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Abstract

With the flood of information available today the question how to deal with high dimensional da-

ta/signals, which are cumbersome to handle, to calculate with and to store, is highly important.

One approach to reducing this flood is to find sparse signal representations, as a signal that is the

linear combination of a few elements from a pool of building blocks, can be reduced to the few coeffi-

cients of this representation. If these building blocks form a basis, finding the sparse representation

poses no problem but unfortunately not many signal classes are sparse in a basis. Taking more

building blocks, i.e. a redundant dictionary, increases the chances of having sparse representations,

but actually finding them becomes very hard. This led to the development of numerous strategies

and algorithms for finding sparse representations, with varying complexity and success rate.

The first part of the thesis deals with two of those algorithms, Thresholding and Matching Pur-

suit, from a more theoretical point of view. It is shown that both those greedy algorithms can be

improved with a little trick, that does not increase their complexity, and that when considering

their average instead of their worst case performance they perform quite well in comparison to more

complex methods.

The second part of thesis treats questions concerning the whole dictionary and its properties. First

it gives more evidence that sparsity is useful by extending the concept of compressed sensing to

signals that are sparse not in a basis but in a redundant dictionary. Thus to record a sparse signal it

is not necessary to make as many measurements as the dimension of the signal but only a multiple

of the number of dictionary elements used to represent it.

Next we show that dictionaries cannot only provide sparse representations but that their geometric

properties can also be exploited to model data structures. Here we explain how to model different

subclasses of a class of signals by incoherent subspaces, present an algorithm to learn a dictionary

made out of these subspaces and then use it for classification of faces.

Finally we turn back to the sparse representation problem and study the fundamental question how

to find a dictionary providing sparse representations. We pick up the idea to learn a dictionary via

minimisation of a continuous cost function and provide conditions, guaranteeing that the decom-

position of a collection of training signals into a dictionary and a coefficient matrix constitutes a

local minimum. We also analyse statistically when these conditions are fulfilled with high probability.

Keywords: sparse representation, redundant dictionary, greedy algorithms, preconditioning,

average case analysis, multichannel, compressed sensing, classification, dictionary learning

vii





Zusammenfassung

Angesichts der Informationsflut heutzutage wird die Frage, wie man mit hoch-dimensionalen Dat-

en/Signalen, die umständlich zu handhaben, zu manipulieren und zu speichern sind, umgehen soll,

immer wichtiger. Ein Ansatz zur Eindämmung dieser Flut ist es spärliche Signaldarstellungen zu

finden, da ein Signal, das Linearkombination weniger Elemente eines Satzes von Bausteinen ist, auf

die wenigen Koeffizienten dieser Darstellung reduziert werden kann. Bilden die Bausteine eine Basis,

kann die spärliche Darstellung problemlos gefunden werden, doch leider sind nicht viele Signalklassen

spärlich im Bezug auf eine Basis. Nimmt man mehr Bausteine, also ein redundantes Wörterbuch,

vergrößern sich die Existenzchancen einer spärliche Darstellung, aber diese auch tatsächlich zu find-

en wird zu einer Herausforderung, was zur Entwicklung zahlreicher Strategien und Algorithmen zur

Auffindung spärlicher Darstellungen, mit verschiedenem Aufwand und Erfolg, führte.

Der erste Teil dieser Dissertation beschäftigt sich mit zwei solchen Algorithmen, ”Thresholding”und

”Matching Pursuit”, von einem theoretischen Gesichtspunkt aus. Es wird gezeigt, dass diese beiden

gierigen Algorithmen durch einen kleinen Trick, der den Aufwand nicht erhöht, verbessert werden

können, und dass, wenn das durchschnittliche statt des Verhaltens im ungünstigsten Fall herange-

zogen wird, sie im Vergleich zu komplizierteren Verfahren recht gut abschneiden.

Der zweite Teil der Dissertation behandelt Fragen, die das gesamte Wörterbuch und seine Eigen-

schaften betreffen. Zuerst wird ein weiterer Beleg gegeben, wie nützlich Spärlichkeit ist, indem das

Konzept der komprimierten Abtastung auf Signale ausgeweitet wird, die spärlich in einem redundan-

ten Wörterbuch statt einer Basis sind. So ist es zur Aufnahme eines spärlichen Signals nicht nötig,

soviele Messungen wie das Signal Dimensionen hat vorzunehmen, sondern nur ein Vielfaches der

Anzahl von Wörterbuchelementen, die zur Darstellung verwendet wurden. Als Nächstes zeigen wir,

dass Wörterbücher nicht nur spärliche Darstellungen liefern, sondern dass ihre geometrischen Eigen-

schaften auch zur Modellierung von Datenstrukturen ausgenutzt werden können. Hier erklären wir

die Modellierung verschiedener Unterklassen einer Signalklasse durch inkoherente Teilräume, präsen-

tieren einen Algorithmus, um ein Wörterbuch, das aus solchen Teilräumen besteht, zu lernen und

verwenden ihn zur Klassifizierung von Gesichtern.

Schließlich kehren wir zurück zu dem Problem der spärliche Darstellung und beschäftigen uns mit

der grundlegenden Frage, wie man ein Wörterbuch, das spärliche Darstellungen liefert finden kann.

Wir greifen die Idee auf, ein Wörterbuch durch Minimierung einer kontinuierlichen Kostenfunktion

zu lernen, und erarbeiten Bedingungen, die gewährleisten, dass die Zerlegung von Trainingssignalen

in ein Wörterbuch und eine Koeffizientenmatrix ein lokales Minimum darstellt. Ebenfalls unter-

suchen wir statistisch, wann diese Bedingungen mit hoher Wahrscheinlichkeit erfüllt sind.

Stichworte: spärliche Darstellung, redundantes Wörterbuch, gierige Algorithmen, Vorkondition-

ierung, Durchschnittsanalyse, mehrere Kanäle, komprimierte Abtastung, Klassifizierung, Lernen von

Wörterbüchern
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Introduction 1
The title of this thesis is Sparsity & Dictionaries - Algorithms & Design. So let’s start with a short

explanation of what sparsity and dictionaries are, why we are interested in them and what we need

the algorithms and the design for. Sparsity means that something is rare and in the region of our

interest the world of signals, vectors and matrices what is rare or sparse are non-zero entries. Thus

a sparse vector x has only a few components xi �= 0 and likewise a sparse matrix A. The two

main advantages of these sparse objects are that they are easy to store and easy to compute with.

To store a vector x ∈ Rd resp. a matrix A ∈ Rn×m we normally need to remember d resp. nm

numbers but if it is sparse with S � d, nm non-zeros, it is enough to remember the addresses of

the non-zero components and their values, i.e. 2S numbers. Similarly if we want to calculate with

a sparse vector. Assume we want to calculate the inner product of two vectors. Normally we would

have to compute the product between all the corresponding entries and then sum these up leading

to 2d−1 operations, but if one of the vectors is sparse we just need to compute the product between

the non-zeros components in the sparse vector with the corresponding ones in the other vector and

sum them up, leading to 2S − 1 operations.

The concept of sparsity we have talked about so far is, however, too restrictive to be useful. For

instance take a sparse vector and multiply it with an orthonormal matrix Φ. The resulting vector

or signal y = Φx will in the generic case not be sparse anymore, meaning most of its entries will

be non-zero. Still if someone gives you many signals yi of this type and tells you to store them,

you can use the knowledge that all yi have a sparse representation in the orthonormal basis Φ, i.e.

yi = Φxi, calculate xi = Φ�yi and store xi and Φ instead. This technique is used in every day life

when looking at a jpeg image. On the hard-drive not the image y itself is stored, but the coefficients

x of the image in a wavelet basis Φ, which are sparse and therefore take less space, and if the picture

is needed y is quickly reconstructed as Φx.

The problem is that for many signal classes there is no orthonormal basis that provides sparse

representations or approximations for all the signals. Thus in the next step one can consider any

kind of basis Φ and using the biorthogonal basis Φ−1 can again switch easily between signal and

sparse representation. Unfortunately the signal classes that have good sparse representations or

approximations in a basis is still not enough and one has to turn to overcomplete representation

systems or dictionaries. An overcomplete dictionary corresponds to a non square d × K matrix Φ

with more columns than rows, d < K. This means that there are more, K instead of d, vectors, i.e.

columns of Φ, that we can sparsely superpose to build a signal. The drawback is that for every signal

there is now more than one way to represent it in the dictionary, just as any underdetermined system

1



2 Chapter 1. Introduction

of d linear equations in K variables has more than one solution. Out of all these representations

we are of course interested in the sparsest one. The problem is that it is not easy to find. Thus

the first part of this thesis is dedicated to the study of algorithms for finding sparse representations

in overcomplete dictionaries. The second part is less homogenous, featuring another reason why

sparse signals are useful which is known as compressed sensing, an application how sparsity can be

used to model subclasses of a signal class and use that for classification and finally addressing the

question, how to find a dictionary that is suitable to represent a signal class. The common element

of manipulating or creating a whole dictionary however justifies the title ’Design’.

1.1 Outline

In the first part we study algorithms to find sparse representations. In Chapter 2 we introduce two

Greedy Algorithms, Thresholding and (Orthogonal) Matching Pursuit and their shortcomings. We

derive that they can be split into two steps a sensing and a reconstruction step, and that the former

will fail to identify correct building blocks if the blocks in the dictionary are too similar, i.e. the

coherence of the dictionary is too high. We modify the sensing step by introducing a special sensing

dictionary. The correct selection of components is then determined by the cross coherence which

can be considerably lower than the coherence. We characterise the optimal sensing dictionary and

develop a constructive method to approximate it. Finally we compare the performance of Thresh-

olding and OMP using the original and modified algorithms.

In Chapter 3 we show that the Thresholding algorithm is more powerful than previously as-

sumed. The worst case analysis, as in Chapter 2, suggests that it can only succeed if the signals

are very sparse, meaning the number of building blocks is of the order of the square root of the

ambient dimension. We perform an average analysis considering a random distribution of the signs

of the building blocks and find out that with high probability Thresholding can succeed for sparsity

levels up to the order of the ambient dimension. As an application of the theory we take the sensing

dictionaries introduced in Chapter 2, characterise when they give optimal average performance and

test them numerically.

Chapter 4 is dedicated to building not single houses out of a few building blocks but whole neigh-

bourhoods. We generalise Thresholding and (O)MP to compute simultaneous sparse approximations

of multichannel signals and analyse their behaviour assuming a random model on the coefficients of

the building blocks. Again we see that with high probability we can recover sparsity levels up to

the order of the ambient dimension.

In the second part of the thesis we show how to exploit the fact that signals have a sparse rep-

resentation in a dictionary and finally study how to learn a dictionary.

In Chapter 5 we extend the concept of compressed sensing, acquiring a signal from only a small

number of measurements, to signals that are not sparse in an orthonormal basis but rather in a

redundant dictionary. To do this we show that a matrix, which is a composition of a random matrix

of certain type and a deterministic dictionary, has small restricted isometry constants, which is a

sufficient condition to recover signals sparse with respect to the dictionary from a few measure-

ments using the Basis Pursuit Principle. We also show that Thresholding can be used as recovery

algorithm for compressed sensing and provide conditions that guarantee reconstruction with high

probability. Finally we compare the performance of Thresholding, (O)MP and Basis Pursuit with

numerical experiments.



1.1. Outline 3

Chapter 6 demonstrates how to use the fact that different signals can be represented more or less

well by certain atoms in a dictionary for classification. We present a signal model for classification

based on a collection of low dimensional subspaces embedded into the high dimensional signal space.

Each subspace is spanned by a certain number of dictionary elements which represent the signals in

one class well but not the other classes. We develop an alternate projection algorithm to find such a

collection and test the classification performance of our scheme in comparison to Fisher’s LDA and

a recent approach based on sparse approximation.

Finally one of the most import problems around dictionaries and sparse representations, namely

how to actually find a dictionary that will give you sparse representations for a class of signals,

is addressed in Chapter 7. Given the decomposition of a signal class into a dictionary and sparse

coefficients we derive conditions on the coefficients that guarantee that locally there is no dictionary

leading to sparser coefficients, when sparsity is measured by the sum of the absolute values of all

coefficients. We then show that assuming a random sparse model on the coefficients these conditions

will be satisfied with high probability as long as the dictionary is not too coherent and the number

of training signals is large enough.

Chapter 8 concludes this thesis. We briefly discuss the main contributions and point out direc-

tions for further research.





Part I

Algorithms
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Dictionary Precondi-

tioning for Greedy Al-

gorithms 2
In this chapter we give a short introduction to dictionaries and sparse signal representations and

approximations. We present two greedy algorithms for finding sparse approximations Thresholding

and (Orthogonal) Matching Pursuit. We analyse their shortcomings by splitting them into a sensing

and a reconstruction step, and showing that the sensing step will fail if the 1-Babel function of the

dictionary, that measure the similarity of the elements, is growing too fast. We then modify the

sensing step by introducing a special sensing dictionary. The correct selection of components is then

determined by the 1-cross-Babel function which can be considerably lower than the 1-Babel function.

We characterise the optimal sensing matrix and develop a constructive method to approximate it.

Finally we compare the performance of Thresholding and OMP using the original and modified

algorithms. Most of the material presented in this chapter has been published in [50].

2.1 Dictionaries & Sparse Representations

In the last years, constructing sparse signal approximations by means of redundant dictionaries has

received a lot of attention, see [13, 16, 21, 55] and the references therein for a thorough introduction.

In short the reason for this interest is that a sparse signal representation effectively reduces the di-

mensionality of the signal and thus makes it easier to store or manipulate. The use of redundant

dictionaries is then simply a consequence of the fact that the existence of a sparse signal represen-

tation becomes more likely as the number of building blocks or atoms in the dictionary increases.

Before we can illustrate the topic further by stating two of the typically investigated problems, we

will need to introduce some vocabulary. We will be working with signals y ∈ Rd. A dictionary Φ

is assumed to be represented by a d × K matrix, with d � K, whose columns are the atoms ϕi,

‖ϕi‖2 = 1:

Φ = [ϕ1 . . . ϕK ].

The ratio R = K/d is called redundancy. A signal is said to have a S-sparse representation in the

dictionary Φ if there exists a set Λ with |Λ| = S such that we can write

y =
∑
i∈Λ

xiϕi = ΦΛx.

7
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With a slight abuse of language we will call both the set Λ and the atoms with indices in Λ the

support of y and write ΦΛ for the d × S matrix of all the atoms in the support. The complement

of the support will be denoted by Λ = {1 . . .K}/Λ.

Now, having all definitions in place, the first problem, concerned with finding sparse signal

approximations, can be more accurately stated as:

Problem 2.1.1. Given a signal y, find its best S-sparse approximation in the dictionary Φ, i.e.

min
Λ,x

‖y − ΦΛx‖2 s.t. |Λ| = S,

or the converse problem given y find the sparsest ε-approximation, i.e.

min
Λ

|Λ| s.t. min
x

‖y − ΦΛx‖2 ≤ ε.

Of course for any signal and dictionary there always exist solutions to the above problems.

However, in order to justify the use of the term sparse, we obviously need to have a dictionary in

which the signal has a representation where both ε and S are small, i.e. S � d. This leads to the

next question:

Problem 2.1.2. Given a class of signals Y , find a dictionary Φ such that all signals y ∈ Y will have

a good sparse approximation in Φ.

Without any further assumption on the signal or the dictionary, finding the solution to the first

problem is combinatorial. Thus one would have to try the orthogonal projection of the signal on

all possible S-sparse supports. To circumvent this problem people started imposing restrictions on

the dictionary and/or the coefficients x. By now there exists detailed theory describing under which

assumptions suboptimal algorithms like Thresholding, (Orthogonal) Matching Pursuit (OMP), or

the Basis Pursuit (BP) Principle, can be proven to recover the true support, see for instance [8, 22,

55]. The property at the base of most theorems for greedy algorithms is slow growth of the 1-Babel

function or cumulative coherence μ1(S,Φ) of the dictionary, which is defined as:

μ1(S,Φ) = max
i

max
|J|=S,i/∈J

∑
j∈J

|〈ϕj , ϕi〉|. (2.1)

It gives an indication of how close/far the dictionary is to/from an orthonormal basis. For compact-

ness reasons we will omit the reference to dictionary, i.e. write μ1(S), whenever it is clear which

dictionary is meant and write μ for the coherence, i.e. μ := μ1(1). Using this definition a typical

result for Thresholding, cp. [25], and OMP, cp. [55], reads as:

Theorem 2.1.1. If we have a signal exactly S-sparse in Φ, i.e. y =
∑

i∈Λ xiϕi and |Λ| = K, then

Thresholding is able to recover a component ϕi of the true support if

|xi|
‖x‖∞ > μ1(S) + μ1(S − 1). (2.2)

OMP is able to recover all components of the true support Λ if the exact recovery coefficient is

smaller than 1, i.e.

‖Φ†
ΛΦΛ‖1,1 < 1,
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where Φ†
Λ denotes the Moore-Penrose pseudo-inverse. The above condition is always satisfied if

μ1(S) + μ1(S − 1) < 1.

One deduction from the theorem is that it is desirable to have a dictionary where the cumulative

coherence is growing slowly. Dictionaries having minimal coherence μ are called Grassmannian

frames and are quite well studied, see [53] and references therein, but the next step of trying

to minimise the cumulative coherence seems novel. However we can give a lower bound on the

cumulative coherence based on results about Grassmannian frames. The following theorem is an

extension of Theorem 2.3 in [53].

Theorem 2.1.2. Let Φ be a dictionary of K atoms in dimension d. If S2 < K − 1 then

μ1(S) ≥ S ·
√

K − d

d(K − 1)
. (2.3)

Equality holds if and only if the dictionary is an equiangular unit norm tight frame.

The proof of the theorem is quite technical and not necessary for further developments. It can be

found in the appendix of [50]. What should be noted though is that optimal Grassmannian frames

that meet the lower bound for the coherence, i.e.

μ(Φ) =

√
K − d

d(K − 1)

simultaneously meet the lower bound for the cumulative coherence μ1(K) for all S with S2 < K−1.

On the other hand while a dictionary minimising the cumulative coherence might be interesting

for communication applications, it will not be ideal for approximation of a specific class of signals,

like for instance EEGs or music. For these purposes learned dictionaries are by definition more

suited to the task, see [3, 19, 29, 30]. However these learned dictionaries will not show the desired

incoherence properties, that enable us to find the approximation with suboptimal algorithms in the

same degree as optimal Grassmannian frames. Assume that we have a dictionary that represents

a signal class well but is unfortunately so coherent that already μ1(2) + μ1(1) > 1, meaning that

we cannot guarantee for OMP to find even a superposition of only two atoms. Thus in order to

find good approximations we would have to use a more complex algorithm. Alternatively we could

circumvent the problem by trying to find a new dictionary that still represents the class well but

retains small minimal cumulative coherence. For more ideas in this direction, see Chapter 7.

In this chapter we introduce the concept of sensing dictionaries and present a small alteration of

the suboptimal algorithms such that they can perform well for dictionaries with high cumulative

coherence. In Section 2.2, we first explain how to separate the Thresholding algorithm into a sens-

ing and a reconstruction part. We then show that sensing with a different dictionary can lower the

cumulative cross-coherence and yield better recovery results. Motivated by structural properties

of optimal Grassmannian frames we propose an iterative algorithm to construct a sensing dictio-

nary/matrix giving lower cross-coherence. After analysing its convergence properties theoretically

we use it to calculate sensing matrices for various dictionaries and compare the performance of

Thresholding with and without sensing dictionaries in practice. In Section 2.3 we introduce sensing

dictionaries as well for (O)MP and from a worst case performance analysis derive a characterisation

of the ideal sensing dictionary. Again we do some numerical simulations of how OMP performs with

or without sensing matrices using the sensing dictionaries obtained with the algorithm developed in
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Section 2.2. Section 2.4 discusses the theoretical and numerical limitations of the schemes so far, as

well as possible extensions.

2.2 Sensing Dictionaries for Thresholding

As mentioned above Thresholding can be formally decomposed into sensing steps, where we try to

identify correct atoms of the support, and reconstruction steps, see the table below.

Sensing: find Λ that contains the indices corresponding
to the S largest values of |〈y, ϕk〉|

Reconstruction: a = ΦΛΦ†
Λy

Table 2.1: Thresholding

Φ†
Λ again denotes the Moore-Penrose pseudo inverse. If the dictionary is too coherent the sensing

part will fail to identify correct atoms. Our idea is to change the sensing part and instead of sensing

with the dictionary, use a different sensing matrix Ψ that allows to identify more correct compo-

nents. This sensing matrix will have as columns the same number of sensing atoms as the original

dictionary had atoms, so that we have a one to one correspondence between the sensing and the

original atoms. If we denote the sensing atom in Ψ that corresponds to the atom ϕi in the original

dictionary with ψi schematically the new algorithm looks like:

Sensing (new): find Λ that contains the indices corresponding
to the S largest values of |〈y, ψk〉|

Reconstruction: a = ΦΛΦ†
Λy

Table 2.2: Thresholding with a Sensing Matrix

This approach can be easily motivated on the following example. Assume for instance that the

dictionary Φ is a deformed version of a dictionary Γ with low coherence, like an optimal Grass-

mannian frame or even more simple an orthogonal basis, meaning Φ = AΓ where A is an invertible

matrix with inverse A−1 = B. For any S-sparse signal y = Φx by applying the matrix B we can

construct a new signal z = By = BΦx = Γx. To find the sparse support Λ we could equivalently

use the original signal and dictionary or solve this new problem. But since for a Grassmannian

frame Γ the cumulative coherence grows more slowly - in the case of Γ being an orthogonal basis it

is even zero - the second problem is obviously better conditioned:

y = Φx ⇔ z = Γx

μK(Φ) ≥ μK(Γ)

However, if we write down explicitly the sensing of z with Γ (Γ� denotes the transpose of Γ),

Γ�z = (BΦ)�By = (Φ�B�B)y,

we see that we can actually interpret it as sensing the original signal with a sensing matrix of the

form Ψ = B�BΦ. In the special case where we choose B such that B�B = (ΦΦ�)−1 we get as

sensing matrix the canonical dual frame (pseudo-inverse): Ψ = (ΦΦ�)−1Φ, which in the even more
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special case where the dictionary is a basis is just the biorthogonal basis (Φ−1)�.

Now in order to generalise the above idea we can investigate what happens if we do not insist on

deriving the sensing matrix from a linear transformation of the problem. Instead of restricting our-

selves to using sensing matrices of the form Ψ = B�BΦ, we will allow any matrix of the same size as

the original dictionary. To see explicitly what properties we want to infer for the sensing/measuring

matrix Ψ we do the analogue of the analysis leading to (2.2).

2.2.1 Worst Case Analysis of Thresholding with a Sensing Dictionary

Let y be a d-dimensional signal that has a S-sparse representation in the overcomplete dictionary

Φ, |Φ| = N , i.e. y =
∑

i∈Λ xiϕi. For Thresholding to recover a component ϕi in the support,

we need the inner product of signal with the corresponding sensing atom ψi to be larger than the

inner product with any atom in the sensing matrix whose corresponding partner is not part of the

support:

i ∈ Λ : |〈y, ψi〉| ≥ |〈y, ψj〉|, ∀j /∈ Λ.

Writing out the inner product we can estimate:

i ∈ Λ : |〈y, ψi〉| ≥ |xi||〈ϕi, ψi〉| −
∑

j∈Λ,j �=i

|xj ||〈ϕj , ψi〉|

≥ |xi||〈ϕi, ψi〉| − ‖x‖∞
∑

j∈Λ,j �=i

|〈ϕj , ψi〉|,

k /∈ Λ : |〈y, ψk〉| ≤
∑
j∈Λ

|xj ||〈ϕj , ψk〉| ≤ ‖x‖∞
∑
j∈Λ

|〈ϕj , ψk〉|.

The right most terms in the above equations show a strong similarity to the cumulative coherence.

In analogy we define the 1-cross-Babel function or cumulative cross-coherence of two dictionaries

μ̃1(K,Φ,Ψ) as well as their minimal similarity β(Φ,Ψ) as:

μ̃1(K,Φ,Ψ) := max
i

max
|J|=S,i/∈J

∑
j∈J

|〈ϕj , ψi〉|, (2.4)

β(Φ,Ψ) := min
i

|〈ϕi, ψi〉|. (2.5)

As before we leave out the reference to the dictionaries whenever it is clear which ones are meant.

