indeed, they have a complex microstructure, due to segrega-
tion of the conducting phase, and complex transport properties, dominated
by inter-grain tunnelling. They present non-universal transport exponents,
large piezoresistive responses and unusual thermal coefficients of resistance,
properties that need to be better accounted for by theoretical models.

Composition and fabrication process

Thick-film technology is mainly used in hybrid electronic circuits. One of
its main characteristics is the method used for the film deposition, namely
screen printing. Screen printing was traditionally used in art reproduction,
but was modernized to allow a more precise film deposition and is illustrated
in figure 3.1. This process is very simple: the paste is forced through a
screen onto the substrate by a squeegee. The screen is usually made of
finely woven stainless steel wires, with an UV-sensitive emulsion on top.
The desired pattern is obtained by positive or negative exposition of the
screen and development to remove the emulsion in the pattern regions. The
standard substrate is aluminum oxide, a very stable and chemically quite
unreactive compound. Several successive layers can be deposited and co-
fired, as long as the pastes are dried before a new deposition step.

There are mainly three different paste types: conductive, insulating and
resistive. In this work we study the characteristics of the resistive pastes,
which serve as passive resistors in hybrid circuits, but also as strain-sensing
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Figure 3.1: Illustration of the screen-printing process

elements, mainly due to their large piezoresistance. Modern resistive pastes,
usually of resistivity around 10 m2-m and above, consist basically of a mix
of two powders: a fine-grained (20 — 100 nm in diameter) conductive phase
(RuOg or ruthenate) and a lead borosilicate glass frit (1 —3 pm). A tem-
porary organic vehicle (solvent and binder) is added in order to control the
viscosity and allow screen-printing.

After screen-printing, the pastes have to be dried and fired. This can
be done in one single firing cycle [38|, constituted of a heating step, slowly
increasing the temperature (100 K/min) up to the peak temperature (typ-
ically 850°C, attained in 10 minutes), a high temperature plateau and a
cooling stage. The drying is done at temperatures below 150°C leading to
the evaporation of the volatile organic vehicle. After this first drying step,
the remaining (polymer) binder gives the dried film moderate mechanical sta-
bility, so that the screen-printed film can be manipulated for other printing
steps. Then between 150 and 450°C, the remaining organics are essentially
removed. Finally, towards the end of the heating ramp (from about 400 to
700°C) and during the high temperature dwell (typically around 10 minutes),
the glass frit softens and sinters. Various chemical and physical reactions may
also take place at this temperature. At last the system is cooled down to
ambient temperature, again in typically ten minutes [38].
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Microstructure of TFRs

As pointed out in the preceding section, a TFR is made of a mixture of
large insulating grains and a finer conducting powder. Because of the size
difference, the conducting grains are forced into the spaces left over between
the large insulating ones. During the firing step, the glassy phase softens
and sinters, wetting and enclosing the conducting grains, but the final com-
pound basically conserves its initial geometrical structure. This particular
microstructure, with large insulating regions surrounded by small conduct-
ing grains, is called a segregated structure. A scanning electron microscopy
image of an RuOs-based thick-film resistor is shown in figure 3.2, where this
segregated microstructure is clearly seen. We see that there are extended
insulating regions of several um. The conducting grains form both large
conducting regions of sizes up to a few um and one-dimensional like chains.

What is interesting about segregation is that it lowers the percolation
threshold, allowing to obtain electrical conduction at lower filler concen-
trations (around a few percent volume fraction). This is a valuable effect,
since the conducting powders are usually very expensive. In other compos-
ite systems the lowering of the percolation threshold can also be desired to
benefit from the properties of the charge, without degrading too much those
of the matrix. For example low filler contents in conducting polymers al-
low to maintain the mechanical properties and ease of process of the initial
insulating phase, also not increasing too much its density, which can be of
importance for example in aerospatial applications. The segregated structure
of TFRs is also interesting from the theoretical point of view, as it adds some
geometrical inhomogeneity to the system. This will be studied in chapter 6
using a model specially designed to represent the structure of TFRs.

Transport properties and piezoresistivity

We now turn to the transport properties of the TFRs. As we have seen in
figure 1.1, the TFRs are an important class of the composites presenting
transport non-universality. Measurements of the conductivity of four series
of RuOs-based TFRs, fabricated by our group, are presented in figure 3.3.
Our samples were prepared starting with a glass frit with the following basic
composition: PbO (75% weight), BoOs (10% wt.) and SiOy (15% wt.), with
additional 2% wt. of Al;O3 added to avoid crystallization. The softening
temperature of this glass was shown to be around 460°C. After milling, the
glass powder presented an average grain size of about 3 um. The character-
istics of the four series of TFRs are combinations of two different RuOs9 grain
sizes and two firing temperatures Ty and are presented in table 3.1. Those
experimental results are taken from Ref. [5], where more details can be found
about the sample preparation. The simple power law of equation 1.1 was
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Figure 3.2: SEM image of the surface of a RuOs-based TFR, with conductor
volume fraction x ~ 0.08, conducting grain size of 40 nm and average glass grain
size of 3 pum after milling. This image is taken from the work of Vionnet [5]. The
conducting phase appears dark, whereas the insulating regions are light-coloured

fitted to the conductivity data of figure figure 3.3(a) and the resulting fits
are then shown as black lines in figure 3.3(b) in double logarithmic scale. It
is clear from this figure that the conductivity of TFRs is well described by
equation 1.1. For comparison the universal behaviour is shown as a black
dashed line, evidencing that only the A1l series has a universal behaviour,
whereas the three others have transport exponents ¢ > tg. The so extracted
transport exponents t and critical volume fractions x. are reported in ta-
ble 3.1. We see from this table that the critical volume fraction of those
TFRs is typically around 6%. This is far below the percolation threshold of
a dispersion of spheres with conduction through contacts, which is x. ~ 0.64
(random close packing of hard spheres [39]). This difference is mainly due
to the segregation of the conducting phase, and probably to a non-contact
conduction mechanism such as tunnelling.

The piezoresistive factor I', of the same series of samples, is shown in
figure 3.4(a), where we see the strong enhancement of I" as the percolation
threshold is approached, at least for three of the four series (the Al series
presenting a a constant I'). Now in panel (b) of this figure, we show that I"
has in fact a logarithmic divergence for the three non-universal sample series,
whereas it is constant for the last one, having a universal transport exponent.
The fits to equation 2.34 are shown as straight lines in this panel, confirming
the good agreement with a logarithmic divergence. —dt/de, given in table 3.1
is the slope of the logarithmic divergence. This feature, meaning a logarith-
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Table 3.1: Characteristics of the various samples studied in Ref. [5] with fitting
parameters of Egs.(1.1) and (2.34)

Label Al A2 B1 B2
RuO; grain size 400 nm 400 nm 40 nm 40 nm
Ty 525°C 600°C 525°C 600°C

Xe 0.0745 0.0670 0.626 0.525

In(Zp[Sm~1]) | 11.14+0.3 14.24+0.2 14.3 £ 0.5 13.7£0.7
t]|215+£0.06 3.84+0.06 3.17£0.16 3.15+0.17
T'o| 16564+45 —-264+£48 —459£9 —-579+72

dt/de | -0.6£1.2 162+15 26.1+27 33.0+£2.1
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Figure 3.3: (a) Conductivity ¥ as a function of RuOs volume fraction x for
four different series of TFRs. (b) In-ln plot of the same data of (a) with fits to
equation 1.1 shown by solid lines. The dashed line has slope ty = 2 corresponding
to universal behaviour of transport. The prefactor ¥, critical concentration x. and
transport exponent ¢ values, obtained from the fits, are reported in Table 3.1. This
figure is taken from Ref. [5].

mic divergence for non-universal systems, and a piezoresistance independent
of the concentration for universal series, is one of the main experimental
results supporting tunnelling-percolation origin of non-universality, and will
be repeatedly verified in the models developed in this thesis.

The representation of I' as a function of In(z —x.) is not very practical, as
it is dependent on the determination of the percolation threshold z.. From
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Figure 3.4: Piezoresistive factor I' = ' + 2I" | of the same TFRs of figure 3.3,
plotted as a function of RuO, volume concentration x in panel (a) and as a function
of In(z — z.) in panel (b) together with fits (solid lines) to Eq. (2.34). The fit
parameters dt/de and Ty are reported in table 3.1. The inset shows the fitting
parameter I'g, together with 'y = —1.9dt/de (solid line), which is of the form
predicted by the TP model. This figure is taken from Ref. [5].

equation 2.34 and 1.1, it is clear that I" does not only present a logarithmic
divergence as a function of z — z, but also as a function of the conductivity
Y. We can rewrite Eq. (2.34) as

LT t =t )
"\ To+ +%m(zo/s), >t '

The results of figure 3.4 are shown as a function of 3 in figure 3.5, together
with the fits to the above equation 3.1. This is how the piezoresistivity will be
mostly studied in the remainder of this work, as it is a representation that is
completely independent from any model and from the fit of the conductivity
to equation 1.1. Those experimental results will be examined and compared
to the theoretical work of this thesis in later chapters.
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Figure 3.5: Piezoresistive factor I' = ['| + 2I', plotted as a function of the
logarithm of the conductivity In(X), where ¥ is expressed in [Sm™'], for the same
samples as in figures 3.4 and 3.3. The lines are fits to equation 3.1

High-voltage trimming

Another interesting property of TFRs is their sensitivity to high voltage
pulses. TFRs, when subjected to high-voltage pulses, undergo microstruc-
tural changes, altering the value of their resistance. This is of course not
desired for electronic applications, as an undesired voltage pulse, due for
example to a static electricity discharge, can permanently change the values
of the resistances and damage the circuit. On the other hand this sensitiv-
ity to voltage pulses can be used to precisely adjust a resistor to a desired
value. Indeed, in thick-film technology the production of a resistor with a
precise value is very difficult. The variability of a resistor compared to its
design value is as large as 20 —30% [40], and it usually has to be adjusted in
order to fit the requirements for the production of reliable electronic devices.
In industrial applications, this is usually done by laser trimming, though it
damages the resistor, lowering its stability and causing a post-trim drift [41].
Pulse voltage trimming has several advantages compared to laser trimming.
It is a cheap and effective method (it was shown to allow adjustments to
less than 1% for RuOgy based TFRs [40]), allowing trimming of buried or
very small resistors. It was shown to be reversible [42,43| and to make the
trimmed resistors less sensitive to voltage pulses. Nevertheless this technique
is not used in industrial applications because it causes a shift of the thermal
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coeflicient of resistance and has the disadvantage to make the resistors more
sensitive to temperature, limiting its application to fields where the resistors
aren’t exposed to temperatures higher than 100°C [44].

Description of experiments

We present here an experimental study of high-voltage trimming of a series
of TFRs, with the same compositions as the samples presented in section 3.3.
Samples with different volume concentrations x of RuOs, with 40 and 400 nm
grain sizes, are considered, and the samples were fired at T = 625°C. More
details about this study can be found in Refs [45,46].

The setup used for the voltage trimming is rather simple. A capacitor is
charged to the desired high voltage and then discharged through the resis-
tance being trimmed. Our setup allows charging the capacitor up to 1500 V
and its capacity can be changed between 0.1 and 10 nF. The value of the re-
sistance is measured between two voltage pulses, or less often as the number
of pulses gets high.

Experimental results

In this study we decided to set the same trim voltage and capacity for all
measurements. We used respectively 500 V and 0.33 nF, and the trimmed
resistors have a length of 0.8 mm, which gives an electrical field of 625 V/mm.
Typical trimming results are shown in figure 3.6 where the conductance %
of the sample relative to its conductance before trimming ¥>p is shown as
a function of the number of pulses applied to the sample. The first pulses
usually lead to important changes in the resistivity of the sample, which
then tends toward an asymptotic final value after trimming >t. We can
already see from this figure that the conducting phase volume fraction has a
strong influence on the sensitivity of the resistors to voltage pulses and that
the conductivity of the most sensitive samples can be trimmed up almost an
order of magnitude, as shown by the results for the sample with x = 0.064.

In what follows all samples were subjected to 2300 voltage pulses, so that
the conductivity of the trimmed samples ¥ corresponds to the conductivity
after 2300 pulses. In the left panel (a) of Fig. 3.7 we show the inverse of the
relative variation of the conductivity (X;/X1) as a function of the RuOq
volume fraction, for the two particle sizes. If we define the sensitivity to
trimming as

TS =1-%1/S7 (3.2)

one can notice that it increases monotonically as the volume fraction of the
conducting phase is diminished. Tobita et al. had observed [40, 47| that
the sensitivity to trimming was greater for larger conducting particles. This
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Figure 3.6: Evolution of the normalized conductivity ¥/¥; during trimming, for
samples with 40 nm RuO, particles and for different volume fractions.

tendency is also observed here though it seems that the most important
parameter governing this sensitivity is the volume fraction of the conducting
phase. There seems to be a critical behaviour of the T'S as a certain critical
RuOs volume fraction is attained. The first intuition is of course that this
volume fraction is the same critical concentration at which the conductor-
insulator transition takes place. We calculated this critical concentration
from conductivity measurements for 8 different volume fractions for both
RuO4 particle sizes and found

. = 0.036+0.008 for 40 nm
. = 0.059 4 0.002 for 400 nm

If we now look at the conductivity change ¥1/%t as a function of relative
distance to x., shown in Fig. 3.7(b), we see that for both particle sizes,
40 nm and 400 nm, Y1/Y1 seems to vanish at the percolation threshold.
This shows that the effectiveness of voltage trimming is somehow governed
by the underlying current-carrying percolation network. More details about
these results can be found in Ref. [45]

Post trim stability

Let us discuss now the stability of the TFRs after trimming. As already
pointed out, the values of the resistors are expected to drift after trimming,
especially if exposed to temperatures higher than 100°C. The post-trim sta-
bility was assessed by placing the trimmed samples in an oven for 80 hours at
100°C, followed by 85 hours at 250°C. Their characteristics were periodically
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Figure 3.7: Relative change of the conductivity during trimming ¥;/Yr, as a
function of RuO2 volume fraction x (panel (a)) and = — z. (panel (b)), for samples
with 40 (black circles) and 400 nm (grey triangles) RuO2 mean grain size.

measured during this period of time.

Fig. 3.8 shows the evolution of the conductivity of the 400 nm RuOs
grain size series during trimming and their thermal stability as a function
of RuO3 volume fraction. It shows the initial conductivity, the conductivity
after trimming, the conductivity at the end of the thermal treatment at
100°C and finally the conductivity after the 85 hours at 250°C. As already
noticed in figure 3.7, samples with lower filler content are more sensitive to
trimming. We notice that for all samples studied here, the trimming leads
to an increase in conductivity. More interestingly we can see that for all
samples except for the one closest to the percolation threshold, the thermal
treatment also leads to an increase in conductivity, and not to a recovery of
the initial value of the conductivity. The drift goes in the same direction as
the change induced by trimming.

In Fig. 3.9 we show the evolution of the normalized conductivity /¢
during the thermal treatment. We can see that the change in resistivity
occurs mostly during the first hours in the furnace, followed by a slower
drift. Notice that the lines are just a guide for the eye, but that the slopes of
the true evolutions of the conductance are probably even larger during the
first moments at 100°C and at 250°C than it seems on this graph. We also
see that samples with lower conductive filler content have a larger post trim
drift for the 40 nm grain size series, but we obtained the opposite result for
the 400 nm series (this is not shown here, but this result can be found in
Ref. [46]). Intuitively we would think that the larger the effect of trimming,
the larger the post trim drift, which is only the case in our results for the set
of sample with 40 nm grain sizes. For the other set of sample this is not the
case, and no clear relation could be established between the post trim drift
and the relative change of conductivity during trimming.

38



3.4. High-voltage trimming

T T T T T T T T T
I nitial
[ After Trimming
B After 80 hours at 100°C T
After 85 hours at 250°C ]

-
o

Conductivity [Sm™]

o
—_—

I

-15 11 95 85 8 75 73 7 64
Volume fraction in %

Figure 3.8: Change of conductivity induced by trimming and its thermal stability,
as a function of conducting filler volume fraction for the sample set with 400 nm
RuOs grain size.
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Figure 3.9: Evolution of the normalized post-trim conductivity of several samples
from the 40 nm series during thermal treatment. The first 80 hours were at 100°C
and then at 250°C.
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We also studied the thermal coefficient of resistance (TCR) of the two
sets of samples. The TCR was shifted upwards by the voltage trimming for
all samples, as shown in Fig. 3.10. But contrary to what is observed for the
conductivity, the shift is maximal for values of the volume fraction x in the
middle of the range studied here. It decreases for very small and large values
of x. Moreover we see that the TCR. evolves towards its original value during
thermal treatment, contrary to what is observed for the conductivity (this
is also the case for almost all samples of the 40 nm series).

Volume fraction of filler .
1% 9.5% 8.5% 8.1% 7.5% 7.3% 7.0% 6.4%)

100

< -100
-200

-300

TCR [ppm K
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Figure 3.10: Shift of the thermal coefficient of resistance during trimming and
its thermal stability for the 400 nm TFR series.

Conclusion

We see from this study that TFRs can be very sensitive to voltage pulses,
especially for concentrations close to the percolation threshold. The post-
trim drift remains quite low, as long as the resistors are not subjected to high
temperatures. We have seen here that the drift remained unimportant after
80 hours at 100°C. On the contrary, when subjected to a thermal treatment
at 250°C the drift becomes very important, especially during the first hours
at this temperature. These results will be analysed in more detail in chapter 4
of this thesis.

Why TFRs as model composites

Though presenting results of broad interest for the understanding of the
transport properties of conductor-insulator composites, this thesis is mainly
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focused on TFRs. This is because, as seen above, TFRs are particularly
interesting from a theoretical point of view, presenting non-universality of
transport, large piezoresistive effect and a complex microstructure, and from
a practical point of view because of their widespread use in industrial appli-
cations. Now it is also important to discuss whether TFRs are well-suited
as model composites, to check the theoretical results obtained in this work.
We will therefore discuss now the use of TFRs as ideal model composites,
compared to other composite materials such as carbon-based conducting
polymers.

Microstructural properties

All models developed and presented in this thesis rely on a hypothesis of
homogeneous mixtures of its constituents, so that the system of spheres is
in an equilibrium state. The lattice model of chapter 4 considers hard-core
conducting particles randomly placed in one dimensional channels, the con-
tinuum models of chapters 5 and 6 equilibrium dispersions of spheres in a
three-dimensional space, limited, or not, to regions left over by a segregat-
ing insulating phase. This equilibrium state might not always be achieved
in conductor-insulator composites. For example, the results presented for
the conductivity and piezoresistivity of TFRs in figures 3.3 and 3.4 stem
from pastes prepared by our group, homogenized in a three roll mill (Ex-
akt 50), with homogeneous mixture guaranteed down to 20 ym according to
the manufacturer’s specifications, though our pastes contain glassy grains of
~ 3 pm in diameter and conducting powders with sizes of the order of 40 nm.
Good dispersion is therefore not guaranteed, and aggregates of conducting
particles might remain after the homogenization step, mainly leading to an
increase of the percolation threshold. Now during the firing step, sinter-
ing favours the splitting of such aggregates and the homogenization of the
composite. Interactions between the conducting particles or between the
conducting and insulating phase can also hinder the good homogenization
of the composite. In our sense, those problems are of minor importance
in TFRs, perhaps influencing somewhat the percolation threshold, but not
affecting much the general interpretation of transport properties given in
this work. They might change the precise form of the interparticle distance
distribution function, but its main features, governing the transport expo-
nents, should not be altered too much. Moreover this problem is not specific
to TFRs, on the contrary it seems to be of greater importance in polymer
based conductor-insulator composites. Indeed in TFRs, segregation and TP
allows to explain the low critical volume fractions observed, whereas a close
look at the percolation thresholds obtained for polymer-based composites
shows that they are too low to be explained by a TP model with a ho-
mogeneous dispersion of the conducting particles [48], which suggests that
interactions or unexpected segregation are important in those composites. It
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was shown that Coulomb and London-Van der Waals interactions leaded to
aggregation of carbon-black particles dispersed in epoxy resin [49]. This phe-
nomenon drastically changes the percolation threshold and microstructure
of the composite, leading to the formation of a segregated structure.

A clear advantage of TFRs over other classes of composites stems from
the good control over the sizes and shapes of the constituents, allowing also
to tune segregation. The approaches used to prepare metal-oxides pow-
ders include precipitation, spray pyrolysis, solid state reactions, sol-gel etc.
and selected methods have been employed to narrow the size distribution
of the conducing particles [50]. For the glass particles, besides the com-
mon milling operations, sol-gel techniques permit to prepare mono-dispersed
glassy grains. These fabrication procedures offer the capability of controlling
the relative sizes of the metallic and insulating grains, and so of tuning the
segregation of the conducting phase in a controlled way, at least in the pre-
firing stage [50]. In comparison, the carbon-black/polymer system, which is
maybe the most studied conductor-insulator composite, has a much less ideal
microstructure. The carbon black particles have very complex and irregular
shapes [51], increasing their excluded volume, diminishing the percolation
threshold and making them very different from dispersions of spheres or
other simple geometrical objects.

Chemical properties and stability

Another advantage of TFRs compared to other composites is their long-
term stability. The glassy phase of TFRs makes them hermetic to external
degrading agents such as humidity, and the aluminum oxide substrates are
also very stable. It was shown that the resistivity of common RuOs-based
TFRs showed drifts of less than 1% after more than one month storage at
250°C [38].

Now during the firing process, chemical reactions between the glassy and
the conductive phase and with the substrate can take place. This can nev-
ertheless be quite well controlled. For the low-firing (i.e. 600°C) composites
prepared in our laboratory, little reaction between the composite and the
substrate takes place at firing temperatures below 700°C. Above this tem-
perature, the surface of the alumina substrate desaggregates, mainly due to
reactions between the glassy phases of the aluminum oxide and of the com-
posite [38]. This reaction can also be well controlled by the choice of the
glass composition. Low firing temperature TFRs were developed in which
no glass-RuQOs chemical reactions were detected, the composite remaining a
two-phase compound with no formation of a new phase during firing [38].
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Mechanical and thermal Properties

Also from the mechanical point of view, TFRs are closer to our ideal-
ized model system than polymer-based composites. Indeed, in contrast to
polymer-based composites, the glassy phase of TFRs is typically not prone
to creep and relaxation phenomena in ambient conditions, providing there-
fore high mechanical stability to the composite. As we will see later, we
idealize the composites as having uniform mechanical properties, i.e. that
the conducting and insulating phases have the same elastic constants, so
that the strain is homogeneous in the composite. This is not the case in
TFRs, as RuO2 has bulk modulus K ~ 270 GPa whereas the glassy phase
has typically K ~ 40 — 80 GPa, depending on composition [52|. The authors
of Ref. [52] showed that this heterogeneity could be treated separately from
the percolation problem and leads to an enhancement of the piezoresistivity.
Again it is worth noting that the mechanical heterogeneity, indeed present
in TFRs, is a lot worse in polymer-based composites, in which the difference
of bulk modulus between the polymer and the filler can be of two or more
orders of magnitude.

Let us now discuss the thermal properties of TFRs. The overall thermal
mismatch between the composite and the substrate is quite low. Indeed the
lead-borosilicate glass has a thermal coefficient of expansion (TCE) around
8 ppm/K, the RuO2 an average value of 5 ppm/K and the aluminum oxide
substrate of 7 ppm/K [38]. However the local thermal mismatches are much
higher in the case of RuOs-based TFRs. Indeed, rutile RuO2 has anisotropic
TCE values of +9 ppm/K in two axes and —2 ppm/K in the third one [53].
This local thermal mismatch is one of the possible causes of drift at 250°C,
together with more global mismatch between the resistor and the substrate.

Conclusion

The work in this thesis is mainly theoretical, but it was guided all along
by just one goal: explaining the special characteristics of TFRs. In that
sense this thesis is really focused on TFRs. Nevertheless, this work is also
quite general because most results are also applicable to the other classes of
compounds presenting transport non-universality, such as carbon based con-
ducting polymers and granular metals. TFRs are maybe the most complex
and interesting class of conductor/insulator composites, presenting several
unusual properties: transport non-universality, large piezoresistance, high
sensitivity to voltage pulses and low percolation thresholds due to segrega-
tion. We have also seen in this chapter, that compared to other composite
conductor-insulator materials, TFRs have several advantages and represent
an ideal model system. They present good long term, chemical and ther-
mal stability and their microstructure can be well controlled. Mechanically,
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though there is a clear mechanical heterogeneity between the glassy phase
and the filler, they have the advantage of presenting no creep and relaxation
phenomena at ambient temperature, contrary to polymer based composites,
providing a high mechanical stability to the composite. All this makes TFRs
an ideal choice for studies of the transport properties in segregated disordered
conductor-insulator composites.
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Chapter 4

Electrical conduction in
tunnelling-percolation lattice
models

From now on, we will be mostly concerned with the description of the elec-
trical transport in composite materials made of a dispersion of conduct-
ing particles in an insulating matrix. In this chapter, I will first present
in more detail the classical tunnelling-percolation (TP) model already pre-
sented in section 2.5, discuss how non-universality is obtained in the classical
TP framework and point out the key ingredients needed for the appearance
of non-universality. We will see that one-dimensionality is essential in that
framework and we will show, by introducing a generalization of the classi-
cal lattice TP model, that non-universality is not obtained anymore for this
more general model. Nevertheless, a careful study of the transport proper-
ties of this model will lead to the introduction of the concept of apparent
non-universality, which is from our point of view, sufficient to explain the
experimentally observed non-universal transport exponents. Apparent non-
universality will be a key feature in this thesis.

In the second part of the chapter we will study the piezoresistivity I' of
the generalized lattice TP model. We will again first present the results for
the classical TP model, leading to a logarithmic divergence of the piezoresis-
tive factor as the percolation threshold is approached for systems presenting
a non-universal transport exponent and a constant piezoresistivity for uni-
versal systems. We will then show that in the generalized model, apparent
non-universality leads to a crossover between these two behaviours, namely a
logarithmic increase of I" followed by a saturation for values of p close enough
to the percolation threshold p..

We end this chapter by an interpretation of high-voltage trimming, based
on the models presented in this chapter. We show here that trimming drives
the transport exponent towards its universal value, which can be explained
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by our simple model.

Origin of non-universality in
tunnelling-percolation models

In this section, I present a discussion from a paper of Grimaldi and coau-
thors [37], about the interplay between the spatial distribution of the con-
ducting grains, within the insulating matrix, and the transport properties.
This discussion also makes clear which ingredients are needed to obtain non-
universality, and therefore points at the key assumption behind the clas-
sical tunnelling-percolation model. This article is of fundamental impor-
tance for this chapter, as it presents a microscopic derivation of the classical
tunnelling-percolation model, which I then generalize and analyse in the rest
of the chapter.

Now let us first recall the results on which the upcoming discussion will
be based. As stated in section 2.3, the conductivity ¥ of a random resistor
network, with a fraction p of conducting bonds and a fraction (1 — p) of
insulating ones, follows a power-law

¥ = Yo(p — pe), (4.1)

where Yy is a constant prefactor and ¢ is the D.C. critical exponent, having
a universal value, depending solely on the dimensionality d of the system.
Non-universality can arise if the distribution of the local conductances, g, of
a random resistor network has a strong enough divergence for small g. More
precisely, if the conducting bonds are chosen from a distribution function
h(g), then if

lim h(g) x g~ ¢, (4.2)
g—0

the transport exponent ¢ is given by [21,22]:

] _ 1
t:{ to if (d 2)V+ 1_a<t0 (4'3)

(d-2v+ 1 if (d—2v+ 1 >t

Therefore non-universality arises for a > a., with a, = 0.107 in three di-
mensions (easily obtained from the above equation, by using ¢ty = 2 and
v =0.88) and a, = 0.231 in d = 2. The whole question is now to show what
the key assumptions are, that lead to the appearance of an h(g) of the form
of equation 4.2.