Using these definitions we can further simplify the above estimates to get:

i ∈ Λ : |〈y, ψi〉| ≥ |xi|β − ‖x‖∞μ̃1(K − 1)

k /∈ Λ : |〈y, ψk〉| ≤ ‖x‖∞μ̃1(K).

Finally the combination of these two estimates leads to the following theorem.

Theorem 2.2.1. Let y be a signal exactly K-sparse in Φ, i.e. y =
∑

i∈Λ xiϕi. Thresholding with

the sensing matrix Ψ is able to recover a component ϕi of the true support if

|xi|
‖x‖∞ >

1

β
(μ̃1(K) + μ̃1(K − 1)) := ν(K,Φ,Ψ). (2.6)
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This is a relaxation over the traditional recovery condition (2.2) if

1

β
(μ̃1(K) + μ̃1(K − 1)) < μ1(K) + μ1(K − 1).

The obvious questions now are: Given a dictionary Φ, do there exist complementary sensing

dictionaries that give a relaxed recovery condition and if yes how do we find them or rather how do

we find the best. Since we want to have the new recovery condition as relaxed as possible we need

to find the dictionary for which the recovery coefficient ν(K,Φ,Ψ) is minimal, i.e.

Ψ0 = arg min
Ψ

ν(K,Φ,Ψ). (2.7)

Consequently, unless the minimum in the above equation is attained by the dictionary itself, there

will always exist better sensing dictionaries. The next subsection is dedicated to developing an

algorithm for finding one of them.

2.2.2 An Algorithm for Calculating Sensing Dictionaries

If we wanted to find the optimal sensing dictionary we would have to find the solution to Problem

(2.7). This a daunting task as is more clearly demonstrated by looking at the expansion of the

objective function after back-inserting the definitions:

min
Ψ

1

mini |〈ϕi, ψi〉|
(

max
|J|=K,i/∈J

∑
j∈J

|〈ϕj , ψi〉| + max
|J|=K−1,i/∈J

∑
j∈J

|〈ϕj , ψi〉|
)
.

Another complication arises from the fact that we may not know the exact sparsity of our signals

as this can vary but only its order of magnitude.

Our approach to solving the problem is inspired by the alternative projection method in [57] for

constructing equiangular tight frames. The problem of trying to find a sensing matrix Ψ for the

dictionary Φ that gives low cumulative coherence can be reformulated as looking for the Gram type

matrix G = Ψ�Φ closest to the ideal Gram matrix, which by Theorem 2.1.2 has only ones on the

diagonal and all off diagonal entries of absolute value μ =
√

K−d
d(K−1) . So if we define

G := {G = Ψ�Φ, Ψ a K × d matrix}
H := {H, a K × K matrix with Hii = 1 and |Hij | ≤ μ for i �= j}

and equip the space of all N × N matrices with the Frobenius norm we can write the problem as

min ‖G − H‖F s.t G ∈ G, H ∈ H, (2.8)

which can be solved via projection onto convex sets (POCS) since both sets G and H are convex,

see [57] for details. In our case POCS will do the following. We fix a number of iterations, initialise

G = Φ�Φ and then in each iterative step do:

a. find H ∈ H that minimises ‖G − H‖F

b. find G ∈ G that minimises ‖H − G‖F

After the last iteration we can extract our sensing dictionary from the matrix G, which by definition

is of the form Ψ�Φ. Let us now find explicit expressions for the projection of a matrix A onto H
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and G. By writing out the Frobenius norm explicitely

min
H∈H

‖A − H‖F = min
H∈H

(∑
ij

|Aij − Hij |2
) 1

2 (2.9)

we see that the minimum is attained for the matrix H with

H :

⎧⎪⎨
⎪⎩

Hii = 1

Hij = Aij if |Aij | ≤ μ

Hij = sgn(Aij)μ if |Aij | > μ

.

The solution to the second minimisation problem is not much harder to find. If we write A� =

(a1 . . . aK) we can rewrite the problem

min
G∈G

‖A − G‖F = min
Ψ

‖A − Ψ�Φ‖F = min
Ψ

‖A� − Φ�Ψ‖F = min
Ψ

(
∑

i

‖ai − Φ�ψi‖2
2)

1

2 .

From the last expression it is clear that we should choose ψi = (Φ�)†ai, leading to Ψ� = AΦ† and

G = AΦ†Φ. Before testing the algorithm numerically note that in case the dictionary was a basis

we have K = d resulting in μ = 0. The set H consequently only contains the identity matrix and so

in one iteration the algorithm will find the best sensing dictionary - the biorthogonal basis.

2.2.3 Simulations

First we calculated sensing dictionaries for three dictionaries of different types to compare the

cumulative coherences and cross-coherences. To simplify the comparison we will ’hide’ β within the

correlations and choose the normalisation of the atoms in Ψ such that |〈ϕi, ψi〉| = β = 1. The first

dictionary was a random dictionary, of redundancy R = 2 in dimension d = 128. So in every atom

the entries were drawn independently from a normalised standard Gaussian distribution and then

the atom was rescaled to have unit norm. The second dictionary was a Gabor dictionary made up

of the time-frequency shifts of one atom ϕ, i.e. Φ = (ϕn,m)n,m where ϕn,m(k) = e2πimbkϕ(k − na).

In our case this atom was a normalised standard Gaussian in dimension d = 120 and the time and

frequency shift parameters were chosen as a = 8, b = 10, leading to a redundancy R = 1.5. The

third dictionary was the union of two orthonormal bases, the Haar-wavelet basis and the Discrete

Cosine Transform (DCT) basis in dimension d = 128.

Looking at Figure 2.1 we see that for the random dictionary, (a), the cross coherence is signifi-

cantly lower than the coherence. We already have μ1(S) > 1 for S > 3 meaning that we can only

guarantee to recover super positions of up to two atoms with equal absolute coefficients. On the

other hand μ̃1(4)+ μ̃1(3) < 1 meaning we can recover super-positions of up to 4 atoms. Also for the

Gabor dictionary, (b), there is a slight improvement so while μ(3) > 1 we still have μ̃(3) < 1. For

the Haar-DCT dictionary, (c), we still observe the slower growth of the cross-coherence but in this

case the difference is not large enough to change the worst case behaviour, i.e. 1 < μ̃(2) < μ(2).

As second part of the simulations we tested how the sensing dictionaries performed in average

for Thresholding. For every support size varying between 1 and 30 we constructed 500 signals by

choosing the atoms in the support uniformly at random and coefficients of absolute value one with

random signs in the case of the real dictionaries, i.e. the random and the Haar-DCT dictionary, and

uniformly random angle eiθ in case of the complex Gabor dictionary. We ran Thresholding using

both the original and the sensing dictionary counting how often the full support could be recovered.

The results are displayed in Figure 2.2.
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Figure 2.1: Cumulative coherence (or dico) and cross-coherence (or/dico) for various dictionaries.

As we can see while for both the random and the Gabor dictionary the recovery rates are higher

when using the sensing dictionary there is no improvement for the Haar-DCT dictionary. One of the

reasons might be that on average Thresholding for the Haar-DCT dictionary is already performing

well. So comparing the original recovery rates of the random and the Haar-DCT dictionary, which

have about the same redundancy, we observe a performance gap in favour of the Haar-DCT dictio-

nary. However, the gap closes when using the sensing dictionary for the random matrix. Also note

that in the above experiment we tested the average performance but used the sensing dictionaries

that were designed to give a good worst case performance. Before discussing these issues more

thoroughly in Section 2.4 let us investigate the use of sensing dictionaries for (O)MP.

2.3 Sensing Dictionaries for (O)MP

Even more clearly than Thresholding (O)MP can be decomposed into sensing and reconstruction

steps. We initialise a = 0, r = y, Λ = ∅ and then in each step do:

Sensing: find i = argmaxj |〈r, ϕj〉|
Reconstruction: a = a + 〈r, ϕi〉ϕi, r = y − a (MP)

Λ = Λ ∪ {i}, a = ΦΛΦ†
Λy, r = y − a (OMP)

Table 2.3: (Orthogonal) Matching Pursuit

As before we can change the sensing step of the algorithm and, instead of trying to identify

components of the true support with the dictionary Φ itself, use a sensing dictionary Ψ.

To determine which conditions we should impose on the sensing matrix for (O)MP we again do
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Figure 2.2: Recovery rates for Thresholding using the original dictionary (or dico) and the sensing
dictionary (sens dico).

Sensing (new): find i = argmaxj |〈r, ψj〉|
Reconstruction: a = a + 〈r, ϕi〉ϕi, r = y − a (MP)

Λ = Λ ∪ {i}, a = ΦΛΦ†
Λy, r = y − a (OMP)

Table 2.4: (Orthogonal) Matching Pursuit with a Sensing Matrix

a worst case analysis.

2.3.1 Worst Case Analysis of (O)MP with a Sensing Dictionary

Theorem 2.3.1. Let y be a signal exactly S-sparse in Φ, i.e. y =
∑

i∈Λ xiϕi. (Orthogonal)

Matching Pursuit using the sensing matrix Ψ will always select components of the true support Λ if

‖(Φ�
ΛΨΛ)−1Φ�

ΛΨΛ‖1,1 < 1 (2.10)

which is always satisfied if

μ̃1(S) + μ̃1(S − 1) < β. (2.11)

Proof: Basically we just need to rewrite Tropp’s proof for Exact Recovery for OMP in [55]. As long

as we have only selected correct atoms we know that the residual r is still a linear combination of

the atoms in the true support, i.e.

r =
∑
i∈Λ

ciϕi = ΦΛc.
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(O)MP will again select a correct atom at the next step if the maximal correlation of the residual

with an atom in the support maxi∈Λ |〈r, ψi〉| is larger than the maximal correlation with an atom

outside the support maxk∈Λ |〈r, ψk〉|. So we have to make sure that the quotient satisfies

maxk∈Λ |〈r, ψk〉|
maxi∈Λ |〈r, ψi〉| =

‖Ψ�
Λ
r‖∞

‖Ψ�
Λr‖∞ < 1. (2.12)

For further simplification we need to make use of p, q-matrix norms for 1 ≤ p, q ≤ ∞, defined as

‖A‖p,q = max‖x‖p=1 ‖Ax‖q. Inserting r = ΦΛc into expression (2.12) and assuming that the matrix

Ψ�
ΛΦΛ is invertible so that we can write z = Ψ�

ΛΦΛc, we can bound it as

‖Ψ�
Λ
ΦΛc‖∞

‖Ψ�
ΛΦΛc‖∞ =

‖Ψ�
Λ
ΦΛ(Ψ�

ΛΦΛ)−1z‖∞
‖z‖∞ ≤ ‖Ψ�

Λ
ΦΛ(Ψ�

ΛΦΛ)−1‖∞,∞.

Finally we note that ‖Ψ�
Λ
ΦΛ(Ψ�

ΛΦΛ)−1‖∞,∞ = ‖(Φ�
ΛΨΛ)−1Φ�

ΛΨΛ‖1,1 which by condition (2.10) is

smaller than one as required.

For the second part of the proof we just have to show that condition (2.11) implies condition (2.10).

First we can estimate

‖(Φ�
ΛΨΛ)−1Φ�

ΛΨΛ‖1,1 ≤ ‖(Φ�
ΛΨΛ)−1‖1,1‖Φ�

ΛΨΛ‖1,1.

The second term in the above can easily be bounded with the cross-coherence,

‖Φ�
ΛΨΛ‖1,1 = max

k∈Λ

∑
i∈Λ

|〈ϕi, ψk〉| ≤ μ̃1(K).

To bound the first term we use the fact that whenever ‖A‖1,1 < 1 we have ‖(I + A)−1‖1,1 <

(1 − ‖A‖1,1)
−1. Set A = Φ�

ΛΨΛ − I, then

‖A‖1,1 = max
i∈Λ

(|〈ϕi, ψi〉 − 1| +
∑
j �=i

|〈ϕi, ψj〉|
) ≤ 1 − β + μ̃1(K − 1),

and consequently

‖(Φ�
ΛΨΛ)−1‖1,1 ≤ (1 − (1 − β + μ̃1(K − 1))−1 ≤ (β − μ̃1(K − 1))−1.

If we now combine these two estimates with condition (2.11) we get the desired bound

‖(Φ�
ΛΨΛ)−1Φ�

ΛΨΛ‖1,1 ≤ μ̃1(K)

β − μ̃1(K − 1)
< 1.

The theorem above is applicable to both MP and OMP as we only used that in each step the

residual is a linear combination of the atoms in the support. Note, however, that picking a correct

atom does not mean picking a new correct atom. Indeed since the sensing atoms corresponding to

already found atoms are not orthogonal to the residual not even OMP can be guaranteed to find

the full support in S steps.

As a consequence to Theorem 2.3.1 we get a characterisation of the optimal sensing dictionary for

(O)MP. Given a dictionary Φ and a sparsity level S, the best sensing dictionary Ψ0 is the solution
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to:

Ψ0 = arg min
Ψ

max
|Λ|=S

‖(Φ�
ΛΨΛ)−1Φ�

ΛΨΛ‖1,1. (2.13)

Unfortunately solving this problem is even harder than solving the original problem of finding the

best sensing dictionary for Thresholding in (2.7), as in addition to the maximum over all subsets of

size K we also have to consider the inverse of a pseudo Gram matrix. However we still have the

sufficient condition (2.11) for recovery success in terms of the cross coherence. Thus if we take a

sensing dictionary calculated with the algorithm developed in Section 2.2.2 that has cross-coherence

smaller than the coherence we can at least guarantee recovery for signals with higher sparsity. Finally

what remains to be done is to check wether these sensing dictionaries also improve the average case

performance of OMP.

2.3.2 Simulations for OMP

For our simulations we used the same three dictionaries and sensing dictionaries as for tresholding

and the same set up. So for every support size varying between 10 and 40 we constructed 500

signals in the same way as for Thresholding. Then we ran OMP using both the original and the

sensing dictionary counting how often the full support could be recovered. The results are displayed

in Figure 2.3.
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Figure 2.3: Recovery Rates for OMP using the original dictionary (or dico) and the sensing
dictionary (sens dico).

Surprisingly even though the sensing matrices are derived from optimising only a sufficient worst

case condition we can observe the same trends as for Thresholding. So for both the random and

the Gabor dictionary the recovery rates are higher when using the sensing dictionary but there is

no improvement for the Haar-DCT dictionary. Comparing the original recovery rates of the random

and the Haar-DCT dictionary we observe the same performance gap in favour of the Haar-DCT
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dictionary as for Thresholding. Again the gap closes when using the sensing dictionary for the

random matrix.

2.4 Discussion

We have seen that using sensing dictionaries the performance of Thresholding and OMP can be

improved, while maintaining the same computational complexity. The analysis of the worst case

behaviour of both algorithms when using a sensing dictionary led to a characterisations of the optimal

sensing dictionaries for worst case performance and with the developed algorithm we could even find

good sensing dictionaries, i.e. with lower cumulative cross coherence than coherence, even though

this difference is not always sufficiently large to guarantee a higher recovery rate. However with the

numerical simulations we did not test the worst case but the average performance of both algorithms.

The question is why in some cases the sensing dictionaries for good worst case performance also

improve the average performance. There is a simple heuristic argument why the recovery rates

increased for the random and the Gabor dictionary but not for the Haar-DCT dictionary. So for

the random and the Gabor dictionary lowering the extreme correlations that are contributing to

the cumulative coherence went together with lowering all the correlations, while for the Haar-DCT

dictionary lowering the extremal correlations came at the price of increasing some of the a priori

small correlations. Figure 2.4 showing the Gram matrices Φ�Φ and pseudo Gram matrices Ψ�Φ

nicely illustrates this effect. For the Gabor dictionary the first off-diagonal band corresponding to

the highest correlations is lower for the pseudo-Gram matrix, which in turn has larger correlations

on the second to fourth off-diagonal band. Also for the Haar-DCT Dictionary we see that the

correlations in the upper right and lower left corner of the pseudo Gram matrix are lower than in

the Gram matrix but that as price to pay there are non zero-correlations in the upper left and lower

right part of Ψ�Φ that do not appear in Φ�Φ.
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Figure 2.4: Gram and Pseudo Gram Matrices.
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The next chapter will shed more light on the question how Thresholding performs on average

and how to find good average sensing dictionaries.





Average Performance

Analysis for Threshold-

ing 3
This chapter shows that with high probability Thresholding can recover signals that are sparse

in a redundant dictionary as long as the 2-Babel function is growing slowly. This implies that it

can succeed for sparsity levels up to the order of the ambient dimension. The theoretical bounds

are illustrated with numerical simulations. As an application of the theory sensing dictionaries for

optimal average performance are characterised and their performance is tested numerically. The

major part of the findings presented in this chapter has been published in [49].

3.1 Why Average Performance?

In the last chapter we introduced two greedy algorithms for finding sparse approximation, Thresh-

olding and (O)MP, which together with the Basis Pursuit Principle, see Table 3.1 and [21] for more

details, are among the most popular in the signal processing community. However, while they are

successfully employed to find sparse approximations in practice, the theoretical analysis of these

algorithms was so far limited to studying their worst case performance. We also did a worst case

analysis to study the performance of sensing dictionaries. The problem with the resulting worst

case bounds for recoverable sparsity levels is that they are over-pessimistic and quite in contrast to

the much better performance in practice. So the worst case analysis tells us that we can recover

superpositions of S atoms as long as:

S � μ−1 ≈
√

d,

while in practice it is usually possible to recover supports sizes of the order of d. This phenomenon

could also be seen in the simulation results in Subsection 2.2.3 of the last chapter. From a worst case

point of view we were for instance able to recover super-positions of 2 atoms in the Gabor dictionary

but the numerical simulations, testing the average performance, showed that it was always possible

to recover 5 atoms and in more than 90% of the cases even up to 10 atoms.

Motivated by the desire to better understand and capture the performance of an algorithm together

with a dictionary people have started to analyse the average case performance. In a recent paper,

[56], Tropp was able to show that random subdictionaries of a general dictionary are very likely

to be well conditioned as long as their size is of the order of μ−2 ≈ d (see Theorem B, [56]). As

an application of this result it is shown that a signal constructed from a random superposition

of S atoms with coefficients drawn from a continuous distribution has almost surely no sparser

21
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representation (see Theorem 12, [56]). If additionally the signs of the coefficients are drawn from a

uniform distribution then this representation is with high probability recoverable via Basis Pursuit,

compare Table 3.1.

Replace the problem

P(0) min ‖x‖0 s.t ‖y − Φx‖2 ≤ ε

which is not convex because ‖ · ‖0 counting the number
of non-zero entries is not convex with the convex problem

P(1) min ‖x‖1 s.t ‖y − Φx‖2 ≤ ε

and hope that the solutions coincide.

Table 3.1: Basis Pursuit (Denoising if ε > 0)

Theorem 3.1.1 (Theorem 13 in [56]). Assume that ΦΛ has least singular value σmin(ΦΛ) ≥ √
1/2

and that the signal y = ΦΛxΛ is synthesised from a coefficient sequence xΛ whose signs form a

Steinhaus sequence, i.e. σi = xi/|xi|, i ∈ Λ are independent realisations of the random variable eiX

with X uniformly distributed on (0, 2π). Then the probability that Basis Pursuit fails to recover xΛ

from y satisfies

P(BP fails) ≤ 2K exp
(
− 1

8μ2S

)
(3.1)

One of the conclusions of the above results is that Basis Pursuit is able to recover sparse signal

representations even when the sparsity level is higher than the worst case barrier of
√

d. However

the problem is that in practice Basis Pursuit is simply too complex. Consider for instance image

compression, a small picture of size 64 × 64 already results in d = 4096. Taking a dictionary with

reasonable redundancy 2 means that we have to solve a convex optimisation problem in R8192. On

the other hand one would typically be happy to recover the 100 most important components of

the signal. Unfortunately this is still more than 64 =
√

d signifying the worst case performance

bottleneck for simpler algorithms like thresholding or the Matching Pursuits. In the following we

will therefore analyse the average behaviour of thresholding to find out that also here the recoverable

sparsity scales with the ambient dimension. Again the result will be in terms of the coherence μ or

rather the 2-Babel function μ2, defined as

μ2(Λ, k) =
(∑

i∈Λ

|〈ϕi, ϕk〉|2
) 1

2 , μ2(Λ) = max
k/∈Λ

μ2(Λ, k), μ2(S) = max
|Λ|=S

μ2(Λ). (3.2)

3.2 Theoretical Analysis

To do an average analysis we first need to introduce the probabilistic model we assume for our

signals y.

Signal Model:

y = ΦΛxΛ =
∑
i∈Λ

xiϕi, xi = σi|xi|, ∀i ∈ Λ,

where Φ is a dictionary of K normalised atoms and ΦΛ a subdictionary of all atoms with indices in

Λ and |Λ| = S. While the support Λ and the absolute magnitude of the coefficients are considered to
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be arbitrary, the signs σi form either a Steinhaus sequence or a Rademacher sequence, i.e. σi = ±1

with equal probability.

Theorem 3.2.1. Let’s abbreviate the event ’Thresholding fails to recover the component ϕi’ as ’�i’

and ’Thresholding fails to recover all components’ as ’�’. Under the above signal model

a) P(�i) < 2(K − S + 1) exp
(
− |xi|2

‖x‖2∞

c

8μ2
2(S)

)
b) P(�) < 2K exp

(
− |xmin|2

‖x‖2∞

c

8μ2
2(S)

)
where c = 1 for Steinhaus and c = 1/16 for Rademacher sequences.

The proof is a straightforward application of the following large deviation inequalities.

Theorem 3.2.2. Let α be a real/complex vector and σ a Rademacher/Steinhaus sequence. Then

for all t > 0

P(|
∑

i

σiαi| > t) ≤ 2e−c0t2/‖α‖2

2

where c0 = 1/32 for Rademacher and c0 = 1/2 for Steinhaus sequences.

For a proof for Steinhaus sequences see [56] and references therein. The proof for Rademacher

sequences can be found in Section 4 of [31].

Proof: [Theorem 3.2.1] We can bound the probability of not recovering ϕi by the probability that

its inner product with the signal is lower than a threshold p or the inner product of an atom not in

the support is higher than the threshold.

P(�i) ≤ P
(|〈y, ϕi〉| < max

k∈Λ
|〈y, ϕk〉|

)
≤ P

(|〈y, ϕi〉| < p
)

+ P
(
max
k∈Λ

|〈y, ϕk〉| > p
)

≤ P
(|〈y, ϕi〉| < p

)
+ P

( ⋃
k∈Λ

|〈y, ϕk〉| > p
) ≤ P

(|〈y, ϕi〉| < p
)

+
∑
k∈Λ

P
(|〈y, ϕk〉| > p

)

The probability of the correlation of the signal with ϕi being smaller than the threshold can be

further bounded as,

P
(|〈y, ϕi〉| < p

)
= P

(|∑
j∈Λ

xj〈ϕj , ϕi〉| < p
)

= P
(|xi +

∑
j �=i

xj〈ϕj , ϕi〉| < p
) ≤ P

(|∑
j �=i

xj〈ϕj , ϕi〉| > |xi| − p
)
.

Choosing the threshold as p = |xi|/2 and using Theorem 3.2.2 we arrive at,

P
(|〈y, ϕi〉| ≤ p

)
< P

(|∑
j �=i

σj |xj |〈ϕj , ϕi〉| > 1
2 |xi|

)

≤ 2 exp
(
− c0

4

|xi|2∑
j �=i |xj |2|〈ϕj , ϕi〉|2

)
≤ 2 exp

(
− |xi|2

‖x‖2∞

c

8μ2
2(S − 1)

)
.
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Similarly we can estimate the probability of the correlation of an atom not in the support being

larger than the threshold,

P
(|〈y, ϕk〉| > p

) ≤ P
(|∑

j∈Λ

σj |xj |〈ϕj , ϕk〉| > 1
2 |xi|

)

≤ 2 exp
(
− c0

4

|xi|2∑
j∈Λ |xj |2|〈ϕj , ϕk〉|2

)
≤ 2 exp

(
− |xi|2

‖x‖2∞

c

8μ2
2(S)

)
.

Putting it all together we finally arrive at,

P(�i) ≤ 2 exp
(
− |xi|2

‖x‖2∞

c

8μ2
2(S − 1)

)
+ |Λ|2 exp

(
− |xi|2

‖x‖2∞

c

8μ2
2(S)

)
≤ 2(K − S + 1) exp

(
− |xi|2

‖x‖2∞

c

8μ2
2(S)

)
.

To estimate the probability of thresholding failing to recover all components we can proceed in

the same fashion. Essentially we just need to adapt the choice of the threshold p.

P(�) = P
(
min
i∈Λ

|〈y, ϕi〉| < max
k∈Λ

|〈y, ϕk〉|
) ≤ P

(
min
i∈Λ

|〈y, ϕi〉| < p
)

+ P
(
max
k∈Λ

|〈y, ϕk〉| > p
)
.

The first probability can be expanded as

P
(
min
i∈Λ

|〈y, ϕi〉| < p
) ≤ P

(
min
i∈Λ

|xi +
∑
j �=i

xj〈ϕj , ϕi〉| < p
)

≤ P
(
min
i∈Λ

(|xmin| − |
∑
j �=i

xj〈ϕj , ϕi〉|) < p
)

≤ P
(
max
i∈Λ

|
∑
j �=i

xj〈ϕj , ϕi〉| > |xmin| − p
)

≤
∑
i∈Λ

P(|
∑
j �=i

xj〈ϕj , ϕi〉| > |xmin| − p)

Now we choose as threshold p = |xmin|/2 and using Theorem 3.2.2 get the bound:

P
(
min
i∈Λ

|〈y, ϕi〉| < p
) ≤ 2S exp

(
− |xmin|2

‖x‖2∞

c

8μ2
2(S − 1)

)
.

Repeating the steps above we can estimate the probability of an atom not in the support having

higher correlation than the threshold as

P
(
max
k∈Λ

|〈y, ϕk〉| > p
) ≤ 2(K − S) exp

(
− |xmin|2

‖x‖2∞

c

8μ2
2(S)

)
.

In combination this leads to the final bound:

P(�) < 2K exp
(
− |xmin|2

‖x‖2∞

c

8μ2
2(S)

)
.

Comparing the above result for Steinhaus sequences to Theorem 3.1.1 we see that the essential



3.3. Applications & Numerical Simulations 25

difference in the failure probability bound for the two algorithms is the additional coefficient
x

2

min

‖x‖2
∞

in the exponent for thresholding. This means that for coefficients of constant absolute magnitude

the two algorithms should perform comparably. Also it promises a good behaviour of thresholding

as long as the coefficients are reasonably well balanced and in that case makes it an interesting low

complexity alternative to BP.

3.3 Applications & Numerical Simulations

3.3.1 An Experiment with Dimensions

To show numerically how the recovery rates of thresholding scale with the dimension we conducted

the following experiment. In dimensions 2p, p = 8 . . . 12 a dictionary made up of the Dirac and the

Discrete Cosine Transform bases was constructed. The coherence of these dictionaries is μ =
√

2/d

and the 2-Babel function behaves approximately like μ2(S) ≈ √
S/d. For each dimension and

relative sparsity level S/d, 1000 signals were constructed by randomly choosing a support and

coefficients with constant absolute value one and random signs, xi = ±1 with equal probability.

Then we counted how often thresholding was able to recover the full support.
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Figure 3.1: Comparison of Numerical Recovery Rates and Theoretical Recovery Bounds

From the theorem we know that thresholding will fail with small probability as long as

μ2
2(S) �

c′

log(2K)
⇒ S

d
�

c′

(p + 1) log 2
.

If we compare these theoretical bounds to the simulation results displayed in Figure 3.1 we see that

they reflect the average behaviour quite well. For the bounds as plotted in the figure we chose

c′ = 0.3 which is somewhat better than the theorem suggests (c ≈ 1
128 ).

3.3.2 An Application

As an application of Theorem 3.2.1 we will construct a sensing dictionary to improve the average

performance of a dictionary for Thresholding, as promised at the end of the last chapter. The

average performance of thresholding with a sensing dictionary can be analysed as before. We only

need to adjust the definition of the 2-Babel function to describe the pseudo Gram matrix Ψ�Φ

instead of the Gram matrix.
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μ̃2(Λ, k) =
(∑

i∈Λ

|〈ϕi, ψk〉|2
) 1

2 , μ̃2(Λ) = max
k/∈Λ

μ̃2(Λ, k), μ̃2(S) = max
|Λ|=S

μ̃2(Λ). (3.3)

The analogue of part b) of Theorem 3.2.1 now reads:

Theorem 3.3.1. Under the same assumptions on the signal model as in the previous section we

can bound the probability that thresholding with the sensing matrix Ψ fails as

P(�) < 2K exp
(
− |xmin|2

‖x‖2∞

c

8μ̃2
2(S)

)
.

Proof: Follow the proof of Theorem 3.2.1 mutatis mutandis.

One deduction from the Theorem is that a sensing matrix for good average performance should

minimise the 2-Babel function. However if we also assume that the support Λ is picked at random

we see that all the squared off-diagonal entries are equally likely to contribute to the final bound.

A simplified but sensible approach would therefore be to find the sensing dictionary that minimises

the Frobenius norm of the pseudo-Gram matrix.

Ψ0 = arg min
〈ψi,ϕi〉=1

‖Ψ�Φ‖F = arg min
〈ψi,ϕi〉=1

(∑
i

∑
j

|〈ϕi, ψj〉|2
) 1

2 .

The advantage of the problem as formulated above is that there exists an analytic solution, that

can be easily derived using Lagrange multipliers. To make our lives easier we consider the square of

the objective function ‖Ψ�Φ‖2
F .

d

dψj
‖Ψ�Φ‖2

F =
∑

i

2〈ϕi, ψj〉ϕi = 2ΦΦ�ψj

d

dψj
〈ϕj , ψj〉 = ϕj

2ΦΦ�ψj = cjϕj ⇒ ψj =
cj

2 (ΦΦ�)−1ϕj .

If we choose the constants cj appropriately to ensure 〈ϕj , ψj〉 = 1 and collect them in the diagonal

matrix D, we see that the optimal sensing matrix is just the rescaled transpose of the Moore Penrose

pseudo inverse,

Ψ0 = (ΦΦ�)−1ΦD = (Φ†)�D.

To test the performance of an average sensing matrix we did the following small experiment.

We built a dictionary of 256 atoms that are randomly distributed on the sphere in R128. For each

support size between 1 and 20 we constructed 1000 signals by choosing the support set uniformly

at random and coefficients of absolute value one but with random signs, i.e. xi = ±1 with equal

probability. We then compared how often thresholding could recover the full support when using

the original dictionary, the worst case sensing matrix, see [50], and the average case sensing matrix.

The results are displayed in Figure 3.2

The improvement already gained by using the worst case sensing matrix is further increased by

using the average case sensing matrix. The performance differences are also well reflected by the

Frobenius norms of the (pseudo-) Gram matrices in Table 3.3.2.

So there is a large decrease in norm between the original dictionary and the worst case sensing
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Figure 3.2: Recovery Rates for Different Sensing Dictionaries

dictionary original worst case average case
‖Ψ�Φ‖F 27.7217 23.8902 22.6743

Table 3.2: Frobenius norms of (pseudo-) Gram matrices

matrix accounting for the large performance gap and a smaller decrease between the worst case and

the average case sensing matrix reflecting a smaller improvement.

Considering that from a worst case point of view (O)MP is a more powerful algorithm that Thresh-

olding, we would expect that also its average performance is better than that of Thresholding,

allowing us to recover super-positions of a number of atoms scaling with the dimension. Unfor-

tunately in the case of a single signal we do not have a comparable result. However, in the next

chapter we will see that in case we want to sparsely approximate not one signal but several signals

at the same time we can show that not only Thresholding but also (O)MP can on average recover

support sizes of the order of the ambient dimension.





Average Case Analy-

sis of Multi-Channel

Greedy Algorithms 4
In this chapter we generalise the Thresholding and OMP algorithms to find simultaneous sparse

approximations of multichannel signals and using a random model analyse when they are likely to

succeed with high probability. All the results presented in this chapter and more have been published

in [25].

4.1 Multi-Channel Greedy Algorithms

In the first chapters we studied two greedy algorithms to calculate sparse signal representations

in a redundant dictionary. Here we will generalise both of them to calculate simultaneous sparse

approximations for multi-channel signals. First let us explain what a multi-channel signal is and why

we would be interested in a simultaneous sparse approximation. Assume that we have a network of

sensors monitoring a common phenomenon. Let’s give a not so serious example, for a more serious

one see for instance [33]. We give a banana to a monkey and just from observing his EEG want to

be able to say ’oh the monkey is thinking about bananas’. The idea behind this is the following.

The stimulus, the banana, activates several parts of the monkey’s brain. The visual centre sends

out a waveform saying yellow and another one saying long, the tactile centre generates the impulse

for smooth, the taste centre sends out its ’yummy’ signal and from somewhere in the memory there

comes a waveform saying peel. All five waveforms now start propagating through the skull to the

EEG electrode cap the monkey is wearing. However because of the distance of the various regions to

the skull and thus different travel paths and electric properties of the brain these waveforms arrive

at the different electrodes with varying magnitudes and signs. Also at the electrode closest to the

tactile centre a faint waveform saying ticklish and referring to the EEG cap will arrive and at other

electrodes similar noise waveforms from secondary thought processes. So while at each electrode

we receive a different signal, they all consist of a superposition of the waveforms for yellow, long,

smooth, yummy and peel with varying magnitudes plus some noise. We can easily translate this into

the language of sparseness and dictionaries. An impulse or waveform sent out from one part of the

brain can be modelled as one of the K elements ϕk of the dictionary Φ, of which the banana triggers

only S ones in the support Λ. The fact that each impulse ϕk arrives at different electrodes with a

different magnitude can be modelled by weighting its contribution to the EEG signal at electrode

n with a coefficient xn(k). If we collect all the random thoughts arriving at electrode n but not

29
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related to the banana in the noise impulse en we can write the received EEG signals as

yn =
∑

xn(k)ϕk = ΦΛxn + en, n = 1, ..., N. (4.1)

For simplicity we will assume that the noise components are orthogonal to the banana part of the

signal. If we collect the N signals yn as columns in the signal matrix Y = (y1 . . . yN ), similarly the

coefficients in X = (x1 . . . xN ) and the noise in E = (e1 . . . eN ), we can write compactly

Y = ΦΛX + E.

Following this model it is easy to find out what the monkey is thinking. We just need to identify

the five waveforms in the support Λ that can be used to build the main part of all the signals, i.e.

give us the best simultanous approximations to all signals. Once we have identified these impulses

as yellow, long, smooth, yummy and peel it is easy to conclude banana. We also see that the more

electrodes or channels we have the easier it should be to detect the main components instead of

noise. So the electrode close to the tactile centre might just receive long smooth and ticklish quite

strongly but yellow, yummy and peel only faintly. Similarly other electrodes will miss long or smooth

or any subset of the five important impulses. Still if we collect enough signals at different electrode

positions the best 5 atoms to approximate all signals together will be yellow, long, smooth, yummy

and peel.

While the above example might seem far-fetched a similar model is actually used to detect EEG

micro-states that help diagnose schizophrenia, see [54], and while one might not care whether the

monkey is thinking about bananas or peanuts in this real case it becomes very important to find

algorithms that correctly identify these micro-states, indicating schizophrenia. In this chapter we

generalise the two greedy algorithms we met in the previous chapters to find simultaneous sparse ap-

proximations and analyse when they succeed in identifying the sparsest simultaneous approximation.

Both single channel greedy algorithms Thresholding and (O)MP were relying on the inner prod-

ucts between the signal/residual to approximate and the elements of the dictionary or a sensing

dictionary. In analogy simultaneous greedy algorithms should rely on the inner products of the

elements of the (sensing) dictionary with the signals in all channels.

single channel: multi-channel:

〈y, ψk〉 ⇒ ψ�
i Y =

⎛
⎜⎝

〈y1, ψk〉
...

〈yN , ψk〉

⎞
⎟⎠

To get a criterion which atom to choose we need to combine the entries in the correlation vector

ψ�
i Y , for instance by taking a norm. In the following we will consider the p-norms,

‖ψ�
kY ‖p :=

(
N∑

n=1

|〈ψk, yn〉|p
)1/p

, (4.2)

where p ≥ 1 and with the standard modification for p = ∞. With this definition p-Thresholding and

p-Simultaneous Orthogonal Matching Pursuit (p-SOMP) can be derived directly from their single

channel counterparts just by replacing |〈y, ψk〉| with ‖ψ�
kY ‖p and the vectors a, r, y with the matrices

A, R, Y . For a summary see Tables 4.1 and 4.1. The parameter p reflects how much we expect the

contribution of the atoms across channels to be correlated. For p = 1 we expect high correlation

and an atom will only be selected if it triggers a strong response averaged across all channels. For
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p = ∞ we do not expect much correlation, an the atom that gives the strongest response in any

channel will be selected. The choice of p thus depends on the user’s a priori information about the

signals or the application.

Sensing: find ΛM that contains the indices corresponding
to the M largest values of ‖ψ�

kY ‖p

Reconstruction: AM = ΦΛΦ†
ΛY

Table 4.1: p-Thresholding

Initialisation: R0 = Y , A0 = 0, Λ0 = ∅
Sensing: find kM = argmaxk ‖ψ�

kRM‖p

Reconstruction: ΛM = ΛM−1 ∪ {k},
AM = Y − ΦΛM

Φ†
ΛM

Y := PMY ,
RM = Y − AM = (I − PM )Y

where PΛM
= ΦΛM

Φ†
ΛM

is the orthogonal projection
onto the linear span of the selected atoms.

Table 4.2: p-Simultaneous Orthogonal Matching Pursuit

The question now is when the two algorithms are successful in finding the sparsest simultaneous

approximation. As for the single channel versions this is equivalent to recovering the right support,

i.e. when we set M = |Λ| = S, the selected set ΛM exactly matches Λ. Occasionally we may also

be interested in partial recovery, meaning that for some M ≤ |Λ| the algorithms only select “good”

atoms, i.e. ΛM ⊂ Λ.

As in the single channel case we could start with a worst case analysis, to derive conditions

under which both algorithms are sure to succeed. However, looking back to Chapter 2 we see that

worst case analyses are not very exciting. Deriving the multi-channel results by generalising the

arguments of the single channel analysis is a straight forward exercise and the calculations can

for instance be found in [25]. Indeed the worst case result does not improve with the number

of channels, which is counter intuitive. Also in Chapter 3 we have already seen that the results

of worst case analyses rarely reflect the behaviour of an algorithm in practice well as they tend

to be too pessimistic. Therefore we refer the interested readers to the above mentioned paper and

here go directly to an average case analysis based on a random model of the sparse coefficient matrix.

Random Model

We will assume that in every channel the sparse coefficients follow a Gaussian distribution, i.e. the

components xn(i), i ∈ Λ, of the random vectors xn are independent Gaussian variables of variance

αi. This freedom in choosing the variances allows us to model the different strength of certain atoms

when averaged across channels. The assumption that the coefficients are Gaussian is probably not

necessary - a Bernoulli distribution or any other symmetric distribution having certain concentration

properties, as described in Subsection 4.4.2, would likely give the same results - but will make the

analysis easier and clearer. In order to keep the notational mess to a minimum we will translate

the above definition in terms of vectors into matrices. If we let U be a S × N random matrix with

independent standard gaussian entries and let D be a S ×S diagonal matrix whose diagonal entries

α2
i are positive real numbers our model can be written in the compact form:

Y = ΦΛ · D 1

2 · U + E, (4.3)
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With this random model we are almost ready to start. So in the next section we will introduce

some notation and give reminders on how to deal with matrix norms, Babel functions and isometry

constants. In Section 4.3 we present the main results, which of course should not prevent you from

reading on but motivate you. Sections 4.4 and 4.5 contain the proofs of the main theorems, always

starting with the idea before going into mathematical detail, and the last section is dedicated to

some discussion.

4.2 Technical Tools and Notations

This section provides the main tools and notations necessary to state and prove our results.

4.2.1 Matrix Norms

For a neat analysis of the algorithms it will be convenient to redefine the matrix norms ‖ · ‖p,∞ for

this chapter. Let A be a n × m-matrix with rows (Ai)1...n then we define

‖A‖p,∞ := max
i=1...n

‖Ai‖p = max
i=1...n

( m∑
j=1

|Aij |p
) 1

p .

To denote the operator norm which is normally denoted like this we will use the notation |||A|||p→∞.

For general 1 ≤ p, q ≤ ∞ this operator norm is defined as:

|||A|||p→q = max
‖x‖p=1

‖Ax‖q. (4.4)

However, there exists a connection between the two norm types which we will exploit later to prove

some easy inequalities. Namely if 1
p + 1

p′ = 1 we have

‖A‖p,∞ = |||A|||p′→∞. (4.5)

Among the p, q-operator norms the 2, 2-operator norm will play an important role as it is connected

to the spectrum of the matrix, i.e,

|||A|||2→2 = λmax(A) = largest singular value of A. (4.6)

Also we will write for shortness ||| · ||| := ||| · |||2→2. The following lemma collects two useful properties

of operator norms. Proofs can be found in any standard linear algebra text book, e.g. [27].

Lemma 4.2.1. a. For two matrices A, B we have

|||AB|||p→q ≤ |||B|||p→s|||A|||s→q . (4.7)

b. If A† denotes the Moore-Penrose pseudo-inverse of A we have

|||A†|||2→2 =
1

λmin(A)
, (4.8)

where λmin(A) denotes the smallest non-zero singular value of A.

The following trivial Corollary will be essential for some recovery results in this chapter.
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Corollary 4.2.2. For two matrices A, B we have

‖AB‖p,∞
‖B‖p,∞

≤ |||A|||∞→∞ = ‖A‖1,∞ = max
i=1..n

m∑
j=1

|Aij |. (4.9)

4.2.2 Babel Functions and Isometry Constants

Even though we have already met the 1/2 (cross) Babel functions in the previous two chapters, we

repeat the definition here to be on one hand more general and on the other hand more precise.

p-Babel functions.

For a pair of dictionaries (Φ,Ψ) containing the same number of unit norm atoms and a support set

Λ we define the p-Babel function

μp(Φ,Ψ, Λ) := sup
�/∈Λ

(∑
j∈Λ

|〈ϕj , ψ�〉|p
) 1

p (4.10)

which measures the amount of correlation between sensing atoms ψ� outside the support Λ and

modeling atoms ϕj inside the support Λ. To capture also the amount of correlation between atoms

inside the support Λ we define additionally

μin
p (Φ,Ψ, Λ) := sup

i∈Λ
μp(ΦΛ,ΨΛ, Λ\{i}). (4.11)

For the cases when we do not care to be very precise we again take the supremum over all possible

subsets of size at most S to get the definition of the p-Babel function for an integer S as

μp(Φ,Ψ, S) := sup
|Λ|≤S

μp(Φ,Ψ, Λ). (4.12)

A similar definition is used for μin
p (Φ,Ψ, S), which trivially yields the relation

μin
p (Φ,Ψ, S) ≤ μp(Φ,Ψ, S − 1). (4.13)

Most interesting for us are the cases p = 1 and p = 2. In the rest of this chapter we will omit

the reference to the dictionary pair (Φ,Ψ) if it is clear which one we are considering and will write

simply μp(Λ), μin
p (Λ), μp(S) and μin

p (S).

Thinking back to Chapter 2 if we are dealing with a sensing dictionary different from the approxi-

mation dictionary we also need to consider the similarity between corresponding atoms in the two

dictionaries. We define

βk(Φ,Ψ) := 〈ϕk, ψk〉 > 0, β(Φ,Ψ, Λ) := min
i∈Λ

βi, β(Φ,Ψ) := min
k

βk. (4.14)

The assumption that βk > 0 is merely a convention which can always be guaranteed by slightly

changing the definition of the sensing dictionary Ψ, replacing ψk by −ψk if necessary. Again we will

omit the reference to the dictionary pair unless it is necessary.

Isometry constants have not been introduced before but are an important tool to characterise

the conditioning of a subdictionary. We will meet them again in the next chapter when discussing
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Compressed Sensing.

Isometry constants.

To bound the spectrum of a subdictionary ΦΛ we define the isometry constant δΛ = δΛ(Φ) as the

smallest quantity such that

(1 − δΛ) · ‖x‖2
2 ≤ ‖ΦΛx‖2

2 ≤ (1 + δΛ) · ‖x‖2
2 ∀x �= 0. (4.15)

Note that the definition above provides the following bound on the extremal singular values of ΦΛ

λmin(ΦΛ) ≥
√

1 − δΛ and λmax(ΦΛ) ≤
√

1 + δΛ, (4.16)

where the first one is of course only valid if δΛ ≤ 1. Since we also want a uniform estimate over all

possible subdictionaries of a given size, we define for an integer S the global (restricted) isometry

constant

δS := sup
|Λ|=S

δΛ. (4.17)

If for a dictionary the global (restricted) isometry constant is small, i.e. δS � 1, we say that the

dictionary satisfies a uniform uncertainty principle, cp. [9]. It is easy to check that δS is a non-

decreasing function of S. Restricted isometry constants were introduced by Candès, Romberg and

Tao in [8, 9] in order to study recovery by Basis Pursuit (�1) in the context of Compressed Sensing

and we will meet them again in the next chapter. Good estimates of these numbers were obtained

for random Gaussian and Bernoulli d × K matrices Φ: If

S ≤ Cδ
d

log
(

K
Sε

) (4.18)

then with probability at least 1 − ε the restricted isometry constant of Φ satisfies δS ≤ δ, see

e.g. [4, 9, 46]. A similar result holds for random partial Fourier matrices under the condition

S ≤ Cδd log−4(K) log−1(ε−1), see [9, 45, 48].

4.3 Main Results

The analyses of both p-Thresholding and p-SOMP follow a similar route. First, we provide sufficient

conditions which guarantee that the considered algorithm (partially) recovers the desired support

and then state some theorems describing when these sufficient conditions are satisfied with high

probability if the signals follow our model. To give a more worldly flavour to the theoretical results,

we will highlight them with the example of a dictionary composed of the union of the Dirac and

DCT bases or short the Dirac-DCT dictionary. More precisely, ΦDDCT is the d×2d matrix obtained

by concatenating the d × d identity matrix and the d × d DCT matrix whose k-th column is:

ϕk(n) =

√
2

d
Ωk cos

( π

2d
(2n − 1)(k − 1)

)
, n = 1, ..., d,

with Ωk = 1/
√

2 for k = 1 and Ωk = 1 for 2 ≤ k ≤ d. This dictionary has coherence μ =
√

2/d and

it is also easy to see that μp(S) = S1/p · μ.

Recovery conditions for p-Thresholding.

The success of p-Thresholding at recovering the good support Λ is guaranteed for a given signal



4.3. Main Results 35

model Y = ΦΛX + E as soon as the minimum p-correlation with good atoms mini∈Λ ‖ψ�
i Y ‖p

exceeds the maximum p-correlation with “bad” atoms ‖Ψ�
Λ
Y ‖p,∞ where Λ := {1 ≤ k ≤ K, k /∈ Λ}.