Let us consider a generic conductor-insulator compound where the con-
ducting grains are embedded in an insulating host. As discussed in the end of
chapter 2, we consider that the dominant transport mechanism, in this sit-
uation, is tunnelling between neighbouring conducting particles. Electron
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tunnelling between small grains imply charging energies and a Coulomb
interaction between charged grains, affecting the overall transport prop-
erties, especially regarding behaviour in temperature. Here we focus on
high enough temperatures and large enough conducting particles to neglect
those two effects, so that the electron transfer is dominated by simple tun-
nelling [54, 55,56, 57, 58]. With the conducting particles approximated by
impenetrable spheres of diameter o1, this leads to inter-grain conductivities
of the form [37]

g(r) = goe 2/, (4.4)

where gq is a prefactor, that can be set to unity without any loss of generality,
£ is the tunnelling decay factor and r the distance between the centers of the
two spheres. Due to the exponential decrease of the tunnelling conduction
with the distance r, contributions from far away spheres can be neglected
so that we consider that only nearest-neighbour tunnelling contributes sig-
nificantly to the overall conductivity of the system. Thus, the distribution
function of the tunnelling distances is approximated by the nearest-neighbour
distance distribution function P(r) (P(r)dr = probability that the particle
nearest to a reference particle is at distance between r and r+dr). It is clear
that in fact at least nearest and next-nearest neighbours are needed in order
to obtain a connected network, but this simplification is nevertheless use-
ful, as the distribution function P(r) is known, contrary to the distribution
function for next-nearest neighbours, and as it captures the essential physics
of the problem. h(g) can be easily obtained from P(r) as follows:

h(g) = /drP(r)(S(g — g(r)). (4.5)

Of course, in real composites, P(r) might depend on the particular mi-
crostructure of the composite, which could itself depend on processing meth-
ods, interactions between the insulating and conducting phase and interac-
tions between the conducting particles, among others. Now in order to get a
general and simple model, we imagine that the interactions can be neglected,
so that the conducting spheres can be assumed to be distributed completely
randomly in space (Poisson distribution). It can be shown that for a random
d-dimensional distribution of points, the nearest-neighbour distance distri-
bution function is given by [28§]

P(r) = psp(r)e >, (4.6)

where sp(r) and vp(r) are respectively the surface and volume of a D-
dimensional sphere of radius r. p is the number density defined for a system
of linear size L containing N conducting particles as p = N/LP.

Now as we are interested only in studying the appearance of non-universality,
which is driven by the behaviour of h(g) for g < 1, we can, for simplicity,

47



Chapter 4. Electrical conduction in funnelling-percolation lattice
models

keep only the leading term of P(r) for r > 1, behaving as

P(r) « e~ (r/ap)? (4.7)

where ap is a constant related to the mean-nearest neighbour distance. We
should note here that this asymptotic expression 4.7 is also valid for a dis-
persion of D-dimensional impenetrable spheres in the limit » — oo [28].
Using equation 4.5 we can now derive the distribution function h(g). The
integration is done using

£ . §

(5[9 — g(r)] = @5(7“ —rg) with ry= —3 In(g) (4.8)

Now inserting 4.8 and 4.7 in equation 4.5 we obtain:

§ _ £ 3 —1,}?
hg) - Plry) = 5 ex0 [ (55 mie )" (49)
We can rewrite this expression as

D—1

h(g) X ig{(g/aD)D[ln(gil)] 71}7 (410)

2aD

so that it gets clear that, for D = 2 and D = 3, the above expression for
h(g) goes to zero in the g — 0 limit, irrespective of the value of £/2ap.
Therefore, no power-law divergence of h(g) is encountered for a three- or
two-dimensional random dispersion of conducting spheres, and transport is
governed by the universal critical exponent t = tg. On the other hand, in
the one-dimensional case, equation 4.10 becomes

hlg) o == glier2e0-1] (4.11)
2a1
which is exactly of the form of equation 4.2 if we identify a with 1 — £/2a;.
We have therefore arrived at the result that, if the spheres are Poisson dis-
tributed along a one-dimensional line, then h(g) displays a power-law di-
vergence for small conductances, and transport becomes non-universal for
sufficiently small values of 1 — &/2ay.

The difference between the D = 2 and 3 and the D = 1 cases stems
from the decay of P(r), which is, for D > 1, much faster than the simple
exponential decay of g(r). In fact, one can show, from equation 4.5, that
as long as lim, .o P(r)/g(r) = 0, then limy_o h(g) = 0, irrespective of the
precise form of P(r), so that transport remains universal. Consequently, to
obtain non-universality, the decay of P(r) has to be sufficiently slow, and the
above result suggest that one-dimensionality is an important ingredient in
that scope, at least as long as interactions between conducting and insulating
phases can be neglected. This feature will guide us, in the following section,
in the microscopic formulation of the tunnelling-percolation model.
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Lattice tunnelling-percolation model

Intfroduction

In its original formulation 27|, the tunnelling-percolation model was a phe-
nomenological description based on an assumed distribution function of the
inter-particle distances. A one-dimensional form of the distribution function
P(r) was used, arguing that it captured the essential physics of the problem.
Now, as we have seen above, one-dimensionality is in fact a key ingredient
to obtain non-universality in a tunnelling-percolation model, and therefore
needs to be justified. A fully microscopic derivation has been proposed re-
cently for a particular network construction where the bonds on a cubic
lattice have probability p of being occupied by a string of non-overlapping
conducting spheres placed randomly along the length o of the bond [37]. In
the limit in which o9 is much larger than the diameter o1 of the conduct-
ing spheres, so that finite bond length effects are negligible, the distribution
function of the resulting bond conductances reduces exactly to Eq. 4.2 where
a=ay =1-— asé 20 and apy is the mean inter-sphere distance for a bond
occupied by N particles [37].

In addition to provide a fully microscopic model for the tunnelling-
percolation non-universality, the network construction of Ref. [37] is also a
possible description, though quite crude, of the main microsctructural prop-
erties of RuOq-based cermets where the glassy grains are surrounded by much
smaller RuOg particles. Such microscopic phase segregation leads, in a first
approximation, to long chains formed by RuQOs particles separated by thin
glass barriers through which tunnelling occurs [59]. A scanning electron mi-
croscopy image of a RuOs-based thick-film resistor was shown in figure 3.2,
where this segregated microstructure is clearly seen. Usually the large glassy
grains have linear sizes of the order of 1-5 ym and the RuOs particles range
from 40 nm up to about 500 nm. Hence the assumption o9/07 > 1 used in
Ref. [37] is not always valid a priori and finite bond length effects should be
taken into consideration for a more correct description of the microstructure.

In this section, we re-formulate the segregated tunnelling-percolation
model of Ref. [37] without the restriction o2/07 — oo and study the fi-
nite bond length effects on the transport critical behaviour. We show that,
as long as og2/0; is finite, the resulting bond distribution function he,(g)
is not strictly of the form of equation 4.2, i.e., hy,(g) is not power law di-
vergent as ¢ — 0. As a consequence, transport is expected to be universal
with ¢ = t9. However, depending on the model parameters, h.,(g) may be a
strongly peaked function at small g values, so that the conductivity is well
fitted by equation 4.1 with ¢ > ty within a rather broad range of p — p.
values. In this case the accessible transport phenomenology appears to be
non-universal because the region in which ¢ = #q is restricted to very small
p — pe values [60].
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4.2.2 The model
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Figure 4.1: (a): square lattice bond percolation model used in this section. The
filled circles denote conducting impenetrable particles of diameter o;. One particle
is assigned to each intersection between the channels (nodes) and each bond has
probability p of being occupied by N particles. (b) channel containing N = 5
impenetrable particles randomly placed within a length os. (c¢) tunnelling process
between two adjacent particles whose centers are separated by a distance r.

The segregated tunnelling-percolation model studied in this section is
illustrated in Fig. 4.1 for a two dimensional lattice. In Fig. 4.1(a) the full
circles denote impenetrable conducting particles of diameter o1 constrained
to occupy the channels between neighbouring insulating squares of length
og (representing the diameter of the insulating grains) [Fig. 4.1(b)]. These
channels form a square lattice and each channel has probability p of being
occupied by N conducting particles and probability 1 — p of being empty.
Furthermore it is assumed that the conducting particles are placed randomly
inside the occupied channels and that electrons can tunnel between adjacent
particles leading to channel conductances g, depending on the values of the
tunnelling distances between the particles [Fig. 4.1(c)]. In order to ensure
electrical connectivity between two occupied channels, each intersection be-
tween channels is assumed to be occupied by a particle. The system, as a
whole, defines therefore a square-lattice bond percolation model where a frac-
tion p of bonds (occupied channels) has variable conductances distributed
according to he,(g) and a fraction 1 —p has zero conductance. Therefore the
bond conductances are taken from the distribution function

U (g) = phoy(9) + (1 —p)(g) (4.12)

The model, as defined here, contains the model of reference [37] as limit-
ing case, for o9/0; — oco. It was shown [37] that, in that limit, the bond
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conductivity distribution function is of the form of equation 4.2, leading
to possible non-universal critical transport exponent ¢. The results for the
transport exponent ¢ extracted from the numerical simulations of Ref. [37]
are shown in figure 4.2 as a function of the parameter oy, the parameter
governing the divergence of h(g). It is clear from this figure that the trans-
port exponent is controlled by the parameters of the model (£, o9, o1 and
N) and follows exactly the theoretical prediction of equation 4.3. Here we
have top = 2, as a cubic lattice was considered in Ref. [37]. In what follows we
will have tg = 1.3, because we simulate the two-dimensional case. We also
note that this model can lead to both universal and non-universal critical
behaviour, and that any value ¢ > ty can be obtained. As discussed in the
section 4.1, such result stems from the one-dimensionality of the channels
of our model. A one dimensional arrangement still continues to characterize
the situation for which o9/0q is finite, but the existence of an upper cut-off
in the tunnelling distances also prevents h,,(g) to diverge for ¢ — 0, which
is a necessary condition for the emergence of non-universality. It is there-
fore interesting to asses how the critical behaviour of the model is influenced
by o2/01 < oo. Such problem requires the evaluation of the distribution
function of the nearest-neighbour inter-particle distances for N impenetra-
ble particles placed along a distance o9, which is calculated in the following
section.

Distribution of adjacent particles distances

In this section we derive the distribution function of the distance between two
adjacent particles in a system of N impenetrable particles placed randomly
inside a channel of length o9. In the following, we shall partly follow the
procedure of Ref. [61]|. Let us consider N +1 particles, in a channel of length
09 + 01, with one particle fixed at r = 0 and periodic boundary conditions.
Then N particles are distributed in the remaining length o9 of the channel
with density p = N/o2. Let P,,(r)dr be the probability of finding in the
interval [r,r 4+ dr] the center of a particle adjacent to the particle centered
at r = 0. Since the boundary conditions are periodic, P,,(r) is also the
distribution function of the inter-particle distance of any pair of adjacent
particles in the channel. As the particles are impenetrable and the problem
one-dimensional, this situation is identical to the one in which N point-
particles are randomly placed in a length 09 — Noy, which is easier to treat.
Let us define two events:

A = There is no particle center between 0 and r
B = There is a particle center between r and r + dr

Then we have from elementary probability theory:
P,,(r)dr=P(BNA)=P(B|A)P(A), (4.13)
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Figure 4.2: Critical exponent ¢ of a three-dimensional lattice TP model, as

a function of the tunnelling exponent ay = 1 — m for /o1 = 0.2 and

different values of o2/01 and of the number N of inter-sphere tunnelling junc-
tions accommodated within the occupied channels of a cubic random-resistor net-
work. From left to right: N = 9,8,...,5 for o9/0; = 10 (filled squares) and
N = 46, 45, 43, 41, 39, 33, 27 for o2/01 = 50 (open squares). The solid curve is
the theoretical result ¢t =ty ~ 2.0 for any < o, ~0.107 and t = v + 1/(1 — ayn) for
an > a..This figure is taken from the article of Grimaldi et al. [37].

where P(B|A) is the conditional probability of B knowing A, i.e., the prob-
ability of finding a particle center at a distance between r > 0 and r + dr
provided that there are mo particles in the inner radius v. The conditional
probability P(B|A) is then found by considering that if in [0, 7] there are no
particles, then the N particles must be distributed in the remaining space
o9 — No1 — r, which leads to:

p
1—poy—(r—o1)/o2

P(B|A) = O(r — 01)O(rmax — 7)dr, (4.14)

where the unit-step function ©(r — o;) arises because the particles are im-
penetrable and ©(ryax — ) prevents the distance between adjacent particles
from being larger than rp.x = 02 — (N — 1)o;. Furthermore, from the
definition of the event A:

P(A)=1— /0 ", (). (4.15)
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Finally, equations (4.13),(4.14) and (4.15) define an integral equation for
P, (1),

. p@(?“ —01)O(Tmax — 1) - " i
P,,(r) = 1= por — (r — 01) o |:1 /0 P,,(r')d ] (4.16)

which can be solved by taking its derivative d/dr, leading to a differential
equation for P, (r), which solution has to be of the form:

P, (r) = Py [A+ 1 O — 61)O(rmax — 01) (4.17)

The coefficients of equation 4.17 are found by inserting this solution in the
differential equation obtained for P,,(r) and by using the normalization

/00 Py, (r)dr =1, (4.18)
0

finally holding the solution

poa—1
14 r—o1
P, (r) = 1— - max — 7). (4.1
:7) 1—P01[ 02(1—001)} Or ~o)8lr r. (419)

From this we can now obtain the mean adjacent inter-particle distance a,,

o1+ 02
poz +1°

ag, :/ drrPy,(r) = (4.20)
0

By using the above expression for a,,, Eq. (4.19) can be re-written as:

poa—1

PO2 1 r— o0
P, (r)= 1-— O(r—o1)O(rmax—r).
(7) po2+1ay, — o1 [ (poa + 1)(ag, — 01) ( 1)8( )
(4.21)

The maximum possible density pg corresponds to the close-packing limit
po = (02/01)/o2 = 1/o1, for which a,, = o1 and Eq. (4.21) reduces to
P,,(r) = 0(r — o1), as expected. In the limit 09 — oo but with p = N/og =
const., equation (4.21) reduces to:

(oo — 01 (oo — 01

Po(r) = —exp (-T"l> O(r — o), (4.22)

with ase = 1/p [see Eq. (4.20)]. Equations (4.21) and (4.22) are plotted
in Fig. 4.3 for different values of o9/01 and constant density p = 0.3. The
finite channel length effects are most visible for o9/07 = 10 and N = 3 for
which Py, (r) = 0 for /01 > rmax/01 = 8, while Py () becomes zero only
asymptotically at 7 = co. As we shall see below, such sharp cut-off of P,,(r)
gives rise to a lower bound of the adjacent particle tunnelling conduction,
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Figure 4.3: Distribution function of the distances between the centers of two
adjacent impenetrable particles for o5/017 — oo (dashed lines) and for oo /0 finite
(solid lines). The volume density is fixed at Noj/oy = 0.3, and the length of the
channel is increased from o5/01 = 10 (left panel) to o2/01 = 30 (right panel).

preventing the system to display truly non-universal transport behaviour, in
contrast with the o9 — oo case for which the lower bound is zero.

Before turning to the problem of finding the network conductance, it is
worth to stress that equations 4.19 and 4.20, and equation 4.22 for the oo —
oo case, refer to adjacent particle properties and not to nearest-neighbour
ones. If we wanted to find the distribution function of the distance between
nearest-neighbour particles P;\QTN (r) (we use here the superscript NN for
nearest-neighbour, to differentiate from the case of adjacent particles we
have studied in this section), then the corresponding conditional probability
P(B|A) would be given by twice the expression reported in Eq. (4.14). This
is because, for a given particle, there are two neighbours: one at the left
and the other at the right of the reference particle. Hence, by following the
same procedure as above PYY(r) is found to be equal to Eq. (4.22) with as
replaced by aV = (1 + pa1)/2p , in agreement with the result reported in
Ref. [61,28]. This expression is the one that was used in Balberg’s paper [27],
introducing the original TP model, and derived by Grimaldi [37]. As already
discussed (see figure 4.2), this choice of the nearest-neighbour distribution
function leads to a transport exponent ¢ dependent on the parameters of the
model, or in other words, to non-universality.

Distribution of bond conductances

The transport properties of the network of Fig. 4.1 are governed by the
distribution function he,(g) of the bond conductivities g, which result from
the contribution of the (NN 4 1) inter-particle conductivities ¢; (i =1, N +1)
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Figure 4.4: Distribution function of the conductivities between two given adjacent
particles for o3/01 — oo (dashed lines) and o3/07 finite (solid lines). The volume
density is fixed at Noj/os = 0.3 and £/0; = 1, and the length of the channel is
increased from oo/0; = 10 (left panel) to o3/01 = 30 (right panel).

arranged in series:

N+1 -1
9= <Z c;1> : (4.23)
=1

Hence hy,(g) can be obtained from the distribution function f,,(<) of the
inter-particle conductivities. These are assumed to be due to simple tun-
nelling processes between adjacent particles so that the conductivity ¢ be-
tween two adjacent particles whose centers are separated by the distance r
is approximately of the form:

o(r) = o 2r/E, (4.24)

where ¢y is a constant that can be set equal to one without loss of general-
ity and & is the tunnelling factor. The tunnelling conductance distribution
function f,, (<) is therefore given by (see equations 4.5 and 4.8):

frld) = [ drPals — s = 5 Pulr). (@29

where r¢ = 01 —In(¢)§/2 and P,,(r) is the distribution function of the adja-
cent particles distances. By using Eq. (4.21) for P,,(r), the above expression
reduces therefore to:

fos (<)

pos 1 —ag, {1 N (1 — ag,)In() 7721

== @ - i @ X )
P0'2+1 c p0_2+1 (§ §m1n) (§ma §)

(4.26)
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where o, = 1—(£/2)/ (a0, — 01), Smax = s(01) = 1 and Guin = 5[0z — (N —

o] = exp(w). In the limit 09/01 — oo (p = const.) and by using
Eq. (4.22) the above expression reduces to:

foo(s) = (1 = o )s ™ O (Smax — <), (4.27)

where ao = 1 — aof/—2 57> which is exactly of the form of the Kogut-Straley
distribution function, needed for the appearance of non-universality (see
Eq. (4.45)). It is clear that, in the 09/01 < 0o case, the presence of ¢yin # 0
prevents f,(s) to diverge at g = 0, while fo (<) has a power law divergence
at ¢ — 0. Equation (4.26) is compared with Eq. (4.27) in Fig. 4.4 for the
same parameters values of Fig. 4.3 and for {/o1 = 2. As 09/0; increases,
the maximum of f,,(s) becomes higher and its position shifts to lower values
of ¢. For o9/01 — o0 fs,(s) asymptotically reduces to Eq. (4.27) which is
reported in Fig. 4.4 by the dashed lines.
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Figure 4.5: Distribution function of the bond conductivities for bonds of length
o9/01 = 10 containing N = 5 particles. Open symbols are numerical calculations
obtained as explained in the text and the solid lines are Eq. (4.28). The distribution
function he, for o9/c1 — oo is plotted by a dashed lines for comparison. £/o; is
varied from &/ = 1 (left panel) to /oy = 0.5 (right panel).

At this point, the distribution function hg,(g) of the total conductance
g of a channel of length o9 can be easily obtained in the small g limit. From
Eq. (4.23) it is in fact clear that ¢ is dominated by the smallest value ¢ ~ ¢ypin
among the N + 1 tunnelling conductances in series. Since there are N + 1

ways to have g ~ ¢uin, the resulting bond conductance distribution function
is therefore:

hoy(9) = (N + 1) for(9) for g = Guin. (4.28)
From this equation we can write the definitive result for hgs,(g) and
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(1 — ag,) In(g) 1777

hUz (g) ~ po2 1 po2 + 1 @(g - gmin)e(gmax - g)
(4.29)
hoo(g) = N(1 = ass)g~ "> O (gmax — 9) (4.30)
/2 . o1+ 09

=1-— th = 4.31
oz Aoy — 01 s o2 po2+1 ( )

2 1
O =1 — _&2 with e = — (4.32)

(oo — 01 p

Wherev 9max = 1 and 9min = exp[72(02 - NU?)/&]

Equation (4.28) is plotted in Fig. 4.5 for different values of {/o; and
compared with a numerical calculation of the bond conductance distribution
function. This has been obtained by considering 10° realizations of channels
of length o9 4+ o1 with two particles fixed at both ends and N impenetrable
particles randomly placed inside the remaining length oo. The resulting
conductance is obtained by recording for each realization the N+1 tunnelling
lengths and by using equations (4.23) and (4.24). The asymptotic formula
(4.28) (solid lines) agrees very well with the numerical results (empty circles)
also for g values quite larger than g = ¢yin. For /01 = 0.5 the agreement
extends even over the whole g > ¢y, region.

Contrary to the 09/01 — oo case which displays a g~ divergence for
g — 0 (dashed lines in Fig. 4.5), the finite length of the channels forming
up the percolation network leads to a maximum of h,,(g) at g, depending
on the parameters of the model. g, is found by setting dhy,(g)/dg = 0
in equation 4.29, leading to ¢m, = exp(/N — 1)gmin. This has important
consequences for the critical behaviour of transport. In fact, in the oo/07 —
oo case, the power-law divergence of ho(g) may lead, via equations (4.2) and
(4.3), to transport non-universality for channel occupation probability p close
to the critical threshold. This limiting case is the classical TP model, treated
in several papers and in full agreement with the theoretical predictions of
non-universality given by equation 4.3, as was shown in figure 4.2. On the
contrary, when oy/0; is finite, the transport exponent should be strictly
equal to the universal value ¢y, as hy,(g) is non-divergent. However, a closer
look at Fig. 4.5 reveals that the situation is more intricate. In fact, when
the position of the peak of h,,(g) falls at very small values of g [like in the
case shown in Fig. 4.5(c)]|, the region in which Eq. (4.1) displays t = ¢ is
expected to fall at very small p — p. values, resulting in a narrowing of the
true critical (universal) region. This is due to the fact that not very close
to pe, the percolating cluster is made of several parallel paths, so that the
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current flowing through the network can avoid the highest resistive links. In
this way hg,(g) is sampled only for values of g larger than a p— p. dependent
cut-off ¢g*, which goes to zero only at p = p.. When p — p. is such that g*
is higher than the peak position of hs,(g), then the network basically sees
an apparent diverging distribution function which may result in an apparent
non-universal exponent ¢ > ¢y [60].

As it will be shown in the upcoming section, a direct consequence of this
situation is that when ¥ is plotted for a limited number of p values, and one
tries to fit ¥ to Eq. (4.1), then an exponent larger than to can be extracted
even if the system is strictly universal. In the following section we show
how such “apparent” non-universality naturally arises from the tunnelling-
percolation model.

Critical behaviour of transport

Effective medium theory

We start our analysis of the critical behaviour of the conductivity by an
effective medium theory (EMT) approach. This is useful, since it allows to
get a very good feeling about the global behaviour of the system consid-
ered. So let us start with the basic equation for the EMT, already stated in
section 2.3.1. Within the effective medium approximation (EMA), the aver-
age network conductance G satisfies the integral equation (see for example
reference [12]):

> 9-G 1—p
dg he, (g = , 4.33
f, e i e = e 439
where k is the number of neighbours of each node. This can be transformed
into a more convenient form:

1-p (™ g+(k:/2—1)G k/2G
CCED R / 49 ho2(9) 721G
_ o2 (9)
B 1_G/ Yo+ k/2—1)G
so that 2/k - h ( )
b— o oo \g
ST =, ViR ne (4.54)

Now using p. = k/2 and k = 4 for the special case at hand, meaning a two-
dimensional square lattice, we obtain the final form of the EMT equation:

P — Pe hey(9)
e dg 2222 4.35
Gp /0 g g+ G ( )
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The numerical solution of equation 4.35, with h.,(g) as given by its asymp-
totic form, equation 4.28, is plotted in Fig. 4.6(a) as a function of (p—p..), for
different values of £/01. All curves have been calculated for N = 5 particles
in a channel with a length of o3/01 = 10. For {/o; = 1 (dotted line) the
EMA conductance G follows apparently a straight line when plotted in the
log-log scale, suggesting that Eq. (4.1) applies to the whole range of the con-
sidered p — p. values. A closer look reveals that G actually deviates from a
simple power-law behaviour and shows, as a function of (p — p.), an initially
slightly faster decay followed, for sufficiently small values of (p — p.), by a
power-law behaviour with the exponent ¢ corresponding to the EMA univer-
sal value of t) = 1. This feature is much more evident for £ /o1 = 0.6 (dashed
lines) and £/o1 = 0.4 (solid lines) where the initial decay of G is steeper as
&/o1 is reduced while the universal exponent g = 1 is recovered only for
the relatively small values of (p — p¢) S 1073, To quantify the behaviour of
G as (p — p.) — 0 it is useful to introduce the “p-dependent" conductivity
exponent that we define “locally" as:

dIn(G)

O Ty =y

(4.36)

and shown in Fig. 4.6(b). By reducing the value of £/01, it is clearly seen
that t*(p) acquires a stronger p — p. dependence which would result in an
apparent non-universality with t*(p) > tg = 1. This is apparent if one tries
to fit G values according with Eq. (4.1) for the interval of the larger p — p.
values. As p — p., the above “local" exponent asymptotically tends to the
universal EMA value of {3 = 1, independently of the value of the tunnelling
factor £/oq.

The results plotted in Fig. 4.6 stem from the strong dependence of h,(g)
which, as shown in Fig. 4.5, is non-monotonic with a characteristic maximum
at a given value of g. Upon lowering /o7, the maximum of hs,(g) increases
in amplitude and shifts to lower values of g. This feature, combined with
the factor 1/(g + G) in the integrand of Eq. (4.35), which favours the small
g region of integration for small G values (i.e. small (p—p.) values), leads to
a change in the “local" exponent as the percolation transition is approached
from above. This mechanism is at the origin of the apparent non-universality,
which, as shown in the next section, characterizes the tunnelling-percolation
model studied in this chapter. This mechanism is also important, because,
as discussed in the conclusions of this chapter and in the beginning of the
next one, it can also lead to apparent non-universality in systems without
invoking the one-dimensionality of the particle distribution.

In the next section we present Monte Carlo simulation results of this TP
model and obtain results in qualitative agreement with those obtained in the
effective-medium approximation framework.
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Figure 4.6: (a): the EMA conductance as a function of the proximity to the
percolation threshold for the segregated tunnelling-percolation model for different
values of £/01. Here, N =5 and o2/0; = 10. (b): the corresponding p-dependent
transport exponent as given by Eq. (4.36).

Monte Carlo results

Let us present now our Monte Carlo results for the conductivity for our
tunnelling-percolation model. We construct a n x n square lattice, with
n = 256, where each link of length o9 has a probability p of being occupied
by N impenetrable particles and a probability 1 — p of being empty. The
calculated distribution function of the occupied link conductance has already
been discussed in Sec. 4.2.4 and plotted in Fig. 4.5.