By the triangle inequalities

‖Ψ�
Λ
Y ‖p,∞ ≤ ‖Ψ�

Λ
ΦΛX‖p,∞ + ‖Ψ�

Λ
E‖p,∞

and

min
i∈Λ

‖ψ�
i Y ‖p ≥ min

i∈Λ
‖ψ�

i ΦΛX‖p − ‖Ψ�
ΛE‖p,∞,

we get the recovery condition

‖Ψ�
ΛE‖p,∞ + ‖Ψ�

Λ
E‖p,∞ < min

i∈Λ
‖ψ�

i ΦΛX‖p − ‖Ψ�
Λ
ΦΛX‖p,∞. (4.19)

Recovery conditions for p-SOMP.

p-SOMP partially recovers the good support Λ after M steps if the set ΛM only contains “good”

atoms, i.e. if ΛM ⊂ Λ. Since ΛM+1 = ΛM ∪{kM+1}, partial recovery after M +1 steps is equivalent

to partial recovery after M steps with an additional good choice of the (M + 1)-th atom, which is

guaranteed if for the residual RM we have ‖Ψ�
ΛRM‖p,∞ > ‖Ψ�

Λ
RM‖p,∞. Denoting QΛM

:= I−PΛM

the orthogonal projection onto the complement of the span of the selected atoms (by convention

Q∅ = I), and using the triangle inequalities

‖Ψ�
ΛYM‖p,∞ ≥ ‖Ψ�

ΛQΛM
ΦΛX‖p,∞ − ‖Ψ�

ΛQΛM
E‖p,∞

and

‖Ψ�
Λ
YM‖p,∞ ≤ ‖Ψ�

Λ
QΛM

ΦΛX‖p,∞ + ‖Ψ�
Λ
QΛM

E‖p,∞

we get the recovery condition

‖Ψ�
ΛQΛM

E‖p,∞ + ‖Ψ�
Λ
QΛM

E‖p,∞ < ‖Ψ�
ΛQΛM

ΦΛX‖p,∞ − ‖Ψ�
Λ
QΛM

ΦΛX‖p,∞. (4.20)

Under the simplifying assumption that Φ�
ΛE = 0, which we discuss below, as long as the first M

steps of p-SOMP have been successful, i.e. ΛM ⊂ Λ, we still have QΛM
E = E, and we obtain that

the (M + 1)-th atom is guaranteed to be correct provided that

‖Ψ�
ΛE‖p,∞ + ‖Ψ�

Λ
E‖p,∞ < ‖Ψ�

ΛQΛM
ΦΛX‖p,∞ − ‖Ψ�

Λ
QΛM

ΦΛX‖p,∞. (4.21)

Remark 4.3.1. The assumption that Φ�
ΛE = 0 might seem a bit artificial if one considers E as

additive noise in the model, in which case it would seem more natural to assume it is a realization of,

e.g. a random Gaussian process. However from an approximation theory perspective, E typically

represents the error of best approximation of Y using the atoms in Λ, i.e. E = Y − ΦΛX with

X = argminZ ‖Y − ΦΛZ‖ for some norm ‖ · ‖. When this norm is given by ‖Y − ΦΛX‖ =

(
∑N

n=1 ‖yn − ΦΛxn‖q
2)

1/q for some q, (e.g. q = 2 for the Froebenius norm), this implies that E

satisfies Φ�
Λen = 0 for each n.

Both condition (4.19) and (4.21) mean that the noise level, as measured by ‖Ψ�
ΛE‖p,∞ +

‖Ψ�
Λ
E‖p,∞, should be small enough compared to some upper limit which jointly depends on the

analysis and synthesis dictionaries Φ, Ψ, the supports Λ and ΛM ⊂ Λ, the coefficients X , etc.

In the following theorems we formulate conditions that untangle the role of the different objects we

are manipulating and show when the two algorithms will succeed with high probability.

Theorem 4.3.1 (Average case analysis for 1-Thresholding). Let p = 1 and S = |Λ|. Assume
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that Y = ΦΛ D
1

2 U + E with U a S × N matrix of standard Gaussian random variables and

D = diag(α2
i )i∈Λ, and suppose that

‖Φ�
ΛE‖1,∞ + ‖Φ�

Λ
E‖1,∞ <

√
2

π
N ·

(
min
i∈Λ

αi − max
i∈Λ

αi · μ2(S)

)
. (4.22)

Then the probability that p-Thresholding with Ψ = Φ fails to exactly recover the support Λ does not

exceed K exp(−Nγ2/π) with K the number of atoms in Φ and

γ :=

min
i∈Λ

αi − max
i∈Λ

αi · μ2(S) −
√

π

2
N−1 · (‖Φ�

ΛE‖1,∞ + ‖Φ�
Λ
E‖1,∞

)
min
i∈Λ

αi + max
i∈Λ

αi · μ2(S)
. (4.23)

Similar results hold for 1 < p ≤ ∞ where
√

2
π N is replaced with a constant Cp(N). To allow for

the largest possible noise we should maximise the r.h.s of (4.22). First of all in order to be larger

than zero for any fixed number of channels N , this implies

mini∈Λ αi

maxi∈Λ αi
> μ2(S).

The most favourable situation is reached when all components of Λ have the same strength, i.e

when the ratio on the l.h.s gets close to one. The range of allowed sparsity is then constrained by

the 2-Babel function μ2(S) < 1, meaning we can recover up to roughly S = μ−2 atoms with high

probability, which is much higher than predicted by the worst case analysis in [25] predicting the

recoverability of only up to S = μ−1 atoms. When the number of channels N grows, condition (4.22)

demands that the average noise per channel N−1(‖Φ�
ΛE‖1,∞+‖Φ�

Λ
E‖1,∞) be small enough, but once

this is satisfied the probability of failure decreases exponentially fast with the number of channels N .

Even though the conditions for recovering typical signals with p-Thresholding are quite promising

the constraint that each component of the support be equally important remains quite a limitation

to the algorithm. This motivates turning our attention to p-SOMP in the hope that this more

complex algorithm will perform well under relaxed conditions.

Theorem 4.3.2. Let p = 1, S := |Λ| and Y = ΦΛ D
1

2 U + E with U a S × N matrix of standard

Gaussian random variables, D = diag(α2
i )i∈Λ, and E an error term orthogonal to the atoms in Λ.

Suppose

κ := 1 − μin
2 (Λ) + μ2(Λ)

1 − δΛ
> 0

and in addition

‖Φ�
Λ
E‖1,∞ <

√
2

π
Nκ min

i∈Λ
αi. (4.24)

Then the probability that S steps of 1-SOMP with Ψ = Φ fail to exactly recover the support Λ does

not exceed K · 2S · exp(−Nγ2/π) with K the number of atoms in Φ and

γ :=
κ − (√

2
πN · mini∈Λ αi

)−1 · ‖Φ�
Λ
E‖1,∞

κ
. (4.25)

The theorem gives a characterisation of all index sets Λ that can be recovered with high prob-

ability. The main requirement embodied by (4.24) is that the approximation error is sufficiently

small compared to the correlations of atoms on the support and correlations of the support with the
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rest of the dictionary, measured by the 2-Babel function. Essentially we are asking that:

μin
2 (Λ) + μ2(Λ) < 1 − δΛ.

If that is the case, and the average approximation error per channel N−1 ·‖Φ�
Λ
E‖1,∞ is small enough,

then the probability that 1-SOMP fails to recover Λ becomes increasingly smaller as the number

of channels grows. It might be more convenient to state a condition on the dictionary as a whole,

and not on a given support. If the dictionary satisfies a uniform uncertainty principle [9], meaning

the S-restricted isometry constants δS are small, the following result shows that the probability

that 1-SOMP fails to recover any support of size S decays exponentially fast with the number of

channels.

Theorem 4.3.3 (Average case analysis of 1-SOMP). Let p = 1 and S = |Λ|. Assume that the

dictionary Φ obeys a uniform uncertainty principle with S-restricted isometry constants δS+1 < 1/3

and

‖Φ�
Λ
E‖1,∞ <

√
2

π
N · min

i∈Λ
αi · (1 − 3δS+1) . (4.26)

Then the probability that S steps of 1-SOMP with Ψ = Φ fail to exactly recover the support Λ does

not exceed K · 2S · exp(−Nγ2/π) with K the number of atoms in Φ and

γ := 1 − 3δS+1 −
(√ 2

π
N · min

i∈Λ
αi

)−1 · ‖Φ�
Λ
E‖1,∞. (4.27)

The previous result provides a quantitative average case analysis of multi-channel OMP based on

the restricted isometry constants δS alone. Together with the condition (4.18) for random Gaussian

or Bernoulli matrices to have small δS it therefore gives a theoretical explanation to numerical results

in the context of distributed compressed sensing conducted in [5].

Note that because of the term 2S in the probability bound above, which also appears in Theo-

rem 4.3.2, the required number of channels must be quite high, typically N ≈ S. Getting rid of this

factor would therefore be highly desirable, but the technique we used to prove the theorems does

not seem to be easily adaptable to do so, and it remains an open question whether this can be done

at all.

In practice, computing the S-restricted isometry constant of Φ is a daunting task. Fortunately,

when Φ is a tight frame, i.e. ΦΦ� = I, and for any support of size at most S selected at random,

our last result shows that the behaviour of 1-SOMP is essentially controlled by the 2-Babel function.

Theorem 4.3.4. Assume Φ to be a tight frame. Let Y = ΦΛD
1

2 U with U a S × N matrix of

standard Gaussian random variables and Λ drawn at random among all supports of size at most S.

Assume that μ2(S) < 1/3 and

‖Φ�
Λ
E‖1,∞ <

√
2

π
N · min

i∈Λ
αi · (1 − 3μ2(S)) and S < d/37. (4.28)

Then the probability that S steps of 1-OMP with Ψ = Φ fail to exactly recover the support Λ does

not exceed K · 2S · exp(−Nγ2/π) + 2 exp(−γ̃2) with

γ = 0.9

(
1 − 3μ2(S) − (√ 2

π
N · min

i∈Λ
αi

)−1 · ‖Φ�
Λ
E‖1,∞

)
.

and γ̃ = ( 1
37 − S

d )/(μ
√

S).
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Before proceeding to the technical core of this chapter, let us illustrate our findings using the

Dirac-DCT dictionary introduced above. Since in that case we have μq(S) = S1/q
√

2/d, for q = 1, 2,

the worst case intuition or the analysis in [25] tell us that both p-Thresholding and p-SOMP can

recover supports of size S ≈ √
d. For 1-Thresholding however, average case analysis when all

Gaussian coefficients have equal variances asserts that the probability of recovering supports of size

S ≈ d rapidly approaches one as the number of channels grows. The same theoretical conclusions

for 1-SOMP as for 1-Thresholding can be reached by inspecting equation (4.28).

These theoretical findings are also supported by simulations of the performance of 2-thresholding

with Ψ = Φ when the dictionary is made of the Dirac and Fourier basis, Φ = (Id,Fd), in dimension

d = 1024, which has coherence μ = 1/
√

d. For each number of channels N , varying from 1 to 128,

and support size, varying from 1 to 1024 in steps of 16, we created 180 signals by choosing a support

Λ uniformly at random and independent Gaussian coefficients with variances αi = 1 and calculated

the percentage of thresholding being able to recover the full support. The results can be seen in

Figure 4.1.
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Figure 4.1: Thresholding Recovery Rates for Varying Support Size and Number of Channels.

As reference we also calculated how many out of 200 randomly chosen supports of a given size

satisfy the worst case recovery condition μ1(Λ) + supi∈Λ μ1(Λ\{i}) < 1, derived in [25]. This is

indicated by the dash dotted line and can be seen to drop rapidly once the theoretical limit |Λ| = 16

is reached. Since μ = 1/
√

d the average recovery condition μ2(Λ) < 1, indicated by the dashed line,

is always satisfied. We can see that as predicted by Theorem 4.3.1 with an increasing number of

channels we get closer to the average case bound, which is actually attained once N = 128.

Together with the experiment above the average case results confirm the effectiveness of simul-

taneous approximations with greedy algorithms. In particular, strong hypotheses on either the size

of Λ or the incoherence of the dictionary are relaxed. Note, though, that for both p-Thresholding

and p-SOMP our bounds require a large number of channels to be effective. It is not absolutely

clear, as of this writing, whether that is an inherent limit of the algorithms or an artefact of our

proofs. Possibly a different technique similar to the one used in the last chapter when analysing

single channel Thresholding could lead to even more beneficial results.

4.4 Average Case Analysis for Thresholding

In this section we will study the average performances of simultaneous p-Thresholding under the

multi-channel Gaussian signal model X = D
1

2 U . We first sketch the main arguments so the busy
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readers can get enough insight and intuition to go directly to Theorem 4.4.2, which can be simplified

to get Theorem 4.3.1, and skip its proof.

4.4.1 Spirit of the Proof

If we want Thresholding to succeed we need to show that

min
i∈Λ

‖ψ�
i ΦΛD

1

2 U‖p − max
�∈Λ

‖ψ�
� ΦΛD

1

2 U‖p > ‖Ψ�
ΛE‖p,∞ + ‖Ψ�

Λ
E‖p,∞.

The main idea of the proof is based on concentration of measure phenomenon appearing when the

number of channels N is sufficiently large. Then for each p-correlation of the noiseless multichannel

signal with a sensing atom we have with very large probability

‖ψ�
j ΦΛD

1

2 U‖p ≈ Cp(N) · ‖ψ�
j ΦΛD

1

2 ‖2,

where Cp(N) grows with N . Therefore the recovery condition will be satisfied with high probability

as long as

min
i∈Λ

‖ψ�
i ΦΛD

1

2 ‖2 − max
�/∈Λ

‖ψ�
� ΦΛD

1

2 ‖2 �
‖Ψ�

Λ
E‖p,∞ + ‖Ψ�

ΛE‖p,∞
Cp(N)

,

and all we need to check is under which conditions on the dictionary and the coefficient ranges the

left hand side in the above is large enough.

The next section will supply us with necessary machinery to estimate the typicality and precision

of the approximation ‖ψ�
j ΦΛD

1

2 U‖p ≈ Cp(N) · ‖ψ�
j ΦΛD

1

2 ‖2 in order to give a fully detailed proof.

4.4.2 Concentration of Measure

As mentioned above the corner stone on which both the average case analysis of Thresholding and

of SOMP rely are the following concentration of measure inequalities. Their actual proofs in all gory

mathematical detail are awaiting the very motivated reader in the appendix of [25].

Theorem 4.4.1. Let U be an N × S matrix with independent standard Gaussian entries, and

{vk}k∈Ω ⊂ RS a finite family of nonzero vectors. Then for ε1 > 0 and 0 < ε2 < 1,

P
(
‖v�

kU‖p ≥ (1 + ε1)Cp(N)‖vk‖2

)
≤ exp(−ε2

1Ap(N)) (4.29)

P
(
‖v�

kU‖p ≤ (1 − ε2)Cp(N)‖vk‖2

)
≤ exp(−ε2

2Ap(N)) (4.30)

for each vector vk, and

P
(

max
k∈Ω

‖v�
kU‖p ≥ (1 + ε1)Cp(N)max

k∈Ω
‖vk‖2

)
≤ |Ω| · exp(−ε2

1Ap(N)) (4.31)

P
(

max
k∈Ω

‖v�
kU‖p ≤ (1 − ε2)Cp(N)max

k∈Ω
‖vk‖2

)
≤ exp(−ε2

2Ap(N)) (4.32)

P
(

min
k∈Ω

‖v�
kU‖p ≥ (1 + ε1)Cp(N)min

k∈Ω
‖vk‖2

)
≤ exp(−ε2

1Ap(N))

P
(

min
k∈Ω

‖v�
kU‖p ≤ (1 − ε2)Cp(N)min

k∈Ω
‖vk‖2

)
≤ |Ω| · exp(−ε2

2Ap(N)). (4.33)
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p = 1 p = 2 p = ∞
Cp(N)

√
2
π N

√
2 Γ(N/2)

Γ((N−1)/2) ∼ √
N � √

log(N)

Ap(N) N
π

Γ2(N/2)
Γ2((N−1)/2) ∼ N/2 � log(N)

Table 4.3: Constants Ap(N) and Cp(N)

4.4.3 Main Result for p-Thresholding

To keep the notational mess in the proof to a minimum we use the following abbreviations. We

capture all the noise related terms in

η := ‖Ψ�
Λ
E‖p,∞ + ‖Ψ�

ΛE‖p,∞, (4.34)

and to deal with the coefficients more efficiently we use for the minimal and maximal entry in

D = diag(α2
i )i∈Λ

αmin := min
i∈Λ

αi and αmax := max
i∈Λ

αi.

Theorem 4.4.2. Assume that the noise level η is sufficiently small, i.e.

η < Cp(N) · (β · αmin − μ2(Λ) · αmax

)
. (4.35)

Then, under the multichannel Gaussian signal model X = D
1

2 U , the probability that p-Thresholding

fails to recover the indices of the atoms in Λ does not exceed

P(p − Thresholding fails) ≤ K · exp
(−Ap(N) · γ2

)
with

γ :=
β · αmin − μ2(Λ) · αmax − η/Cp(N)

β · αmin + μ2(Λ) · αmax
(4.36)

Proof: We can bound the probability that Thresholding fails with the following trick,

P
(
min
i∈Λ

‖ψ�
i ΦΛD

1

2 U‖p − max
�∈Λ

‖ψ�
� ΦΛD

1

2 U‖p ≤ η
)

≤ P
(
min
i∈Λ

‖ψ�
i ΦΛD

1

2 U‖p ≤ C
)

+ P
(
max
�∈Λ

‖ψ�
� ΦΛD

1

2 U‖p ≥ C − η
)
.

Motivated by the concentration of measure results we set

C = (1 − ε1) · Cp(N) · min
i∈Λ

‖ψ�
i ΦΛD

1

2 ‖2,

where we choose ε1 later. Using (4.33) we can bound the first probability in the above as:

P
(
min
i∈Λ

‖ψ�
i ΦΛD

1

2 U‖p ≤ (1 − ε1) · Cp(N) · min
i∈Λ

‖ψ�
i ΦΛD

1

2 ‖2

) ≤ |Λ| · exp
(− Ap(N) · ε2

1

)
.
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To bound the second probability we have to work a little bit more before applying (4.31).

P
(
max
�∈Λ

‖ψ�
� ΦΛD

1

2 U‖p ≥ C − η
)

= P
(
max
�∈Λ

‖ψ�
� ΦΛD

1

2 U‖p ≥ C − η

Cp(N) · max�∈Λ ‖ψ�
� ΦΛD

1

2 ‖2︸ ︷︷ ︸
=:1+ε2

·Cp(N) · max
�∈Λ

‖ψ�
� ΦΛD

1

2 ‖2

)

≤ |Λ| · exp
(− Ap(N) · ε2

2

)
.

For the last equality to hold we need to make sure that ε2 > 0. We will do this by adjusting the

choice of ε1 so that ε2 = ε1,

ε2 =
(1 − ε1) · Cp(N) · mini∈Λ ‖ψ�

i ΦΛD
1

2 ‖2 − η

Cp(N) · max�∈Λ ‖ψ�
� ΦΛD

1

2 ‖2

− 1 = ε1.

Solving the equation above for ε1 we get

ε1 :=
mini∈Λ ‖ψ�

i ΦΛD
1

2 ‖2 − max�∈Λ ‖ψ�
� ΦΛD

1

2 ‖2 − η/Cp(N)

mini∈Λ ‖ψ�
i ΦΛD

1

2 ‖2 + max�∈Λ ‖ψ�
� ΦΛD

1

2 ‖2

. (4.37)

To see that ε1 > 0 observe that

min
i∈Λ

‖ψ�
i ΦΛD

1

2 ‖2
2 = min

i∈Λ

∑
k∈Λ

|αk|2|〈ϕk, ψi〉|2 ≥ α2
min · min

i∈Λ
(|〈ψi, ϕi〉|2 + ‖Φ�

Λ/iψi‖2
2) ≥ α2

min · β2

max
�∈Λ

‖ψ�
� ΦΛD

1

2 ‖2
2 = max

�∈Λ

∑
k∈Λ

|αk|2|〈ϕk, ψ�〉|2 ≤ α2
max · max

�∈Λ

∑
k∈Λ

|αk|2|〈ϕk, ψ�〉|2 ≤ α2
max · μ2

2(Λ).

Thus we can estimate ε1 from below as,

ε1 >
β · αmin − μ2(Λ) · αmax − η/Cp(N)

β · αmin + μ2(Λ) · αmax
=: γ. (4.38)

This is larger than zero by condition (4.35) and we get as final bound for the probability that

Thresholding fails,

P(p − Thresholding fails) ≤ K · exp
(− Ap(N) · ε2

1

) ≤ K · exp
(− Ap(N) · γ2

)
.

To get from the above theorem to Featured Theorem 4.3.1 we need to insert the expression for

η and the concrete values for Cp(N), Ap(N) for p = 1 and observe that because μ2(Λ) ≤ μ2(S) we

can use it instead in the above formulas.

4.5 Average Case Analysis of SOMP

In the previous section we have seen that Thresholding requires balanced coefficient variances in

order to ensure viable recovery results. This is quite a strong limitation. Motivated by the fact

that in the single channel case OMP enables us to overcome this restriction we will now analyse the

average performance of SOMP.
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4.5.1 Spirit of the Proof

A sufficient condition for SOMP to succeed is that it will always pick another component in the

support, whatever residual RJ = QJY = (I −PJ)(ΦΛD
1

2 U +E) we have. So for all J ⊂ Λ we want

to ensure

‖Ψ�
ΛQJΦΛD

1

2 U‖p,∞ − ‖Ψ�
Λ
QJΦΛD

1

2 U‖p,∞ > ‖Ψ�
ΛQJE‖p,∞ + ‖Ψ�

Λ
QJE‖p,∞. (4.39)

Concentration of measure tells us that for any matrix A we have with very high probability

‖AU‖p,∞ ≈ Cp(N) · ‖A‖2,∞.

Therefore, condition (4.39) should be satisfied with high probability as long as

‖Ψ�
ΛQJΦΛD

1

2 ‖2,∞ − ‖Ψ�
Λ
QJΦΛD

1

2 ‖2,∞ >
‖Ψ�

ΛQJE‖p,∞ + ‖Ψ�
Λ
QJE‖p,∞

Cp(N)
. (4.40)

To ensure the condition above we need to find a lower bound for the left hand side that does not

depend on J itself but only on its size.

The first term on the left hand side in (4.40) can be estimated from below as

‖Ψ�
ΛQJΦΛD

1

2 ‖2
2,∞ = sup

i∈Λ

∑
k∈Λ

α2
k · |〈QJϕk, ψi〉|2

≥ sup
i∈Λ\J

α2
i · |〈QJϕi, ψi〉|2 ≥ sup

i∈Λ\J

α2
i · inf

i∈Λ\J
|〈QJϕi, ψi〉|2.

Using QJϕi = 0 whenever i ∈ J , the second term can be estimated from above as

‖Ψ�
Λ
QJΦΛD

1

2 ‖2
2,∞ = sup

�/∈Λ

∑
i∈Λ

α2
i · |〈QJϕi, ψ�〉|2

= sup
�/∈Λ

∑
i∈Λ\J

α2
i · |〈QJϕi, ψ�〉|2 ≤ sup

i∈Λ\J

α2
i · sup

�/∈Λ

∑
i∈Λ\J

|〈QJϕi, ψ�〉|2

≤ sup
i∈Λ\J

α2
i · ‖Ψ�

Λ
QJΦΛ\J‖2

2,∞.

The combination of these two bounds leads to

‖Ψ�
ΛQJΦΛD

1

2 ‖2,∞ − ‖Ψ�
Λ
QJΦΛD

1

2 ‖2,∞ > sup
i∈Λ\J

α2
i ·

(
inf

i∈Λ\J
|〈QJϕi, ψi〉|2 − ‖Ψ�

Λ
QJΦΛ\J‖2

2,∞
)
.

Now observe that if we denote with {α(i)}|Λ|
i=1 the decreasing rearrangement of αi we have supi∈Λ\J αi ≥

α(M) for J of size at most M − 1. Therefore defining the two constants

c0(Λ) = inf
J�Λ

inf
i∈Λ\J

|〈QJϕi, ψi〉|, and d0(Λ) = sup
J�Λ

‖Ψ�
Λ
QJΦΛ\J‖2,∞ (4.41)

we can finally lower bound the left hand side in (4.40) as

‖Ψ�
ΛQJΦΛD

1

2 ‖2,∞ − ‖Ψ�
Λ
QJΦΛD

1

2 ‖2,∞ > α(M) · (c0(Λ) − d0(Λ)
)
.

Based on the bounds c0(Λ), d0(Λ) we can now formulate a general recovery result.
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4.5.2 A General Recovery Result

Theorem 4.5.1. Assume that the noise is orthogonal to all the atoms in the support, Φ�
ΛE = 0,

and that the noise level η is sufficiently small, i.e.

η <
(
c0(Λ) − d0(Λ)

) · Cp(N) · α(M). (4.42)

Then, under the multichannel Gaussian signal model X = D
1

2 U , the probability that one of the first

M atoms selected by p-OMP is incorrect (not in Λ) does not exceed

P(p-OMP fails after at most M steps) ≤ (1 + |Λ|) · CM · exp
(− Ap(N) · γ2

M

)
(4.43)

with CM :=
∑M−1

m=0

(|Λ|
m

)
and

γM :=
c0(Λ) − d0(Λ) − η · (Cp(N) · α(M)

)−1

c0(Λ) + d0(Λ)

Proof: We have to show that for any subset J of size at most M −1 equation (4.39) holds. However

since we assume that the noise is orthogonal to the span of the support we have QJE = E−PJE = E

and so it suffices to show that

‖Ψ�
ΛQJΦΛD

1

2 U‖p,∞ − ‖Ψ�
Λ
QJΦΛD

1

2 U‖p,∞ > ‖Ψ�
ΛE‖p,∞ + ‖Ψ�

Λ
E‖p,∞ = η.

We can bound the probability that the above condition is violated using the same tricks as before

for Thresholding. Again we collect all the noise terms on the right hand side in η.

P
(‖Ψ�

ΛQJΦΛD
1

2 U‖p,∞ − ‖Ψ�
Λ
QJΦΛD

1

2 U‖p,∞ < η
)

=

= P
(‖Ψ�

ΛQJΦΛD
1

2 U‖p,∞ < C
)

+ P
(‖Ψ�

Λ
QJΦΛD

1

2 U‖p,∞ > C − η
)
.

We choose C = (1−ε1) ·Cp(N) · |Ψ�
ΛQJΦΛD

1

2 ‖2,∞ and use concentration inequality (4.32) to bound

the first probability as

P
(‖Ψ�

ΛQJΦΛD
1

2 U‖p,∞ < (1 − ε1) · Cp(N) · ‖Ψ�
ΛQJΦΛD

1

2 ‖2,∞
) ≤ exp

(− Ap(N) · ε2
1

)
.

To bound the second probability we proceed as for Thresholding and use inequality (4.31),

P
(‖Ψ�

Λ
QJΦΛD

1

2 U‖p,∞ > C − η
)

=

= P
(‖Ψ�

Λ
QJΦΛD

1

2 U‖p,∞ >
C − η

Cp(N) · ‖Ψ�
Λ
QJΦΛD

1

2 ‖2,∞︸ ︷︷ ︸
=:1+ε2

·Cp(N) · ‖Ψ�
Λ
QJΦΛD

1

2 ‖2,∞
)

≤ |Λ| · exp
(− Ap(N) · ε2

2

)
.

Again we require ε1 = ε2,

ε2 =
(1 − ε1) · ‖Ψ�

ΛQJΦΛD
1

2 ‖2,∞ − η/Cp(N)

‖Ψ�
Λ
QJΦΛD

1

2 ‖2,∞
− 1 = ε1.
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Solving the above for ε1 we get

ε1 =
‖Ψ�

ΛQJΦΛD
1

2 ‖2,∞ − ‖Ψ�
Λ
QJΦΛD

1

2 ‖2,∞ − η/Cp(N)

‖Ψ�
ΛQJΦΛD

1

2 ‖2,∞ + ‖Ψ�
Λ
QJΦΛD

1

2 ‖2,∞
.

If we now insert the definition of c0(Λ), d0(Λ) from (4.41) we can estimate ε1 from below as:

ε1 >
c0(Λ) − d0(Λ) − η · (Cp(N) · α(M)

)−1

c0(Λ) + d0(Λ)
= γM > 0

Condition (4.42) ensures that γM > 0 and so we can bound for any subset J of size at most M − 1

the probability that OMP fails to pick another good atom as

P(‖Ψ�
ΛQJΦΛD

1

2 U‖p,∞ − ‖Ψ�
Λ
QJΦΛD

1

2 U‖p,∞ > η) < (1 + |Λ|) · exp
(− Ap(N) · γ2

M

)
.

In the end to be independent of the sequence of subsets that OMP finds we use a union bound

over all CM :=
∑M−1

m=0

(|Λ|
m

)
subsets J ⊂ Λ of size at most M − 1 to get the upper estimate on the

probability of failure in (4.43).

Note that the union bound we take above leads to a constant CS = 2S if we want to estimate

recovering the whole support. This is a considerable factor, for which there is no numerical evidence

in either our simulations or the results in [5]. A future goal therefore would be to improve the

probability estimate by finding a way around taking the crude union bound.

Also note that in the proof instead of estimating ε1 in terms of c0(Λ), d0(Λ) we could have used any

other pair of constants c, d satisfying c ≤ c0(Λ) and d ≥ d0(Λ). While these constants result in a

smaller γM and a stronger restriction on the noise level they may have the advantage of having a

more tangible form than the original ones. The proofs of the featured theorems of Section 4.3 in the

next subsections will rely on such alternatives bounds c0(Λ), d0(Λ).

4.5.3 Proof of Theorem 4.3.2

All we need to do is replace c0(Λ), d0(Λ) in Theorem 4.5.1 by the bounds derived in the following

lemma, whose proof can be found in [25].

Lemma 4.5.2. Valid bounds for the constants c0(Λ), d0(Λ) are given by

c(Λ) := β − μin
2 (Λ)√
1 − δΛ

, and d(Λ) :=
μ2(Λ)

1 − δΛ
. (4.44)

However to make the formulas less ugly we further estimate

c0(Λ) ≥ β − μin
2 (Λ)√
1 − δΛ

≥ β − μin
2 (Λ)

1 − δΛ
:= c̃(Λ).

To finally arrive at Theorem 4.3.2 simply note that whenever Ψ = Φ we have β = 1 and because of

the assumption that E is orthogonal to the atoms in Λ the noise level reduces to η = ‖Φ�
Λ
E‖1,∞.

4.5.4 Proof of Theorem 4.3.3

Again the only missing ingredient we need for this proof is a lemma, providing further bounds for

the constants c0(Λ), d0(Λ) to be used instead in Theorem 4.5.1.
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Lemma 4.5.3. Suppose that Ψ = Φ, and let S be the cardinality of Λ. Then we can bound

c0(Λ), d0(Λ) by

cS := 1 − δS+1√
1 − δS

and dS :=
δS+1

1 − δS
.

The proof can be found in [25]. To finally prove the theorem we replace c0(Λ), d0(Λ) by cS , dS in

Theorem 4.5.1 and then need the noise level η to satisfy

η ≤ C1(N) · αmin · (cS − dS

)
=

√
2

π
N · αmin · (1 − δS+1 ·

√
1 − δS + 1

1 − δS

)
.

The above condition is ensured by η <
√

2
π N · αmin · (1 − 3δS+1) since for δS+1 < 1/3 the fraction

in the expression above is smaller than 3 (it is always larger than 2) and so by Theorem 4.5.1 the

probability of failure is smaller than

(1 + K − S)2S exp(−Ap(N)γ2
S) with γS =

cS − dS − η · (
√

2
π N · αmin)−1

cS + dS
.

Inserting the explicit values for cS , dS and δS+1 < 1/3 we get from a lengthy but uninteresting

calculation that γS > 1− 3δS+1− η · (N
π ·αmin)−1 = γ. Together with the observation that for p = 1

we have Ap(N) = N/π this leads to the final bound for failure featured in Theorem 4.3.3.

P(failure of 1-OMP) ≤ K · 2S · exp(−Nγ2/π).

4.5.5 Proof of Theorem 4.3.4

In order to prove the second main theorem we need Joel Tropp’s result that for a random support set

Λ the local isometry constants δΛ are well behaved provided the coherence μ is small. The following

statement is [56, Theorem B] rewritten.

Theorem 4.5.4. Suppose Λ is selected uniformly at random among all subsets of {1, . . . , K} of size

S ≥ 3. If cδ − |||Φ|||2S/K > 0 then

P (δΛ > δ) < 2 exp

(
−
(

cδ − |||Φ|||2S/K

μ
√

S

)2
)

,

where the constant c is not smaller than 0.0818.

With this theorem we can now estimate the probability that 1-OMP fails as:

P(1 − OMP fails) ≤ P(1 − OMP fails|δΛ < 1/3) + P(δΛ > 1/3)

To estimate the first term on the right hand side we can proceed as before. Because of Lemma 4.5.2

and μ2(S − 1) ≤ μ2(S) we can replace c0(Λ), d0(Λ) by

cS = 1 − μ2(S)√
1 − δΛ

and dS =
μ2(S)

1 − δΛ
.
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We then need the noise η to satisfy

η ≤ C1(N) · αmin · (cS − dS

)
=

√
2

π
N · αmin · (1 − μ2(S) ·

√
1 − δΛ + 1

1 − δΛ

)
,

which is again ensured by δΛ < 1/3 and η <
√

2
π N ·αmin · (1− 3μ2(S)). Inserting all the values, i.e.

δΛ < 1/3 and μ2(S) < 1/3 (as a consequence of the condition on the noise), into the formula for γS

leads to the estimate γS > 0.9(1 − 3μ2(S) − η · (N
π · αmin)−1) = γ and we get the bound,

P(1 − OMP fails|δΛ < 1/3) ≤ K · 2S · exp(−Nγ2/π).

Finally to bound the probability that P(δΛ > 1/3) we simply note that c/3 > 1/37 and that for

a tight frame we have |||Φ|||2 = K/d. Thus whenever S < d/37 the condition of Theorem 4.5.4 is

satisfied and

P (δΛ > 1/3) < 2 exp

(
−
(

1/37 − S/d

μ
√

S

)2
)

.

4.6 Discussion

We have seen that in the multi channel case not only the average behaviour of Thresholding but

also that of OMP are much better than could be expected from the worst case analysis in [25].

Nevertheless, our results are far from being the final answer. While for Thresholding we have

already seen in the last chapter that the average behaviour is also good in the single channel case,

we are not aware of comparable results for OMP. Indeed a similar average case analysis in the single

channel case would be a major breakthrough. The hitch in our theorems on p-SOMP is the factor

resulting from the pachydermal union bounds in the proofs which in consequence necessitates many

channels to reach practical success probabilities. Solving this issue with finer arguments would lead

to further bridging the gap between theory and practice.
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Compressed Sensing

and Redundant Dic-

tionaries 5
In this chapter we extend the concept of compressed sensing to signals that are not sparse in an

orthonormal basis but rather in a redundant dictionary. We show that a matrix, which is a com-

position of a random matrix of a certain type and a deterministic dictionary, has small restricted

isometry constants. Thus, signals that are sparse with respect to the dictionary can be recovered via

Basis Pursuit from a small number of random measurements. Further, we investigate Thresholding

as recovery algorithm for compressed sensing and provide conditions that guarantee reconstruction

with high probability. The different schemes are compared by numerical experiments. Most of the

material presented in this chapter has been published in [46].

5.1 Compressed Sensing

Recently there has been a growing interest in recovering sparse signals from their projection onto

a small number of random vectors [6, 8, 9, 14, 24, 39, 40, 44, 48]. The word most often used in

this context is compressed sensing. It originates from the idea that it is not necessary to invest a

lot of power into observing the entries of a sparse signal in all coordinates when most of them are

zero anyway. Rather it should be possible to collect only a small number of measurements that still

allow for reconstruction. This is potentially useful in applications where one cannot afford to collect

or transmit a lot of measurements but has rich resources at the decoder.

Until now the theory of compressed sensing has only been developed for classes of signals that

have a very sparse representation in an orthonormal basis (ONB). This is a rather stringent restric-

tion. Indeed as we have seen in the last three chapters, allowing the signal to be sparse with respect

to a redundant dictionary adds a lot of flexibility and significantly extends the range of applicability.

Already the use of two ONBs instead of just one dramatically increases the class of signals that can

be modelled in this way. A more practical example would be a dictionary made up of damped

sinusoids which is used for NMR spectroscopy, see [18], a dictionary of translated pulses as used in

[38] or a dictionary produced from a localisation grid used for target localization in sensor networks

in [11].

There are two main questions in compressed sensing which are of course not independent. How

many and what kind of measurements should we take and how can we (stably) reconstruct the

signal? Since the measurements are supposed to be very simple they are modelled as an inner

product of the sparse signal x ∈ Rd with a sampling vector in Rd. Taking n of these linear non-

49
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adaptive measurements, which are stored in the n-dimensional measurement vector s, can then be

simply written as multiplying the signal with the n×d matrix Ψ which has all the sampling vectors

as its rows, i.e. s = Ψx. To reconstruct the sparse signal from the measurements we have to solve

the problem:

find a sparse vector x satisfying s = Ψx (5.1)

Anybody having read the last three chapters should now see that the reconstruction problem is

essentially equivalent to finding a sparse representation or, if we assume that the samples are con-

taminated with noise, a sparse approximation of the samples s in the dictionary Ψ. Thus we can

use all the techniques we have seen so far, like combinatorial brute force, greedy algorithms, or BP,

but with the additional advantage that the measurement matrix or dictionary is not predefined but

can be designed to ensure that the chosen algorithm will succeed.

Candès, Romberg and Tao [8, 9] observed that successful recovery by BP is guaranteed whenever

Ψ has small global restricted isometry constants, meaning it obeys a uniform uncertainty principle,

compare Subsection 4.2.2. Based on this concept, Candès, Romberg and Tao proved the following

recovery theorem for BP in [8, Theorem 1].

Theorem 5.1.1. Assume that Ψ satisfies

δ3S(Ψ) + 3δ4S(Ψ) < 2

for some S ∈ N. Let x be an S-sparse vector and assume we are given noisy data y = Ψx + e with

‖e‖2 ≤ ε. Then the solution x# calculated via BP, i.e. the solution to the problem (P1) in Table 3.1

satisfies

‖x# − x‖2 ≤ Cε. (5.2)

The constant C depends only on δ3S and δ4S. If δ4S ≤ 1/3 then C ≤ 15.41.

In particular, if no noise is present, i.e., ε = 0, then under the stated condition BP recovers x

exactly. Note that a slight variation of the above theorem holds also in the case that x is not sparse

in a strict sense, but can be well-approximated by an S-sparse vector [8, Theorem 2]. The discovery

of the restricted isometry constants has triggered a huge interest in compressed sensing and by now

there are proofs that several other simpler techniques like the Matching Pursuit variants Regularised

Orthogonal MP (ROMP), [40], and Compressed Sensing MP (CoSaMP), [39], or Iterative Hard

Thresholding, [6], also guarantee stable recovery if the measurement matrix/dictionary satisfies a

uniform uncertainty principle.

However all this theory would be quite useless unless we could actually find measuring matrices

having low restricted isometry constants. So what makes the above theorem useful is the fact that

for instance an n × d random matrix with entries drawn from a standard Gaussian distribution

(or some other distribution showing certain concentration properties, see below) will have small

restricted isometry constants δS with overwhelming probability as long as

n = O(S log(d/S)), (5.3)

see [4, 8, 9, 48] for details. A similar result holds for random partial Fourier matrices under the

condition S ≤ Cδd log−4(K) log−1(ε−1), see [9, 45, 48]. We note that, even though there are deter-

ministically constructed matrices that together with other reconstruction techniques work well for

compressed sensing, [28], so far no deterministic construction of measurement matrices obeying the
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uniform uncertainty principle for reasonably small n, i.e. comparable to (5.3) is known.

Here we want to address the question whether the techniques described above can be extended

to signals y that are not sparse in an ONB but rather in a redundant dictionary Φ ∈ Rd×K with

K > d. So now y = Φx, where x has only few non-zero components. Again the goal is to reconstruct

y from few measurements. More formally, given a suitable measurement matrix A ∈ Rn×d we want

to recover y from s = Ay = AΦx. The key idea then is to use the sparse representation in Φ to

drive the reconstruction procedure, i.e. try to identify the sparse coefficient sequence x and from

that reconstruct y. Clearly, we may represent s = Ψx with

Ψ = AΦ ∈ Rn×K .

In particular, we can apply all of the reconstruction methods described above by using this particular

matrix Ψ. Of course, the remaining question is whether for a fixed dictionary Φ ∈ Rd×K one can

find a suitable matrix A ∈ Rn×d such that the composed matrix Ψ = AΦ allows for reconstruction

of vectors having only a small number of non-zero entries. Again the strategy is to choose a random

matrix A, for instance with independent standard Gaussian entries, and investigate under which

conditions on Φ, n and S recovery is successful with high probability.

Note that already Donoho considered extensions from orthonormal bases to (redundant) tight

frames Φ in [14]. There it is assumed that the analysis coefficients x′ = Φ�y = Φ�Φx are sparse. For

redundant frames, however, this assumption does not seem very realistic as even for sparse vectors

x the coefficient vector x′ = Φ�Φx is usually fully populated.

Another motivation for investigating the applicability of Compressed Sensing for signals sparse

in a dictionary is computational efficiency. If we compare the original problem of finding x from y

to the new one of finding x from s we see that instead of the d×K matrix Φ we now have the much

smaller n×K matrix Ψ. Considering that Matching Pursuits and Thresholding, as well as iterative

solvers for BP, rely on inner products between the signal and the dictionary elements, we can thus

reduce the number of flops per iteration from O(dK) to O(nK), where typically n = O(S log(K/S)),

cf. Corollary 5.2.4. Of course this does not make sense when the dictionary has a special structure

that allows for fast computation of inner products, e.g. a Gabor dictionary, as the random projections

will destroy this structure. However, it has great potential when using for instance a learned and

thus unstructured dictionary, cp. [3].

In the following section we will investigate under which conditions on the deterministic dictionary

Φ its combination with a random measurement matrix will have small isometry constants. By

Theorem 5.1.1 this determines how many measurements n will be typically required for BP to succeed

in reconstructing all signals of sparsity S with respect to the given dictionary and the interested

reader can formulate analogue results for the algorithms in [6, 39, 40]. In Section 5.3 we will analyse

the performance of Thresholding, which actually has not yet been considered as a reconstruction

algorithm in compressed sensing because of its simplicity and hence resulting limitations. The last

section is dedicated to numerical simulations showing the performance of compressed sensing for

dictionaries in practice and comparing it to the situation where sparsity is induced by an ONB.

So far we are not aware of a proof guaranteeing the success of OMP, however, since it tends to

outperform ROMP in practice and unlike CoSaMP is already familiar to all readers we will include

it as representative for the Matching Pursuits in the simulations.
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5.2 Isometry Constants for AΦ

In order to determine the isometry constants for a matrix of the type Ψ = AΦ, where A is an n× d

measurement matrix and Φ is a d × K dictionary, we will follow the approach taken in [4], which

was inspired by proofs for the Johnson-Lindenstrauss lemma [1]. We will not discuss this connection

further but use as starting point concentration of measure for random variables. This describes the

phenomenon that in high dimensions the probability mass of certain random variables concentrates

strongly around their expectation.

In the following we will assume that A is an n × d random matrix that satisfies

P
(∣∣‖Av‖2 − ‖v‖2

∣∣ ≥ ε‖v‖2
) ≤ 2e−c n

2
ε2

, ε ∈ (0, 1/3) (5.4)

for all v ∈ Rd and some constant c > 0. Let us list some examples of random matrices that satisfy

the above condition.

• Gaussian ensemble: If the entries of A are independent normal variables with mean zero

and variance n−1 then

P(
∣∣‖Av‖2 − ‖v‖2

∣∣ ≥ ε‖v‖2) ≤ 2e−
n
2
( ε2

2
− ε3

3
), ε ∈ (0, 1), (5.5)

see e.g. [1, 4]. In particular, (5.4) holds with c = 1/2 − 1/9 = 7/18.

• Bernoulli ensemble: Choose the entries of A as independent realisations of ±1/
√

n random

variables. Then again (5.5) is valid, see [1, 4]. In particular (5.4) holds with c = 7/18.

• Isotropic subgaussian ensembles: In generalisation of the two examples above, we can

choose the rows of A as 1√
n
-scaled independent copies of a random vector Y ∈ Rd that

satisfies E|〈Y, v〉|2 = ‖v‖2 for all v ∈ Rd and has subgaussian tail behaviour. See [37, eq. (3.2)]

for details.

• Basis transformation: If we take any valid random matrix A and a (deterministic) orthog-

onal d × d matrix U then it is easy to see that also AU satisfies the concentration inequality

(5.4). In particular, this applies to the Bernoulli ensemble although in general AU and A have

different probability distributions.

Using the concentration inequality (5.4) we can now investigate the local and subsequently the

global restricted isometry constants of the n × K matrix AΦ.

Lemma 5.2.1. Let A be a random matrix of size n× d drawn from a distribution that satisfies the

concentration inequality (5.4). Extract from the d × K dictionary Φ any sub-dictionary ΦΛ of size

S, i.e. |Λ| = S with (local) isometry constant δΛ = δΛ(Φ). For 0 < δ < 1 we set

ν := δΛ + δ + δΛδ. (5.6)

Then

(1 − ν)‖x‖2 ≤ ‖AΦΛx‖2 ≤ ‖x‖2(1 + ν) (5.7)

with probability exceeding

1 − 2

(
1 +

12

δ

)S

e−
c
9
δ2n. (5.8)
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Proof: First we choose a finite ε1-covering of the unit sphere in RS , i.e. a set of points Q, with

‖q‖ = 1 for all q ∈ Q, such that for all ‖x‖ = 1

min
q∈Q

‖x − q‖ ≤ ε1

for some ε1 ∈ (0, 1). According to Lemma 2.2 in [37] there exists such a Q with |Q| ≤ (1 + 2/ε1)
S .

Applying the measure concentration in (5.4) with ε2 < 1/3 to all the points ΦΛq and taking the

union bound we get

(1 − ε2)‖ΦΛq‖2 ≤ ‖AΦΛq‖2 ≤ (1 + ε2)‖ΦΛq‖2

for all q ∈ Q with probability larger than

1 − 2

(
1 +

2

ε1

)S

e−cnε2

2 .

Define ν as the smallest number such that

‖AΦΛx‖2 ≤ (1 + ν)‖x‖2, (5.9)

for all x supported on Λ.

Now we estimate ν in terms of ε1, ε2. We know that for all x with ‖x‖ = 1 we can choose a q such

that ‖x − q‖ ≤ ε1 and get

‖AΦΛx‖ ≤ ‖AΦΛq‖ + ‖AΦΛ(x − q)‖
≤ (1 + ε2)

1

2 ‖ΦΛq‖ + ‖AΦΛ(x − q)‖
≤ (1 + ε2)

1

2 (1 + δΛ)
1

2 + (1 + ν)
1

2 ε1.

Since ν is the smallest possible constant for which (5.9) holds it also has to satisfy

√
1 + ν ≤ √

1 + ε2

√
1 + δΛ + ε1

√
1 + ν.

Simplifying the above equation yields

(1 + ν) ≤ 1 + ε2

(1 − ε1)2
(1 + δΛ).

Now we choose ε1 = δ/6 and ε2 = δ/3 < 1/3. Then

1 + ε2

(1 − ε1)2
=

1 + δ/3

(1 − δ/6)2
=

1 + δ/3

1 − δ/3 + δ2/36
<

1 + δ/3

1 − δ/3
= 1 +

2δ/3

1 − δ/3
< 1 + δ.

Thus,

ν < δ + δΛ(1 + δ).

To get the lower bound we operate in a similar fashion.

‖AΦΛx‖ ≥ ‖AΦΛq‖ − ‖AΦΛ(x − q)‖ ≥ (1 − ε2)
1

2 (1 − δΛ)
1

2 − (1 + ν)
1

2 ε1.

Now square both sides and observe that ν < 1 (otherwise we have nothing to show). Then we finally
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arrive at

‖AΦΛx‖2 ≥ (
(1 − ε2)

1

2 (1 − δΛ)1/2 − ε1

√
2
)2

≥ · · · ≥ 1 − δΛ − ε2 − 2ε1

√
2 ≥ 1 − δΛ − δ ≥ 1 − ν.

This completes the proof.

Note that the choice of ε1 and ε2 in the previous proof is not the only one possible. While our

choice has the advantage of resulting in an appealing form of ν in (5.6), others might actually yield

better constants. Based on the previous theorem it is easy to derive an estimation of the global

restricted isometry constants of the composed matrix Ψ = AΦ.

Theorem 5.2.2. Let Φ ∈ Rd×K be a dictionary of size K in Rd with restricted isometry constant

δS(Φ), S ∈ N. Let A ∈ Rn×d be a random matrix satisfying (5.4) and assume

n ≥ Cδ−2
(
S log(K/S) + log(2e(1 + 12/δ)) + t

)
(5.10)

for some δ ∈ (0, 1) and t > 0. Then with probability at least 1 − e−t the composed matrix Ψ = AΦ

has restricted isometry constant

δS(AΦ) ≤ δS(Φ) + δ(1 + δS(Φ)). (5.11)

The constant satisfies C ≤ 9/c.

Proof: By Lemma 5.2.1 we can estimate the probability that a sub-dictionary ΨΛ = (AΦ)Λ = AΦΛ,

Λ ⊂ {1, . . . , K} fails to have (local) isometry constants δΛ(Ψ) ≤ δΛ(Φ) + δ + δΛ(Φ)δ by

P
(
δΛ(Ψ) > δΛ(Φ) + δ + δΛ(Φ)δ

) ≤ 2
(
1 +

12

δ

)S
e−

c
9
δ2n.