Once the lattice is generated, we calculate the conductivity of the sys-
tem using a Fourier-accelerated conjugate-gradient algorithm as described in
Ref. |62]. For each p value, we average the results over Ny = 10 to N5 = 60
different realizations of the lattice and use twice the standard deviation of
the mean value as the error on the conductivity. We have computed the net-
work conductivity X as a function of the bond occupation probability p and
for different values of the parameters oo/01, N, and . The different values
of p have been chosen to range from p — p. = 0.1 down to p — p. = 0.001,
where p. = 1/2 is the percolation threshold for the square lattice.

Instead of fitting the so-obtained conductance G with Eq. (4.1), we ex-
tract the conductivity exponent ¢ from

G = Golp—pe(n)]’, (4.37)

where p.(n) is the percolation threshold for our finite-size systems with n xn
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nodes, left free as a fitting parameter. The use of Eq. (4.37) rather than its
infinite-size limit Eq. (4.1) is meant to simulate the situation encountered in
experiments, where the percolation threshold, in our case p.(n), is not known
a priori and must be obtained by a direct fit to Eq. (4.37). We have checked
that, by changing the size of the network, p. — p.(n) scales as n~1/" where
v = 4/3 is the correlation length exponent in two-dimensions, as expected
from finite size scaling [63].

In Fig. 4.7(a) we report the results for a simple binary distribution in
which a fraction p of links has conductance g = 1 and the remaining fraction
1 — p has ¢ = 0. Due to the finite size of the network, the conductivity X
has a critical threshold p.(n) slightly lower than p. = 1/2 and depending
on n. As a function of p — p.(n), ¥ displays a power-law behaviour with
exponent ¢ = 1.3 £ 0.05 in full agreement with the universal one ty ~ 1.3
[64], indicating that the system size was sufficiently large to make finite
size effects negligible for the extraction of ¢. This is confirmed also by the
results reported in Fig. 4.7(b) where ¥ is shown for the tunnelling-percolation
model with o3/01 — oo and for as = 1/2. The extracted exponent is
t =2.15+0.11 in good agreement with the exact result t = 1/(1 — aso) = 2
obtained from Eq. (4.3). It should be noticed that the good agreement of
the extracted exponents with those expected from theory indicates that the
range of p values used in the fits of Figs. 4.7(a) and (b) was well within the
critical region. The same p values were then used in all calculations reported
in the following. Let us also briefly discuss the origin of the increase of the
relative errors on the conductivity as p. is approached. This phenomenon
is mainly due to the divergence of the correlation length as p tends towards
D¢, increasing the finite-size effects. As it was stressed in section 2.2.3, the
percolating cluster presents inhomogeneities at all length scales for p = p,,
so that it is not possible to capture correctly its geometry when looking at a
system of finite size. As p — p. the variability of the percolation cluster in
a system of finite size will increase, leading to a larger intrinsic error on the
conductivity of the system. This will be observed for all finite-size systems
studied in this thesis.

Results of tunnelling-percolation model for finite o2/ values are re-
ported in Fig. 4.7(c) where X is plotted for the same parameter values of
Fig. 4.5(a). The extracted exponent ¢ = 1.39 £ 0.08 is in this case close
to the universal value ¢ty ~ 1.3, while the same parameters Noj/os = 0.5
and £/01 = 1 (ax = 0.5) have led to t ~ 2.15 for the o9/01 — oo case of
Fig. 4.7(b). This means that the smallest p values used in the calculation
were close enough to p.(n) to sample the entire distribution function h,(g)
which, for the case at hand, displays a maximum at not too small values
of g. The situation is different for the other cases displayed in Figs. 4.5(b)
and (c) where the position of the maximum of hs,(g) considerably shifts
to lower values of g. Indeed, for these cases, the obtained exponents were
t =1.51 4 0.07 for £/o1 = 0.8 [Fig. 4.5(b)] and ¢t = 2+ 0.095 for {/o1 = 0.5
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Figure 4.7: Network conductivity ¥ for the simple binomial distribution (a), for
the tunnelling percolation model with o9/01 — oo (b) and for o9/07 finite (c).
&/o1 =1 and Noj/og = 0.5 for both figures (b) and (c). pc(n) is the percolation
threshold obtained by fitting ¥ to Eq. (4.1) for a square lattice of n x n nodes with
n = 256.

[Fig. 4.5(c)].

Results for various values of the number of particles per channel N and
of the tunnelling factor ¢ are summarized in Fig. 4.8 (open triangles). In
the left panel, the peak position of h,,(g) is varied by changing N, while in
the right panel N is maintained fixed and £ is varied. The results for finite
o2/01 are also compared with the exact formula (4.3) (solid line) and with
numerical calculations for o3/01 — oo case (open circles). The extracted
exponent values for o9/0; finite are systematically smaller than those for
o9/01 — oo and the regime of measured universality is extended to higher
values of the control parameter a..

It is important to stress here that the procedure that we followed to ob-
tain the critical exponents ¢ was meant to simulate a typical experimental
situation, where a limited number of p values (where p could be the volume
fraction of conducting phase) are used, without prior knowledge of the crit-
ical threshold value. It is interesting to notice that usually, experiments do
not probe values smaller than (p — p¢)/pe =~ 0.1, whereas in our calculations,
we had at least (p — pe(n))/pe(n) ~ 0.01. Hence what we have dubbed as
“apparent” non-universality of tunnelling-percolating systems could actually
be very difficult to distinguish experimentally from the truly non-universal
case oy/01 — 00. As already mentioned in the introduction, disordered
RuOs-glass composites may have o9/01 of the order of 10 to 100 but dis-
playing ¢ values clearly larger than the universal one [65]. According to our
results, this behaviour could be interpreted as being due to apparent non-
universality. However, given the difficulty of preparing samples with p very
close to p. (the critical volume fraction of RuOs-glass systems is only around
3%), the expected universal regime is practically unreachable, so that the
phenomenology remains that characterizing non-universal systems. This is
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Figure 4.8: Exponent t and corresponding error bars extracted from fits to
Eq. (4.1) as a function of aw =1 — (£/2)/(02/N — 01). The solid line is the exact
result of Eq. (4.3) for the 05 /01 — oo case which is compared with the corresponding
Monte Carlo results (open circles). The open triangles are the numerical results
for finite o3/01. Panel (a): 02/01 = 10, N = 5 and £/o; is varied from 2.8 to
0.3. Panel (b): the triangles are for o3/01 = 19, £/ = 0.5 and a is varied by
changing N.

really the key result obtained for transport properties in the framework of
this model: non-universality can be explained without invoking a diverg-
ing h(g). Indeed we have shown that a highly peaked h(g) was sufficient
to obtain apparent non-universality, which can account for the experimen-
tal results. This has an important consequence, as it means that the one-
dimensionality in the matter distribution, essential for true non-universality
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in the TP model, is not be necessary to obtain apparent non-universality.
This will be discussed in more detail in the beginning of following chapter.

Piezoresistivity

In the preceding section, we have seen that the conductivity of our tunnel-
ling-percolation model, though not presenting true non-universality for finite
bond length o9/01, had an apparent non-universal behaviour. Nevertheless
we argued that the transport exponent should cross over to its universal
value close enough to the percolation threshold. Unfortunately, it is very
difficult to observe this crossover from measurements of the conductivity for
limited numbers of p — p. values. We propose in this section to study the
piezoresistivity of tunnelling-percolation systems, which will be shown to be
directly linked to the transport exponent and, therefore, to be a very good
tool to study this crossover between universal and non-universal regimes.

It is clear that TP systems are expected to display high piezoresistive re-
sponses, as the conductivity of a tunnelling junction decreases exponentially
with the inter-particle distance, which will change with an applied exterior
strain. It is also easy to see why piezoresistivity should be a good tool to
study the tunnelling-percolation non-universality. Indeed, as the transport
exponent ¢t depends on the mean nearest-neighbour distance a only in the
non-universal regime, ¢ is expected to change with the applied strain only
for t > tg. This will be shown to give rise to two very different behaviours
of the piezoresistivity, which can be used not only to clearly distinguish the
universal from the non-universal regime, but also to confirm the tunnelling-
percolation origin of non-universality in real composites.

Now, I will first present the piezoresistive response of the original tunnel-
ling-percolation model (o2/01 — o0), compared with some experimental
results, as presented in a series of papers of our group, prior to this the-
sis [66,67,68,5]. As outlined above, this will give a strong evidence of the ap-
plicability of the TP model to real compounds and it will also help us under-
stand the results obtained in systems displaying apparent non-universality,
that will be presented towards the end of this chapter.

Theory of piezoresistivity

Before anything else, we shall recall some basic theory of piezoresistivity,
mostly taken from Ref. [5].

Let us consider the rather general situation in which a parallelepiped
with dimensions L,, L, and L, is subjected to a deformation along its main
axes z, y, and z. The initial volume V' = L,L,L, changes to V(1 + ®)
where ® = ¢, + ¢4 + €, is the volume dilatation and ¢; = 0L; /L; are the
principal strains along ¢ = x,y, z. In the absence of strain, we assume that
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the conductivity X of the undeformed parallelepiped is isotropic, so that the
conductance G; measured along the ¢ axis is G; = XL;Li/L;. For small
e; #0 (1 = z,y, 2), the conductance variation §G; is therefore:

0G; 0%
GZ = TZ — &+ €5+ €k, (4.38)
(2
where
0%
El =—Tjei - I'i(ej+ek) (4.39)

are the relative variation of the conductivity along the ¢ = x, y, z directions.
The coefficients I'j and I, are the longitudinal and transverse piezoresistive
factors defined as:

dln(Ei)

'y = - ———~= 4.4

I i ..o (4.40)

r, = - 4ot (i £ 9), (1.41)
dé—i ;=0

The distinction between longitudinal, I'), and transverse, I' |, piezoresistive
responses is important whenever the values of the strains ; depend on the
direction, as it is encountered when the sample is subjected to uniaxial dis-
tortions as those induced in cantilever beam experiments (see next section).

In what follows, we are mainly interested in the isotropic (or hydro-
static) piezoresistive factor I' defined as the resistivity change induced by
the isotropic strain field ¢; = € for all i = x, y, 2:

_ dIn(X)
de  |._o’

= (4.42)
which can be obtained by applying an hydrostatic pressure to the paral-
lelepiped. However, I' can also be obtained by setting ¢; = ¢ in Eq. (4.39)
yielding:

I =T} +2l,, (4.43)

which is a useful relation when the experimental set up does not permit to
apply an isotropic strain field. Let us note here that, usually, in experiments,
we do not measure directly the piezoresistive factors, but rather the gage fac-
tors which are extracted from the conductance (instead of the conductivity)
variation. Therefore the strains have to be known in order to extract I'| and
I'} from the gage factors. The definitions and relations between the gage
and piezoresistive factors can be found in Refs. [69,70].
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Piezoresistivity in truly non-universal TP systems

Let us now study how the tunnelling-percolation theory of non-universality
affect the piezoresistive factor I'. For clarity, we recall here the basic equa-
tions governing the transport properties of the system. So first of all the
conductivity of the percolation network is given by:

2= So(p —pe)! (4.44)

As shown in section 4.2.4, the distribution function ho(g) of the bond con-
ductances for o9/01 — o0 is given by (see equations 4.28 and 4.27)

hoo(g) =~ (1 —aso)g & (4.45)

o = 1-—%2 (4.46)
Qo — 01

oo = p b, (4.47)

Leading to a transport exponent ¢ depending on the parameters of the system
as

| to if t1 <tg
t= { t1 = (D — 2)V + 1_200 if t1 >t (4'48)

We now assume that a cubic bond-percolation network is embedded in a
homogeneous elastic medium and that the elastic coefficients of the network
and the medium are equal. Under an isotropic strain field g; = ¢ (i = x,y, 2),
the mean tunnelling distance a changes to a(1 4 ¢) independently of the
bond orientation. Hence, by assuming for simplicity that o1 — o1(1 + ¢),
the tunnelling parameter oo, given in equation 4.46, becomes oo — oo +
(1 — ao)e for e < 1. Now, from the definition of I" given in equation 4.42
and equation 4.44, we have (for clarity we do not always recall here that the
derivative is evaluated at ¢ = 0)

d

I = —o- () +¢In(p - pc)] (4.49)
dt
= To—Zp- 4
o= inp—po) (4.50
with
ry = — &)} (4.51)
de |,

Looking at equation 4.48, it is clear that dt/de will be non zero only in the
non-universal case, so that we finally obtain:

I — 1—\0 aoogac (452)
'y — %ln(p—pc) Qoo > O ’ .
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with

ﬁ_ 1
de 11—

= 2(a00 — 01) /&, (4.53)

where we have used das/de = (1 — ). The tunnelling distance depen-
dence of the DC transport exponent is therefore reflected in a logarithmic
divergence of I" as p — p.. Instead, when as < @ (universal regime),
the DC exponent remains equal to tg, also when & # 0, and the resulting
piezoresistive factor is simply equal to I' = I'y, independently of the bond
probability p.

This shows that the tunnelling-percolation origin of non-universality is
characterized by a logarithmic divergence of the piezoresistivity for p — p.,
which is a feature unique to this model. We can now turn back to the inter-
pretation of the experimental results presented in section 3.3. The piezore-
sistivity of four different sets of samples, was presented in figure 3.4 as a
function of the concentration x —x.. Those experimental results are perfectly
compatible with the above result for I'. Indeed the logarithmic divergence
of I' is well verified by this experimental set of data. Moreover, a constant
piezoresistivity is found for the A1 series, which was the only one to display
an almost universal transport exponent ¢ = 2.15 £ 0.06. Equation 4.52 is an
exact result as long as we are concerned with the (p—p.) dependence close to
the percolation threshold. However, in addition to the prefactor of the loga-
rithm, I" depends also on the tunnelling parameter a, through the term T'y.
This dependence is far from trivial and it is also shown in this paper [5] that
'y behaves as predicted by the TP model. This strong agreement between
TP theory and experiments is really comforting tunnelling as the dominant
transport mechanism in TFRs.

Piezoresistivity in apparent non-universal systems

Because of the very good agreement of this piezoresistive response between
theory and classical TP theory, it is important to see whether our appar-
ent non-universal systems also display this behaviour. Moreover, as shown
in section 4.3, the apparent transport exponent also depends on the mean
nearest-neighbour distance and yields the universal value ty only for p values
very close to p.. Therefore, the piezoresistivity is expected to yield both
behaviours found above: a logarithmic divergence for values of p not too
close to p. and a universal constant behaviour I' = I'y for p — p.. So we
expect the piezoresistivity to be a much more sensitive tool than the study
of the conductivity, to observe this change from apparent non-universal to
universal regime. We therefore now study the piezoresistivity of our TP
model, first using the effective medium theory, allowing us to understand
the behaviour of I'; and then by means of Monte Carlo simulations, to asses
the real behaviour of our model [71].
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Effective medium theory

To quantify the piezoresistive response within EMA, let us first rewrite the
basic EMT equation 4.35 in its discrete form:

1 ;1 P — Dc

#E e 4o
where the primed summation is restricted to the occupied channels (g; # 0)
which are a fraction p = N'/N of the total channel number N forming the
square lattice. As done in section 4.4.2, let us assume that the conducting
and insulating phases have identical elastic constants so that the system is
elastically homogeneous. In this way, the applied strain € is uniform and g;
and G reduce to

9 — Gi(e) = gi[1 —v(gi)e], (4.55)
G — G(e) Gl —T¢, (4.56)
where, € has been assumed infinitesimal, v(g;) = —dlIng;(e)/de|c—o is the

piezoresistive coefficient for a given channel and

_ dIn(G)

I =
de

(4.57)

e=0
is the piezoresistive response coefficient of the whole system. Once the above

expressions are substituted into Eq. (4.54), the terms linear in € enable to
find the following EMA equation for I':

: 9i7(9i) 00
Zm /0 ag o) 1 )

(9 +G)? /0 dg(gﬂLG)2

where in the second equality we have restored the continuum representation
by using h,,(g) = /\% >t 3(g—g;). Within the approximation scheme derived
for equation 4.28 (considering that the conductance of a bong g is dominated
only by the worst interparticle conductivity in the bond), for small values
of g, the function v(g) in Eq. (4.58) is approximately given by In(1/g). The
(p — pe) dependence of the resulting I' is plotted then in Fig. 4.9(a) for the
same parameter values that were used for Fig. 4.6. Two different behaviours
are clearly discernible. In the not too close vicinity of p., I" increases approxi-
mately as In[1/(p—pc)], and the increases is stronger as £ /o7 is smaller. Upon
the approach to p., the piezoresistivity response coefficient crosses over to a
region where I is independent of (p—p.). The crossover position depends on
&/o1 and moves towards the percolation threshold as £/o7 is lowered. When
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' is plotted as a function of the EMA conductance G, as in Fig. 4.9(b), a
logarithmic behaviour of the form

I' x In(1/G) (4.59)

is obtained for the interval of the larger G values. This interval is broadened
towards the smaller G values as the value of {/o7 is lowered. We can define
then a crossover G value, that we denote G*, that characterizes the transition
in the G-dependence of I'. In Fig. 4.10(a) we illustrate how the value of G*
can be extracted from the fits of I" to the large, G > G*, and low, G < G*,
intervals of the conductance range. The corresponding £/o1 dependence of
the crossover conductance is shown in Fig. 4.10(b) for several values of &
(filled squares).
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Figure 4.9: (a): the piezoresistive response coefficient as a function of the proxim-
ity to the percolation threshold. The results were obtained from the EMA equation
for the same parameter values of Fig. 4.6. (b): the same coefficient plotted as a
function of the system conductance.

The behaviour of I' can be understood by assuming that the crossover G*
is given actually by the bond conductance value for which h,, (g) approaches
zero. As shown in Fig. 4.5(c), for small values of /01, hs,(g) is sharply
peaked at g = gn, = exp(IN — 1)gmin (for definitions of gy, and gmin refer to
section 4.2.4) and then falls rapidly to zero for lower values of g. In this case
the estimate G* = g¢,,, can be used. The logarithmic dependence Eq. (4.59)
for G 2 G* =~ gy, can then be derived from Eq. (4.58) by noticing that the
function g/(g + G)? appearing in the integrals is strongly peaked at g = G,
especially for small G values, so that the main contribution to I' comes from
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g ~ G, and thus Eq. (4.59) follows from the approximation y(g) ~ In(1/g)
for small values of g. On the other hand, for G < G* =~ ¢,,,, I is independent
of G and can be approximated by the G — 0 limit of Eq. (4.58) which reads:

00 ho’
/ dg&v(g)
lim T =Ty = 20 g

G—0 \/Oodgho-2 (g)
0 g

The same reasoning can be followed also when £/0; is large, so that the cor-
responding h,(g) has a much weaker dependence, as shown in Fig. 4.5(a),
provided that G* is approximated now by the g-value for which h,,(g) van-
ishes, i.e. G* = gnin. Hence, we have obtained analytic bounds for the
G* dependence on the value of £/01: G* = g, for small {/o; values and
G* & gmin for the larger £/o values. These two bounds of G* are displayed
in Fig. 4.10(b). The comparison with the G* values extracted from the EMA
results (solid squares) indicates that the above estimates can be considered
as reasonable bounds to the G* versus /o1 behaviour.

(4.60)

Monte Carlo results

Let us present now our Monte Carlo results on the piezoresistance for the
model introduced in Sec.4.2.2. The simulation procedure is the same as the
one described in the beginning of section 4.3.2. We again use n = 256 for
the size of the square lattice, but this time the number of realizations is set
to Ny = 20 and p has been chosen to range from p — p. = 0.5 down to
p — pe = 0.003 (again with p. = 0.5).

The piezoresistive response is obtained by calculating, for a given lat-
tice realization, the conductance G when a homogeneous strain € = 0.01 is
applied to the lattice. The difference AG with respect to the case without

strain is then used to evaluate I via I' = —AG/eG. Again twice the stan-
dard deviation of the mean value of I' is used to estimate the error on the
piezoresistivity.

In Fig. 4.11 we present then typical results for G and I' as functions of p—
pe(n) as obtained from our Monte Carlo calculations for N = 5 particles and
&/o1 = 1. The critical exponent extracted from the fit of the conductance
shown in Fig. 4.11(a) is ¢t = 1.42 £ 0.08 which is slightly above the universal
value tg ~ 1.3 for two-dimensional networks. From our discussion of the
EMA results in the last section, such relatively large values of /o7 are not
expected to give rise to a strong p dependence of the transport exponent ¢, as
observed in Fig. 4.11(a), and our Monte Carlo data for G can be reasonably
well fitted by an almost universal power-law with constant exponent in a
wide range of p-values.

In Fig. 4.11(b) we show our calculated piezoresistive response coefficient
as a function of p — p.(n) for the same parameter values of Fig. 4.11(a)
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Figure 4.10: (a): the dependence of the piezoresistive response coeflicient on the
sample conductance, as obtained by the EMA calculation, for o5/01 = 10, N =5
and £/o1 = 1. The solid lines are linear fits to the low and large conductances and
the crossover value G* is determined by their intersection. (b): the dependence
of G* on £/oq for the same o9/0; and N. The analytic bounds to the observed
behaviour are determined by the channel conductance where the corresponding dis-
tribution function Eq. (4.29) vanishes, gmin = exp[—2(L—Nog)/£], or is maximized,
gm = exp(N — 1)gmin and are shown as a plain and a dashed line respectively.

(where p.(n) is the critical bond concentration extracted from the fit of
the conductivity to the power-law). For bond concentration values larger
than p — pe(n) ~ 0.03, T follows approximately a logarithmic behaviour
while, for lower concentrations, it saturates at I' ~ 4.75. This trend is very
similar to that reported in the last section for our EMA calculations of the
piezoresistive response [Fig. 4.9(a)] and suggests a crossover between quasi
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Figure 4.11: (a): Monte Carlo results for the system conductance as a function
of the proximity to the percolation threshold (as determined from the fit of the
conductivity), for o9/01 = 10, N = 5, and {/o1; = 1. The dashed line is a fit to
Eq. (4.37). (b): our Monte Carlo results of the piezoresistive response coeflicient
for the same parameter values of (a).

non-universality at high p values and universality at lower p, despite of the
apparently accurate power-law behaviour displayed by G in Fig. 4.11(a).

The tunnelling-percolation nature of the crossover is verified in Fig. 4.12
where T is plotted against G for several values of the tunnelling factor £/oy
and for the fixed L/oy = 10 and N = 5 values. As {/o; is reduced, the
point below which I' saturates moves to lower values of G, in accordance
with the EMA results shown in Fig. 4.9(b). By following the interpolation
procedure described in Fig. 4.10(a), the values of crossover conductance G*
(grey triangles in Fig. 4.10(b)) match very closely those obtained from our
EMA calculations. G* is also represented in figure 4.12 by the dashed line,
crossing I'(G) at G* for the different values of /0.

The Monte Carlo calculations reported above show clearly that, as we
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Figure 4.12: Monte Carlo results of the piezoresistive response coefficient as a
function of the system conductance for different values of £/oy. This is for o2 /01 =
10 and N = 5. The dashed line represents the piezoresistance I'(G*) as a function of
the crossover conductance G* extracted from our Monte Carlo results for £/o7 > 0.9
and from the EMT results for {/o; < 0.9 (see Fig. 4.10).

suggested, the piezoresistive response is a much more sensitive quantity for
the investigation of the TP crossover between non-universality and univer-
sality than the conductance itself, whose crossover is masked by the limited
number of p values and the increasing fluctuations of G as the percolation
threshold is approached from above [71]|. From the random-resistor-network
point of view, such sensitivity of I' can also be understood by noticing that,
away from the percolation threshold, the current flows through the less resis-
tive links in the network, so that the bond conductance distribution function
he,(g) is probed, basically, only for the larger g values. On the contrary, close
to the percolation threshold, the current is forced to flow through bonds with
much lower g values, so that the conductivity of the system is basically dom-
inated by the lowest such conductance and therefore the behaviour of A, (g)
as g — 0 is directly probed. Since hy,(g) for our TP model does not diverge
as g — 0, the resulting piezoresistance for p close to p. is expected to be in-
dependent of p, as for any universal TP system. This situation is illustrated
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Figure 4.13: Comparison of the /o1 dependencies of the asymptotic value of the
piezoresistive response coefficient that were obtained from EMA, from Monte Carlo
calculations and from the averaged piezoresistive response of a single bond with
o9/o1 =10 and N = 5.

in Fig. 4.13 where we have plotted the asymptotic limit I'g = lim,_,,, I' ex-
tracted from our Monte Carlo results (filled circles) together with the EMA
formula Eq. (4.59) (crosses) which is identical to the piezoresistive response
of a linear chain of conductances distributed according to he,(g). This sug-
gests that, very close to the percolation threshold, I' is insensitive to the
topology of the percolating cluster, as it is also verified by computing the
averaged piezoresistive response obtained from a single channel occupied by
N impenetrable spheres, that is also shown in Fig. 4.13.

Now coming back to the experimental results shown in figures 3.4 and
3.5, it appears that this crossover between logarithmic divergence and con-
stant peizoresistivity, expected from our model, cannot be observed here.
This can be attributed to the fact that, for so high piezoresistivities as mea-
sured here for the non-universal systems, the crossover is expected to fall
at values of  — x. smaller than the ones probed in these experiments. For
such low values of x — x., jointly high resistivities, the measurement of I'
is difficult due to noise, surface leakage and finite impedance of the elec-
tronics, making our interpretation of non-universality difficult to test. We
nevertheless believe that a careful experimental study of the piezoresistivity
of conductor-insulator, should allow to observe this crossover.
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4.5. High-voltage trimming

High-voltage trimming

We can now use the model developed in this chapter to try to understand
the experimental results presenting, in section 3.4, the effect of high-voltage
pulses on different characteristics of TFRs. These results can be explained if
we consider the mechanisms involved in voltage trimming and the topology
of the underlying current carrying network, supporting the existence of a
percolation network with a broad distribution of local conductances.

We suppose that the global change of conductivity and other properties,
is due to changes in the local intergrain conductances. It was proposed by
Feldbaumer [42] that those changes were due to local heating, due to Ohmic
dissipation, and that this was effective only if the local temperature exceeded
the maximal temperature reached during firing. This assumption is some-
what supported by the results presented in figure 4.14, showing the initial
resistivity 1/%; (panel (a)) and the relative change of conductivity X1/
due to trimming (panel (b)), as a function of the firing temperature, T, of
the samples. We recall here that the samples were subjected to 2300 voltage
pulses induced by the discharge of a capacitor of 0.33 nF charged at 500 V.
We see in panel (a) that the initial resistivity of the samples depends on the
firing temperature 7. It first increases with increasing firing temperature,
reaching a maximum around 600°C, and then decreases with further increas-
ing Ty. This can be explained as follows: for low T'r the glass does not soften
enough to break the aggregates of RuOg, leading to good conduction. Then
for higher T the glass starts to better wet the conducting grains, disassem-
bling the RuO4 aggregates, increasing the resistivity of the sample. Finally,
for even higher firing temperatures, RuOs starts to diffuse into the glass,
increasing the global conductivity of the sample. Now, as we had seen, in
figure 3.7, the sensitivity to trimming depends largely on the distance to the
percolation threshold & — ., and therefore on the initial conductivity >y of
the sample. In panel (b) of figure 4.14 we show how sensitive the samples are
to trimming, depending on their firing temperature. We see that the relation
between firing temperature and sensitivity to voltage pulses is monotonic,
and can therefore not be explained solely by the change of the initial resis-
tivity of the samples, which presents a maximum, as shown in panel (a) of
this figure. We see in this figure that samples fired at higher temperatures
are less sensitive to voltage pulses, supporting the above assumption that the
resistance changes are due to local heating, which has to exceed the maximal
firing temperature in order to be effective.