By taking the union bound over all
(
K
S

)
possible sub-dictionaries of size S we can estimate the

probability of δS(Ψ) = supΛ⊂{1,...,K},|Λ|=S δΛ(Ψ) not satisfying (5.11) by

P
(
δS(Ψ) > δS(Φ) + δ(1 + δS(Φ))

) ≤ 2

(
K

S

)(
1 +

12

δ

)S

e−
c
9
δ2n.

Using
(
K
S

) ≤ (eK/S)S (Stirling’s formula) and requiring that the above term is less than e−t shows

the claim.

Note that for fixed δ and t condition (5.10) can be expressed in the more compact form

n ≥ CS log(K/S).

Moreover, if the dictionary Φ is an orthonormal basis then δ(Φ) = 0 and we recover essentially the

previously known estimates of the isometry constants for a random matrix A, see e.g. [4, Theorem

5.2].

Now that we have established how the isometry constants of a deterministic dictionary Φ are

affected by multiplication with a random measurement matrix, we could in theory go on and apply

the result to compressed sensing of signals that are sparse in Φ. In practice, though, it is not easy

to evaluate δS(Φ) and so need some more initial information about Φ first. The following little

lemma gives a very crude estimate of the isometry constants of Φ in terms of its coherence μ or
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Babel function μ1(k), compare Equation (2.1) or Subsection 4.2.2 of the last chapter.

Lemma 5.2.3. For a dictionary with coherence μ and Babel function μ1(k) we can bound the

restricted isometry constants by

δS ≤ μ1(S − 1) ≤ (S − 1)μ. (5.12)

Proof: Essentially this can be derived from the proof of Lemma 2.3 in [55].

Combining this Lemma with Theorem 5.2.2 provides the following estimate of the isometry

constants of the composed matrix Ψ = AΦ.

Corollary 5.2.4. Let Φ ∈ Rd×K be a dictionary with coherence μ. Assume that

S − 1 ≤ 1

16
μ−1. (5.13)

Let A ∈ Rn×d be a random matrix satisfying (5.4). Assume that

n ≥ C1(S log(K/S) + C2 + t).

Then with probability at least 1 − e−t the composed matrix AΦ has restricted isometry constant

δS(Ψ) ≤ 1/3. (5.14)

The constants satisfy C1 ≤ 138.51 c−1 and C2 ≤ log(1250/13) + 1 ≈ 5.57. In particular, for the

Gaussian and Bernoulli ensemble C1 ≤ 356.18.

Proof: By Lemma 5.2.3 the restricted isometry constant of Φ satisfies

δS(Φ) ≤ (S − 1)μ ≤ 1/16.

Hence, choosing δ = 13/(3 · 17) yields

δ(AΦ) ≤ δS(Φ) + δ(1 + δS(Φ)) ≤ 1

16
+

13

3 · 17
(1 +

1

16
) = 1/3.

Plugging this particular choice of δ into Theorem 5.2.2 yields the assertion.

Of course, the numbers 1/16 and 1/3 in (5.13) and (5.14) were just arbitrarily chosen. Other

choices will only result in different constants C1, C2. Combining the previous result with The-

orem 5.1.1 yields a result on stable recovery by Basis Pursuit of sparse signals in a redundant

dictionary. We leave the straightforward task of formulating the precise statement to the interested

reader. We just want to point out that this recovery result is uniform in the sense that a single

matrix A can ensure recovery of all sparse signals.

The constants C1 and C2 of Corollary 5.2.4 are certainly not optimal; however, we did not further

pursue the task of improving them. In the case of a Gaussian ensemble A and an orthonormal basis Φ

recovery conditions for BP with quite small constants were obtained in [48] and precise asymptotic

results can be found in [17]. One might raise the objection that the condition S − 1 ≤ 1
16μ in

Corollary 5.2.4 is too weak for practial applications. We have already seen that a lower bound on
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the coherence in terms of the dictionary size is

μ >

√
K − d

d(K − 1)

and that for reasonable dictionaries we can usually expect the coherence to be of the order μ ∼ C/
√

d.

The restriction on the sparsity thus is S <
√

d/C. However, compressed sensing is only useful if

indeed the sparsity is rather small compared to the dimension d, so this restriction is actually not

severe. Moreover, if it is already impossible to recover the support from complete information on

the original signal we cannot expect to do this with even less information.

To illustrate the theorem let us have a look at an example where the dictionary is the union of

two ONBs.

Example 5.2.5 (Dirac-DCT). Assume that our dictionary is the union of the Dirac and the Discrete

Cosine Transform bases in Rd for d = 22p+1. The coherence in this case is μ =
√

2/d = 2−p and

the number of atoms K = 22p+2. If we assume the sparsity of the signal to be smaller than 2p−6

we get the following crude estimate for the number of necessary samples to have δ4S(AΦ) < 1/3 as

recommended for recovery by BP in Theorem 5.1.1,

n ≥ C1(4S(2p log 2 − log S) + C2 + t)

with the constants C1 ≈ 138.51 c−1 and C2 ≈ 5.57 from Corollary 5.2.4.

In comparison if the signal is sparse in just the Dirac basis we can estimate the necessary number

of samples to have δ4S(A) < 1/3 with Theorem 5.2.2 as

n ≥ C′
1(4S(2p log 2 − log 2S) + C′

2 + t)

with C′
1 =

(
13
17

)2
C1 and C′

2 ≈ 5.3, thus implying an improvement of roughly the factor (17
13 )2 ≈ 1.71.

5.3 Recovery by Thresholding

In this section we investigate recovery from random measurements by Thresholding. Since Thresh-

olding works by comparing inner products of the signal with the atoms an essential ingredient will

be stability of inner products under multiplication with a random matrix A, i.e.

〈Ax, Ay〉 ≈ 〈x, y〉.

The exact result that we will use is summarised in the following lemma.

Lemma 5.3.1. Let x, y ∈ Rd with ‖x‖2, ‖y‖2 ≤ 1. Assume that A is an n × d random matrix with

independent N (0, n−1) entries (independent of x, y). Then for all t > 0

P
(|〈Ax, Ay〉−〈x, y〉| ≥ t

) ≤ 2 exp

(
−n

t2

C1 + C2t

)
, (5.15)

with C1 = 8e√
6π

≈ 5.0088 and C2 =
√

8e ≈ 7.6885. The analogue statement holds for a random matrix

A with independent ±1/
√

n Bernoulli entries. In this case the constants are C1 = 4e√
6π

≈ 2.5044

and C2 = 2e ≈ 5.4366.

Note that taking x = y in the lemma provides the concentration inequality (5.4) for Gaussian

and Bernoulli matrices (with non-optimal constants however). The proof of the lemma is rather
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technical and can be found in [46]. However armed with it, we can now investigate the stability of

recovery via Thresholding.

Theorem 5.3.2. Let Φ be a d × K dictionary. Assume that the support x of a signal y = Φx,

normalised to have ‖y‖2 = 1, could be recovered by Thresholding with a margin ε, i.e.

min
i∈Λ

|〈y, ϕi〉| > max
k∈Λ

|〈y, ϕk〉| + ε.

Let A be an n×d random matrix satisfying one of the two probability models of the previous lemma.

Then with probability exceeding 1 − e−t the support and thus the signal can be reconstructed via

Thresholding from the n-dimensional measurement vector s = Ay = AΦx as long as

n ≥ C(ε)(log (2K) + t).

where C(ε) = 4C1ε
−2 + 2C2ε

−1 and C1, C2 are the constants from Lemma 5.3.1. In particular,

C(ε) ≤ C3ε
−2

with C3 ≤ 4C1 + 2C2 ≤ 35.42 for the Gaussian case and C3 ≤ 20.90 in the Bernoulli case.

Proof: Thresholding will succeed if we have

min
i∈Λ

|〈Ay, Aϕi〉| > max
k∈Λ

|〈Ay, Aϕk〉|.

So let us estimate the probability that the above inequality does not hold,

P(min
i∈Λ

|〈Ay, Aϕi〉| ≤ max
k∈Λ

|〈Ay, Aϕk〉|)

≤ P(min
i∈Λ

|〈Ay, Aϕi〉| ≤ min
i∈Λ

|〈y, ϕi〉| − ε

2
) + P(max

k∈Λ
|〈Ay, Aϕk〉| ≥ max

k∈Λ
|〈y, ϕk〉| + ε

2
)

The probability of the good components having responses lower than the threshold can be further

estimated as

P(min
i∈Λ

|〈Ay, Aϕi〉| ≤ min
i∈Λ

|〈y, ϕi〉| − ε

2
) ≤ P

(⋃
i∈Λ

{|〈Ay, Aϕi〉| ≤ |〈y, ϕi〉| − ε

2
}
)

≤
∑
i∈Λ

P
(
|〈y, ϕi〉 − 〈Ay, Aϕi〉| ≥ ε

2

)

≤ 2|Λ| exp

(
−n

ε2/4

C1 + C2ε/2

)
.

Similarly we can bound the probability of the bad components being higher than the threshold,

P(max
k∈Λ

|〈Ay, Aϕk〉| ≥ max
k∈Λ

|〈y, ϕk〉| + ε

2
) ≤ P(

⋃
k∈Λ

{|〈Ay, Aϕk〉| ≥ |〈y, ϕk〉| + ε

2
})

≤
∑
k∈Λ

P(|〈Ay, Aϕk〉 − 〈y, ϕk〉| ≥ ε

2
)

≤ 2|Λ| exp

(
−n

ε2/4

C1 + C2ε/2

)
.
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Combining these two estimates we see that the probability of success for Thresholding is exceeding

1 − 2K exp

(
−n

ε2/4

C1 + C2ε/2

)
.

The lemma finally follows from requiring this probability to be higher than 1−e−t and solving for n.

The result above may appear surprising because the number of measurements seems to be in-

dependent of the sparsity. The dependence, however, is quite well hidden in the margin ε and the

normalisation ‖y‖2 = 1. For clarification we will estimate ε given the coefficients and the coherence

of the dictionary.

Corollary 5.3.3. Let Φ be an d×K dictionary with Babel function μ1(k). Assume a signal y = ΦΛx

with |Λ| = S satisfies the sufficient recovery condition for Thresholding,

|xmin|
‖x‖∞ > μ1(S) + μ1(S − 1), (5.16)

where |xmin| = mini∈Λ |xi|. If A is an n×d random matrix according to one of the probability models

in Lemma 5.3.1 then with probability at least 1− e−t Thresholding can recover x (and hence y) from

s = Ay = AΦx as long as

n ≥C3S(1 + μ1(S − 1))(log(2K) + t) ·
( |xmin|
‖x‖∞ − μ1(S) − μ1(S − 1)

)−2

. (5.17)

Here, C3 is the constant from Theorem 5.3.2. In the special case that the dictionary is an ONB

the signal always satisfies the recovery condition and the bound for the necessary number of samples

reduces to

n > C3S

( ‖x‖∞
|xmin|

)2

(log(2K) + t). (5.18)

Proof: The best possible value for ε in Theorem 5.3.2 is quite obviously

ε = min
i∈Λ

|〈y/‖y‖2, ϕi〉| − max
k∈Λ

|〈y/‖y‖2, ϕk〉|

=
1

‖y‖2

(|min
i∈Λ

∑
j∈Λ

xj〈ϕj , ϕi〉| − max
k∈Λ

|
∑
j∈Λ

xj〈ϕj , ϕk〉|
)

≥ 1

‖y‖2
(|xmin| − ‖x‖∞μ1(S − 1) − ‖x‖∞μ1(S)) .

Therefore, we can bound the factor C(ε) in Theorem 5.3.2 as

C(ε) ≤ C3ε
−2 ≤ C3

‖y‖2
2

‖x‖2∞
· ( |xmin|

‖x‖∞ − μ1(S) − μ1(S − 1)
)−2

.

To get to the final estimate observe that by Lemma 5.2.3

‖y‖2
2

‖x‖2∞
=

‖ΦΛx‖2
2

‖x‖2∞
≤ (1 + μ1(S − 1))

‖x‖2
2

‖x‖2∞
≤ (1 + μ1(S − 1))S.

The case of an ONB simply follows from μ1(S) = 0.

The previous results tell us that as for BP we can choose the number n of samples linear in the
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sparsity S. However, for Thresholding successful recovery additionally depends on the ratio of the

largest to the smallest coefficient. Also, in contrast to BP the result is no longer uniform, meaning

that the stated success probability is only valid for the given signal x. It does not imply that a single

matrix A can ensure recovery for all sparse signals. Indeed, in the case of a Gaussian matrix A and

an orthonormal basis Φ it is known that once A is randomly chosen then with high probability there

exists a sparse signal x (depending on A) such that Thresholding fails on x unless the number of

samples n is quadratic in the sparsity S, see e.g. [15, Section 7]. This fact seems to generalise to

redundant Φ.

Example 5.3.4 (Dirac-DCT). Assume again that our dictionary is the union of the Dirac and the

Discrete Cosine Transform bases in Rd for d = 22p+1. The coherence is again μ = 2−p and the

number of atoms K = 22p+1. If we assume the sparsity S ≤ 2p−2 and balanced coefficients, i.e.

|xi| = 1, we get the following crude estimate for the number of necessary samples

n ≥ 6C3 S(log(2)(2p + 2) + t).

If we just allow the use of one of the two ONBs to build the signal, the number of necessary samples

reduces to

n ≥ C3 S(log(2)(2p + 1) + t).

Again we see that whenever the sparsity S �
√

d the results for ONBs and general dictionaries

are comparable. At this point it would be nice to have a similar result for OMP. This task seems

rather difficult due to stochastic dependency issues and so, unfortunately, we have not been able to

do this analysis yet.

5.4 Numerical Simulations

In order to give a quantitative illustration of the results in Theorem 5.2.2 and Theorem 5.3.2 we

will run numerical simulations using the dictionary, we already know from the examples, i.e. the

combination of the Dirac and the Discrete Cosine Transform bases in Rd, d = 256, with coherence

μ =
√

1/128 ≈ 0.0884, cp. Lemma 5.2.3 for the resulting bound on the isometry constants.

We drew six measurement matrices of size n × d, with n varying between 64 and 224 in steps

of 32, by choosing each entry as independent realisation of a centered Gaussian random variable

with variance σ2 = n−1. Then for every sparsity level S, varying between 4 and 64 in steps of

4, respectively between 2 and 32 in steps of 2 for Thresholding, we constructed 100 signals. The

support Λ was chosen uniformly at random among all
(
K
S

)
possible supports of the given sparsity S.

For BP and OMP the coefficients (xi)i∈Λ of the corresponding entries were drawn from a normalised

standard Gaussian distribution while for Thresholding we chose them of absolute value one with

random signs. Then for each of the algorithms we counted how often the correct support could be

recovered. For comparison the same setup was repeated replacing the dictionary with the canonical

(Dirac) basis. The results are displayed in Figures 5.1, 5.2 and 5.3.

As predicted by the theorems the necessary number of measurements is higher if the sparsity

inducing dictionary is not an ONB. If we compare the three recovery schemes we see that Thresh-

olding gives the weakest results as expected. The improvement in performance of BP over OMP is

not that significant, which is especially interesting considering that in practice BP is a lot more com-

putationally intensive than OMP. Still, however, the transition from ’failure’ to ’success’ is sharper

for BP than for OMP.
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Figure 5.1: Recovery Rates for BP as a Function of the Support and Sample Sizes
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Figure 5.2: Recovery Rates for Thresholding as a Function of the Support and Sample Sizes

5.5 Discussion

We have shown that compressed sensing can also be applied to signals that are sparse in a redun-

dant dictionary. The spirit is that whenever the support can be reconstructed from the signal itself

it can also be reconstructed from a small number of random samples with high probability. We

have shown that this kind of stability is valid for reconstruction by Basis Pursuit as well as for the

simple Thresholding algorithm. Thresholding has the advantage of being much faster and easier

to implement than BP. However, it has the slight drawback that the number of required samples

depends on the ratio of the largest to the smallest coefficient, and recovery is only guaranteed with

high probability for a given signal and not uniformly for all signals in contrast to BP. While we

are not aware of a proof guaranteeing the success of OMP if the measurement matrix has small

restricted isometry constants our theory that the combination of a deterministic dictionary and a

random sensing matrix has well behaved isometry constants can be used to guarantee recovery by

the MP variants, ROMP and CoSaMP. In practice however Orthogonal Matching Pursuit seems to

indeed work well. In particular, it is still faster than BP and the required number of samples does

not seem to depend on the ratio of the largest to the smallest coefficient.

Note that we have a quite strict incoherence assumption on the dictionary, which is a result of asking

to be able to reconstruct all signals of a certain sparsity. If on the other hand we just wanted to

recover most typical signals we could again expect to get less restrictive conditions based on the

2- instead of the 1-Babel function, e.g. in the case of Basis Pursuit combine Theorem 5.2.2 and

Theorem B in [56].

A interesting open question is for which dictionaries it is possible to replace the random Gaus-
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Figure 5.3: Recovery Rates for OMP as a Function of the Support and Sample Sizes
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sian/Bernoulli matrix by a random Fourier matrix, see also [44]. This would have the advantage

that the Fast Fourier Transform can be used in the algorithms in order to speed up the reconstruction.





Classification via Inco-

herent Subspaces 6
In this chapter we present a signal model for classification based on a collection of low dimensional

subspaces embedded into the high dimensional signal space. We develop an alternate projection

algorithm to find such a collection and finally test the classification performance of our scheme

in comparison to Fisher’s Linear Discriminant Analysis and a recent approach based on sparse

approximation.

6.1 Introduction

Let us start with a not so serious example from every day life. The door bell is ringing and we

are wondering whether it will be the postman wanting a signature, the plumber coming to fix the

toilet or the neighbour complaining about noise, in which case it might be wise not to open the

door. What we are facing, while looking through the spy hole and trying to remember what the

three candidates look like, is a typical classification problem, ie. given a set of N unit norm training

signals y ∈ Rd belonging to c classes and a new signal ynew find out which class the new signal

belongs to. The most common solution approaches follow a two step procedure. First relevant

features are selected from the signal. Then the class of the signal is determined by comparing to

which features of already labelled signals (nearest neighbour, e.g. [7]) or subspaces spanned by

features corresponding to signals in the same class (nearest subspace, cp [32]) the obtained features

are closest. In our situation this would mean first focussing on the person’s eyes, nose and mouth

while ignoring the hairstyle and then comparing them to the eyes, nose and mouth of all possible

candidates in previous encounters, in the hope of coming to the right conclusion about opening the

door.

In order to formalise both steps we assume the following notation. All signals in class i are collected

as columns of the matrix Yi and these matrices Yi are in turn combined into a big d×N data matrix

Y = (Y1 . . . Yc) = (y1
1 . . . yn1

1 . . . y1
c . . . ync

c ). As this is the simplest and for the chapter most relevant

case we will assume that the features are extracted via a linear transform A. This is for instance

the case for Fisher’s LDA, where A is chosen as the orthogonal projection that maximises the ratio

of between-class scatter to that of within-class scatter, [20]. In analogy to the definitions above we

define fk
i := Ayk

i , Fi := AYi and F = AY .∗ If we denote the Moore-Penrose pseudo-inverse of a

∗Note, that in case the features are obtained in a different way the coming results remain valid and interesting
when interpreting the features themselves as signals and setting A equal to the identity.

63
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matrix M by M † and its transpose by M� we can summarise the classification procedure as:

Extraction: fnew = Aynew

Labelling: arg maxi ‖F �
i fnew‖∞ (nearest neighbour)

arg maxi ‖FiF
†
i fnew‖2 (nearest subspace)

To see more clearly what happens in the labelling step we expand the expression whose maximum

we are seeking for nearest neighbours,

‖F �
i fnew‖∞ = ‖(AYi)

�Aynew‖∞
= ‖(A�AYi︸ ︷︷ ︸

=:S∞
i

)�ynew‖∞,

and for nearest subspace. Note that FiF
†
i as a projection matrix is Hermitian and therefore,

‖FiF
†
i fnew‖2 = ‖(FiF

†
i )�fnew‖2

= ‖(AYi(AYi)
†)�Aynew‖2

= ‖(A�AYi(AYi)
†︸ ︷︷ ︸

=:S2

i

)�ynew‖2.

From the two expansion we see that for both classification schemes we can combine the extraction

and labelling step using the matrices S
∞/2
i :

Extraction&

Labelling: arg maxi ‖(S∞
i )�ynew‖∞ (nearest neighbour)

arg maxi ‖(S2
i )�ynew‖2 (nearest subspace)

This formulation should make most mathematical hearts skip a beat and give them the itch to

generalise. And indeed first there is no reason why we should restrict ourselves to using sensing

matrices of the form S∞
i = A�AYi and S2

i = A�AYi(AYi)
† when we could us any si × d matrix Si,

where si itself becomes a parameter of choice. Second instead of measuring the two or infinity norm

of the sensed vector we could measure any other norm. Classification then gets the general form,

argmax
i

‖S�
i ynew‖. (6.1)

However before trailing off in mathematical bliss let us check how this generalisation could be

helpful for the door opening problem. Constructing our sensing matrices through the transform

A corresponds to mentally going through the eyes, mouths and noses of the three candidates in

previous situations and comparing them to the eyes, mouth and nose of the person in front of the

door. Under normal circumstances this approach will work fine but in our not so serious example

the problem is that the plumber and the postman are identical twins. So the comparison of features

we extracted will give us the same response for the plumber and the postman, even though we

can probably distinguish the neighbour. Fortunately - for us - the postman once had an unlucky

encounter with the neighbour’s dog, which left him with a small scar on the right cheek. This scar

sets him apart from his twin, the plumber. The freedom in choice of the sensing matrix, now allows

us to remember different features for different people. So for the neighbour we remember eyes,
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mouth and nose, for the plumber eyes, nose and scar-free cheek and for the postman eyes, nose and

scarred cheek. Going through this list of individual features we see that the person’s eyes, mouth

and nose do not resemble those of the neighbour in any situation, that his eyes and mouth resemble

those of the plumber and postman and that the right cheek seems to be scar-free. Thus we should

hurry up and open the door.

In the next section we derive desirable properties of a collection of sensing matrices S = (S1 . . . Sc)

and which norm to choose for the classification procedure through the development and study of a

class model based on incoherent subspaces. The third section is dedicated to the development of an

algorithm to calculate such a collection and the fourth to test its performance for face recognition. In

the last section we summarise our findings, point out connections to related approaches and outline

possibilities for future work.

6.2 Class Model

Assume that our favourite mathematical tool, the oracle, has already told us the best norm to use

for classification in our data-set. Then a naive way of formulating the problem of finding a good

collection of sensing matrices with the help of our training data Y would be: find a collection S that

using the prescribed method will correctly classify all our training data and hope that it will work

also for all signals to come, ie

find S s.t ∀i, j �= i, k :
‖S�

j yk
i ‖

‖S�
i yk

i ‖
< 1. (6.2)

While this approach gives us some ideas about how S should look like it still is too general to

derive an algorithm. For instance for stable classification the ratio of norms should not be smaller

than just one but smaller than a constant μ < 1 and to pick out information of the same order

of magnitude and thus prevent mistaking noise for features the sensing matrices for every class Si

should be somehow balanced. To see what these extra constraints for the collection S should be

and how the norm should be chosen at the same time, we will develop a class model inspired by the

door opening problem.

There we remembered for every person, class, a set of independent features that described the person

well. If we model these independent features as orthonormal vectors f l
i ∈ Rd collected in the matrix

Fi = (f1
i , . . . fs

i ), we can write any image of a person i, i.e. signal yk
i in the class i, as combination

of these class specific features and some rest rk
i , orthogonal to the feature span,

yk
i = Fix

k
i + rk

i , rk
i ⊥ sp(Fi). (6.3)

For simplicity we assume that the number of independent features per class si = s is constant, even

though one can imagine situations, where different classes could require different numbers of features

for their description. Having defined these features the interesting next step is how to translate that

they describe a person/class well. An obvious idea would be to ask for the class specific part of the

signal to have higher energy than the rest but, thinking back to the example of face recognition,

it is unlikely that the intuitively important features, mouth eyes and scar or nose, contain more

energy than the hair and the rest of the face. On the other hand, keeping in mind that we want to

do classification by checking which sensing matrix Si gives the largest response measured in some

norm, what we actually want is not that the energy of the class specific part of the signal is larger

than the remaining signal part but larger than the energy captured by the features of any other

class. Since the set of features of each class Fj forms an orthonormal system, the captured energy
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can be easily calculated as ‖F �
j yk

i ‖2 and what we need is that

∀i, k, j �= i :
‖F �

j yk
i ‖2

‖F �
i yk

i ‖2
< 1. (6.4)

Inserting the expression for yk
i and using the triangular equation we can bound the ratio above as

‖F �
j yk

i ‖2

‖F �
i yk

i ‖2
≤ ‖F �

j Fix
k
i ‖2 + ‖F �

j rk
i ‖2

‖xk
i ‖2

≤ ‖F �
j Fi‖2,2 +

‖F �
j rk

i ‖2

‖xk
i ‖2

, (6.5)

where ‖ · ‖2,2 denotes the (2, 2) operator norm. For general 1 ≤ q, p ≤ ∞ the (q, p) operator norm

is defined as ‖M‖q,p := max‖x‖q=1 ‖Mx‖p. Assume that both terms of the last bound are small.

This means that no combination of features in one class can be well represented by any other set of

features and that for every signal the non class specific part of a signal does not have a lot of its energy

in the span of features of another class. Then using the feature sets as sensing matrices Si = Fi

and measuring the response in the Euclidean norm will lead to stable classification. Sometimes, as

in the introductory example of identical twins, it might however happen that two different classes

share one or more features. In this case we have to amend the class model by adding a model on

the coefficients of the features for all signals in all classes. One possibility is to assume that all

features contribute equally to the class specific part of the signals. Given such a flat distribution of

the coefficients xk
i (l) of all features f l

i , i.e. their absolute values are constant c, we can exploit the

resulting difference of various norms of the coefficient sequence when bounding the ratio we need to

be small,

‖F �
j yk

i ‖2

‖F �
i yk

i ‖2
≤ ‖F �

j Fix
k
i ‖2 + ‖F �

j rk
i ‖2

‖xk
i ‖2

≤ ‖F �
j Fi‖q,2

‖xk
i ‖q

‖xk
i ‖2

+
‖F �

j rk
i ‖2

‖xk
i ‖2

, (6.6)

The norm of flat sequences is smallest for q = ∞, leading to ‖xk
i ‖∞/‖xk

i ‖2 = s−1/2 and making this

a promising choice for a good further bound. The (∞, 2) norm of F �
j Fi can be roughly estimated as

‖F �
j Fi‖∞,2 = max

‖x‖∞=1
‖F �

j Fix‖2

= max
‖x‖∞=1

(∑
k

(∑
l

〈fk
j , f l

i 〉xl

)2)1/2

≤ (∑
k

(∑
l

|〈fk
j , f l

i 〉|
)2)1/2

,

and we finally get that

‖F �
j yk

i ‖2

‖F �
i yk

i ‖2
≤
(∑

k

(∑
l |〈fk

j , f l
i 〉|

)2
s

)1/2

+
‖F �

j rk
i ‖2

‖xk
i ‖2

. (6.7)

The first term of this new bound can be smaller than one even if some of the entries of F �
j Fi are as

large as 1 provided the rest is small, meaning that in case of balanced coefficients classification will

be successful even when two classes share the same feature.
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To get the last estimate we exploited the advantageous ratio between the infinity and the Euclidean

norm. Pursuing this line of thought, good ratios, and remembering that we can use any (p-)

norm for classification, immediately leads to the idea of replacing the Euclidean with the 1-norm,

which compares even more favorably to the ∞-norm, and to investigate in general the link between

coefficient distributions and (q, p) bounds to characterise the interplay of the feature matrices. Going

through the calculations analogue to the ones above we get

‖F �
j yk

i ‖p

‖F �
i yk

i ‖p
≤ ‖F �

j Fi‖q,p
‖xk

i ‖q

‖xk
i ‖p

+
‖F �

j rk
i ‖p

‖xk
i ‖p

. (6.8)

The minimal ratio for balanced coefficients we get for p = 1 and q = ∞, i.e. ‖xk
i ‖∞/‖xk

i ‖1 = 1/s.

For the (∞, 1) norm of F �
j Fi we have the following crude bound,

‖F �
j Fi‖∞,1 = max

‖x‖∞=1
‖F �

j Fix‖1

= max
‖x‖∞=1

∑
k

|
∑

l

〈fk
j , f l

i 〉xl|

≤
∑
k,l

|〈fk
j , f l

i 〉|, (6.9)

which leads us to the following estimate for the ratio of two class responses measured in the 1-norm

‖F �
j yk

i ‖1

‖F �
i yk

i ‖1
≤

∑
k,l |〈fk

j , f l
i 〉|

s
+

‖F �
j rk

i ‖1

‖xk
i ‖1

. (6.10)

As before we see that the first term can be smaller than one even if two classes share several features

or have quite similar features. The second term can actually be bounded by the analogue term in

the Euclidean norm since for a perfectly flat sequence |xi| = c we have ‖x‖1 =
√

s‖x‖2 and, in

general, ‖x‖1 ≤ √
s‖x‖2, combining to

‖F �
j rk

i ‖1

‖xk
i ‖1

≤ ‖F �
j rk

i ‖2

‖xk
i ‖2

. (6.11)

So it will be at worst as large as the energy of the non class specific part of a signal in the span of

features of another class.

Let’s assume now that the coefficients of the class specific features follow the completely opposite

distribution. They are not well balanced but extremely sparse, i.e. only one of them is non-zero. In

this case the norm of the coefficient sequence is the same for all p, so we cannot profit of a beneficial

ratio. However, we can choose p, q to minimise the norm of the interplaying feature matrices. This

minimum is attained for p = ∞, q = 1 and we have ‖F �
j Fi‖1,∞ = maxk,l |〈fk

j , f l
i 〉|, leading to

‖F �
j yk

i ‖∞
‖F �

i yk
i ‖∞

≤ max
k,l

|〈fk
j , f l

i 〉| +
‖F �

j rk
i ‖∞

‖xk
i ‖∞

. (6.12)

What we can see is, that in case of a sparse coefficient distribution we need the correlation between

all feature vectors to be small and the response of the non class specific part to be small. On the

other hand it is not a problem if all features of one class can be represented by those of any other.

Of course there is ample opportunity to develop more class models, assuming different distributions

on the coefficients and using more exotic norms or using different assumptions on the features, i.e.

non-orthogonal, but instead of losing ourselves in too much detail we will go on and find a practical
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way to calculate sensing or feature matrices for classification based on the three main models.

6.3 Finding Feature/Sensing Matrices

From the analysis in the last section we can derive two types of conditions that the collection of

feature or sensing matrices F needs to satisfy. The first type describes how features from different

classes should interact, i.e. the interplay measured in the appropriate matrix norm should be small,

and the second type how the features should interact with the training data, i.e. the ratio of the

response without to within class should be small. The problem with both kinds of conditions is

they are not linear and difficult to handle. For instance calculating the (2, 2)-norm is equivalent to

finding the largest singular value and calculating the (∞, 1)-norm is even np-hard. We will therefore

start with a very simple approach, and in the last section point out how to extend it to include

more complicated constraints. So instead of requiring explicitly that the interplay between features

from different classes is small, hereby avoiding to investigate what small means quantitatively, we

will hope that this will come as free side effect from regulating the interaction with the training

data, and simply ask that F is a collection of orthonormal systems of rank s. The condition that

the ratio between the response of the training data within to without class is small will be replaced

by requiring the response within class to be equal to a constant βp and without class smaller than

a constant μp. Define the two sets Fs and Fμ as

Fs := {F = (F1, . . . , Fc) : F �
i Fi = Is}

Fμ := {F : ‖F �
i yk

i ‖p = βp, ‖F �
j yk

i ‖p ≤ μp, ∀k, i, j �= i}, (6.13)

then our problems could be summarised as finding a matrix in the intersection of the two sets, i.e.

F ∈ Fs ∩ Fμ. However, since this intersection might be empty, we should rather look for a pair of

matrices, each belonging to one set, with minimal distance to each other measured in some matrix

norm, eg. the Frobenius norm, denoted by ‖ · ‖2
∗,

min ‖Fs − Fμ‖2 s.t. Fs ∈ Fs Fμ ∈ Fμ. (6.14)

One line of attack is to use an alternate projection method, i.e. we fix a maximal number of

iterations, an initialisation for F 0
s and then in each iterative step do:

• find a matrix F k
μ ∈ arg minF∈Fμ

‖F k−1
s − F‖2

• check if ‖F k−1
s − F k

μ ‖2 is smaller than the distance of any previous pair and if yes store F k−1
s

• find a matrix F k
s ∈ arg minF∈Fs

‖F k
μ − F‖2

• check if ‖F k
s − F k

μ ‖2 is smaller than the distance of any previous pair and if yes store F k
s

If both sets are convex, the outlined algorithm is known as Projection onto Convex Sets (POCS)

and guaranteed to converge. Non convexity of possibly both sets, as is the case here, results in much

more complex behaviour. Instead of converging, the algorithm just creates a sequence (F k
μ , F k

s ) with

at least one accumulation point. We will not discuss all the possible difficulties here but refer to

[57], where all details, proofs and background information can be found and wherein the authors

conclude that alternate projection is a valid strategy for solving the posed problem.

To keep the flow of the chapter, we will not discuss the two minimisation problems that need to

∗We use this notation instead of the more common variant ‖ · ‖F to avoid confusion.
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be alternatively solved here. The interested reader can find them, including the exact parameter

settings in the simulations of the next section, in the appendix of [51]. Instead we will discuss how

to set the parameters βp, μp and possible choices for the initialisation F 0
s .

The motivation for our choice of βp is the best case situation. An orthonormal system of s feature

vectors can maximally take out all the energy of a signal,

‖F �y‖2 ≤ ‖y‖2. (6.15)

As the signals are assumed to have unit norm, this energy is at most one and we set β2 = 1. The

maximal 1-norm of the vector F �
i y of length s with energy 1 is

√
s. This is attained when all features

of one class take out the same energy, i.e. the absolute values of the entries in F �y are all equal to

1/
√

s. This leads to β1 =
√

s. The infinity norm F �
i y corresponds to the maximal inner product

between one of the feature vectors and the signal. As both the feature vector and the signals are

normalised, this can be at most one and so we set β∞ = 1.

From the discussion in the last section we see that the parameter μ reflects how much the spaces

containing the class specific part overlap. If we have d ≥ c · s, it is theoretically possible to have

c subspaces of dimension s which are mutually orthogonal to each other, and μ could be zero. As

soon as the above inequality is reversed, because for instance the actual dimension of the span of

all features, i.e. rank(F ), is smaller than d, not all subspaces corresponding to the different classes

can be orthogonal but will have to overlap. How the size of the overlap should be measured, is

determined by the choice of p-norm for classification. For instance for p = 2 the overlap is measured

by ‖F �
j Fi‖2,2 and from theory about Grassmannian manifolds, see [57], we know that the maximal

overlap between two of c subspaces of dimension s embedded in the space Rd can be lower bounded

by

max
i�=j

‖F �
j Fi‖2

2,2 ≥ s · c − d

d(c − 1)
. (6.16)

The problem with setting μ as above is that we are not controlling the interaction between the sets

of features directly but only indirectly over the training data. There the worst case might not be

assumed and so μ as above would be too large. Also for the cases p = 1,∞ we do not have a similar

bound. Therefore instead of trying to analyse theoretically how to set μ, where we have to deal

with too many unknowns, we use the above bound as an indication of order of magnitude and, when

testing our scheme on real data, vary the parameter μ. Lastly for the initialisation for each class

we choose the orthogonal system that maximises the energy taken from this class opposed to the

energy taken from the other classes, i.e.

F 0
s,i = arg min

F �
i

Fi=Is

‖F �
i Yi‖2

2
−
∑
j �=i

‖F �
i Yj‖2

2
. (6.17)

This problem can be easily solved, by considering the rewritten version of the function to minimise,

min
F �

i
Fi=Is

trace
(
F �

i (YiY
�
i −

∑
j �=i

YjY
�
j )Fi

)
. (6.18)

If UDU� is an eigenvalue decomposition of the symmetric (Hermitian) matrix YiY
�
i −∑

j �=i YjY
�
j ,

then the minimum is attained for F 0
s,i consisting of the s eigenvectors corresponding to the s largest

eigenvalues.
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s\ μ√
s

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

2 60 56 56 57 60 58 60 61 66 64 69
3 52 46 48 46 51 51 53 58 62 61 61
4 62 52 54 55 55 56 56 54 55 57 61
5 64 59 56 56 55 58 61 63 66 68 68
6 61 54 57 54 56 59 62 58 61 71 71
7 57 55 57 55 59 57 58 62 61 68 69

Table 6.1: Number of misclassified images for p = 1 and varying values s and μ.

s\μ 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
1 57 58 59 58 60 59 59 58 58 58 62
2 51 49 51 51 51 55 57 57 59 58 56
3 47 42 45 50 53 53 54 61 62 61 64
4 46 42 41 41 47 48 51 62 63 61 63
5 48 43 40 44 50 51 52 55 55 59 61
6 49 45 42 45 49 48 51 54 54 57 58
7 45 43 43 43 45 45 48 53 51 54 52

Table 6.2: Number of misclassified images for p = 2 and varying values s and μ.

6.4 Testing

To test the proposed scheme we used a subset of images from the AR-database, [36]. For each of the

126 people there are 26 frontal images of size 165× 120 taken in two separate sessions. The images

include changes in illumination, facial expression and disguises. For the experiment we selected

50 male and 50 female subjects and for each of them took the 14 images with just variations in

illumination and facial expression, neutral, light from the right and left, front light, angry, happy,

sleepy. The all together 700 images from the first session were used as training data and the 699

images∗ from the second session for testing. Every image was converted to grayscale and then

stored as a 19800 dimensional column vector. The images from the first session were stored in the

19800× 700 matrix Y 1 and those from the second in the 19800× 699 matrix Y 2. In order to speed

up the calculations, we first applied a unitary transform, which does not change the geometry of the

problem, but reduces the size of the matrices, i.e. we did a reduced QR-factorisation decomposing

Y 1 into the 19800 × 700 matrix Q with orthogonal columns and the 700 × 700 upper triangular

matrix R and set Ỹ 1 = Q�Y 1 = R and Ỹ 2 = Q�Y 2.

We tested the proposed scheme for all three choices of p and varying values of μp scaling from 0

to 10% of βp and number of features per class varying from 1 to 7. The choice of the maximal

outside-class contribution μmax = 0.1βp was inspired by the bound in (6.16). If we take as effective

signal dimension d = 700 and assume that the space should not only accommodate the 100 different

people in our training set but all people, i.e. we let c go to infinity, the bound approaches
√

s/d

which is 0.1 if s = 7 and 0.0378 if s = 1. The maximal number of features per class is 7, since we only

have 7 test images and so it does not make sense to look for spaces of higher dimension containing

all test images. Note also that for s = 1 the three schemes are the same, so the results are only

displayed once. For each set of parameters we calculated the corresponding feature matrix using the

algorithm described in the last section on the images from the first session. We then classified the

images from the second session using the appropriate p-norm. The results are shown in Tables 6.1,

6.2 and 6.3.

∗700 minus corrupted image w-027-14.bmp



6.4. Testing 71

s\μ 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
2 55 62 59 54 56 52 54 61 63 64 62
3 55 63 58 56 60 58 59 63 65 69 69
4 55 64 60 57 59 58 58 61 67 70 67
5 55 60 59 55 58 57 57 60 66 71 69
6 55 61 59 54 57 56 56 65 67 72 69
7 55 61 59 55 56 54 55 66 66 71 70

Table 6.3: Number of misclassified images for p = ∞ and varying values s and μ.

As we can see we get the best performance for p = 2, followed by p = 1 and p = ∞. This comes

as no surprise when considering the structure of our data. Intuitively the important features of a

face are eyes, nose and mouth. Since the people in the pictures have different facial expression,

usually not all of these features will be active explaining why p = 1 is not the most appropriate

model. On the other hand we can expect to have more than one feature active at the same time

even if not to the same extent. Using p = ∞ we lose the information given by these secondary active

features while with p = 2 we still incorporate it into the final decision.

We can also see that 0.1% of μ as maximally allowed outside class ’energy’ seemed to have been a

good choice as we can always see a small decrease and large increase of the error going from 0 to 0.1,

with the best range for p = 1 and p = 2 between 0.01 and 0.03 and for p = ∞ between 0.02 and 0.06.

For p = 1 we get better performance for the lower dimensions, which seems reasonable because there

the equal energy distribution over the features is easier achieved. For p = 2 on the other hand the

better performance is achieved with higher dimensions, which are able to capture more important

side details. Finally for p = ∞ the results seem equal for all dimensions. A possible explanation is

given by the initialisation, which ensures that for all dimensions the first, most promising direction

is included.

Still in all three cases in the most promising ranges the proposed scheme outperforms a standard

method like Fisher’s LDA, [20]. The best result by LDA is obtained when using the highest possible

number of discriminant axes c− 1 = 99. In this case nearest neighbour classification, corresponding

to p = ∞ but with non orthogonal features, fails to identify 59 images, and nearest subspace

classification, corresponding to p = 2 fails to identify 71 images. When concentrating on the results

for p = 2, which is the most sensible choice given the structure of the data, p = 2, we also see that

the scheme performs well in comparison to a recent, successful method based on �1 minimisation,

[58]. The best result reported there is a success rate of 94.99%, meaning 35 misclassified images,

which is 5 images better than our best case of 40 errors. The advantage of our method is that it

is a lot simpler. Not taking the calculation of the feature matrices into account, as this part of

the pre-processing, all that has to be done to classify a new data vector is to multiply it with the

feature matrix, cs(2d− 1) operations, calculate the norms for each class, c(2s− 1) operations in the

computationally worst case p = 2 and find the maximum, c − 1 operations. Taken all together this

results in less than cs(2d + 1) operations, which is basically the cost of the matrix vector product.

The �1 minimisation method however requires on top of extracting df features, df (2d−1) operations

if it is done linearly, the solution of the convex optimisation problem

min ‖z‖1 s.t. ‖fnew − Fz‖2 ≤ ε, (6.19)

where F in this case is the df × N matrix containing the features of all the training data, which

contributes significantly to the overall cost, especially if the number of training signals is large.
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6.5 Discussion

We have presented a class model based on incoherent subspaces and linked to that a classification

scheme. From a more practical viewpoint we have developed an algorithm to calculate these sub-

spaces, i.e. the feature matrices, and shown that the scheme gives promising results on the AR

database. The idea that each class should have its own representative system, learned from the

training data can already be found in [52]. There frames or dictionaries for texture classification

are learned, such that each provides a sparse representation for its texture class. The new texture

then gets the label of the texture frame providing the sparsest representation. In [35], the same

basic idea is used but the learning is guided by the principle that the dictionaries should also be

discriminant, while in [47] both learning principles are combined, i.e. the dictionaries should be

discriminant and approximative. This third scheme can be considered as a more general and more

complicated version of our approach. Alternatively our approach can be considered to be a hybrid of

Nearest Subspace respectively Nearest Neighbour and the discriminative and approximative frame

scheme, in so far as it is linear but has individual features for every class.

The idea to use a collection of subspaces for data analysis can also be found in [34], where the sub-

spaces are used to model homogenous subsets of high-dimensional data which together can capture

the heterogenous structures.

For the future there remain some interesting directions to explore. Firstly the possibilities of the

subspace classification approach do not seem exhausted using the proposed algorithm. Ironically

this fact revealed itself through a mistake in the minimisation procedure, resulting in matrix pairs

with distances larger than the optimal ones, and sensing matrices giving better classification results,

i.e. in the best case an error of only 35 misclassified images. The main difference of these fake

optimal matrices to the sensing matrices corresponding to the actual minima, seemed to be that,

while capturing approximately the same ’energy’ within class, they were more accurate in respecting

the without class energy bound, i.e. less overshooting of the maximally allowed value μ. This over-

shooting for the real minimal is a result of imposing not only ‖Fiy
k
j ‖2 ≤ μ but also ‖Fiy

k
i ‖2 = β,

which forces the optimal feature matrix to balance the error incurred by not attaining β within

class and the error incurred by being larger than μ without class. A promising idea to avoid the

overshooting would be to change the problem formulation and ask to maximise the ’energy’ within

class subject to keeping the ’energy’ without class small, i.e. in the case p = 2 solve,

max
∑

i

‖F �
i Yi‖2

2
s.t. F �

i Fi = Is and ‖Fix
k
j ‖2 ≤ μ, ∀k, j �= i. (6.20)

Lastly our approach allows to impose additional constraints on F , like incoherence of the subspaces

between each other, e.g. ‖F �
i Fj‖2,2 ≤ ν for p = 2, or low rank of the whole feature matrix to reduce

the cost of calculating F �ynew. Another possibility to reduce computational cost if d and N are very

large, especially in the training step, would be to first take random samples of the training data,

which reduce their dimension but very likely preserve the geometrical structure, as described in [1]

and used in [58]. Alternatively to reduce the dimension of F one can apply our scheme on classical

features, like Eigen or Laplace features, instead of directly on the raw training data.



Dictionary Identifica-

tion 7
At the beginning of Chapter 2 we introduced the two main questions, when dealing with dictionaries

and sparsity. The first, how to find a sparse representation for a signal given the dictionary and

the second, how to find a dictionary that gives sparse representations for a class of signals. Here we

finally turn to this second question.

7.1 Introduction

Sparse signals are useful. They are easy to store and to compute with and as we have seen in

Chapter 5 they are also easy to capture. On the other hand, as has as well become apparent in

the first few chapters, it is far from easy to find sparse representations/approximations. Solving

the original problem P (0), compare Table 3.1, of finding the approximation with the most zero

coefficients turned out to be np-hard, thus necessitating the development of alternative strategies.

Checking in any of the already cited publications, e.g [16, 21, 55, 56], when popular methods like

thresholding, matching pursuits, basis pursuit will succeed (with high probability) you will more

likely than not find a statement starting with ’given a dictionary Φ and a signal having an S-sparse

approximation/representation . . . ’, which points exactly to the remaining problem. If you have a

class of signals and you would like to find sparse approximations someone has to give you the right

dictionary. For many signal classes good dictionaries like time-frequency or time scale dictionaries

are known and from theoretical study of your signal class you might be able to identify one that

will fit well. However, if you run into a new class of signals, chances that the best fit will already

be known are quite slim and it can be a time consuming overkill to develop a deep theory like that

of wavelets every time. An attractive alternative approach is dictionary learning, where you try to

infer the dictionary that will give you good sparse representations for your whole signal class from

a small portion of training signals.

Considering the extensive literature available for the sparse decomposition problem, surprisingly

little work has been dedicated to theoretical dictionary learning so far. There exist several dictio-

nary learning algorithms [3, 19, 29, 30], but only recently people have started to consider also the

theoretical aspects of the problem. Dictionary learning finds its roots in the field of Independent

Component Analysis (ICA) [10], where many identifiability results are available, which however rely

on asymptotic statistical properties under independence assumptions. Georgiev, Theis and Cichocki

[23] as well as Aharon and Elad [2] describe more geometric identifiability conditions on the (sparse)

73
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coefficients of training data in an ideal (overcomplete) dictionary. Both approaches to the identifi-

ability problem rely on rather strong sparsity assumptions, and require a huge amount of training

samples. In addition to a theoretical study of dictionary identifiability, both cited papers provide

algorithms to perform the desired identification. Unfortunately the naive implementation of these

provably good dictionary recovery algorithms seems combinatorial, which limits their applicability

to low dimensional data analysis problems and renders them fragile to outliers, i.e. training signals

without a sparse enough representation. In this chapter we will study the question when a dictionary

can be learned via �1-minimisation [43, 60], and thus by a non-combinatorial algorithm.

7.2 Dictionary Learning via �1-Minimisation

The first idea, when trying to find a dictionary providing sparse representations of all signals from

a class, is to find the dictionary allowing representations with the most zero coefficients, i.e. given

N training signals yn ∈ Rd, 1 ≤ n ≤ N , and a candidate dictionary Φ consisting of K atoms, one

can measure the global sparsity as

N∑
n=1

min
xn

‖xn‖0, such that Φxn = yn, ∀n.

Collecting all signals yn (considered as column vectors) in the d × N matrix Y and all coefficients

xn (considered as column vectors in RK) in the K × N matrix X , the fit between a dictionary Φ

and the training signals Y can be measured by the cost function

C0(Φ, Y ) := min
X | ΦX=Y

‖X‖0,

where ‖X‖0 :=
∑

n ‖xn‖0 counts the total number of nonzero entries in the K × N matrix X .