As our setup did not allow us to measure the discharge curves, which
would have provided a clearer image of the phenomenon, we now assume
that local Joule heating is responsible for the change of local resistances.
The energy locally deposited in the sample is maximal in singly connected
bonds with a large resistance, that will carry the whole current of the voltage
pulse together with a large voltage drop. For samples far from the percola-
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Figure 4.14: Resistance (a) and sensitivity to trimming (b) as a function of the
firing temperature 7y for TFRs with RuO» grain size of 40 nm and concentration
x =0.11.

tion threshold, the current can avoid the large local resistances, because there
are several parallel routes and very few singly-connected bonds. Trimming
will therefore have little influence on the characteristics of the samples with
volume fractions of conductor far above the percolation threshold. As the
percolation threshold is approached the probability to have singly-connected
bonds with large resistances increases and trimming becomes more effective.
Of course, the largest local resistances are the ones that will be most affected
by local heating, so that a broad distribution function h(g) of the local con-
ductivities will favour the change of global conductivity of the sample under
high-voltage pulses. This local heating seems to lead to the decrease of the
high resistances, which could be caused by several phenomena such as dif-
fusion of RuOs into the insulating matrix, or diminution of the interparticle
distance caused by the attraction due to electric potential difference and
enabled through local melting of the insulating matrix. This phenomenon
would basically change the distribution function h(g), by cutting its tail for
small g. As the number of singly-connected bonds diverges as the percolation
threshold is approached, we expect that the relative change of conductivity
induced by trimming will diverge as the percolation threshold is approached.
This is indeed what was observed in figure 3.7, explaining well the increase
of conductivity due to trimming and the dependence of the sensitivity to
trimming on the distance to the percolation threshold ..

Now, as we have seen in this chapter, in the tunnelling-percolation model
the piezoresistivity is even more dominated by the large local resistances than
the resistivity of the sample, and should therefore be highly sensitive to the
voltage pulses. We therefore now look at the change induced by trimming
in the piezoresistivity of the samples. We study here the piezoresistive re-
sponse coefficient TH, for a TFR of resistance R deposited on a substrate
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and subjected to hydrostatic pressure, defined by:

OR NI Al

TH = —r, -1+ = 4.61
ROe, [L * 14+w (461)
1 Eg 1-2

W=tV (S 1T VR ) (4.62)
1—vr \EFr 1-—2ug

where €, is the strain in the normal direction to the surface of the substrate,
FE and v are the elastic modulus and Poisson’s coefficient and the subscripts
R and S stand respectively for the resistor and the substrate. I'| and I'|
are the longitudinal and transverse piezoresistive coefficients as defined in
equations 4.40 and 4.41. To calculate ' from our hydrostatic measures we
need to know the relation between the strain and the applied hydrostatic
pressure P2, This is given by:

1—2vg
Es
Justifications of equations 4.61, 4.62 and 4.63 can be found in Ref. [70].
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Figure 4.15: Change of piezoresistivity as a function of x — x. induced by voltage
trimming. F}{ and F¥ are respectively the initial piezoresistive response coefficient
and the one after trimming

In Fig. 4.15 we show the shift of piezoresistivity due to high-voltage
trimming as a function of # — z.. For all samples the piezoresistivity T'Hl
diminished after trimming and the shift seems to diverge as the percolation
threshold is approached. This is again compatible with our interpretation,
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as the lowest local conductivities dominate the piezoresistive response. We
therefore expect the piezoresistivity to decrease with voltage-trimming, and
that this decrease should become very large close to the percolation thresh-
old. This is indeed what we observe in this figure, confirming that the
piezoresistivity is very sensitive to high-voltage pulses close to x. and sup-
porting our above interpretation of high-voltage trimming..

This interpretation, namely that voltage trimming changes h(g), by in-
creasing the lowest conductivities in the system has two more consequences.
The first is that sample series presenting universal transport exponents should
be less sensitive to voltage pulses, as the distribution of local conductances is
less broad, with fewer low local conductances. This could not be verified by
our results and is probably very difficult to asses as the sensitivity to volt-
age pulses also depends on many other factors, so that it remains an open
question. The second is that when trimming is applied on a non-universal
set of samples, it should drive the transport exponent towards universality,
as the lowest conductances in the system are increased, moving the position
of the peak of h(g) to higher g values.
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Figure 4.16: Conductivity of the 40 nm RuOs grain size series as a function
of x — x.. Black squares are the values before trimming and gray triangles after
trimming. The critical concentrations and transport exponents obtained from fits
to equation 4.1 are also shown.

In Fig. 4.16 we show the conductivity of the 40 nm RuOy grain size
series, as a function of x — z. before and after trimming and the fits of
equation 4.1 to these data (in fact the logarithm of equation 4.1 was fitted
to In(X) which gives better fits). As we can see this set of samples initially
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4.6. Conclusion

showed a non-universal behaviour, with an exponent t = 4.4 + 0.7. Now
if we look at the gray curve in Fig. 4.16, we see that, after trimming, the
critical exponent has become universal, t = 1.9 + 0.6. It is also interesting
to notice that the change in critical exponent ¢ also induces a change of the
critical concentration. The diminution of ¢ leads to an increase of z., as is
observed from our Monte Carlo results for the TP model in the continuum,
that will be presented in the next chapter and shown in figure 5.17. For the
400 nm series, the exponent changes from ¢t =2.5+0.2tot =1.74+0.13. In
this case the diminution is still present though the change is less significant.
These results shed a new light on high-voltage trimming and support the
explanations given above. High-voltage trimming changes h(g), cutting off
its tail for small g values, driving the DC critical exponent ¢ towards its
universal value ty. The fact that ¢ diminishes explains the divergence of the
change of conductivity and piezoresistivity as the percolation threshold is
approached. To further verify this fact it would be interesting to perform
such a study on a series of samples having a universal behaviour. In that
case t should remain constant and no divergence of the relative change of
conductivity should be observed.

Conclusion

In this chapter we have addressed the problem of DC transport properties
in a tunnelling-percolation model of segregated (or cellular) systems. Using
a fully microscopical description, the exact distribution functions of inter-
particle distances and tunnel conductivities for N hard conducting spheres
of diameter o1 randomly placed in a bond of length oy was obtained. An
explicit formula of the bond conductivity distribution function h,,(g) was
also obtained for small g values. It was shown that lim,, /5, o0 fory (g9) has a
power-law divergence at g = 0 driving the network towards a non-universal
regime of transport criticality, while for o9/c; finite h,,(g) has an upper
bound which prevents the onset of non-universality at p = p. [60].

A closer look at the distribution function h,,(g) of the channel conduc-
tances g shows that it has a non-monotonic behaviour characterized by a
strong peak at some low g = g,,, value. This feature results in a macroscopic
conductance G that does not follow a simple power law, but rather displays a
p-dependent transport exponent t*(p). It was shown, within the EMA, that
t*(p) was higher than the universal ¢y and approaches the universal limit only
very close to the percolation threshold p., so that an apparent non-universal
transport exponent is extracted when fitting the system’s conductivity to a
simple power-law.

Numerical Monte Carlo calculations showed that for finite oy/0; the
system displays an apparent non-universality in a quite broad region close
to the percolation threshold. This finding implies that the non-universality
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observed in composites which are well described by a finite o/07 tunnelling-
percolation model is probably due to a sampling of conductivities far away
from the true critical region. We have however argued that, depending on
the physical parameters, such a critical region may be so narrowed that in
practice it may be experimentally inaccessible. In this scenario, the phe-
nomenology is basically indistinguishable from that of a truly non-universal
system.

This result is also important because it shows that a truly diverging
h(g) is not needed to explain the experimentally observed non-universal
t values. Indeed, apparent non-universality might be observed in two- or
three-dimensional tunnelling percolation models, without invoking a one-
dimensional particle distribution. A similar situation has been recently de-
scribed in Ref. [36] for the case of the three-dimensional homogeneous distri-
bution of conducting spherical particles, which displays indeed a microscopic
conductance behaviour qualitatively similar to the one presented in Fig. 4.5.
This issue will be addressed in the following chapter of this thesis, while
dealing with tunnelling-percolation in continuum systems (off-lattice).

Finally, we noted that the study of the p-dependent transport exponent
t*(p) was very inefficient to characterize the crossover from non-universal to
universal behaviour and to experimentally verify the existence of apparent
non-universality, as it requires the measurement of the conductance G at
many concentrations very close to the percolation threshold, which is exper-
imentally very difficult. We therefore proposed the study of the piezoresistiv-
ity I' as an efficient tool to study this crossover. Indeed, we have shown that
I' displayed two very different behaviours when ¢ is p-dependent and when
not. In the first case, I' has a logarithmic divergence, and in the second,
when ¢*(p) reaches its asymptotic value tg, I' has a constant value T'y.

We have also carried out Monte Carlo simulations of the piezoresistivity
of our TP model, which allowed us to show that, although the conductivity
could be fitted by a simple power law with a non-universal exponent, the
piezoresistivity clearly allowed to observe the crossover between the apparent
non-universal and the universal regime. We interpreted those observations
as due to the fact that I' is much more sensitive to the tunnelling-percolation
features than the values of G [71]. We therefore conclude that, at least in
principle, this result could be used in tunnelling-percolation materials to
experimentally investigate the origin of their non-universal exponents, by
measuring I' as a function of p — p. or G.

Finally we concluded this chapter by interpreting the high-voltage trim-
ming results of section 3.4 in the light of the tunnelling-percolation model.
We show that a simple explanation of voltage trimming can be given in terms
of changes in the distribution function h(g) of the local conductances. This
explanation is sufficient to explain our experimental results and is further
supported by our experimental observation that the transport exponent ¢ is
driven towards universality by high-voltage trimming.
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Chapter 5

Electrical conduction in
continuum
tunnelling-percolation
systems

In this chapter, we study the tunnelling-percolation mechanism of conduc-
tion in disordered conductor-insulator composites, for a realistic continuum
model, where conducting and impenetrable spherical particles are dispersed
in a three-dimensional continuum insulating material. Conduction between
particles occurs via tunnelling processes and a maximum tunnelling distance
d is introduced. We determine the percolation critical concentration for sev-
eral values of d. By so doing, we relax the restrictions applied in the previous
studies of the problem, i.e. the considerations of the underlying lattice and
the contribution of only the nearest neighbours. The tunnelling percolation
transport is then analysed by studying the conductance of the composite
at and near the percolation threshold, using a decimation procedure and a
conjugate gradient algorithm. We show that at the critical concentration,
and independently of the tunnelling parameters, the critical transport expo-
nent t reduces to the universal value tg ~ 2, while moving away from the
percolation threshold, the conductance exponent becomes larger than ¢y, ac-
quiring a strong concentration dependence [72]. We interpret this feature as
arising from the peculiar form of the distribution function for the local tun-
nelling conductances. Consequently, apparent non-universality of transport
appears when the conductance of the composite is fitted by forcing the ex-
ponent to be independent of the concentration. This leads us to believe that
our tunnelling-percolation theory is sufficient to explain the non-universal
transport exponents observed in real disordered conductor-insulator com-
pounds.

Before presenting our results, I briefly summarize an EMA calculation of
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the transport properties in three-dimensional tunnelling-percolation systems,
presented in a paper by C. Grimaldi and I. Balberg [36].

Effective medium approximation of 3D
tunnelling-percolation transport

As we have seen in the preceding chapter, in section 4.1, the nearest neigh-
bour distribution function P(r) has to decrease slower than the inter-particle
conductivity with the distance r, in order to obtain a diverging h(g) leading
to non-universality. We have seen that in a random distribution of spheri-
cal particles, one-dimensionality is essential in this respect. But as pointed
out in the conclusion of chapter 4, a diverging h(g) is not necessary to ob-
tain apparent non-universality, sufficient to explain the observed experimen-
tal non-universal transport exponents. It is therefore interesting to check
whether apparent non-universality is also obtained in TP models with re-
alistic matter distributions, with P(r) decreasing faster than the tunnelling
conductivity. To this end we consider an effective medium approximation
of electrical transport in a three-dimensional tunnelling percolation system.
We use the effective medium theory, for lattice bond percolation, but using
a realistic distribution function P(r) for a homogenous dispersion of spheres
in the continuum. To this end, let us consider a bond percolation model of
a cubic lattice . The corresponding EMA equation is (see equation 4.34 or

Refs. [12,19]):

p_pc
2 1
G/ +2G p (5.1)

where p. = 1/3 is the EMA bond percolation threshold. Following Ref. [36],
we assume that h(g) is given by tunnelling processes between nearest-neighbour
particles, so that h(g) is given by

o) = [ arPw5(s— o) (5.2

and Eq. (5.1) reduces to

r D= Dc
2 .
G/ dr ST A (5.3)

where g(r) is the tunnelling conductance given in Eq. (5.24) and P(r) is the
distribution function of the distance r between two nearest-neighbours. The
authors of reference [36] studied this model, using
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fransport
24x(v1y% + Yoy +
Ply) = (ny 0172y ) exp [—8zy1(y® — 1)
—12z79(y? — 1) — 24a73(y — 1)] Oy — 1), (5.4)

with y = r/o; for the nearest-neighbour inter-particle distance [28]. The
authors solved equation 5.3 numerically and obtained a transport behaviour
very similar to our results on lattice percolation, presented in chapter 4. The
local transport exponent they obtained, t*(p), as defined in equation 4.36,
is shown in figure 5.1 for different values of the control parameter o (for a
definition of « refer to equation 5.34) and for point-particles in the left panel
(o1 = 0) and hard core particles in panel (b) (o1 > 0). It is clear from that
figure that apparent non-universality is also obtained in that framework,
with t*(p) > to = 1, not too close to p. and for large enough values of a,
and with t*(p) reaching asymptotically ¢y only very close to p.. Again in
this situation, a mean value t* > tg of t*(p) would be obtained if fitting the
conductance of the system with a simple power law, for a limited number of
p values, leading to apparent non-universality.
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Figure 5.1: The local transport exponent t*(p), defined in equation 4.36 and
derived from the calculated EMA conductance G as a function of p — p.. The
different cases refer to different values of the parameter o = 1 — £/2(a — 071).
Results in the left panel are for point-particles (o7 = 0) and in the right one for
spheres with diameter o7 > 0. This figure is taken from reference [36]
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5.1.1 Effective Medium approximation for the conductance

We will now further develop this effective medium theory to obtain an analyt-
ical expression for the conductivity G of the system and for the p-dependent
transport exponent. For simplicity, we consider the limiting case of point-like
particles (o1 = 0), for which P(r) is given by the Hertz distribution:

Py = 2 exp <_az) , (5.5)

where a is the mean nearest-neighbour distance. We rewrite Eq. (5.3), using
Eq. (5.5) and introducing an upper cut-off d in the bounds of integration.
This bound is introduced in view to better fit the continuum model we will
introduce in the following section. Basically, d sets a limit to the tunnelling
range, beyond which two neighbouring particles are considered electrically
disconnected. By introducing the dimensionless variable z = r/a, we obtain:

d/a 2 —23 _
/ . 2637 P~ Pe (5.6)
0

# e—2az/E 12G D
We will now develop solely the left hand term of equation (5.6). Introducing
W(z) = 2G/[2G + exp(—2az/¢)] and integrating by parts, we obtain

2G 2G e~ (d/a)° d/a 3
— d ! -, 7
Ye e—Qd/§+2G+ ; 2 W'(z)e (5.7)
We can rewrite W as
1 ) £ 1
W(z) = T with z*= —=1In <> (5.8)
672?(272: )+ 1 2a 2G
So that
2a *
2 —?(Z—Z )
Wi(z) = == - (5.9)
§ eG4 1]

is strongly peaked at z = z* for small /a. In particular, for £/a — 0, we
have limg_,o W(z) = ©(z — 2*), where © is the Heaviside step function, so
that

%i_)r% W'(z) =8(z — 2%). (5.10)

For small /a values, two cases have to be considered: z* inside the interval
of integration, meaning z* < d/a, or z* outside the interval of integration
(2" > d/a). We start with this second case, when z > d/a or equivalently
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2G < exp(—2d/§), corresponding to the situation close to the percolation
threshold. As 2G < exp(—2d/§) < 1 equation 5.7 becomes

d/a
2G — 2Ge2¥/¢-/9)° 4 o / dz 2;62“45—23. (5.11)
0

As £ is small, the exponential term in the integral is growing with increasing
z and is dominated by z = d/a. We therefore develop the argument of the
exponential around z = d/a and equation 5.11 reads

d/a
00— 9G2dlE—@/a) 920 [V 1, iy e /e-3d/a) c—dfa) (5.12)
0

(24/¢~(d/a)?

— 990G — 920 e2d/6—(d/a)* | 9
G —2Ge 2 e /2

[1 . e3<d/a>3—d/ﬂ . (5.13)

We now eliminate the unimportant second term in the square brackets and
develop the fraction at first order of £, giving

d\? & 2d/e—(d/a)? d\2 & oqye
Reintroducing the left-hand term of equation 5.6 we finally obtain for G:
1 7a\22a _ P — Pe
G=-(=) Ze e = 5.15
6 <d> 13 c P ’ (5.15)

corresponding to G ~ (p — p.), i.e., the conductance is universal with EMA
exponent ty = 1, as long as we are “close enough” to p.. How close to p. we
have to be in order to observe universality depends on the parameters of the
model, notably £, through the condition 2G < exp(—2d/¢).

Let us now look at the second case, for z* < d/a, or equivalently for
2G > exp(—2d/¢). In that case, and for small £, we can evaluate the integral
of equation 5.7 by using Eq. (5.10), obtaining

p—pc  2G 7 2G e~ (d/a)*
p 142G e 2/51 9@
Now as G < 1 and 2G > exp(—2d/§) this expression can be simplified into

4 el ()], (5.16)

P=Pe _ oG _ o(d/a)* | —(&/2aIn(1/2G))’

b
exp{— [fa In (21(;”3} (5.17)

so that the resulting conductance is given by

12
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5 1/3
G =~ exp [—;<lnpfp> ]
C

_ <P - pc) wnt)

U p

, (5.18)

where in the second equality we have made explicit that in this regime the
conductance is governed by a p-dependent exponent. From the above results
we obtain that the conductance reduces to the universal EMA power-law
G =~ (p — pc) only if p — p. is so small that G < exp(—2d/&). Conversely,
when G 2 exp(—2d/§), the conductance takes a more complicated form with
a p-dependent transport exponent. In the whole p — p,. region, the solution
to Eq. (5.6) may be expressed conveniently as a conductance of the form

_ t(p)
G~ <p pc) : (5.19)
p

with p-dependent exponent

% (, —2/3
t(p) =to + 3 ( n - pc) , (5.20)

which contains the limiting behaviours discussed above (Egs. (5.15) and
(5.18)).

Test of the analytical solution

The validity of Egs. (5.19) and (5.20) can be tested using the results of
Ref. [36] presented in section 5.1. We use the results of the panel (a) of
figure 5.1, as it is for dot particles, which is the case treated here. This
figure shows t*(p) obtained from t*(p) = dIn(G)/dIn(p — p.) as a function
of p — p.. We have to be careful here because we have indeed that

dIn(G) pe , di(p) (p —pc>
tp) = —— =t(p) =+ =L (p—p)In [ E—E5) £(p). (5.21
)= g s =102+ = p () #1521
Therefore in figure 5.2 we compare t*(p) = dIn(G)/dIn(p—p.) obtained from
equations 5.19 and 5.20,

dIn(G) De

11 p \ 2
tH(p) = — 7 to + - 1 22
®) dln(p—pe) p "T31 a n<ppc> (5.22)

with the results for ¢*(p) of Ref. [36]. In panel (a) of this figure, equation 5.22
is shown, whereas in panel (b), it is this same equation, but in the limit of
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small £/a, namely without the term ty. We see a good overall agreement of
our analytical result with the numerical solution of equation 5.3, as the two
limiting bounds are well reproduced. Indeed in panel (b) of this figure we see
that the solution obtained for 2G > exp(—2d/£) is in very good accord with
the results shown for larger o, whereas in panel (a) with see that the other
bound t(p) = tp holds for smaller values of «, as expected. We can also note
that the simple Ansatz made in equation 5.20 to combine the two solutions
leads to an overestimation of ¢(p) for the larger values of o and p close to pc.
Nevertheless, this Ansatz is sufficient and convenient to describe the general
situation encountered in this system and holds well in the limiting cases.
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Figure 5.2: Comparison of the analytical result 5.22 with the numerical solution
of equation 5.3 taken from Ref. [36]. Three cases for different values of the control
parameter « are shown. In the left panel we show the analytical result obtained
for t*(p) as given in equation 5.20, whereas in panel (b) we use the result obtained
for small £/a values. The black curves are the numerical results and the grey ones
the analytical solution.

An extension of the EMA analysis presented above is briefly described in
appendix A for the case of impenetrable particles with a hard-core diameter
o1 # 0. The interesting feature is that both results show that the ratio of
the distance between particle surfaces, a — o1, to the tunnelling decay length
¢ is the basic parameter that governs the non-universal behaviour, as is the
case in one-dimensional systems, but in three dimensions this dependence is
weakened, reaching universality, as the percolation threshold is approached.

The result obtained in equations 5.19 and 5.20 can also be tested directly
for the conductivity G. A good way to rewrite this result is as follows:
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In(G) - to]

In < P )2/3 = £
— P—Pc
P —De 2a | In (%]

= (1=a)[t(p) - to] (5.23)

So that if we plot the quantity (£/2a)[t(p) — to] as a function of (p — p.)/p,
we should obtain a data collapse, meaning that all results, for different «,
should approximately lie on the same master curve. This is shown in Fig. 5.3
where this quantity, obtained by solving Eq. (5.6) by numerical integration
and iteration, is plotted as a function of (p — p.)/p for different values of
a =1—¢&/2a. In agreement with the above results, the curves are nearly
independent of a and approximately follow [In(p/(p — p.)]~%/ (solid black
line) in the whole range of (p — p.)/p, verifying therefore the validity of
Eq. (5.20).
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Figure 5.3: Concentration dependence of the local transport exponent of the EMA
of the continuum TP model, as calculated from a numerical solution of Eq. (5.6)
for different values of &« = 1 — ¢/2/(a — 01) for point-like particles (o, = 0). The
solid line describes the [In (p/(p — p.))] =2/ dependence.

It is worth to stress here that this result is of importance for the TP
origin of non-universality. It shows indeed that the constraint on the one-
dimensional distribution of the conducting particles can be released, without
hindering the appearance of apparent non-universality. We should, never-
theless, keep in mind that this result is again a lattice result, though using
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a nearest neighbour distance distribution function of a homogeneous disper-
sion of particles, and that it is treated only in the approximate framework of
effective medium theory. In what follows we study a continuum tunnelling-
percolation model, relaxing the lattice restriction of the above results.

Continuum tunnelling-percolation model

As stated above, all previous studies of the TP origin of non-universality were
based on mappings of the continuum percolation on a regular lattice. More-
over, the model of the pioneering work [27] and the study on apparent non-
universality in three-dimensional dispersions of spheres discussed above [36],
consider the inter-particle distances to be distributed according to the near-
est neighbour distance distribution function. It is clear that at least nearest
and next-nearest neighbour tunnelling is needed to assure connectivity of the
percolating cluster. In this chapter we relax these restrictions by considering
an off-lattice model where the conducting (impenetrable) particles are given
by equally sized spheres dispersed in an insulating continuum, and tunnelling
between particles is allowed to extend also beyond the nearest-neighbour dis-
tances. By using exact numerical renormalization techniques and relaxation
methods, we demonstrate that, right at the percolation threshold, the system
is universal with the electrical transport exponent ¢y, while away from x. the
conductance follows a power-law with an z-dependent exponent ¢(z), leading
therefore to the appearance of apparent non-universality in this continuum
TP model [72]. Furthermore, we show that ¢(z) depends on the tunnelling
decay factor £ and on the mean distance between nearest-neighbouring par-
ticles a, verifying therefore the effective medium results of Ref. [36] and the
on-lattice calculations of the preceding chapter

The Model

Let us consider equal size conducting spheres of diameter o1 dispersed in
a continuous three-dimensional insulating medium. Furthermore, let us as-
sume that the spheres are impenetrable and that the conductance between
two spheres whose centers are separated by r (with r > o1) is given by:

otr) = goexp (227 (5.24)

where £ is the characteristic tunnelling distance and gy a constant prefactor.
In principle, Eq. (5.24) applies to all pairs of particles regardless of their
relative distances. However, in practice, particles which are set apart by

a distance much larger than £/2, can actually be considered as electrically
disconnected. In order to deal with this situation, we introduce an upper
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distance cutoff d beyond which the tunnelling conductance between two par-
ticles is set equal to zero. This cutoff has several physical justifications. For
example, if the continuous medium has an intrinsic conductivity s # 0,
then all tunnelling processes with conductances smaller than the contribu-
tion of the matrix (g(r) < 32) do not contribute (or contribute very little)
to the macroscopic conductivity of the system. This defines a maximum
tunnelling distance which can be estimated through

13 god
d~ 21 5.25
5 In S0 2 ) (5.25)

where the term d/o;? comes from geometrical considerations (in fact we
compare the tunnelling-conductance with the conductance of the cylindrical
volume of matrix located in between the conducting particles). Of course,
as Yo/go — 0, the maximum distance d cannot grow indefinitely, because
when d is several times larger than the tunnelling decay factor £, any small
perturbation in the potential of the continuous medium would cause the
collapse of the wave function, so that two particles a distance d > £ apart
are electrically disconnected.

Whatever is the origin of the cutoff distance d, its presence is an impor-
tant physical parameter of the problem, which gives rise to a percolation be-
haviour of transport. Its introduction leads to the composite particle model
shown in Fig. 5.4(a), where the black disk is the impenetrable metallic sphere,
while the attached concentric shell has a thickness d/2. From the struc-
tural point of view, our model is a penetrable-concentric-shell model (known
also as cherry-pit model or semi-permeable particles model). As shown in
Fig. 5.4(b), the composite particles define a spatially correlated continuum
percolation system, where two hard-core particles are considered linked, and
the corresponding inter-particle conductance is given by Eq. (5.24), if and
only if the separation between their closest surfaces is less than the cut-off
distance d.

Due to the composite nature of the particle system, hard-core spheres of
diameter o1 and semi-permeable spheres of diameter o1 + d, the definitions
of the particle concentration and the percolation threshold depend on which
aspect of the composite particles is relevant for the problem. For the elec-
trical transport properties, it is of course the whole composite sphere which
must be considered, since the electrical connectivity is governed by the over-
lap of the permeable shells of two or more composite particles. Hence, given
N spheres in a volume V, for the determination of the conductor-insulator
transition of the system, we shall use as a density variable the following
dimensionless quantity:

s
n=pglon+ d)? (5.26)

where p = N/V is the number density. The corresponding critical concen-
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o+d

(a) (b)

Figure 5.4: Two-dimensional representation of the composite-particle model used
in the present chapter. (a): The filled circle denotes a conducting impenetrable
sphere of diameter oy, while the concentric shell of thickness d/2 defines the upper
cutoff for the conductance. (b) When several particles are arranged together, their
microstructure is that of impenetrable spheres with penetrable shells. When the
separation between the closest surfaces of two (black) spheres is larger than d, the
inter-particle conductance is set equal to zero, otherwise it follows Eq. (5.24).

tration for the onset of electrical conduction, 7., determines the conductor-
insulator percolation threshold of the system. Instead, the volume concen-
tration of hard-core particles z = pro$ /6 has the direct significance of vol-
ume percentage of the conducting phase dispersed in the whole conductor-
insulator composite. The concentration z is related to Eq. (5.26) through
the relation

z =\ (5.27)

where o1
\ = 5.28
p—— (5.28)

is the penetrability coefficient which has limiting value A = 0 (A = 1) for
completely penetrable (impenetrable) spheres.

Percolation threshold

Since the electrical connectivity is established only if the overlaps of the
particle shells span the entire sample, it is essential for the evaluation of
the composite conductance to estimate the percolation threshold 7, and its
dependence on the penetrable shell thickness (and hence on \). Here, we
obtain 7. as a function of A by first computing the spanning probability,
II(n) for finite systems with linear size L/oy, i.e., the probability of having
a percolating cluster which spans the system from one side to the opposite
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one, and then by extrapolating the results to the L/o; — oo limit [73]. In
practice, we consider a box with edges of length L where N spheres of di-
ameter o1 are placed randomly but with no overlaps. A simple Metropolis
algorithm is used to attain equilibrium [74,75]. The use of the equilibrium
state here, with no other interaction than the hard-core repulsion between
the conducting spheres, implies that we neglect, in our model, the influence
of any other interaction between the conducting spheres (such as electro-
static forces) and between the conducting spheres and the matrix. Such
interactions would of course influence the morphology and the distribution
of conducting spheres in the system. This can drastically change the perco-
lation threshold of real composites, as was for example observed in Ref. [49],
where electrostatic interactions spontaneously lead to a segregated structure
in a carbon-black/polymer composite. This particular microstructure, which
is one possible morphology induced by interactions between the matrix and
the conducting particles, is studied in the next chapter of this work.

Let us turn back to our Monte Carlo simulation procedure. After the
equilibrium state is reached, for a given value of d/o; (hence of \), we use
a modified Hoshen-Kopelman algorithm to extract, if it exists, the perco-
lating cluster for a given realization [76,77|. Finally II(n) is obtained by
recording the number of times that a percolating cluster appears for sev-
eral realizations (for more details about the simulation procedures, refer to
appendix B). In Fig. 5.5 we show the so-obtained spanning probability for
L/o1 = 15, 20, 30, 50 and for d/oq = 1 (A = 0.5), calculated by imposing
open boundary conditions. The calculations have been performed for num-
ber of particles N ranging from N = 200 (with Ny = 2000 realizations) up
to N = 10000 (Ns = 250). According to the finite-size scaling method de-
scribed for example in Ref. [73], the critical density 7.(L), for finite L, can
be extracted by imposing II(n.(L)) = 1/2. This can be evaluated by fitting
the discrete data with some suitable function. Here we use |73]:

(y, L) = % <1 + tanh [WD (5.29)

where A(L) is the width of the percolation transition. Equation (5.29) is
presented by the solid lines in Fig. 5.5, and the resulting best fitting values
of n.(L) and A(L) are reported in Fig. 5.6. Using scaling arguments [4] (or
see equation 2.11 in the state of the art of this thesis), it can be shown that
the functions A(L) and n.(L) follow the scaling relations

A(L) « L7V (5.30)

ne(L) —ne o LMY (5.31)

where v is the correlation length exponent. Hence, the exponent v can be
extracted from Eq. (5.30) and used in Eq. (5.31) to evaluate the critical
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Figure 5.5: Spanning probability II as a function of the density 7 for different
system sizes L/oq1 and for the penetrability coefficient value A = 1/2. The solid
lines are fits to Eq. (5.29).

density 7. for an infinite system. The results we obtained by this procedure
are shown in Fig. 5.6 for A = 1/2. From the relation 5.30 we have obtained
(inset of Fig. 5.6) v = 0.87 &+ 0.02, which is in excellent agreement with
other estimations yielding v ~ 0.88, |73, 78| while from Eq. (5.31) we have
deduced (main frame of Fig. 5.6) . = 0.32034+0.0003 by using the commonly
admitted value for v. By using Eq. (5.27) we also find the corresponding
value in terms of the volume fraction of impenetrable spheres. This value,
x. = 0.04, is of course much lower than the geometrical percolation threshold
for direct contact between hard-core spheres (z. ~ 0.64 for random close
packing [79]).

The behaviour of 7. for different values of the penetrability coefficient A
is plotted in Fig. 5.7 (crosses) together with the results of Ref. [78] (empty
circles) and of Ref. [39]. For A = 0 we obtain 7. = 0.3423 £ 0.0003 which is
in very good accord with the most accurate value to date (7. = 0.341889 +
0.000003) reported in Ref. [80] (open square in Fig. 5.7). Such agreement
holds true also for A > 0, for which our results are perfectly compatible with
the original work of Balberg and Binenbaum in 1987 [81], and with the more
recent results of Lee and Yoon [78] and of Heyes [39].

Having established the behaviour of 7. as a function of the penetrability
coefficient, let us now consider the problem of choosing some representative
values of the cut-off parameter for the evaluation of the system conductance.
From the results of Fig. 5.7, and by using Eq. (5.27), it is straightforward to
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Figure 5.6: Evaluation of the critical density as a function of L/oq for A = 1/2.
The solid line follows Eq. (5.31) and 7. is given by the intercept at L=/ = 0. The
value of the correlation length exponent v is extracted from Eq. (5.30) by fitting
the data of A(L) as derived from Fig. 5.5 and Eq. (5.29) (inset).

obtain the critical concentration z. of the conducting particles as a function
of the cut-off parameter d/o. This dependence is shown in Fig. 5.8(a), from
which one infers that the electrical connectivity of the system is established
for concentration values that are rapidly decreasing as d/o; increases. Hence,
for an efficient numerical evaluation of the system conductance, it is certainly
preferable to consider large enough values of d/o; so that not too many par-
ticles ought to be considered in the calculation of the conductance. Yet, large
values of d/o1 may lead to important finite size effects and /or poor statistics.
Hence, intermediate values of d/o; should represent the best compromise.
We have chosen then for our work the values of d/oy = 1 and d/o; = 2
which, according to Fig. 5.8(a), amount to describe a system with a rela-
tively low critical particle concentration. Such values of the cut-off length,
however, do not limit the validity of the subsequent calculations, since the
ratio between the cut-off length d and the typical inter-particle separation,
(ac —o01), where a. is the mean nearest-neighbour particle distance at perco-
lation, changes little with d/o. This is demonstrated in Fig. 5.8(b), where
the plotted d/(a.—o71) values have been obtained from the data of Fig. 5.8(a)
and by using a. = [ drrP(z.,r), where P(z.,r) is the distribution function
for the distance between two neighbouring impenetrable spheres at concen-
tration z. as given in Ref. [28]. From the results in the figure, it is seen that
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Figure 5.7: The percolation critical density 7. as a function of the penetrability
coefficient A. Crosses: our results. Circles: results from Ref. [78]. Triangles: results
from Ref. [39]. Open square: (at A = 0) from Ref. [80].

d/(a. — o1) is comprised between 1.7 and 2.1 for a two-orders of magnitude
change of d/oj. In the limit of point-like particles (d/o; = o0) it is found
that d/a. = 277g/3/1“(4/3) [28], where T" is the Gamma function, so that for
Ne ~ 0.342 one finds d/a. ~ 1.6. The weak dependence of d/(a, — 1) on
the cut-off length points out therefore that the above values of d/oq, that we
have chosen for the conductance simulations, below, not only have a com-
putational convenience, but are actually representative of quite a general

situation.

We can also note here the difference of behaviour between z. and 7.
Indeed x. monotonically decreases when d/oy is increased. This is of course
due to the fact that the hard-core volume of the composite particles com-
pared to its total volume participating to the connectivity decreases with
increasing d/o1, so that z. tends to zero as o1/d vanishes. On the other
hand 7. has a non monotonic behaviour. As X increases ( decreasing d/o1),
7c first diminishes, as the hard-cores diminish the mean overlap between the
conducting particles, and then starts increasing for higher values of A, be-
cause the penetrable shell becomes so thin that the conducting particles have
to be almost in contact in order to obtain connectivity. Finally for A = 1
close packing is needed for the conducting phase to percolate through the
system (x. ~ 0.64).
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Figure 5.8: (a): The percolation critical concentration z. as a function of the cut-
off length d/oy. (b): The corresponding values of d/(a. — 1), where a. — o1 is the
mean distance between the closest surfaces of two nearest neighbour conducting
spheres. Crosses: our results. Circles: results from Ref. [78]. Triangles: results
from Ref. [39].

Transport exponent from finite-size scaling

We are now in the position to evaluate the behaviour of the conductivity
at the percolation threshold 7. and the value that the transport exponent ¢
acquires at 7.. To this end we have used, as outlined below, a finite scaling
analysis of systems of linear size L. In general, the conductivity ¥ is a
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function which depends on both the concentration n and the size L. For 5
sufficiently close to the percolation threshold 7.(L) for a finite system of size
L one expects, in view of the above:

S(n, L) = Lo(L) [ — 1e(L)]’ (5.32)

where (L) is a size-dependent pre-factor. By setting n = 7., where 7, is the
percolation threshold for L — oo, and by using Eq. (5.31) and Eq. (5.32) one
sees that the main dependence of 3(7., L) upon L is of the form L7Y" so that
the transport exponent ¢ (as the exponents of other properties, see Ref. [4]
or equation 2.11 in chapter 1), can be extracted from the linear dependence
of In[X(n, L)] on In(L). However, rather generally, fluctuations at finite L
may result to be important and, furthermore, the pre-factor 3y(L) provides
some, although weaker, dependence on L. These finite-size contributions
can be taken into account by considering the following, more general, scaling
relation

S(ne, L) = S1L" (1 + 5oL ) (5.33)

where the quantity within brackets is an Ansatz aimed to capture the main
L dependence of the finite-size corrections. The evaluation of t goes then
as follows. The conductivity at 7. is calculated for several values of L, and
the resulting values of (7., L) are fitted by varying ¢/v and the parameters
B1, B2, and w of Eq. (5.33). Since v is known, the best fit provides then the
resulting value for t.

In our work we have extracted the conductivity of a system of size L,
by isolating first the percolating cluster as described in the previous section.
Then we implemented a numerical decimation procedure which replaces, by
applying iterative exact transformations, the initial set of conductances (be-
longing to the percolating cluster) by a single conductance [82,83]. Since
the iterative transformation is exact, the final single conductance value co-
incides with (7., L). The transformation simply proceeds by successively
eliminating each node in the cluster and replacing the adjacent conductances
by following Kirchoff’s laws. More details for the numerical simulation pro-
cedures can be found in appendix B.

A collection of /v exponents obtained for different o /£ values is plotted
in Fig. 5.9 for d/o; = 1 (full circles) and d/o1 = 2 (open squares). Within the
error bars, determined from the statistics and the error fits to Eq. (5.33), the
calculated /v exponents for d/oy = 1 practically coincides with the universal
value to/v ~ 2.0/0.88 ~ 2.27 (horizontal dashed line) independently of the
tunnelling factor value. For d/o; = 2 the mean value of ¢/v lies slightly
above 2.27 for o1/¢ larger than about 6, but universality is still confirmed
within the error bars in the whole range of 01/£. The results reported in
Fig. 5.9 confirm therefore our previous suggestion (Ref. [36]) that, at the
percolation threshold 7. of the composite system, the transport exponent is
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universal, independently of the tunnelling characteristic distance and of the
value of the cut-off parameter d.

® dic =1 -
0 dis, =2
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Figure 5.9: The calculated values of the DC transport exponent from fits to
Eq. (5.33) for different values of the tunnelling decay factor ¢ and for d/o; = 1
(filled circles) and d/o1 = 2 (open squares) and the corresponding error bars as
obtained from the fits. The horizontal dashed line is the universal value t/v = 2.27,
while the solid lines refer to the corresponding Kogut-Straley exponent of Eq. (4.48)
with « given by Eq. (5.34).

The significance of this result with respect to the classical tunnelling-
percolation (one dimensional-like [27]) theory of non-universality is best ap-
preciated by looking at the corresponding values of the Kogut-Straley expo-
nent which, by taking into account the fact that the particles are impene-
trable, reduces to

w182 (5.34)
a— 01

« is the control parameter in the classical tunnelling-percolation model.
Therefore, comparing the transport exponents we obtain in our model with
the ones obtained in the classical TP model for the same values of «, allows to
asses how this more realistic model behaves for the same model parameters.
For d/oy = 1 the percolation threshold value used in Fig. 5.9 is n. ~ 0.32,
which corresponds to a hard-core sphere density of z. &~ 0.04. The corre-
sponding value of the mean nearest neighbour distance a can be obtained
either from Fig. 5.8 or, more transparently, by identifying a with the radius
of a sphere containing, on average, only one particle at its center [27,36].
Since for x =~ 0.04 the system is well within the low concentration regime,
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a simple estimate of a is obtained by assuming that the particles are im-
planted randomly with a concentration p, so that a can be extracted from
(47/3)pa® = 1, leading to a/oy ~ (1/x)Y/3/2 ~ 1.46. By using Eq. (5.34),
the resulting Kogut-Straley exponent reduces therefore to o ~ 1—1.087¢/0;
which, according to Eq. (4.48), would predict non-universality as soon as
o1/€ > 1.217. The resulting o1/¢ dependence of ¢/v as obtained by us-
ing Eq. (4.48) is plotted in Fig. 5.9 by the solid black curve. According
to the original tunnelling-percolation theory, therefore, ¢/ would exceed 10
already at o9/¢ ~ 8.6, while our continuum model gives t/v ~ 2.27 for
even larger values of 01/§. By repeating the same analysis for d/oq = 2
(for which n. ~ 0.332 and z. =~ 0.012) one would expect non-universality
for 01/§ > 0.473, with an even steeper enhancement of ¢/v (grey curve in
Fig. 5.9) compared to the d/o; =1 case.

Transport exponent from the concentration depen-
dence

The universality of the transport exponent for the tunnelling-percolation con-
tinuum model, established in the previous section, poses the problem of how
to account for the observed non-universality in real systems within the same
theoretical framework. Experimentally, deviations of the transport exponent
t from the universal value ¢y, when observed, are obtained by measuring the
conductivity as a function of the (estimated) distance from the percolation
threshold. To examine whether our model also displays similar features, we
have calculated the conductivity > as a function of the concentration = of
the conducting particles. For values of x in the vicinity of z. we have used
the same numerical decimation algorithm that was described in the previous
section, while for larger values of x we have implemented a preconditioned
conjugate gradient algorithm [62,84], which provides a faster computational
technique when z is far above z.. We have in fact used a combination of
those two algorithms, as explained in more details in appendix B. The results
are plotted in Fig. 5.10(a) for d/o; = 1 and in Fig. 5.10(b) for d/o; = 2. To
mitigate the effects of the finite size (L/o1 = 40 in this case) in Fig. 5.10
we have plotted the quantity ¥(z) = [E(z) — S(z.)]/E(2.), where S(z.)
is the conductivity at the critical concentration x. for L/o; = co. Note in
particular that this normalization is unimportant for 3(z) > 10 and that it
was introduced to emphasize the similarity of behaviour for all curves close
to the percolation threshold x.. As it is apparent from the figure, indepen-
dently of 0;1/¢ and of the cut-off parameter, all the calculated conductivitys
follow the same power-law behaviour as x —z. — 0, not deviating much from
(x—x.)? (solid line). We have therefore re-obtained the result of the previous
section: transport is universal at, or very close to z., the percolation thresh-
old. However, away from x., the results of Fig. 5.10 clearly indicate also
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that different behaviours arise depending on the value of o1/€. Indeed for
o1/€ = 0 (solid circles) the conductivity matches approximately the (x —x.)?
behaviour in the whole concentration range. This is of course due to the fact
that for o1/¢ = 0 the inter-particle conductance (equation 5.24) becomes a
constant regardless of the tunnelling distance, giving rise to universal trans-
port. On the contrary, for larger values of 01 /¢, ¥ displays a steeper increase
as one moves away from x. and the deviation from the (z — z.)? behaviour
is stronger for larger o;/¢ values and for the d/o; = 2 case compared to
dfoy = 1.
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Figure 5.10: The calculated conductivity as a function of the proximity (z—=x.)/x.
to the percolation threshold for different values of o,/¢ for L /oy = 40. This is for
d/oy =1 (a) and d/o; = 2 (b). The solid lines represent the universal dependence

(x —z.)2.

Comparison of EMA-lattice results with off-lattice model results

The behaviour shown in Fig. 5.10 is qualitatively similar to that obtained in
the calculations of Ref. [36], based on a lattice tunnelling-percolation model,
where it was shown that the transport exponent acquires a concentration de-
pendence, recovering the universal value ¢y only for z — z. (see section 5.1).
The off-lattice results of Fig. 5.10 can therefore be interpreted in the light
of the EMA approach presented in section 5.1. We can now assume that,
also for the off-lattice case, the main contribution to ¥ comes from the tun-
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nelling processes between nearest-neighbouring particles. Furthermore, since
now the relevant quantity is the volume fraction x of the conducting phase,
we make use of the site percolation formulation of the EMA equations as
described in Ref. [19]. This amounts to replace, in Eq. (5.6), (p — p.)/p by
(22 — 22) /2%, where, in order to approximately map the off-lattice case to
the EMA formulation, z. is now regarded as the percolation threshold de-
termined by d. Finally, since the tunnelling length is limited by the cut-off
d, the upper limit of integration of Eq. (5.6) is set equal to d/a. As noticed
in Sec.IIl, d/a is approximately 1.6a./a, where a. is the nearest-neighbour
mean distance at percolation, so that for large 2a/¢ the upper limit of in-
tegration can actually be safely set to infinity because the peak of W'(z)
is at z* < 1.6a./a < 1.6. Therefore, by following the same steps which
led to Egs. (5.19) and (5.20) and for finite conducting particle diameters o
(see appendix), the conductivity of the tunnelling-percolation model in the
continuum can be argued to be well described by a generalized power-law
behaviour with a concentration dependent exponent of the form

2 2\ t@)
s (25 (.35
_ 2 .2
tx) = to+a£/;1f<$ xﬁ) (5.36)

where the mean distance a depends implicitly on x, g ~ 2 is the universal
transport exponent for three dimensions, and f(y) is a generic function which
should go to zero when y — 0, in order to recover universality very close to
the percolation threshold (as was obtained in the finite size analysis of the
model, in section 5.2.3). We first check whether the conductivity of our
model, which was shown, in figure 5.10, to be well described by the simple
power law of Eq. 5.44, agrees with equation 5.35. To this end, we replot in
figure 5.11 the results of figure 5.10, but as a function of (22 — 22)/z%. By
comparing the two figures, we see that in fact, the conductivity close to the
percolation threshold seems to be better described by equation 5.35, than
by the commonly admitted simple power law.

We will now try to extract f(y) from our Monte Carlo results, with
y = (22 — 22)/2%. Let us denote by X(x,¢) the conductivity of the system
with characteristic tunnelling distance £, and 3(z,00) for a system with
01/& = 0, which is obtained by setting the conductance between two adjacent
particles equal to 1. This second case should give universal results, following

2 _ 2\t
Sz, 00) ~ (w $2x6> : (5.37)

which is indeed verified in figure 5.11. So finally, f(y) can be obtained from
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Figure 5.11: The calculated conductivity as a function of the proximity (z? —
22)/x? to the percolation threshold for different values of o1/¢ for L/o; = 40.
This is for d/o; =1 (a) and d/o; = 2 (b). The solid lines represent the universal
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the following quantity:

SO L& ()&
In (g(x,oo)> n(y)2(a—o1) (t(m) to) Na—or) " fly).  (5.38)

We can now try the same form for f(y) than obtained in the lattice EMA,
namely we take

) = fo [m (1)] . (5.39)

so that, by using Eq. (5.39) in Eq. (5.38) and taking the logarithm, we have

In [(t(a}) - to) 2(5 = In(fo) — bln [m (;)] . (5.40)

a—o1) ]|

This is the final form we test in figure 5.12, where we plot the left hand side
of equation 5.40 as a function of In[ln(1/y)], for d/oy =1 and 01/ = 5. The
advantage of this representation is that it allows to verify the form chosen
for f(y), as it should lead to a straight line. It is clear from that figure that,
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5.2. Continuum tunnelling-percolation model

in the case considered, our numerical Monte Carlo results follow very closely
equation 5.40, with fo = 1.9 and b = 1.18, obtained by fitting the right-hand
side of equation 5.40 to our data.
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Figure 5.12: Plot of the Monte Carlo results for the conductivity ¥ for 1/ =5
and d/oy; = 1, plotted, as explained in the text, following equation 5.40. The solid
line is a fit of Eq. (5.39) with the fitting parameters given in the figure.

The agreement between equation 5.40 and our Monte Carlo data is also
very impressive for all other cases studied (all values of o1 /€ and for d/o; = 1
and d/o; = 2) and the fitting parameters obtained for fy and b are not
varying much from one case to another. fj is found to vary between fy = 1.59
and fy = 2, whereas b varies between 1.09 and 1.33. This small variation
of the fitting parameters allows us to represent all data obtained by a single
function. In figure 5.13 we show again the lefthand side of equation 5.40 as
in figure 5.12, but for all values of 01/¢ and d/o; studied. The black line
is In[f(y)] with the parameters set to their mean values of fo = 1.83 and
b = 1.175 obtained from the fits for the different cases. We see in this figure
that the conductivity follows almost perfectly a single master curve for all
cases considered. It is quite surprising that the conductivity of this complex
continuum model can be described by this simple EMA result

2(a—oq) 2 -t
oyl )

2

Y(x, &) = X(x,00) ( , (5.41)

with only the exponent —2/3, of the EMA calculation, replaced by —b =
—1.17 and an additional multiplicative constant fy = 1.83. We note here
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that in those two figures we did not use X as obtained directly from the
Monte Carlo simulations, but rather used X(x) = ¥ (z) — ¥(z.) to minimize
the finite size effects.
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Figure 5.13: Plot of the Monte Carlo results for the conductivity X for different
parameters, plotted, as explained in the text, following equation 5.40. The solid
line is Eq. (5.39) with the mean values of the fits as parameters, as given in the
figure.

Now taking a closer look at the fitting parameters b and fy obtained
for the different £/01 and d values, shown in figure 5.14, we see that these
parameters have a weak dependence on £. In fact fj is better represented as
a function of 2(a, — 01)/€ and fp as a function of 1 /¢, so that the results
for the d = 1 and d = 2 cases lie approximately on a single curve. We can
asses from this figure that lim¢ .o b = 1 and lim¢_., fo = 2, so that, in the
limit of small £, equation 5.41 reduces to the very simple form:

o 2 ,2\2

S(a,6) = Spe T <:”x2”3> (5.42)
So basically we show that for both asymptotic cases, & — 0 and & — oo,
the expression for the conductivity of the system is very simple. In the
first case it is governed by the universal exponent tg, and in the second
we simply have an additional dependence on the typical nearest-neighbour
conductance g(a), where all the dependence on z stems from the dependence

of the nearest-neighbour mean distance a on the volume fraction .
In fact, it is clear from equation 5.42 that the behaviour of X, for small
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Figure 5.14: Fitting parameters obtained by fitting equation 5.40 to our Monte
Carlo data. (a): the exponent b of equation 5.39 as a function of 2(a. — 1) /€. (b):
the multiplicative constant fy of equation 5.39 as a function of o1 /¢

¢ and z not too close to x., is dominated by the exponential term. We
therefore recover a result of Seager and Pike [85] obtained from a critical
path analysis [58| of the same problem studied here and in this special limit.
They showed that, for small £ and not too close to z., the conductivity is
given by

2dc

Yxe €, (5.43)

where d, is the critical shell thickness, for which a conducting cluster first
appears in the system if the penetrable shell thickness d is increased. d. can
be easily linked to the mean nearest-neighbour distance a using panel (b) of
figure 5.8, where we see that d. ~ c(a—o071) and 1.9 < ¢ < 2.1 in the range of
volume fractions = studied. In fact the value of ¢ should be compared with
the limiting values obtained for fy in figure 5.14 (b) for small oy /€, which
shows very good agreement between our results and the result of Ref [85].
We can also stress here that this comparison shows us that the use of the
mean nearest-neighbour distance a in equations 5.41 and 5.42 is not the only
parametrization possible, as any representative distance of the conductivity
in the system such as a, d., the mean next-nearest-neighbour distance or the
simply the mean tunnelling distance will have the same dependance on the
concentration, namely they will be proportional to /3. From this per-
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spective it seems clear that the use of the mean-nearest neighbour distance
a is just a parametrization but that it is probably not the correct parameter
governing the conductivity of the system.

Discussion

Following the above results, it is interesting at this point to discuss what a
strongly varying local exponent ¢(x) would imply when the z-dependence of
the conductivity is forced to be of the form

¥ = Yo(x — z.), (5.44)

with an z-independent exponent, albeit not necessarily equal to ty. This
issue is fundamental in establishing a connection with experiments in real
composites, where indeed Eq. (5.44), with ¢ independent of z, is used to fit
the concentration dependence of the measured conductivity, without an a
priory knowledge of the percolation threshold x.. We have fitted then the
data of Fig. 5.10, and few more cases for different values of o/&, by using
Eq. (5.44) with the prefactor ¥, the exponent ¢, the critical concentration z.
and an additive constant (to take into account the finite size of the system)
as fitting parameters. An example of such a fit is shown in figure 5.15,
for d/o; = 1 and 01/& = 6.25. We see on this example that we obtained
a transport exponent t = 2.8 + 0.3 larger than t5 = 2. For each set of
parameters d/o; and o1 /€, we have done four such fits to different simulation
data of the conductivity and averaged the extracted transport exponents
in order to get better estimates and diminish the uncertainty on ¢t. The
so-obtained transport exponents, and corresponding error bars, are plotted
by filled squares in Figs. 5.16(a) and 5.16(b) for d/o; = 1 and d/oy =
2, respectively, as a function of o1/€. Also, shown are the corresponding
finite size results of Fig. 5.9 (filled circles) and the Kogut-Straley exponent
Eq. (5.34) (solid lines). From the plots in Fig. 5.16 it is clear that forcing the
exponent t to be independent of the concentration leads to a sort of average,
say t*, of the local one t(z). Consequently, the fitted exponent results are
confined between the universal value obtained from the finite size analysis
and the non-universal Kogut-Straley exponent. Hence, by reducing o7 /&, the
mean value t* of the fitted, or apparent, exponent decreases from a large value
at large o1/ towards the universal limit ¢y ~ 2 as 01/ — 0. Furthermore,
since the local exponent ¢(z) has a stronger z dependence for larger o1/&
values, the error bars resulting from the fitting procedure get reduced as
well when o /¢ — 0. Finally, for fixed o1 /&, the error bars increase by going
from d/o; =1 to d/oy = 2, partially because of the stronger ¢(z) variation,
and partially because of the increased finite size effects.

A last interesting feature is given by the o1/¢ dependence of the “ap-
parent” critical concentration z} resulting from the fits to Eq. (5.44). In
Fig. 5.17, the “apparent” exponent t* of Fig. 5.16 is plotted as a function of
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Figure 5.15: Example of a fit of equation 5.44 to Monte Carlo conductivity data
for d/oy = 1, {/o1 = 6.25 and the system size L/o; = 40. The best fitting
parameters are shown on the figure.

the corresponding z} values. This result shows a clear correlation between
the increase of t*, resulting from the decrease of o1/&, and the (apparently
counter intuitive) reduction of z}. This feature can be understood by notic-
ing that, in order to maintain (z — iBZ)t* approximately constant, as long as
x — x} < 1, an increase of t* would require an increase of x — z, and so
lead to a decrease of z; for fixed x. What makes this feature interesting is
that, when collecting the measured exponents and the corresponding critical
concentrations in real disordered composites, a trend similar to the one of
Fig. 5.17 is observed: namely, for the same type of particles (say, spheres
in cellular composites [37]) lower percolation thresholds are accompanied by
larger and more dispersed values of the measured exponent (as can be seen in
figure 1.1). This is of course not the case when other reasons (such as when
the conductance distribution changes with the particles shape [27, 86, 87])
modify the percolation threshold.

Comparison with an experimental result

In this section we seek to verify the applicability of our model to real com-
posites. To this end we want to compare our formulas 5.36 and 5.35 for the
conductivity 3 of our model, with experimental measurements. As our model
is applicable only for homogeneous dispersions of spheres, which should have
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Figure 5.16: Comparison between the Kogut-Straley exponent (solid lines), and
the exponents obtained from the finite size analysis (filled circles) and the apparent
exponent t* (filled squares) obtained by using Eq. (5.44). The horizontal dashed
line is the universal value to = 2. (a): d/oy =1, (b): d/o; = 2.

quite high percolation thresholds of the order of 30 to 60% (lower percolation
thresholds can be obtained for very small conducting particles with which it
is usually difficult to obtain a homogeneous dispersion, particles with high
excluded volume or in segregated structures), and as we wanted to fit our
model to a system that was dubbed as non-universal, we chose to fit our
formulas to the results of Rubin et al. [87], presenting the conductivity of a
set of low-structure carbon-black/polymer composites.

We show in figure 5.18 the fits to the conductivity data of equations 5.44,
5.41 and 5.42, in panels (a), (b) and (c) respectively. All three equations
seem to fit the data equally well. The fit of the classical power law, gives
a non-universal exponent ¢t = 6.8 £ 0.9 and a prefactor for the conductivity
Yo ~ 7000Q tem~! with a very large uncertainty (3o between 300 and
13000 Q tem™!) . In the article [87], Rubin and coauthors measure the
conductivity of the CB filler and find ¥ ~ 100 Q2 'cm™!, so that we expect
the prefactor g rather of the order of 1002 'ecm™!, so that the prefactor
obtained by fitting the simple power-law is not very satisfactory. Now in
order to use equations 5.41 and 5.42 to fit the conductivity data, we need
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Figure 5.17: The apparent DC transport exponent ¢t* as a function of the corre-
sponding apparent critical concentrations z% for d/oy =1 and d/o; = 2.

an expression for the mean nearest-neighbour distance a for relatively high
densities of conducting particles, which can be found in [28] and takes the
form:

(1—a)°

1Y
ol =1+ o

(5.45)

This expression gives satisfactory estimations of a for z 2 0.15. We also
use for o1 the mean CB grain size, as given in the article, oy = 320nm.
Finally the fits of equation 5.41 and its limiting case equation 5.42 give
fitting o = 20 £ 3Q 'em™! and ¢ = 2.3 + 0.1nm in the first case and
Yo =8+10Q"tecm ! and £ = 2.440.1 nm in the second case. As ¢ is typically
expected to be of the order of 1—3 nm [87,86], the fitting parameters obtained
from equations 5.41 and 5.42 are perfectly compatible with the theoretical
values.

To give a better idea of how apparent non-universality arises, we show
in figure 5.19 the local transport exponent ¢(x) obtained from the fit of
Eq. (5.41) to the conductivity data, corresponding to panel (b) of figure 5.18.
In this figure, ¢(x) is shown as a plain line in the range of = in which the
fit to equation 5.41 was done. We see that the apparent transport exponent
obtained from the fit to the classical power law, ¢ = 6.8 (see figure 5.18(a))
corresponds more or less to the average of t(z) over the fitting range. We
also show in figure 5.19 ¢(x) for values outside the fitting range, closer to
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Figure 5.18: Experimental results for a low-structure carbon-black /polymer com-
posite, taken from Ref. [87]. In panel (a) we show the fit of the classical power-law
of equation 5.44, in panel (b) of equation 5.41 and in (c) of equation 5.42.

ZT., as a dotted line. x. is shown in this figure as a vertical dashed line,
and we can see how t(z) falls asymptotically towards the universal values
for xz-values only very close to z.. It is in fact clear from this figure that the
range of z-values where the real universal behaviour could be observed seems
experimentally unreachable. We should recall here that the expression used
for ¢(x) was obtained by simply conciliating the limiting cases obtained for
far from x. and for x very close to x., so that it might not represent exactly
the transition between those two limiting behaviours.

Piezoresistivity in the continuum TP model

As we have seen in section 3.3, the piezoresistive response is one of the
main experimental result supporting the tunnelling-percolation models of
conductivity in TFRs. Indeed it was seen in figure 3.4 that the piezoresis-
tivity presents a logarithmic divergence as the percolation threshold is ap-
proached, for samples presenting non-universal transport exponents, and a
constant piezoresistivity in the universal case. It is essential to asses whether
our continuum TP model also leads to this behaviour, we therefore study in
this section the piezoresistivity I' of our model.

Monte Carlo results

The piezoresistivity was obtained from our Monte Carlo simulations, as de-
scribed in appendix B.5. Namely, we calculated the conductivity X for a
given set of parameters twice, only changing & to £/(1 + €), with e = 0.01,
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Figure 5.19: Local transport exponent ¢(x) obtained from the fit of panel (b) of
figure 5.18. t(x) is shown as a plain line in the fitting interval of the conductivity
data, and as dotted line outside this interval. x. is also shown as a vertical dashed
line and ¢top = 2 as a horizontal dashed line.

and obtained I' from the difference AY. between the two conductivities:

AY
r,=— 5.46
s = 5o (5.46)

and .
=T+ §r§. (5.47)

Our Monte Carlo results for I' are shown in figure 5.20 for the same
parameters of figure 5.16(a). We shall notice here that the fits giving the
transport exponents of figure 5.16(a) were done using ten values of the con-
centration z, corresponding for each o1/¢ to the 10 smallest conductivity
values of figure 5.20. We see that systems with large £ present a univer-
sal behaviour, i.e a constant piezoresistivity I' = I'g in the whole range of
concentrations studied, whereas for smaller £, the range of universality is
reduced to a region very close to the percolation threshold x., with a loga-
rithmic behaviour of the piezoresistiviy further away from z.: I' oc In(1/%).

Now as we have seen, the conductivity X of systems of finite sizes does not
go to 0 at z. but rather to a finite value X(z.). As I is shown in figure 5.20
as a function of ¥ it is important to check whether the finite-size effects are
of importance here or not. This is done in panel (a) of figure 5.21, where
we show I'(X) for d/oy = 1 and 01/¢ = 6.25 and for three different system
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Figure 5.20: Monte Carlo results for the piezoresistivity I as a function of the con-
ductivity of the system X for d/o; = 1 and different values of o1/¢. The black line
is In(1/%) and the short vertical lines are the estimation for the crossover between
non-universal and universal behaviour obtained from the EMA equation 5.49.

sizes. We see that the system size has little influence on I', except that larger
L/oy allow to explore the behaviour of I' for smaller conductivities, which
would correspond to being closer to the percolation threshold for an infinite
system. At least it is clear that the plateau observed for small ¥ is not a
finite size effect, it is on the contrary rather masked by the finite size of the
system, forbidding to asses the behaviour for ¥ = 0.

Comparison with the EMA

We now extract an analytical expression for the piezoresistivity of our sys-
tem from our EMA result for the conductivity . We obtain I" from equa-
tions 5.15 and 5.18 and from the relation (see appendix B.5).

_ dIn(X%)
ErinG

(5.48)
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so that we obtain

To=2—1 if ¥ <1/2e2d/¢
:{ 0= "% it X< 1/2e (5.49)

In(1/%) if ¥ > 1/2e24¢

There is no need here to change from the lattice representation to the con-
tinuum one by replacing p with 22 as was done for the conductivity, as
the results are independent of x. The In(1/X) behaviour is plotted as a
black line in figure 5.20, satisfactorily describing the limit for small oq/&
and not to close to x.. Also plotted in this figure as vertical short lines is
1/2exp(—2d/§), representing the value of ¥ where the crossover between
non-universal and universal behaviour takes place. The values obtained are
in good agreement with our Monte Carlo results.
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Figure 5.21: For d/o; = 1: (a) I as a function of ¥ for different system sizes L/o
and for 1 /¢ = 6.25. (b) T'(z.) as a function of the system size L/oy for o/ = 25.
The dotted line is the fit with equation 5.50.

Now to test the behaviour close to the percolation threshold, given by
I' = T'y, we extract I'g from our Monte Carlo results. In order to limit the
finite size effects, we extract I'g for the infinite system, by fitting I'(x., L)
for different system sizes with an appropriate function. Here we use

P =Ty— A (L> - (5.50)

g1

with I'g, A and w as fitting parameters. An example of such a fit is shown
in figure 5.21(b), for d/o; = 1 and 01/§ = 25. The best fit is shown as
dotted line and the extracted value for I'g is I'g = 46.3 and is also shown in
the figure. In figure 5.22 the so-obtained I'y are shown for different values
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of 01/¢ and for d/o; = 1 and for for d/o; = 2 as a function of 2d/¢. The
black line is Ty = 2d/€ — 1 as obtained in equation 5.49. The EMA result of
equation 5.49 maps very closely our Monte Carlo results.

25 T T T T T T T T T T
20
15

L<O

10

2d/e

Figure 5.22: Ty as a function of 2d/¢. Empty circles are Monte Carlo results for
d/oy = 1 and crosses for d/o; = 2. The black line is Ty = 2d/{ — 1 as given in
equation 5.49.

Discussion

The main difference between our continuum tunnelling-percolation model
and the classical TP model stems from the absence, for any o1/¢, of a true
divergence of the piezoresistivity I' as x — z.. Instead we have seen that I'
tends towards a maximal value I'g as the percolation threshold is approached.
In this regard, our model can lead to both, universal (constant) and non-
universal (diverging) behaviours for the piezoresistivity, depending on the
parameters of the model, but also on x — x.. In fact the system undergoes,
as for the lattice model studied in chapter 4, a crossover from non-universal
to universal behaviour as the percolation threshold is approached. It seems
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that our model is sufficient in describing the existing experimental measure-
ment of the piezoresisitve response of conductor-insulator composites, and
especially TFRs. Indeed, even though we do not have truly universal and
non-universal systems, we still observe that, for a fixed x — x. range, if a non-
universal transport exponent is extracted from the fit of the conductivity to
equation 5.44, then a logarithmically increasing I' will be obtained. On the
other hand, a universal transport exponent will lead to a constant I' = I'y.
This can be seen by comparing our results for I', shown in figure 5.20 and
those for the transport exponent of figure 5.17(a), keeping in mind that only
the ten points for I' with the smallest 3. correspond to the fitting range that
lead to the transport exponent of figure 5.17(a).

Let us stress here that, if observed experimentally, the crossover be-
tween the universal and non-universal regime, would be a clear signature
of tunnelling-percolation origin of non-universality, and would confirm our
interpretation of the non-universal transport exponents as being due to ap-
parent non-universality. Nevertheless this has, to our knowledge, not been
observed yet. The issue here is the difficulty of obtaining precise values of
the piezoresistivity very close to the percolation threshold. Nevertheless,
the fact that this can be observed in a plot of I' as a function of ¥ instead
of x — x,, lifts the constraint of precisely knowing the concentration of the
samples studied, making it experimentally easier to observe.

Conclusion

In the present chapter, we have considered an off-lattice model of the tun-
nelling percolation mechanism of electrical conduction in disordered compos-
ites. We have shown that, by using a numerically exact decimation procedure
and a finite size analysis, at the percolation threshold, the conductivity crit-
ical exponent is universal and close to the value tg ~ 2. Conversely, by
moving away from the percolation threshold, we have demonstrated that,
depending on the value of the characteristic tunnelling distance, the expo-
nent acquires a strong concentration dependence, attaining values larger, or
much larger, than tg [72]. We have interpreted this feature in terms of the
strongly varying distribution of the local tunnelling conductivities, which
leads to a shrinking of the (universal) critical region to concentrations very
close to the percolation threshold. In particular we have shown the similar-
ity of the results obtained from the lattice and off-lattice models, indicating
that the first nearest neighbours dominate the values derived for the conduc-
tivity exponent in the tunnelling percolation problem. This is not a trivial
conclusion since there is a clear competition between the decrease of the
particle-to-particle conductance and the increase of the possible number of
routes with the increase of the particle-to particle distance. These results
therefore confirm similar findings for a realistic continuum model and the
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lattice models of tunnelling-percolation. In fact, for the lattice, we were able
to derive (in an asymptotic case) an analytic expression for the conductivity
exponent in the three dimensional system, noting that such an expression
was given previously only for the much simpler one dimensional system. It
was also shown that this result for lattice percolation could be transposed
to our continuum TP model, giving a surprisingly good evaluation of the
conductivity ¥ of the system. Furthermore, we have evaluated the apparent
exponent arising from a fit of our numerical results by forcing the conduc-
tivity exponent to be independent of the concentration. This enables us to
show that such apparent exponent has a non-universal behaviour, despite
the fact that the system is strictly universal, confirming that apparent non-
universality can arise in realistic models of granular materials, leading to a
possible explanation of many experimental results.

We have then explored the piezoresistive response of such systems and
found that it showed a crossover from a logarithmically diverging to a con-
stant behaviour as x. is approached. Contrary to the study of the conductiv-
ity 3, I allows to directly follow the change from non-universal to universal
regime. Although this feature has, to our knowledge, never been observed
in real composite materials, it would give a direct confirmation of our in-
terpretation of transport non-universality. Careful experimental studies of
the piezoresistivity of conductor insulator compounds, should allow to verify
this theoretical result.
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Chapter 6

Segregation

In this chapter we study the effect of segregation on the percolation threshold
of our tunnelling-percolation model. To this aim we reformulate the contin-
uum percolation model, presented in chapter 5, by adding inhomogeneities
to the microstructure, represented by spherical inclusions forbidding the per-
colating conducting spheres to occupy large regions of the composite. We
show that, by varying the degree of segregation of the system, the percolation
threshold is generally not a monotonic decreasing function of segregation, as
suggested by earlier studies [88,89,90,91,92,93,51], but rather it exhibits a
minimum shortly before maximum segregation is reached. Hence, the opti-
mal percolation threshold does not necessarily coincide with the most segre-
gated structure, leading to a more complex phenomenology than previously
thought [94]. We then study the transport properties of this model, and find
that they remain basically unchanged compared to the non-segregated sys-
tems. We are indeed able to map the conductivity of the segregated systems
onto that of non-segregated ones, simply by shifting the critical concentra-
tion x. and using an appropriate renormalization of the conductivity. This
allows us to apply the theoretical results of the preceding chapter to obtain
a simple expression for the conductivity in segregated tunnelling-percolation
systems. This expression is applied to experimental measurements of the
conductivity of TFRs, leading to values of the parameters of the model com-
pletely consistent with the theoretical expectations.

Lowering the percolation threshold

Unlike the universal (or quasi-universal) behaviour of the critical exponents
characterizing the percolative transition, the value of the percolation thresh-
old is a function of several variables such as the shape of the percolating
objects, their orientation and size dispersion, their possible interactions and
the microstructure in general [95].

Of fundamental importance for several technological applications is the
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possibility of exploiting such a multi-variable dependence to tailor the per-
colation threshold. In particular, an issue of great interest concerns the
problem of lowering the percolation threshold, so to have long range con-
nectivity of the percolating phase with the minimum possible overall critical
concentration. This is the case when, for objects dispersed in a continuous
medium, one wishes to exploit the properties of the percolating elements, but
still preserving those of the host medium. For example, low conducting filler
amounts in a conductor-insulator composite permit to obtain an adequate
level of electrical conductivity with mechanical properties of the compos-
ite being basically unaltered with respect to those of the pristine insulating
phase.

Now, there exist two main strategies to lower the percolation threshold
through the manipulation of the microstructure of heterogeneous composites.
In one of such methods, one exploits the large excluded volume vey of particle
fillers with large aspect-ratios, such as rods and/or disks dispersed in a three-
dimensional continuum medium [96], whose critical concentrations, being
proportional to 1/vex, can be made extremely small for sufficiently large
aspect-ratios [97]. Such percolation threshold lowering has been studied in
detail for several particle shapes and inter-particle interactions, and is now
well documented [98,81,99,100].

For example, the authors of Ref. [101] considered the percolation of oblate
ellipsoids of revolution, with major axis a,,, minor axis b and aspect ratios
a/b between 1 (spheres) and 100. Those objects are mainly meant to repre-
sent graphite fillers, which have typically the form of platelets. The connec-
tivity criterion is the same as in our tunnelling-percolation model, i.e. each
hard-core ellipsoid is surrounded by a penetrable shell of constant thickness
d/2 (representing for example the tunnelling conductivity range), and two
particles are considered connected if their shells overlap. Using simulation
procedures similar to the ones I present in appendix B, the authors evaluate
the hard-core critical concentration x. as a function of the aspect ratio and
shell thickness. This result is shown in figure 6.1. . is shown to decrease
with increasing a,,/b, especially for thin penetrable layers. For the thinnest
layer considered here, d/a,, = 0.0526, x. can be reduced by about one order
of magnitude by increasing the aspect ratio from a,,/b = 1 to a,,/b = 100.

We have seen in figure 6.1 that the reduction of z. with increasing aspect
ratio was especially important for thin penetrable layers d. The reason for
this gets clear from figure 6.2, where 7, the concentration obtained by using
the total volume (hard-core plus penetrable shell), is shown as a function
of the penetrable shell thickness d. For d > a,, the form of the percolating
object (hard-core plus penetrable shell) tends towards that of a sphere, so
that n. ~ 0.34, as for fully penetrable spheres, independently of the aspect
ratio.

Let us turn now to discuss the second strategy to lower the percolation
threshold. It is obtained by forbidding the percolating objects to occupy
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Figure 6.1: Percolation threshold z. variation as a function of the aspect-ratio
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large (compared to the particle size) volumes inside the material, so to give
rise to a segregated structure like the one shown in Fig. 6.4(b). In practice,
this can be achieved when elements of two (mutually impenetrable) species
have different sizes and percolation is established by the smaller elements.
Typical examples of segregated systems are conductor-insulator composites,
such as TFRs, where the size of the conducting particles is much smaller
than that of the insulating regions [49,102,103|, which display critical con-
centrations of a few percent or lower.

Despite the fact that such low percolation thresholds are qualitatively
understood by the reduced available volume for arranging the conducting
particles, very few studies exist on segregated percolation in the contin-
uum [90,91], while the vast majority of studies are limited to lattice repre-
sentations of the segregated structure [88,89,92,93,51|, which provide only
a partial understanding of the percolation properties of segregated systems.

We will now introduce a realistic continuum model of segregated per-
colation, primarily aimed at describing the microstructure of segregated
conductor-insulator composites, but general enough to represent also other
structurally similar systems such as particle-laden foams [104] or filled hy-
drocarbon matrices [105].

The model

The model of segregated percolation is an extension of the continuum TP
model introduced in chapter 5, where a dispersion of hard core conducting
particles of diameter o; was considered. We model the segregation by intro-
ducing a second kind of spherical particles. Those particles are insulating,
have diameter o9 > o1 and are allowed to penetrate each other. Further-
more, to generate segregation, we assume that the two species of particles
are mutually impenetrable, and that the voids left over from the two kind
of particles are filled by the second (i.e. insulating) phase. Finally, the
connectivity criterion for the conducting phase is defined by introducing a
penetrable shell of thickness d/2 surrounding each conducting sphere, so that
two given particles are connected if their penetrable shells overlap, as in the
TP model of the preceding chapter. A two-dimensional representation of
this model is shown in figure 6.3, where it is made clear that the hard core
of the conducting particles cannot penetrate the insulating spheres, whereas
the penetrable shell, of thickness d/2, can.

This model represents a rather faithful description of real segregated
composites, such as the RuOg-glass systems [88, 89,106, 5|, where thermal
treatments on mixtures of RuOs and glassy grains lead to composites made
of conducting RuOs particles dispersed in a continuum insulating glassy
phase. Segregation is induced by the larger size of the original glassy grains
compared to that of the conducting particles. Moreover, during the firing
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Figure 6.3: Schematic representation of our model of segregated tunnelling-
percolation. The insulating spheres are shown as dashed circles, whereas the con-
ducting spheres are shown as dark disks, together with their concentric shell (light
coloured).

step of TFRs, the glassy grains soften and merge, which explains our choice
of penetrable insulating particles. Furthermore, in this and other similar
classes of composites, electrical transport is given by direct tunnelling or
hopping processes, defining a characteristic length, represented by d in our
model, below which two conducting particles are electrically connected. It is
worth to mention that the model introduced here is relevant also for study-
ing transport of macromolecules in disordered porous media [102]|, where d
represents in this case the size of a test macromolecule and o9/01 the pore
size ratio in a bi-dispersed porous medium.

Simulation procedure

In our numerical simulations, the system described above is generated by
first placing randomly the insulating spheres in a cube of edge length L with
a given number density po = No/L3, where Ny is the number of spheres.
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The corresponding volume fraction for L — oo is ¢ = 1 — exp(—vap2),
where vy = w03 /6 is the volume of a single insulating sphere. In a second
step, N7 conducting (and impenetrable) particles of diameter o1 and number
density p1 = N1/L? are added in the remaining void space and a Metropolis
algorithm is used to attain equilibrium. In the following, for the conducting
phase, we use the reduced concentration variable 11 = py7/6(c1+d)? and the
hard-core volume fraction # = p17/603. Examples of the resulting spatial
distributions of the conducting particles are shown in Fig. 6.4(a) for the ho-
mogeneous case (¢2 = 0) and in Fig. 6.4(b) for a segregated one (o2/01 = 12
with ¢o = 0.89) for n; values close to their respective percolation thresholds
(see below).

The rest of the procedure is the same as for the homogeneous case ¢o = 0
described in section 5.2.2: a Hoshen-Kopelman algorithm is used to extract
the percolating cluster, if present, and the spanning probability II(rn;) is
obtained from the statistic of appearance of such a spanning cluster. The
conductivity of the system, that will be considered in the end of this chapter,
is obtained exactly as in the homogeneous case. For more details about the
simulation procedures, refer to appendix B

It is maybe important to specify here how this model relates with real
TFRs. ¢2 is not a measure of the glassy phase volume fraction, as « + ¢o <
1 in our model. ¢9 is only a measure of the degree of segregation, but
the insulating phase also fills the void regions in between the conducting
particles. In real composites, the glassy grains soften during firing and fill the
interstices between the conducting grains and only a part of the initial glassy
grains remains unaccessible to the conducting phase and induces segregation.
This is the volume represented by ¢9 in our model. We can also add here
that, actually, in some commercial compositions, the TFRs are made with
two different glasses, one becoming very fluid during firing and the second
solely soft. In that case ¢o would represent the volume fraction of the second
type of glass, whereas the first one would be the phase simply filling the
remaining void regions.

Extraction procedure for the critical concentration

To obtain the critical density n{ for infinitely large system sizes we follow a
standard finite-size scaling method, as presented in section 5.2.2. Namely,
for given values of 09/01, d, and p2, we calculate, as a function of 1, and L,
the probability II(n;, L) that a cluster of phase 1 spans the system in a given
direction, with periodic boundary conditions in the other two directions.
As in the homogeneous case, the critical density n§(L) for finite L is then
extracted by fitting an appropriate function to the discrete simulation data.
However we do not use here the same function of equation 5.29 for this fit,
as the spanning probability has a somewhat more complicated form in the
segregated case. Indeed, depending on the system size L and on ¢o, the
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Figure 6.4: Percolating cluster of the conducting phase for (a) the homogeneous
case ¢o = 0 and for (b) the segregated regime with o5 /0y = 12 and ¢ = 0.89. The
conducting particles are plotted together with their penetrable shells with d = o;.
The colour map defines the values of the connectivity number & for each particle
(see text).

insulating phase can make it impossible for the conducting one to percolate.
There is in fact a maximal value of ¢2, ¢35, beyond which percolation of
the conducting phase becomes impossible. @5 obviously depends on o3, o1
and d. We have in fact a percolation transition of the volume available to
the conducting particles, so that there is a non-zero probability that the
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conducting phase is hindered to percolate by the insulating one. This effect
is of course more visible for large ¢, close to ¢35, and small L, so that
the spanning probability II(n;, L) will not tend asymptotically towards 1
anymore but towards a smaller value A < 1. An example of this effect is
shown in figure 6.5, where the spanning probability of a highly segregated
system (¢ ~ 0.94) is shown for different system sizes. In this example the
conducting particles have no hard-core, i.e. o1 = 0, so that just their center
is forbidden to penetrate the insulating spheres. We see on this figure how
A changes with the system size, increasing from A = 0.46 for the smallest
system size (L = 10) to A = 0.95 for L = 40. Let us also notice that the
approach of II(n;, L) toward A becomes very slow for small L and large ¢9,
making the transition asymmetric. We used the logistic function

T S
L+ (m/n5)?

fitting very well our simulation data. The fits of Eq (6.1) to the II(ny, L)
data of figure 6.5, are shown as dashed lines in this figure. The values for A
indicated there stem from these fits. Of course, the case shown in that figure
is an extremely bad one; in most cases we obtain values of A ~ 1, so that
a true percolation transition is observed for the conducting phase and the
results would not change much if we simply used A = 1. We nevertheless
introduced this parameter to obtain better overall fits, also for the extreme
cases.

fm)=A (6.1)

From the definition of equation 6.1, we see that we have chosen n{(L)
as defined by f(n{(L)) = A/2. The critical concentration 7§ for an infinite
system is then obtained following the same procedure as in section 5.2.2, i.e.
from the scaling relation [107, 73|

n§(L) = oc L7, (6.2)

with v ~ 0.88 the correlation length exponent. v can be obtained from the
width of the percolation transition A(L), following 73]

A(L) o< L™V, (6.3)

Finally, A(L) is obtained by imposing that 80% of the transition is comprised
in this width:

A=ni—ni (6.4)

where 1 and n? are such that

f(n}) =094 and f(ni)=0.1A. (6.5)

124



6.3.2

6.3. Simulation procedure

Figure 6.5: Spanning probability as a function of 7; for a few values of the
system linear size L/d and for penetrable conducting particles (o = 0), 02/d = 6
and ¢o = 0.936. The asymptotic values A of II(n;) and the fits to equation 6.1
(dotted lines) are also shown.

Simulation parameters and correlation length expo-
nent

Let us start here with the case of penetrable conducting particles, with oy = 0
and d = 1. We extracted n{ (o2, ¢2), for each value of o2 and ¢9, from 8 differ-
ent system sizes. For each size, 20 different concentrations 7; were typically
used to fit the spanning probability II(n;, L). We considered here four dif-
ferent values of the insulating particles diameter, ranging from o9/d = 2 to
og/d = 11. As, in order to obtain satisfactory statistics, L has to be larger
than o3, the system sizes considered depended on o2. Moreover, as seen in
the preceding section, small system sizes with large ¢o also become difficult
to treat, so that the system sizes chosen also depended on the insulating
sphere volume fraction. Finally the system size L and the number of realiza-
tions Ny ranged from L/d = 10 with Ny = 1500 to L/d = 30 with Ny = 50
for 09/d = 2 and from L/d = 17.5 (Ng = 700) to L/d = 60 (Ng = 50) for
g9 / d=11.

Examples of the spanning probabilities and their fits to equation 6.1
have been shown in figure 6.5. We show in figure 6.6 the correlation length
exponents, extracted from the widths of the spanning probabilities using
equations 6.3, 6.4 and 6.5. The values obtained for small ¢o are in reason-
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able accord with the admitted value v = 0.88 [108], shown in the figure as
the black dashed line, though in mean a little too high. For large ¢o the
scatter and the errors become more important and the values of v seem to
increase, mostly for large o9/d. Considering that no finite size corrections
were applied to equation 6.3, this is probably due to finite size effects, being
more important for large ¢o and o2/d. We tried to verify this by adding a
correction term for the finite size to equation 6.3, giving

b
A(L) = BL™'/" <1 + Lc) : (6.6)
It was usually not possible to obtain a fit when leaving all parameters of
equation 6.6 free, so that we fixed the value of the exponent ¢ = 1. With
this we could obtain fits for almost all cases studied, leading to lower v-
values. For the cases of figure 6.6 where we had obtained too large v-values,
we obtained values in accord with v = 0.88, though with quite large error
bars. For the rest of the cases, the tendency was to obtain values of v in
accord or below v = 0.88. This might be due to the correction with ¢ =1
being too important in those cases. We cannot draw a final conclusion here,
but I nevertheless think that the discrepancies between our extracted values
for v and the admitted v = 0.88 stem from finite size effects and insufficient
number of points to obtain a good fit of equation 6.6 with the finite size
corrections.

Now let us turn to the case of segregated systems with conducting parti-
cles having a hard core diameter o1 # 0. We considered here larger system
sizes than for the penetrable case. It ranged from L/o; = 16 with Ny = 1500
realizations to L/o; = 60 (N5 = 100) for o2/01 = 1 and from L/o; = 60
(Ns = 200) to L/oy = 140 (N5 = 100) for o3/01 = 12. The calculated v
values were very similar to those presented in figure 6.6, and are not shown
here.

Critical concentration

Let us now come to the study of the critical concentrations in segregated
systems. Typical spanning probability results are reported in Fig. 6.7, where
we plot II(ny, L) for o9/01 = 4, d = o1, and for two values of ¢ with
few different system sizes. As it is clear from the figure, compared to the
homogeneous case ¢ = 0, the spanning probability transition for ¢o # 0
gets shifted to lower values of 71, indicating that the percolation threshold is
reduced by segregation. This is confirmed by the scaling analysis described
above, which gives n{ = 0.3203 £ 0.0003 for ¢2 = 0, which is in very good
accord with Ref. [39,72], and n{ = 0.1821 4 0.0004 for ¢ = 0.65.

Although the reduction of 7 shown in Fig. 6.7 has to be expected on
the basis of reduced available volume arguments, we find that, actually, this
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is not always the case, and that 7{ is generally a non-monotonic function of
¢9 for fixed og/0; (for o1 # 0), or oa/d (for o3 = 0). This is first shown for
fully penetrable conducting particles in figure 6.8(a), where 7§ is plotted for
different values of o9/d and ¢9. For partially impenetrable particles, this is
shown in Fig. 6.9(a) where nf is plotted as a function of ¢2 for d = o7 and for
several values of 03/01, and in Fig. 6.9(b) where o2/01 = 4 and d is varied.
For all cases studied, on enhancing ¢» from the homogeneous case ¢o = 0,
the behaviour of the percolation threshold is characterized by an initial lin-
ear decrease of nf, followed by a minimum at a particular value of ¢ which
depends upon o, o1 and d, and a final increase well before maximum segre-
gation is reached at ¢3. Lower bounds of ¢ are plotted in figures 6.8 and 6.9
by vertical dashed lines. For the case of penetrable conducting particles, as
just the center of the conducting particles is forbidden to penetrate the in-
sulating spheres, it is clear that a good estimate for ¢3 is obtained when the
voids left over between the insulating spheres just percolate. This is known
as the void percolation threshold and is given by n1 = ¢$,4 =~ 0.03 [109,110]
and ¢5 = 1 — ¢ ;4 ~ 0.97. Now a lower bound for ¢3 can also be obtained
for semi permeable conducting particles (o7 # 0). In that case we have to
consider, not the volume left over by the insulating spheres, but the volume
available for arranging the centers of the conducting ones, @ayaii.. This vol-
ume can be easily obtained by noticing that ¢ayail. = exp(—Vexc1.p2), Where
Vexel. = (02 + 01)3/6 is the excluded volume of an insulating sphere (vol-
ume from which the centers of the conducting particles are excluded), and
by using the definition of ¢9 given above, so that we obtain

¢avai1. = (1 - ¢2)(1+01/02)3~ (67)

Now the lower bound ¢3 is obtained by requiring that ¢,y,i. coincides with
©oid> S0 that the volume available to the centers of the conducting particles,
with hard-core diameter o1, barely percolates through the system.

For completely penetrable conducting particles and d/o9 — oo, the con-
ducting phase can be considered as continuum. We therefore expect that nf{
will decrease linearly in the whole range of possible ¢2, and tend to n{ = ¢{ ;4
as ¢ — ¢5. This limiting case is shown in the figure 6.8 as an open circle,
and we see that n{ seems to tend to this limit for d/o2 — 0 and ¢2 — ¢5 as
expected.

As shown in Figs. 6.8(a) and 6.9(a), the slope of the initial decrease of
n$ is steeper for larger oa/d, respectively o2/01, and the position of the
minimum gets shifted to higher values of ¢3. A similar effect is found by de-
creasing the penetrable shell thickness d for fixed o3/01, Fig. 6.9(b), leading
to infer that for d/o9 — 0 the minimum disappears and 7n§ decreases mono-
tonically all the way up to ¢3 for all cases. These features, and in particular
the appearance of a minimum (i.e. optimal) value of the percolation thresh-
old for finite penetrable shells, represent the main finding of this section and
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Figure 6.8: Percolation threshold values 7n$ (a), or ¢§ (b), as a function of the
volume fraction ¢o of the insulating spheres for d = 1, o7 = 0 and several value of
o2/d. The dotted lines are from Eq. (6.9) and the empty circle is the limiting case
(1= a5 Poiq), corresponding to the maximally segregated system with d/oe = 0,
where ¢¢ ;4 is the void percolation threshold. The vertical dashed line corresponds

to the maximal segregation possible ¢35 =1 — ¢¢ .y

provide a previously unnoticed scenario for segregated percolation [94].

Let us discuss now the physical origin of the non-monotonic behaviour of
the percolation threshold. The initial decrease of n{ can be fairly well repro-
duced by assuming that, for low values of ¢2, the volume fraction ¢{ of the
composite conducting particles (hard-core plus penetrable shell) is reduced
by the volume occupied by the insulating spheres. The assumption here is
that the conducting phase will percolate if we have the critical concentra-
tion for a homogeneous system (¢§(¢2 = 0)) in the volume left over by the
insulating phase. This is obviously the case if o9 is very large compared to
d and o1, but not necessarily for smaller go. Indeed, since the penetrable
shells of the conducting particles may actually overlap the insulating spheres,
the latter may be treated as having effectively a smaller volume, veg < o,
leading to

$1(P2) = ¢T(0)(1 — P2vem/v2)- (6.8)

Taking into account that insulating particles with oo < a, where a is the
mean distance between the closest surfaces of nearest neighbour conducting
particles, should be ineffective in reducing ¢{, we approximate veg by a

sphere of diameter o9 —a. Finally, by expanding ¢§(¢2) in powers of n{(¢2) —
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Figure 6.9: Percolation threshold values nf{ as a function of the volume fraction ¢
of the insulating spheres for (a) d = o1 and several value of 02 /01 and (b) o2/01 = 4
and few values of d. The vertical dashed lines are lower bounds of the maximum
segregation obtained from Eq. (6.7), while the dotted lines are from Eq. (6.9).

n$(0), at the lowest order in ¢ we find

(0 _ 3
i) = i0) - S0 (=) (69)
where ¢§(0)" = limg, .o d¢§(¢2)/dn and can be obtained from [95,111]:
11—\
60 =1--m¥e |- 2 Ay 610

where

243
A (A —1
) = o {570

o A3 (TAZ — 5A + 1) + 1, 2A(5A2 — 7A + 2)} } . (6.11)

[(n2 FT7A—2)

As it is seen in panel (a) of figure 6.8 and in figure 6.9, where Eq. (6.9)
(dotted lines) is plotted by using a = (o7 + d)/275(0)1/3 — oy [72], the low
¢2 behaviour of 7{ is rather well reproduced by equation 6.9 for all cases
considered.

Now the more unexpected and interesting result of figures 6.8 and 6.9
is the non-monotonic behaviour 7{, presenting a minimum and an increase
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as ¢2 — ¢5. First of all, we verify that this increase is not simply an
effect of our choice of using 7; as concentration variable, which takes into
account the overlaps between conducting particles, and can therefore diverge
in the completely penetrable case, whereas ¢ represents the volume fraction
occupied by the composite particles, therefore remaining bounded between
0 and 1. We replot the results of figure 6.8(a) in figure 6.8(b), but using the
volume fraction ¢f instead of n{. ¢{ was obtained here from the simulations
by simply dividing the system in small cubes and counting the fraction of
cubes having their center inside the diameter d of any conducting particle.
We see from this figure that, though less pronounced, the minimum is still
present when considering the volume fraction ¢1. Moreover, for the o1 # 0
case, using 11 or z is identical for a same d, as z = A3n;. Therefore, panel (a)
of figure 6.9 would look the same if z. was plotted instead of 7, except
that the y-axis would be rescaled by a factor 1/8. But as = can be directly
interpreted as the volume fraction of conducting particles in a real composite,
it is clear that this minimum is not an artefact, but that it has a physical
origin.

This behaviour can be understood by taking a closer look at the struc-
ture of the system. Actually, as it is shown in Fig. 6.4 where the colour
map defines the connectivity number (degree) k, i.e. the number of con-
ducting particles directly connected to a given one, for each particle in the
percolating cluster, the microstructure of the system strongly changes with
segregation. In the homogeneous case (Fig. 6.4(a)), mostly all particles have
between 1 and 4 neighbours and the cluster seems quite compact, whereas
in the highly segregated regime of Fig. 6.4(b), clusters of highly connected
particles (k large) are bound together by “chains” of particles having low
k values. This change can be better appreciated in figure 6.10(a), where
the distribution function of the connectivity number, P(k), is shown for
o2/01 = 12 and for different ¢2. We see in this figure that P(k), which is
a rather narrow distribution for the homogeneous case, peaked around the
mean value (k) ~ 2.25 [39,81], broadens with segregation, with its maxi-
mum shifting towards higher k-values. In the highly segregated regime, with
¢2 = 0.89, corresponding to the structure presented in figure 6.4(b), the
mean degree is as high as (k) ~ 7.75 and there are particles with & > 15, in
strong contrast with the homogeneous case.

Now, by construction, the above argument (Eq. (6.9)) to explain the lin-
ear decrease of n{, neglects possible effects of ¢ # 0 on the connectivity
number k. The change observed in the distribution of k values is due to
the fact that, in the vicinity of ¢3, the structure of the void space avail-
able for arranging the centers of the conducting particles is characterized
by many narrow (quasi-one dimensional) necks connecting more extended
void regions [25]. Percolation is possible only if such necks are populated
by connected conducting particles, and since for ¢ — ¢35 the necks become
narrower, and so have less probability of being populated, more particles
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Figure 6.10: (a) Distribution function P(k) of the degree k of the particles in
the percolating cluster for oo9/01 = 12, d = oy and for different ¢o. (b) Mean
connectivity number (k) as a function of ¢o, for the same cases of Fig. 6.9(a).

are needed to ensure connectivity, thereby “overcrowding” the many void re-
gions between the necks. The net effect of such mechanism, not captured
by Eq. (6.9), is the enhancement of n{ as ¢ — ¢5. This is demonstrated
in Fig. 6.10(b), where (k), plotted for the same cases of Fig. 6.9(a), displays
a sudden enhancement (more marked for o9/0; larger) at values of ¢o cor-
responding to the points of upturn of n{ of Fig. 6.9(a). The competition
between the effect of reduced available volume, which lowers 7§ [Eq. (6.9)],
and the enhanced connectivity at high segregation, which increases 7f, is
therefore at the origin of the minimum percolation threshold observed by
us [94].

Discussion

Let us now discuss the possibility of observing the features presented here
in real segregated materials. The central point here is that the minimum
vanishes if d <« o1 and if o9 > 01, so that it is interesting to assess in what
compound this could be observed. In conductor-insulator composites where
transport is driven by tunnelling, d represents the maximum tunnelling dis-
tance between the conducting particles. A realistic estimate of d can be
obtained by comparing the tunnelling conductivity with the intrinsic con-
ductivity of the matrix, so that the tunnelling will be effective only if it gives
higher conductivity than the cylinder of matrix between the two adjacent
particles, so that, using equation (5.24) for the tunnel conductivity, d can be
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extracted from

2d g()d

where Yo is the conductivity of the matrix and gg the prefactor of the tun-
nelling conductivity. Typically the insulating matrix has a conductivity of
around 10715 to 1077 Sm™!, the tunnelling factor is around ¢ = 2 nm and
go is around 0.01 S [112]. For conducting particles with o1 = 50 nm, we
obtain d ~ 20 nm. Because of the logarithmic dependencies of the above
equation, d is not very sensitive to the precise values used for the different
parameters and is always found to be of the order of d ~ 10£. For such
values of d, the results of Fig. 6.9 would therefore apply to nano-composites
with 01 ~ d = 20 nm and o9 not exceeding a few hundreds of nanometers.
Model conducting films with particles with even smaller diameters (4 nm
diameter) and typical inter-particle distances of the order of the nanometer
were prepared and studied for example in Ref. [113]. Now in RuOs-glass
composites, much larger values of d are possible, where a reactive layer of
thickness 0.2-0.4 ym (or even more) surrounding the RuOq particles presents
modified chemical and structural properties [114], most probably favouring
hopping processes [115]. In this case, the parameters used in our work would
easily account for composites with o1 in the range 50-500 nm and o3 of few
microns, so that this minimum should be experimentally observable, even in

TFRs.

Electrical tfransport in the segregated TP
model

We now turn to the last part of this work: the study of the conductivity in the
segregated tunnelling-percolation model. For this study we considered only
the d/o1 = 1 case, three different insulating particle diameters oy/01 = 1,
4 and 12, four different tunnelling factors £ /o1 = 1, 0.16, 0.12 and 0.08 and
several values of the insulating phase volume fraction ¢s. The system sizes
considered were L/o1 = 60 for oo/01 = 1 and 4 and L = 80 for o3/01 = 12.
The range of z — z. values that can be studied depends largely on the volume
available to the conducting phase, ¢avail. defined in equation 6.7. To have
comparable results for all cases studied, we fixed the range of (x — z¢)/z.
values to the interval [0,0.3], so that, for large o2 and ¢9, as x. becomes very
small, the interval of x studied is very narrow.

If we first look at the case o2/01 = 1, shown in figure 6.11 for /o7 = 0.12,
we see that the presence of the insulating spheres has almost no effect in
that case. The conductivity X, shown in panel (a) as a function of z, is
almost independent of the volume fraction ¢o of insulating spheres. As the

133



Chapter 6. Segregation

percolation threshold z. also depends only very weakly on ¢s, the curves for
the conductivity superpose when plotted as a function of z. In panel (b) we
show 3(z) = X(z) — B(z.), a quantity used to minimize the finite size effects
leading to a non-zero conductivity at the percolation threshold, as a function
of © — x.. We see that again all our results for different volume fractions
¢2 fall on a single curve. This is shown here only for the £/01 = 0.12 case,
but is also true for the other cases studied. This result is not very surprising
as the insulating particles are of approximately the same size as the mean
nearest neighbour distance, so that the presence of the insulating phase has
no real effect on the system.
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Figure 6.11: Conductivity of a segregated system with o2/01 = 1 and £/01 =
0.12. In panel (a) ¥ is shown as a function of z and in panel (b), X(z) — X(z.) is
shown as a function of z — x,

Now if we turn to the case o9/01 = 4, shown in figure 6.12, we see from
panel (a) that, as expected from our above results for the critical concentra-
tion, increasing ¢o allows to obtain conducting systems with lower concen-
trations x, until optimal segregation is reached, then further increasing ¢o
shifts x. back to higher values. Here, due to segregation, the conductivities
of the systems with different ¢o of course do not fall on a single curve. But
when we look at 3(z) as a function of  — ., as shown in panel (b) of this
figure, we see that the conductivities nicely collapse on a single master curve.
The same results are obtained for the o9/01 = 12 case. Unfortunately, for
smaller ¢ this is not the case anymore. We show in figure 6.13(a) fl(x) as
a function of x — x, still for o9/01 = 4, but this time for £ = 0.12. It is
clear from that figure that fl(:v) seem to have the same behaviour, regardless
of ¢9, but that they are shifted by a multiplicative constant. We therefore
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further normalize this data, using this time [X(z) — X(2.)]/2(z.) and plot it
as a function of = — x. in panel (b) of figure 6.13, obtaining again a collapse
of our numerical simulation data on a single curve. The same results are ob-
tained for £/o1 = 0.08 and for o9/ = 12. The fact that the curves collapse
for the different values of ¢o means that segregation, does not basically alter
the behaviour of the conductivity of the system, which gets only shifted to
lower z values and multiplied by a constant value, depending on £/o1, o2
and ¢o. This is an important result, as it will allow us to basically map the
segregated system on the non-segregated one, and use the analytical expres-
sion obtained for the conductivity in chapter 5, provided that we can obtain
an expression for the multiplicative constant. This will be tackled later in
this section, but let us first look at the transport exponent of the segregated
Systems.
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X

Figure 6.12: Conductivity of a segregated system with o9/07 =4 and /o7 = 1.
In panel (a) ¥ is shown as a function of z and in panel (b), ¥(x) — ¥(z.) is shown
as a function of x — x.

We obtained the transport exponent by fitting f](x) with a simple power
law, as follows:

S(z) = So(x — z) (6.13)

We show in figure 6.14 the transport exponents we obtained for o9/01 = 12
and different values of £ /o1 and ¢2. For large ¢ it is sometimes not possible
to obtain a best fit to equation 6.13, or the obtained transport exponent
has very large error bars. This is due, as mentioned in the beginning of this
section, to the fact that the interval of x values studied becomes very narrow
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Figure 6.13: Conductivity of a segregated system with oo/0; = 4 and £/0; =
0.12. In panel (a) X(z) — X(x.) and in panel (b) [S(z) — S(z.)] /S(z.) are shown
as a function of x — z,.

for very segregated systems. Despite this, the transport exponent seems to
increase a little with increasing ¢, before falling to the universal transport
exponent as the the maximal segregation is reached. This can be qualita-
tively understood, as at the maximal segregation, the conducting phase is
already densely packed at the percolation threshold, so that the mean near-
est neighbour distance a is small already at the percolation threshold. And
as apparent non-universality is driven by the factor 2a/£, a small a tends
to drive the system towards universality. The same behaviour was obtained
for o9/01 = 4, whereas for o9/01 = 1 the transport exponent seems quite
unsensitive to segregation.

Discussion

As we have seen above, for small £ /o1, which is the situation of interest to us,
the conductivity S of the segregated system, coincides with that of the non
segregated one for a same x — ., only if it is normalized by ¥(x.). In order
to be able to map the results of the segregated case on the non segregated
ones, it is therefore important to obtain an expression for ¥(z.). Making
use of our analytical result obtained for the conductivity with small /oy for
non-segregated systems (Eq. (5.42)), we can write for the conductivity of a
system of finite size L at the percolation threshold:

S(ze, &, L) = B(x, 00, L)e M1/, (6.14)
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Figure 6.14: Critical transport exponents for o3/0; = 12 and for different ¢
and /o7 obtained as explained in the text.

where a. is the mean nearest neighbour distance at the percolation threshold,
and X(x.,00, L) is the conductivity at the percolation threshold of a non-
segregated system, with 01/§ = 0. Now we make the assumption that,
for a segregated system, only the mean nearest neighbour distance at the
percolation threshold changes compared to the homogeneous case (apart
from the shift introduced in the percolation threshold), so that, if a, is the
mean nearest neighbour distance in the segregated system and a. that in the
non-segregated one, and using Eq. (6.14), we obtain

S(@8, &, ¢, L) = B(we, £,0, L)e )/, (6.15)

where X(x2, €, ¢2, L) is the conductivity of the segregated system at its per-
colation threshold z? (whereas z. is the percolation threshold of the non-
segregated one). The problem reduces now to finding an expression for a.
Similarly to the approach used to evaluate the percolation threshold of seg-
regated systems, we consider here that the conducting phase is restricted by
the segregation to occupy a smaller volume, limited by the presence of the
insulating spheres, with effective volume veg. As in section 6.4, this effective
volume is approximated by a sphere of reduced diameter oo —a.. Under these
assumptions, the effective volume available, ¢og, which is obtained similarly
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to equation 6.7, yields

¢eﬂ = (1 - ¢2) [(02_a0)/a2]37 (616)

with a. given by the mean nearest neighbour distance of a homogeneous
system at the percolation threshold, a, = 0.4816 for o1/d = 1. Now in
the space available to the conducting phase, its concentration can be es-
timated by x. = 25/¢eg. Finally the mean nearest neighbour distance
al. of the segregated system can be obtained from numerical integration of
a, = [drrP(z,r), where P(z],r) is the distribution function for the dis-
tance between two neighbouring impenetrable spheres at concentration z/,
as given in Ref. [28] (for a homogeneous system).

This estimate is compared to our Monte Carlo results in figure 6.15, where
we compare X(zi, &, ¢2, L), the conductivity at the percolation threshold
obtained from Monte Carlo simulations, with the right-hand side of equa-
tion 6.15. This is done for o2/0; = 12 and different values of {/o;. This
estimation, though not perfect, is in relatively good agreement with our sim-
ulation data and allows us to map the conductivity of segregated systems
directly on that of non-segregated ones, using equation 6.15.
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Figure 6.15: Comparison of the Monte Carlo results for X(x.) as a function of
@2, shown as empty symbols, and the analytical expression of equation 6.14 shown
as crosses, for o9/07 = 12 and different £/oy

Now if we work with the normalized conductivity
N(x — 2% + 20, €, d2) = B(x, €, do)e T (6.17)
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where z; is the percolation threshold of the segregated system and x. that
of the homogeneous one, we can directly use all our analysis of the non-
segregated system, so that we can rewrite equation 5.38 but for the segre-
gated system:

£

Sr.602)\ 1 & o
I (G(x,oo,O)) In(y)2(a —o1) (t(m) to) 2(a —o1)

where y = (22 — 22)/22. We can now take the logarithm of this expression

= f(y), (6.18)

13 1

In [(t(x) to)Q(a > Jl)} = In(fy) — bln [m (y)] . (6.19)
which is tested in figure 6.16. We compare in that figure, a non segregated
case (black squares) with a few segregated cases with different o9 /01, ¢2 and
&. We see that, as expected from the normalization of the conductivities, all
results nicely fall on the same curve as for the homogeneous case. Panel (a)
shows the results for ¥ normalized using 3(z?) obtained from the Monte
Carlo simulations, whereas panel (b) shows the same results but using the
approximate normalization given by the estimate of equation 6.17. Using
the ¥, as in panel (b), leads to slightly less good agreement between the
segregated and non segregated cases, though it remains very good overall.
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Figure 6.16: Plot of the Monte Carlo results for the conductivity X, plotted
as explained in the text, following equation 6.19, for a non-segregated system and
segregated ones with different /01, 02/01 and ¢. In panel (a) 3 was normalized
using Y(x.) whereas in panel (b) using the estimate of equation 6.17.
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Comparison with experimental results

As shown in figure 6.16, the conductivity of the segregated systems, if nor-
malized properly, has the same behaviour of the conductivity for the ho-
mogeneous case. Therefore f(y) of equation 6.19 is also expected to tend
towards f(y) = 2/1In(1/y), as was assessed for the homogeneous case from
figure 5.14, so that we can rewrite the conductivity of the segregated system
as

sa—o)) (52 — 22\ 2
Z(.’L’,f,gbg) =Ype ¢ ' (w ./2.2‘%0) ) (620)

where £ = x —xJ + x. is the shifted concentration. In this equation, the mul-
tiplicative constant we had introduced above to normalize the conductivity
has been absorbed in ¥g. a can be obtained from equation 5.45 which reads

(1-2)°
122(2 — )
The use of the relatively high density approximation for a given above is
justified by the relatively high values expected for x., so that 2 should not
be too small. As already mentioned, this approximation is satisfactory for
values of & 2 0.15, which will be the case in all experimental data analysed
hereafter. Using equation 6.21, equation 6.20 can be fitted to experimen-
tal results with only four free parameters: Xy, z7, z. and £, as o1 can be
experimentally measured. We show in figures 6.17, 6.18 and 6.19 some ex-
perimental measurements of the conductivity of TFRs, with a comparison
of the fits to the classical power law (Eq. (5.44)) shown in panels (a) and to
the above expression (6.20) shown in panels (b). Those experimental results
are from the same series of TFRs as presented in section 3.3. For figure 6.17
and 6.18, RuOy particles with 40 nm average grain size were used, whereas
the results of figure 6.19 stem from TFRs made with 400 nm average RuOq
grain size. The firing temperature was 600°C for the TFRs of first figure and
625°C for the other two. We see that the fit to the classical power law leads
to a non-universal transport exponent in all three cases, with ¢ = 6.5 + 0.2,
t =4.940.1 and t = 6.1 & 0.1 respectively. On the other hand the fits to
equation 6.20 are as good, and maybe even better for the measurements of
figure 6.17, and present values of £ in very good agreement with what is ex-
pected, namely of the order of the nanometer. Indeed we obtain respectively
E=1.7£0.5nm, £ =2.74+0.5 nm and £ = 1.4+ 0.4 nm. Now regarding the
values of z. extracted from those fits, we can recall here that, as discussed
in section 6.4.1, we expect d ~ 10§, which, by using £ = 1 nm would lead
A = o01/(01 +d) ~ 0.8 for the 40 nm RuOy particles and A = 0.975 for
the 400 nm case. The critical concentration can then be estimated from fig-
ure 5.7 and by recalling that = = A37. We obtain respectively x. ~ 0.17 and
z. =~ 0.59 for the 40 and 400 nm cases. We can now compare those values

ajo; =1+ (6.21)
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with the ones extracted from the fits. We obtained z. = 0.24 and z. = 0.15
for the 40 nm grain size and x. = 0.71 for the 400 nm case. Again the val-
ues obtained from the fits are in fairly good agreement with the theoretical
expectations, supporting the interpretation of the conductivity data given
by equation 6.20, and the scenario of non-universality being only induced by
the fit to the power law for values of x outside the critical region.
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Figure 6.17: Experimental measurements of the conductivity of a RuOs-based
TFR, taken from [38]. The RuOs grains have average diameter of 40 nm and
average glass grain size before firing of 3 pm. Firing temperature is Ty = 600°C. In
panel (a) we show the fit (dotted line) of the classical power-law of equation 5.44,
in panel (b) of equation 6.20, with the fitting parameters shown in the figure.

Conclusion

We presented in this chapter a model of segregated tunnelling percolation,
aimed at describing TFRs. We modelled the situation by a dispersion of
penetrable insulating spheres segregating the smaller conducting spheres in
the space left over by the insulating ones. We used this model to make a
detailed study of the impact of segregation on the critical concentration z..
We showed that, contrary to what was expected from earlier studies, x. is
not a monotonically decreasing function of the segregation, rather it displays
a minimum before maximal segregation is reached. This result, showing
that there is an optimal percolation threshold and that the most segregated
structure is not the most effective one to diminish the percolation threshold,
might be of great technological interest.
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Figure 6.18: As in figure 6.17, but samples prepared with a different firing
temperature, Ty = 625°C.
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Figure 6.19: Asin figure 6.17, but samples prepared with an average RuOs grain
size of 400 nm and a different firing temperature 7y = 625°C.

In the second part of this chapter, we studied the conductivity of the seg-
regated tunnelling-percolation system. We showed that segregation basically
did not alter the behaviour of the conductivity and that it could therefore
be mapped on our results for the homogeneous tunnelling-percolation model
of the preceding chapter. This allowed us to obtain an analytical expression
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for the conductivity of segregated systems which was successfully fitted to
experimental measurements of the conductivity of TFRs. Those fits yielded
values of £ in very good agreement with the expected one. This supports
our interpretation of the origin of non-universality as stemming from the fits
of the conductivity for values of x too far away from z..

Let us stress here that this was the main goal of this work, namely to ob-
tain a theory of non-universality consistent with the experimentally observed
transport exponents. The expression obtained for the conductivity of segre-
gated and non-segregated systems stems from an effective medium approach
using the nearest-neighbour distribution function for the inter-particle dis-
tances, so that it is not quite clear why it so nicely fits our Monte Carlo
results for the complex continuum tunnelling-percolation systems studied.
Nevertheless it allows to interpret the experimental conductivity data from
a new perspective, attributing the experimentally measured non-universal
transport exponents not to a true universality-breakdown, but to apparent
non-universality caused by the fitting of the conductivity outside the true
critical region. Our results are completely self-consistent, leading to fitting
parameters falling inside the range of expected values, leading to a good
understanding of the origin of non-universality in conductor-insulator com-
posites.
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Conclusion

The aim of this work was to study in detail the electrical transport mech-
anism of disordered conductor-insulator composites, with a particular em-
phasis on an important class of such composites: thick-film resistors. TFRs
were chosen as model composites, as they present most complex behaviours
observed in conductor-insulator composites, namely a segregated microstruc-
ture, large piezoresistive responses, and both universal and non-universal DC
transport exponents. Among those, the origin of transport non-universality
was the main issue addressed in this thesis. We tried to develop realistic
tunnelling-percolation models describing the conductivity in such compos-
ites and use them to study their critical transport behaviours.

We started this study by a generalization of a lattice tunnelling-percola-
tion model, in which the bonds of a square lattice are occupied by chains
of hard-core conducting particles and electrical transport in the bonds is
dominated by simple tunnelling between adjacent conducting grains. This
model is a crude description of the microstructure of segregated conductor-
insulator composites, where the conducting particles are forced to occupy
one-dimensional channels left over in between large insulating grains. We
showed that the finite length of those conducting channels hindered the
appearance of a true non-universal transport behaviour. Nevertheless we
argued that, depending on the parameters of the model, the distribution
function of the channel conductances h(g), can be highly peaked at a very
low g-value, leading to a transport exponent strongly depending on the con-
centration of conducting channels p, and tending to its universal value t = tg
only very close to p.. The fit of the conductivity X of the system as a function
of p to the simple power-law, 3 o< (p — p.)?, intended to mimic the experi-
mental procedure, can therefore lead to non-universal transport exponents.
This apparent non-universality was also shown to lead to a logarithmic in-
crease of the piezoresistivity I', as observed experimentally, followed by a
saturation for p close enough to p..

This result could explain the origin of non-universality from a new per-
spective, but was obtained for a lattice TP model, describing only very

145



Chapter 7. Conclusion

roughly real conductor-insulator composites. This motivated us to study,
from the same perspective, the transport properties of a realistic continuum
tunnelling-percolation model, where impenetrable conducting particles were
dispersed in a homogeneous insulating medium. We again considered sim-
ple tunnelling as being the dominating transport mechanism in the system.
We introduced an upper cutoff distance d, limiting the range of tunnelling,
which was justified by the presence of the insulating matrix and leads to a
percolation behaviour of the system. Other interactions between the matrix
and the conducting phase, which can have important effects on the mor-
phology of the composite, were neglected in this model. We evaluated the
percolation threshold values and transport properties by means of extensive
Monte Carlo calculations, providing a detailed description for a wide range
of values of the microscopic parameters. We showed that phenomena simi-
lar to those observed for the lattice cases were obtained in this framework.
In particular, we also obtained apparent non-universality in the continuum
tunnelling-percolation model and argued that it could be very difficult to dis-
tinguish experimentally from a true non universal transport. Furthermore,
we showed that, though barely visible when looking at the conductivity of
the system, the transition between non-universal and universal regime could
be clearly observed from the study of the piezoresistivity. The observation
of this crossover would be a direct proof of our interpretation of the non-
universal transport exponents and is, for sure, an interesting direction for
future research.

We also obtained an analytical expression for the conductivity of non-
segregated conductor-insulator composites, which could be applied to experi-
mental measurements of the conductivity of such systems. This formula was
fitted to the experimental results with only two free parameters, a multi-
plicative constant and the tunnelling length £. The best fit provided a value
of £ of the order of 2 nm, in very good agreement with what is expected,
strongly supporting our model of transport non-universality.

In the last chapter, in order to better describe the locally inhomogeneous
microstructure of TFRs and study one possible effect of the interaction be-
tween the insulating matrix and the conductive phase, we formulated a seg-
regated tunnelling-percolation model in the continuum, and evaluated the ef-
fect of segregation on the morphological and transport properties. This was,
to our knowledge, the first detailed study of the mechanism of segregation
using a realistic model to describe the microstructure of conductor-insulator
composites and especially of TFRs. This study yielded new and interesting
results, providing a previously unnoticed scenario of segregation. We showed
indeed that the critical concentration x. was not a monotonically decreasing
function of segregation, but presented a minimum, well before maximal seg-
regation is reached. This implies that the minimization of the percolation
threshold is not obtained in the most segregated structure, but that there
is an optimal segregation. The lowering of the critical concentration is an
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important technological goal, as it allows for example to benefit from the
characteristics of the filler without degrading too much the initial character-
istics of the matrix, or simply to diminish the costs of the composite when,
as in TFRs, the filler is much more expensive than the matrix, so that a more
detailed experimental and theoretical investigation of segregation would be
of great interest for future research.

Concerning the conductivity, we could show that segregation did not fun-
damentally change the behaviour of the conductivity, basically only shifting
it to lower x-values. We could therefore map those results on the ones ob-
tained for the non-segregated TP model and obtain an analytical expres-
sion for the conductivity in segregated TP systems. This expression was
used to fit some experimental measurements of the conductivity of thick-
film resistors, giving values of the fitting parameters, notably of &, com-
pletely consistent with the theoretically expected ones, comforting us in our
theoretical approach. We thus obtained an expression for the conductivity
of segregated and non-segregated conductor insulator composites, replacing
the classical power-law and yielding a new interpretation of the experimental
data. Non-universal behaviours such as measured transport exponents larger
than tg = 2 and logarithmic increase of the piezoresistivity are inherent to
this expression and naturally arise in this theoretical framework.

In summary, our approach was mainly theoretical, making large use of
Monte Carlo simulations of conductor-insulator composites, but always keep-
ing in mind the experimental procedures used to extract the transport expo-
nents t. We systematically sought to interpret our numerical results by means
of analytical frameworks, mostly by using effective medium approaches, in
order to provide a better understanding of the observed behaviours. This
original approach led to a new interpretation of the origin of transport non-
universality, as originating from a dependence of ¢t on the conducting phase
concentration. We showed that, in realistic tunnelling-percolation models,
though ¢ was in fact universal, it tended to its true critical value t = tg
only very close to the percolation threshold, taking a value ¢ > ¢y for larger
x — x. values, and that the region of true criticality could get so narrow as
to be experimentally not reachable. The non-universal transport exponents
observed experimentally, could therefore be explained as originating from
the fit of the conductivity for values of x too far away from the critical con-
centration x., namely outside the range of criticality. This scenario, which
we dubbed as “apparent non-universality”’, is the main contribution of this
work to the understanding of the origin of non-universality in conductor-
insulator composites, yielding a self consistent theory fitting nicely exper-
imental measurements of the conductivity of some examples of the most
common such composites, namely carbon-black/polymer and TFRs. Exper-
imentally it could be very difficult to distinguish apparent non-universality
from true non-universal transport. However, based on our Monte Carlo
results, we propose that a careful experimental investigation of the piezore-
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sistive response, close to the critical concentration, should allow to confirm
our interpretation of transport non-universality and would therefore be an
interesting direction for future research.
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Extension of the EMT to hard
core particle distributions

In this appendix, we extend the EMA analysis of section 5.1.1 to the case
where the conducting particles are impenetrable with a hard-core diameter
o1. To this end, it suffices to replace in Eq. (5.3) the Hertz distribution of
Eq. (5.5) that is valid for o1 = 0, by the corresponding distribution function
for o1 # 0. We shall use a simplified version of the function reported in
Ref. [28]. This version still describes rather accurately the distribution of
nearest-neighbouring particles in the low density regime:

7“2

N r3— o3 A
P(r)~ 3m exp {_(a—al)z‘} , (A.1)

where r > o1, and a is approximately the distance between the centers of
two nearest-neighbouring spheres. In this way, Eq. (5.6) becomes

2G e , 3 o1 \3
Te + /01 dzW (z)exp[—z +(a—01>}
(l_al
P — DPc
p—y y A02
’ (A.2)

where z =71/(a — 01) and W/(z) = dW(z)/dz, and
B 2G*

2G* +exp | — 2(a — 01)z/¢]’
where G* = exp(—201/§)G. For small G*, the function W’(z) is well ap-

proximated by the Dirac-delta function §(z — z*), where z* is given now
by

W(z)

(A.3)

= 2(a501)1n<2é*>, (Ad)
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and, since z* is always larger than o1 /(a—o1), for small G* Eq. (A.2) becomes

2G + exp [( 71 )3 - (z*)3] e (A.5)

a—o1 b

Consider now the case for which the second term in the left-hand side is larger
than the first one. By using Eq. (A.4) and the definition of G*, equation A.5
reduces to:

which can be recast in the following form

G~ e 201/¢ <p—pc> ‘ o , (A.7)
Tp

where v = exp{[o1/(a — 01)]*}. We have thus shown that also for the
more general case of impenetrable particles, the conductance is governed
by a p-dependent exponent, reducing to Eq. (5.18) of section 5.1.1 in the
very dilute limit, for which o1/a is small (v &~ 1). Despite the differences
between the above Eq. (A.7) and Eq. (5.18), the dominant contribution to
the conductance in the whole p — p. region is still of the form (p — pc)t(p),
with ¢(p) given by Eq. (5.20) with a replaced by a — 0. This behaviour is
demonstrated in Fig. A.1, where (1—«) {ln(G)/ In ((p—pe)/pe) —to} (with a
given by Eq. (5.34) and G obtained by a numerical solution of Eq. (A.2)) is
plotted for a/o; = 2. This is for several values of 01/¢, Fig. A.1(a), and for
fixed o1 /€ but different a/oy values, Fig. A.1(b). Despite of nearly one order
of magnitude change of o1 /¢ and a/oq, the different curves are only weakly

2(a—oq) (lni>72/3

dependent on «, and do not deviate much from the [ln (p/(p — pc))]d/g
dependence which is represented by the solid lines.
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Figure A.1: Concentration dependence of the local transport exponent of the
EMA of the continuum TP model for permeable conducting particles, as calculated
from a numerical solution of Eq. (A.2) for different values of a/o1 (a) and of o1/&

b). In parenthesis are reported the corresponding values of @« =1 — 5——. The
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solid line describes the {ln (#)} dependence.
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Appendix B

Simulation procedures

In this chapter we give a more extensive description of the simulation proce-
dures used for the Monte Carlo simulations of continuum tunnelling-percola-
tion models. The algorithm is subdivided into several distinct parts: the
generation of the dispersion of spheres and the determination of neighbour-
ing particles, the extraction, if present, of the percolating cluster and finally
the calculation interparticle conductances and of the global conductivity of
the system. We also discuss the generation of the segregated dispersion of
spheres and the calculation of the piezoresistivity. The algorithms used for
the lattice simulations are not discussed here, as they are very classical. In
this chapter we will use italic for the names of the variables in the pro-
grams, and the following notations to specify elements and operations on
the matrices:

e A[N, M| indicates that the matrix A is of size N x M

A(i,j) is the element in row i and column j of matrix A

A(ig : k) are k+ 1 — j elements of row ¢ comprised between column j
and column k, so that A(4,1:3) are the three first elements of row i in
matrix A.

A(i,:) is the whole row i of matrix A.

A == B represents the attribution of the value of B to A.

System Generation

Let us now start with the generation of the dispersion of spheres. This step is
very simple and uses classical methods. We want to place N7 particles with
hard-core diameter o7 in a cubic cell of linear size L with periodic boundary
conditions. This is done by sequentially adding randomly placed particles
in the system. Each time a new sphere is introduced, we check whether it
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intersects any of the earlier placed particles. If yes, it is rejected and a new
random position is tried. If not, the particle position is stored and the next
one is placed. The position of, say, the i*? particle is stored in node(i+1,1:3),
where node is a matrix of size (N7 +2) x 6. The last three columns are used
to speed up the intersection detection algorithm. In fact, we subdivide our
simulation cell space in cubes of size slightly larger than o1 + d (where d/2
is the width of the penetrable concentric shell of the composite particle), so
that each particle can intersect (and also be neighbour with) only particles in
the 26 cubes adjacent of and in the one it is in. Therefore, we check only for
intersections with particles belonging to the adjacent cubes and not with all
particles in the system. The cubes are designated by three numbers Nz, Ny
and Nz, stored in the three last columns of Node(i+1,:) for particle i. For
large systems, this greatly improves the speed of the system generation. Let
us notice here that the reason why the information about particle ¢ is stored
in row i + 1 is that node(1) and node(N;+2) are reserved for the electrodes,
two opposite sides of the simulation cell between which we will look for a
connected cluster (this is also the case for some other matrices introduced
later in this chapter).

For completely penetrable particles (o7 = 0), this sequential addition
procedure suffices to generate an equilibrium state of randomly dispersed
particles, but for hard core particles, the dispersion obtained is no an equi-
librium state [95]. An additional step is needed to let the system relax
towards equilibrium. This is done by a simple Metropolis algorithm |75, 74]
which goes as follows: a random small movement is sequentially attempted
for each sphere and accepted only if it does not lead to an overlap with any
of its neighbours. This loop is repeated until, on average, each particle was
moved Nm times. To choose a value of Nm sufficiently large, the nearest-
neighbour distance distribution function was extracted and compared with
its analytical formula found in Ref. [28].

Now, for the generation of segregated systems, this algorithm is slightly
modified. In that case we first place the Ny large penetrable insulating
spheres (diameter o9), by random sequential addition, as described above.
No Metropolis algorithm is needed here, as the particles are penetrable. A
second subdivision of the system, in cubes of size slightly larger than oo+ 07,
is introduced, so that when we check if a conducting particle intersects an
insulating one, we have to check only in the central and in the 26 adjacent
cubes. The positions and cube identifier for the insulating spheres are stored
in a matrix NodeGI[N2 x 6|. Then the conducting particles are added and
moved as explained above, except that after each step overlaps with insulat-
ing spheres also have to be checked.
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B.3

B.2. Network determination

Network determination

The next step is to identify the neighbours of each particle to create the
matrix containing the information about the connectivity of the system.
We now remove the periodic boundary conditions in one direction, say the
x direction, where we consider that the electrodes are placed, so that the
condition for percolation will be the existence of a connected path linking
the x = 0 and x = L planes, with periodic boundary conditions in the two
other directions.

We first check for all particles whether they are in contact with one of
the electrodes. A particle is considered to be linked to the electrode if its
center is closer than 01/2 + d from one of the surfaces = 0 or x = L. This
connectivity information is stored in the matrix Connect|N; x 2]. Then,
for each particle, we look for all its neighbours (particles with center at
distance smaller than d + o1). The j** neighbour of particle i is stored in
NodeNext(i,j), so that node(NodeNext(i,j),1:3) are the coordinates of this
neighbour. NodeNext is the adjacency list of the graph, as introduced in
section 2.1, which is a very compact representation of the connectivity infor-
mation of the graph.

Extraction of the conducting cluster

We can now use the connectivity information stored in NodeNezt and Con-
nect to extract, if there are, the conducting (percolating) clusters in the
system. We use here an extension of the Hoshen-Kopelman algorithm [76]
as presented in Ref. [77|. In this paper, the algorithm is presented for
non-lattice systems, using the adjacency matrix to represent the graph.
This algorithm, that I will describe here in just a few words (for more
details refer to Ref. [77]), allows the labelling of all clusters in the sys-
tem, by going just once through the nodes. The core of the method is
to use two arrays to label the cluster to which a node belongs, NodeL
and NodeLP, so that the label of the cluster to which node 7 belongs is
NodeLP(NodeL(i)). Basically the algorithm is as follows: we scan succes-
sively all nodes of the network. For node i, we scan all its neighbours (given
in NodeNext(i+1,:)) and check whether its neighbours already have a label
(NodeL(NodeNext(i,j))# 0). If not, we attribute a new cluster label, cluster,
to this node, NodeL(i) == cluster and NodeLP(NodeL(i)) == NodeL(i).
and increase the cluster counter by one, cluster==cluster+1. If yes, look
for the smallest cluster label among those of its neighbours and attribute it
to particle ¢+ and its neighbours. We therefore correct NodeL P for all neigh-
bours of particle i. After we have scanned the whole network following this
procedure, we have to correct, successively in ascending order, the labels
in NodeLP: NodeLP(i) == NodeLP(NodeLP(i)). Finally we attribute the
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correct labels to the nodes: NodeL(i) == NodeLP(NodeL(1)).

We are now in position to check whether there are conducting clusters
or not. A cluster is conducting if there is at least one particle in the cluster
connected to the electrode x = 0 and one to the electrode x = L. This is
easily found from the matrix Connect defined in the network determination
step.

For the determination of the spanning probability II, we repeat this whole
procedure (from system generation to the extraction of the percolating clus-
ter) Ny times and count the number of times Ny there is no percolating
cluster. The spanning probability is then given by II = (Ns — Np)/N;. For
the calculation of the conductivity or the piezoresistivity, the simulation goes
on, considering from now on only the particles in the conducting clusters.

Calculation of the conductivity

The interparticle conductances are now calculated for all particles belonging
to the percolating cluster. The conductance between particle ¢ and j, g;;, is
simply obtained using the formula

o = xp (-2(Hm — 7] —al)) B.1)

§

where r; and r; are the vector positions of particle ¢ and j respectively.
The interparticle conductances are stored in a matrix Cond, in the elements
corresponding to NodeNext, so that the conductance between particle 7 and
its neighbour NodeNezt(i,j) is stored in Cond(i,j).

The calculation of the conductivity of the system can now begin. Here
we use two different algorithms for the extraction of the conductivity: a
decimation procedure and a conjugate gradient algorithm. Let us start with
the decimation algorithm, which is less common than the conjugate gradient.

The decimation basically consists in removing sequentially all nodes from
the system, and replacing them by additive resistances. This is an exact
transformation, which is easily deduced from Kirchhoft’s laws and repre-
sented in figure B.1. If node ¢ has n neighbours, then it is replaced by
n(n — 1)/2 conductances between each pair of its neighbours. The conduc-
tance that has to be added between neighbour j and k of node 7 is given
by [82,83]:

— a9k (B.2)
where the sum runs over all neighbours j of node ¢. Now if there was already

a conductance between a pair of neighbours of ¢, we will have two conduc-
tances in parallel, which are replaced by a unique conductance, as shown
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in the figure. All nodes except the two nodes representing the electrodes
are erased from the system, finally replacing the whole network by just one
conductance between the electrodes and holding the conductance of the net-
work. In our program, this is done by scanning successively all nodes in the
conducting cluster, updating at each step the information in NodeNext and
Cond following the above equation B.2, until we are left only with node 1
and node Nj 4+ 2. The representation of the connectivity in NodeNezt and
Cond makes the algorithm especially simple to implement.

9, 9,, = 9,,+9,,9,./Z9

Figure B.1: Illustration of the decimation algorithm. The internal node 1 is
removed and replaced by additional conductances between its neighbours. As there
was already a link between two of its neighbours (2 and 4), the transformation
creates a conductance in parallel with the existing one which are simplified in a
unique conductance gb,.

This algorithm has the advantage of being exact and very fast close to
the percolation threshold, contrary to the relaxation methods, such as the
conjugate gradient method (CGM), which have to converge to the solution
of the potential for each node, making them very sensitive to the large fluc-
tuations observed close to p.. In fact the decimation algorithm is faster close
than away from p.. Indeed if all nodes have several neighbours, at each
decimation step we add new neighbours to all neighbours of the decimated
node, so that the number of neighbours of the remaining nodes will increase
exponentially, considerably slowing down the algorithm. But close to p,. the
percolating cluster has a structure with many singly connected bonds, which
will hinder the number of neighbours from exploding. In our algorithm we
are not eliminating the nodes in a random order; we eliminate them by in-
creasing degree, starting with the nodes having just one neighbour. This
considerably increases the speed of the procedure (we gained two orders of
magnitude of speed with this ordering of the decimation).

Now, as the decimation is inefficient far away from the percolation thresh-
old, we also implemented a conjugate gradient algorithm. To this end the
conduction problem has to be written in matricial form. Starting from the
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equation 2.19
> as(V) - V(i) =0 (B.3)
J

which is simply the current conservation at each node 2, we can rewrite the
conduction problem in matricial form [12]:

Z Bonds;; V; = B;. (B.4)
ij

where Bondsi; = 0i; > 1. 9ik — 9ij, so that the off-diagonal term Bonds;; =
—gij whereas the diagonal term Bonds;; = ), gi,. Except for the diagonal
term, this matrix is basically the adjacency matrix of the system as defined
in section 2.1. The matrix B, on the righthand side of the above equation,
contains the boundary conditions. B; is zero if 4 is an internal node, and
otherwise contains the conductance linking node 7 to the electrode multiplied
by the voltage of the electrode (gi1 Vi or gin,+2Vn,+2). From equation B.4
it is easy to write the CGM, which is a classical method and will not be
discussed in detail here. The procedure can be found in Ref. [62]. To speed up
the algorithm, we used an incomplete LU factorization as preconditioner [84].
The difficulty here is that the CGM algorithm is matricial, and that the
matrix Bonds is of size N1 x N7 becoming rapidly a limitation for large
systems (we studied systems containing more than 10* particles which leads
to a matrix with 10® elements). Moreover it is clear that this matrix contains
mainly zeros, as each particle has just a few neighbours. It is therefore
valuable to implement this algorithm using the sparse matrix representation,
which allows to store only the non-zero elements of the matrix. A sparse
matrix A of size N x N with M non-zero elements can be stored using
three vectors: AS[M], AI[N + 1] and AC[M]. AS contains all the non-zero
elements of A, in the order of appearance in A if it is read row by row, from
left to right. The second vector, AI, contains the indexes of the elements in
AS corresponding to the first element of a row of A, so that AS(AI(i)) is
the first non-zero element of row ¢ of the matrix A. Finally the last vector
AC contains the column index corresponding to each element in AS. I give

here an example to make things clearer:

2.0 3 0

A= 10410
50 7 9

AS = (2,3,4,1,5,7,9)

Al = (1,3,5,8)
AC = (1,3,2,3,1,3,4)
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In this notation, we have 2M + N + 1 elements instead of N2 4+ 2N + 1,
which makes of course a huge difference if N is large and M <« N. We
therefore implemented both the CGM and the incomplete LU factorization
in this sparse matrix formalism.

As already mentioned, the CGM algorithm works very well if the fluctu-
ations in the system are not too large. This is the case not too close to p.,
and for large values of {/d. When ¢/d < 1, the local conductances have a
very broad distribution, inducing large local voltage fluctuations, which can
considerably slow down the CGM, even when preconditioned. As it is not
always easy to predict which algorithm (the CGM or the decimation) will be
faster, we used a combination of them. We start with the decimation pro-
cedure, eliminating the nodes with few neighbours. The decimation is very
fast at the beginning, for the nodes with few neighbours, and then starts to
slow down as the number of neighbours per node increases. If the decimation
becomes slower than one second per node (this limit was fixed somewhat ar-
bitrarily), we switch to the CGM. The advantage here is that the decimation
rapidly reduces the number of nodes in the system, removing the dead ends
with just one neighbour, and the nodes with few neighbours, leaving a more
homogeneous and compact network, on which the CGM will perform better
than on the original network. This combination of the algorithms is useful,
mostly because it is difficult to predict which algorithm will run faster, so
it removes this choice from the user but it also speeds up a little the overall
performance of the program.

Of course, the conductivity is also calculated from an average of Ny
realizations and its error is obtained from the standard deviation.

Piezoresistivity

The last point discussed here is how we obtain the piezoresistivity I' of the
system. I' is defined as

d In(X)
- de
We consider here that the matrix and the conducting spheres have the same
elastic coefficients, so that, under an applied strain ¢, the distance r between
neighbouring spheres and the diameter o7 of the spheres change as:

=

(B.5)

r — r(l+e) (B.6
o — o1(l+e) (B.7)

In practice, this assumption is often not valid, but the mechanical hetero-
geneity can be treated separately from the percolation problem and basically
leads to a simple enhancement of the piezoresistivity [52]. Now as the local
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Appendix B. Simulation procedures

conductances are given by equation B.1, changing r and o; is equivalent to
changing the tunnelling length £ instead, following

§—>f/(1+6). (B.8)
We can now rewrite equation B.5 as
d In(X)
F = — B.

which is more convenient for the simulation procedure, as it allows to obtain
I" from the calculation of the conductivity for the same system (same particles
distribution) solely changing the value of &, so that T" is obtained from ¥(&)
and $(¢/(1+¢)):

AY S(E/0+9) -5
Ye Y(&)e ’

In the limit € — 0, equations B.10 and B.5 are equal. In our simulations, we
used € = 0.01, calculated the conductivity 3 for the same system with the
two different values of £ and extracted I's; from the above equation. As € is
finite, when I' is large a correction has to be applied to I'y extracted in this
manner. Indeed we have:

T, = (B.10)

_dIn(%)
L= d In(&)
_ 0+ AT/E)
e—0 €

- i |5 - () (D)
= lim [0+ ST2 + O(T3)] |

so that, if € is finite and Ty large, we have to add (¢/2)I'? in order to obtain
a better estimate of I'.

As for the conductivity, I'y is obtained from an average over Ny simula-
tions and the error estimation is given by the standard deviation.
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