Thus to get the dictionary providing the most zero coefficients out of a prescribed collection D of

admissible dictionaries, we should consider the criterion

min
Φ∈D

C0(Φ, Y ). (7.1)

The problem is that already finding the representation with minimal non-zero coefficients for

one signal in a given dictionary is np-hard, which makes trying to solve (7.1) indeed a daunting

task. Fortunately the problem above is not only daunting but also rather uninteresting, since it is

not stable with respect to noise or suited to handle signals that are only compressible. Thus the

idea of learning a dictionary via �1-minimisation is motivated on the one hand by the goal to have

a criterion that is taking into account that the signals might be noisy or only compressible and on

the other by the success of the Basis Pursuit principle for finding sparse representation. There the

�0-pseudo norm was replaced with the �1-norm, compare Table 3.1, which also promotes sparsity

but is convex and continuous. The same strategy can be applied to the dictionary learning problem

and the �0 cost function can be replaced with the �1-cost function

C1(Φ, Y ) := min
X | ΦX=Y

‖X‖1, (7.2)

where ‖X‖1 :=
∑

n ‖xn‖1. Several authors [41, 42, 60] have proposed to consider the corresponding

minimisation problem

min
Φ∈D

C1(Φ, Y ). (7.3)



7.2. Dictionary Learning via �1-Minimisation 75

Unlike for the sparse representation problem, where this change meant a convex relaxation, the dic-

tionary learning problem (7.3) is still not convex and cannot be immediately addressed with generic

convex programming algorithms. However, it seems better behaved than the original problem (7.1)

because of the continuity of the criterion with respect to increasing amounts of noise, which makes

it more amenable to numerical implementation.

Looking at the problem above, we see that in order to solve it we still need to define D, the set of

admissible dictionaries. Several families of dictionaries can be considered such as discrete libraries of

orthonormal bases (wavelet packets or cosine packets, for which fast dictionary selection is possible

using tree-based searches [12]). Here we focus on the ’non parametric’ learning problem where the

full d×K matrix Φ has to be learned. Since the value of the criterion (7.3) can always be decreased

by jointly replacing Φ and X with αΦ and X/α, 0 < α < 1, a scaling constraint is necessary and a

common approach is to only search for the optimum of (7.3) within a bounded domain D. A set of

possible scaling conditions is defined through inequality constraints of the form
∑

k ‖ϕk‖τ
2 ≤ 1 with

0 < τ < ∞, with the standard replacement maxk ‖ϕk‖2 ≤ 1 when τ = ∞ ∗. Since the optimum

of (7.3) with any of the considered inequality constraints in indeed achieved when there is equality,

we define the following constraint manifolds for 0 < τ < ∞

Dτ := {Φ,
∑

k

‖ϕk‖τ
2 = 1}, (7.4)

and for τ = ∞:

D∞ := {Φ, ∀k, ‖ϕk‖2 = 1}. (7.5)

The constraint manifolds τ = 2,∞ are for instance used in [30, 59]. For simplicity reasons we will

concentrate here on the case τ = ∞, i.e. D := D∞, and refer to the forthcoming paper [26] for the

general case.

Let us turn now to the special aspect of dictionary learning treated in this chapter.

7.2.1 The Identifiability Problem

One important task would be to develop efficient algorithms for solving the posed minimisation

problem (7.3). This numerical part of dictionary learning is also the most commonly studied one.

Indeed several algorithms have been proposed which adopt a similar approach to learning a dictio-

nary [19, 30, 43] from training data, and their empirical behaviour has been explored. Here we are

interested in the more theoretical problem of dictionary identifiability. Assuming that the data Y

were generated from an ’ideal’ dictionary Φ0 ∈ D and ’ideal’ coefficients X0 as Y = Φ0X0, we want

to determine conditions on X0 and to a lesser extent on Φ0 such that the minimisation of (7.3)

recovers Φ0.

Our objective is therefore similar in spirit to previous work on dictionary recovery [2, 23] which

studied the uniqueness of overcomplete dictionaries for sparse component analysis. The main dif-

ference is that we specify in advance which optimisation criterion we want to use to recover the

dictionary (�1-minimisation) and attempt to express conditions on the matrix X0 to guarantee that

this method will successfully recover a given class of dictionaries.

A first difficulty we immediately face when talking about recovery are the ambiguities that have

been known at least since the development of Independent Component Analysis. Because of the

normalisation constraint on the dictionary, the usual scaling ambiguity is avoided, but there remains

a permutation and a sign ambiguity. For any permutation matrix P and any diagonal matrix D

∗Other constraints, which replace the norm ‖ϕk‖2 with, e.g., the norm ‖ϕk‖1, would also be interesting to study
for the dictionary learning problem when it is desirable to obtain not only sparse coefficients but also sparse atoms.
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with unit diagonal entries we have ΦX = (ΦPD)(DPX). Hence Problem (7.3) has not just one

but a whole equivalence class of minimisers, each of them corresponding to a matching column resp.

row permutation and sign change of Φ resp. X . Therefore, we have to relax our requirement and

can only ask to find conditions such that minimising (7.3) recovers Φ0 up to permutation and sign

change. The notation Φ ∼ Φ0 will indicate this indeterminacy, meaning that Φ = Φ0PD for some

permutation matrix P and diagonal matrix D with unit diagonal entries.

Ideally, we would like to characterise coefficient matrices X0 such that, for any Φ0 ∈ D or at least

for a reasonable subset of D such as, for instance, ’incoherent’ dictionaries, the global minima of

min
Φ∈D

C1(Φ,Φ0X0) (7.6)

can only be found at Φ ∼ Φ0. An even more ambitious goal would be to characterise coefficient

matrices such that the local minima of (7.6) can only be found at Φ ∼ Φ0, which would guarantee

that numerical optimisation algorithms cannot be trapped in spurious local minima, and would

behave somewhat independently of their initialisation. This objective raises two complementary

questions:

a. Local identifiability: which conditions on X0 (and Φ0) guarantee that Φ0 is a local minimum

of the �1-cost function?

b. Uniqueness: which conditions guarantee that, when Φ is a local minimum of the �1-cost-

function, it must match Φ0 up to column permutation and sign change?

Here we will concentrate on the first question. Unfortunately, in the study of the �1-minimisation

based dictionary recovery problem, several difficulties arise at once, some due to the possible over-

completeness and non-orthogonality of the dictionary, others due to the difficulty of globally char-

acterising the optima of a globally nonconvex problem which admits exponentially many solutions

because of the permutation and sign indeterminacies. Therefore instead of characterising directly

the local minima of the problem (7.6) we consider the related problem

min
Φ∈D,X|ΦX=Y

‖X‖1. (7.7)

After introducing some notations we provide conditions when a pair (Φ0, X0) is a local minimum of

the �1-norm ‖X‖1 over the constraint manifold

M(Y ) := {(Φ, X),Φ ∈ D,ΦX = Y }. (7.8)

In Section 7.5 we specialise to the case of the dictionary being a basis to get to a more concrete

sufficient local recovery condition, which we illustrate with an easy example in Section 7.6. This

sufficient recovery condition is used in Section 7.7 to derive how many training signals with coef-

ficients generated by a random process are typically needed to guarantee that a basis constitutes

a local minimum of the �1-criterion. The last section is dedicated to the discussion of the results

obtained and to point out future research directions.

7.3 Notations

To state the main lemmata and express the local identifiability conditions, we will adopt the follow-

ing notation conventions.
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Index Sets, Rows, Columns and Submatrices

We denote by Λn the set indexing the zero entries of the n-th column xn of X0, and Λ = {(n, k), 1 ≤
n ≤ N, k ∈ Λn} the set indexing all zero entries in X0. The notation∗ xk is for the k-th row of X0,

and Λ
k

is the set indexing the column with a zero entry in xk.

For any K × N matrix A and index set Ω ⊂ {1, . . . , K} × {1, . . .N}, the notation AΩ will refer

ubiquitously either to the vector (Akn)(k,n)∈Ω or or the K × N matrix which matches A on Ω and

is zero elsewhere.

Frobenius Norms and Inner Products

We let 〈A, B〉F = trace(A�B) denote the natural inner product between matrices, which is associated

to the Frobenius norm ‖A‖2
F = 〈A, A〉F , and sign(A) is the sign operator applied componentwise to

the matrix A (by convention sign(0) := 0). All proofs will rely extensively on the fact that

〈AB, C〉F = trace(B�A�C) = trace(A�CB�) = 〈A, CB�〉F (7.9)

and similar relations such as

〈diag(A), B〉F = 〈A, diag(B)〉F . (7.10)

Zero-Diagonal and Diagonal Decompositions

We will use the following simple lemma.

Lemma 7.3.1. Consider two matrices A,B and let A = Z1 + Δ1, B = Z2 + Δ2 be their unique

decomposition into a sum of a zero-diagonal and a diagonal matrix. Then

diag(AB) = Δ1Δ2 + diag(Z1Z2).

Proof: The product of a zero-diagonal matrix with a diagonal matrix is zero-diagonal, hence Z1Δ2

and Δ1Z2 are zero-diagonal and

diag(AB) = diag ((Z1 + Δ1)(Z2 + Δ2)) = diag (Z1Z2 + Δ1Z2 + Z1Δ2 + Δ1Δ2) = diag(Z1Z2)+Δ1Δ2.

For any dictionary Φ0, we will consider in particular the decomposition of the Gram matrix Φ�
0Φ0

into the identity matrix and a zero-diagonal part:

M0 := Φ�
0Φ0 − I. (7.11)

Null Space

We denote by N (Φ) the null space of the dictionary Φ, i.e. the linear subspace consisting of all

column vectors v ∈ RK such that Φv = 0. By abuse of notation, we will also use N (Φ) to denote

the linear space of all K × N matrices V such that ΦV = 0.

7.4 Local Identifiability Conditions

Just as in the representation problem in Table 3.1, where the �1-cost is not a smooth function of x as

soon as x has at least one zero entry, the cost in Equation (7.7) is not a smooth function of (Φ, X)

whenever X has at least one zero entry. Therefore, one cannot fully characterise the local minima

∗We will generally distinguish column vectors from row vectors using subscript vs superscript indices.
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of the cost function (7.7) as a subset of the zeroes of a ’gradient’ of the �1-cost function with respect

to (Φ, X), as this gradient does not exist everywhere. Here, on the opposite, we want to understand

the effect of the non-smooth behaviour of the cost function and to exploit it to characterise its local

minima. For that we will develop a replacement for the ’gradient’ which accounts for the fact that

the �1-cost function indeed admits one-sided directional derivatives everywhere.

For the study of local minima (Φ0, X0) of (7.7) we first need a characterisation of the tangent

space T(Φ0,X0)M(Y ) to the constraint manifold M(Y ) at the point (Φ0, X0).

7.4.1 The Tangent Space T(Φ0,X0)M(Y )

The tangent space T(Φ0,X0)M(Y ) to the constraint manifold M(Y ) at the point (Φ0, X0) is the

collection of the derivatives (Φ′, X ′) := (Φ′(0), X ′(0)) of all smooth functions ε �→ (Φ(ε), X(ε))

which satisfy ∀ε, (Φ(ε), X(ε)) ∈ D and (Φ(0), X(0)) = (Φ0, X0).

To characterise the tangent space TΦ0
D and T(Φ0,X0)M(Y ) in the following two lemmata, we use

the decomposition Φ�
0Φ0 = I + M0 introduced in Equation (7.11) and the notion of admissible

matrices. A square K × K matrix C is said to be admissible if Φ′ := Φ0 · C ∈ TΦ0
D.

Lemma 7.4.1. Let Φ0 ∈ D be a complete dictionary with nonzero columns.

a. Any matrix Φ′ ∈ TΦ0
D can be written as Φ′ = Φ0 · C for some admissible C.

b. The matrix C is admissible if, and only if there exists a zero-diagonal matrix Z such that

C = Z− diag(M0Z) (7.12)

Proof: The first claim is a trivial consequence of the completeness of Φ0, which shows that any

matrix can be written as Φ0 · C, and the definition of an admissible matrix.

For the second part note that the constraint ‖ϕk‖2 = 1, ∀k can be rewritten as diag(Φ�Φ) = I.

Taking the derivative, it follows that Φ′ ∈ TΦ0
D if, and only if, diag(Φ�

0Φ
′) = 0. Writing Φ′ = Φ0 ·C

and decomposing C = Z+Δ into a zero-diagonal and a diagonal matrix, we obtain from Lemma 7.3.1

diag(Φ�
0Φ

′) = diag(Φ�
0Φ0 · C) = diag ((M0 + I)(Z + Δ)) = Δ + diag(M0Z),

hence Φ0 · C ∈ TΦ0
D∞ if and only if Δ = − diag(M0Z), i.e. if C = Z− diag(M0Z).

Lemma 7.4.2. The pair (Φ′, X ′) is in the tangent space T(Φ0,X0)M(Y ) if, and only if, there exists

an arbitrary admissible matrix C and an arbitrary element V of N (Φ0) such that

Φ′ = Φ0 · C (7.13)

X ′ = −CX0 + V. (7.14)

Proof: Given the nature of the constraint manifold M(Y ) its tangent space at (Φ0, X0) is made

of all the pairs (Φ′, X ′) such that Φ′ ∈ TΦ0
D and Φ′X0 + Φ0X

′ = 0. Using the expression for Φ′

from the last lemma, Φ′ = Φ0 · C with some admissible C, we get to Φ0(CX0 + X ′) = 0, which is

equivalent to CX0 + X ′ ∈ N (Φ0).

Using this explicit expression for elements of tangent space we can now turn to the main result of

this section, the characterisation of local minima.
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7.4.2 Characterisation of Local Minima

Lemma 7.4.3. Consider a complete dictionary Φ0 ∈ D and a coefficient matrix X0 such that

Φ0X0 = Y . Define the K × K matrix

U := sign(X0)X
�
0 − M�

0 diag(‖xk‖1). (7.15)

a. If for every zero-diagonal Z and V ∈ N (Φ0) such that ZX0 + V �= 0 we have

|〈Z,U〉F + 〈V, sign(X0)〉F | < ‖(ZX0 + V)Λ‖1. (7.16)

then (Φ0, X0) is a strict local minimum of (7.7).

b. If the reversed strict inequality holds in (7.16) for some zero-diagonal Z and some V ∈ N (Φ0)

such that ZX0 + V �= 0, then (Φ0, X0) is not a local minimum of (7.7).

Proof: Write a(ε)
.
= b(ε) for limε→0 ‖a(ε) − b(ε)‖/|ε| = 0. Consider any smooth function ε �→

(Φ(ε), X(ε)) ∈ M(Y ). By definition we have X(ε)
.
= X0 + εX ′ and for small ε the sign of X(ε)

matches that of X0 = X(0) on the support Λ of X0, hence we may write

‖X‖1 = 〈X, sign(X)〉F = ‖(X − X0)Λ‖1 + 〈X, sign(X0)〉F
= ‖(X − X0)Λ‖1 + 〈X − X0, sign(X0)〉F + ‖X0‖1,

‖X‖1 − ‖X0‖1 = ‖(X − X0)Λ‖1 + 〈X − X0, sign(X0)〉F
.
= |ε| · ‖(X ′)Λ‖1 + ε〈X ′, sign(X0)〉F .

As a result, the one-sided derivatives of the �1-criterion in the tangent direction (Φ′, X ′) are

∇+
Φ′,X′‖X‖1 := lim

ε→0,ε>0

‖X(ε)‖1 − ‖X0‖1

ε
= +‖(X ′)Λ‖1 + 〈X ′, sign(X0)〉F (7.17)

∇−
Φ′,X′‖X‖1 := lim

ε→0,ε<0

‖X(ε)‖1 − ‖X0‖1

ε
= −‖(X ′)Λ‖1 + 〈X ′, sign(X0)〉F , (7.18)

and the �1-criterion admits a local minimum at (Φ0, X0) if for all (Φ′, X ′) in the tangent space

T(Φ0,X0)M(Y ) with X ′ �= 0 we have

|〈X ′, sign(X0)〉F | < ‖(X ′)Λ‖1. (7.19)

Vice-versa, the �1-criterion does not admit a local minimum at (Φ0, X0) if there exists some (Φ′, X ′)
in the tangent space T(Φ0,X0)M(Y ) yielding the reversed strict inequality.

Using Lemma 7.4.2 we get that the �1-criterion admits a local minimum at (Φ0, X0) if for all

admissible C and all V ∈ N (Φ0) such that V �= CX0 we have

|〈CX0 + V, sign(X0)〉F | < ‖(CX0 + V)Λ‖1. (7.20)

The rest of the proof consists in rewriting (7.20) using Lemma 7.4.1 and the properties (7.9)

and (7.10). First, using (7.9), Inequality (7.20) is equivalent to

|〈C, sign(X0)X
�
0 〉F + 〈V, sign(X0)〉F | < ‖(CX0 + V)Λ‖1.

Second, by Lemma 7.4.1, the admissible matrices are exactly the matrices C = Z − diag(M0Z),

with Z an arbitrary zero-diagonal matrix. Since (Δ · X0)Λ = 0 for any diagonal matrix Δ, we get
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(CX0)Λ = (ZX0)Λ for any admissible matrix. The inequality is therefore equivalent to

|〈Z − diag(M0Z), sign(X0)X
�
0 〉F + 〈V, sign(X0)〉F | < ‖(ZX0 + V)Λ‖1 (7.21)

with arbitrary zero-diagonal Z and V ∈ N (Φ0).

Third, since diag(sign(X0)X
�
0 ) = diag(‖xk‖1), we observe using (7.9) and (7.10) that

〈diag(M0Z), sign(X0)X
�
0 〉F , = 〈M0Z, diag(sign(X0)X

�
0 )〉F = 〈Z,M�

0 diag(‖xk‖1)〉F . (7.22)

Hence Inequality (7.21) is equivalent to∣∣〈Z, sign(X0)X
�
0 − M�

0 diag(‖xk‖1)〉F + 〈V, sign(X0)〉F
∣∣ < ‖(ZX0 + V)Λ‖1.

7.5 Local Identifiability Conditions for Basis Learning

The characterisation of local minima derived in the last section is very general but also still quite

abstract as it relies on the auxiliary matrices Z and V . Here we specialise our results to the case

of a basis, i.e. when the number of atoms equals the signal dimension K = d and the atoms of

Φ0 are linearly independent. This leads to get a more concrete if only sufficient local identifiability

condition. To formulate the condition, we introduce the following block decomposition of the matrix

X0 (see Figure 7.1):

• xk is the k-th row of X0;

• Λk is the set indexing the nonzero entries of xk and Λk the set indexing its zero entries;

• sk is the row vector sign(xk)Λk ;

• Xk (resp. X̄k) is the matrix obtained by removing the k-th row of X0 and keeping only the

columns indexed by Λk (resp. Λk) .

We also define mk the k-th column of the matrix M0 and m̄k := (〈ϕ�, ϕk〉)1≤�≤K,� �=k, the k-th

column of the matrix M0 without the zero entry corresponding to the diagonal.

Figure 7.1: Block decomposition of the matrix X0 with respect to a given row xk. Without loss of
generality, the columns of X0 have been permuted so that the first |Λk| columns hold the nonzero
entries of xk while the last |Λk| hold its zero entries.
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Theorem 7.5.1. Consider a K × N matrix X0. If for every k there exists a vector dk with

maxk ‖dk‖∞ < 1 such that

X̄kdk = Xk(sk)� − diag(‖xj‖1)j �=km̄k. (7.23)

then (Φ0, X0) constitutes a strict local minimum of the �1-criterion.

The proof of the Theorem is based on the next lemma, which decouples the recovery condition

in (7.16) into conditions expressed independently for each k.

Lemma 7.5.2. Assume that Φ0 is a basis. The recovery condition in (7.16) is satisfied for all

nonzero zero-diagonal matrices Z if and only if for all k and for all z ∈ RK−1\{0} we have

|〈Xk(sk)� − diag(‖xj‖1)j �=km̄k, z〉| < ‖X̄�
kz‖1. (7.24)

Proof: When Φ0 is a basis the null space is N (Φ0) = {0} and the recovery condition (7.16) is

satisfied for all nonzero zero-diagonal matrices Z and V ∈ N (Φ0) such that ZX0 + V �= 0 if, and

only if, for all nonzero zero-diagonal matrices Z we have

|〈Z,U〉F | < ‖(ZX0)Λ‖1. (7.25)

Denote zk the k-th row of the zero diagonal matrix Z, a row vector in RK with a zero entry at the

k-th coordinate, and z̄k the row vector in RK−1 obtained by removing this zero entry. Observe that

the k-th row of ZX0 is zkX0 = z̄kXk
0 where Xk

0 is X0 with the k-th row removed. As a consequence

the right hand side is decomposed into the sum

‖(ZX0)Λ‖1 =
∑

k

‖(zkX0)Λk
‖1 =

∑
k

‖(z̄kXk
0 )Λk

‖1 =
∑

k

‖z̄k(Xk
0 )Λk

‖1 =
∑

k

‖z̄kX̄k‖1. (7.26)

Now we decompose the left-hand side into a similar sum. First, we observe that

〈Z, sign(X0)X
�
0 〉F = 〈ZX0, sign(X0)〉F =

∑
k

〈zkX0, sign(xk)〉 =
∑

k

〈z̄kXk
0 , sign(xk)〉

〈Z,M�
0 diag(‖xk‖1)〉F =

∑
k

〈zk, m�
k diag(‖xk‖1)〉 =

∑
k

〈zk, m̄�
k diag(‖xj‖1)j �=k〉.

Then, by matching column permutations of Xk
0 and sign(xk) we get

〈z̄kXk
0 , sign(xk)〉 = 〈z̄k[Xk; X̄k], [sk; 0]〉 = 〈z̄kXk, sk〉 = 〈z̄k, skX�

k〉.

and (7.25) holds for all nonzero zero-diagonal matrix Z if, and only if,∣∣∣∣∣∑
k

〈z̄k, skX�
k − m̄�

k diag(‖xj‖1)j �=k〉
∣∣∣∣∣ <

∑
k

‖z̄kX̄k‖1,

for all (z̄k)K
k=1 with at least one row vector z̄k �= 0. After transposing all the expressions it is easy

to check that a necessary and sufficient condition is

|〈Xk(sk)� − diag(‖xj‖1)j �=km̄k, z〉| < ‖X̄�
kz‖1, ∀k, ∀z �= 0.
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Proof: [Theorem 7.5.1] For dk with maxk ‖dk‖∞ < 1 as in (7.23) we get

|〈Xk(sk)� − diag(‖xj‖1)j �=km̄k, z〉| = |〈X̄kdk, z〉| = |〈dk, X̄�
kz〉| ≤ ‖dk‖∞‖X̄�

kz‖1 < ‖X̄�
kz‖1,

which by Lemma 7.5.2 guarantees recovery.

The lemma above is also the starting point to showing via duality analysis that Condition 7.23

is not only sufficient but also necessary. We refer to [26] for more details.

7.6 Example - Ideally Sparse Training Data

Assume that the coefficient matrix X0 has the following structure:

a. each column xn is ’ideally’ sparse, in the sense that it has exactly one nonzero component.

This means that each training sample yn = Φ0 · xn is colinear to some dictionary vector;

b. each row xk has at least one nonzero component, meaning that the direction of each dictionary

vector is represented at least once in the training samples.

Using Theorem 7.5.1 let us check for which bases Φ0 such properties of X0 imply that the pair

(Φ0, X0) is a local minimum. We can rearrange the matrix X0 so that first we have all the columns

who have the non-zero entry in the first row, then the ones with the non-zero in the second row etc.

X̃0 =

⎛
⎜⎜⎜⎜⎝

x̃1 0 . . . 0

0 x̃2 . . . 0
...

...
. . .

...

0 0 . . . x̃K

⎞
⎟⎟⎟⎟⎠ .

The first observation from the rearrangement above is that for each k the split into Xk and X̄k

will result in a zero matrix Xk because the only nonzero entries are on the k-th row. Thus

we have Xk(sk)� = 0 and just need to show that we can find dk with ‖dk‖∞ < 1 such that

diag(‖xj‖1)j �=km̄k = X̄kdk. This means that for every component m̄k(i) = 〈ϕk, ϕi〉 we need to

satisfy

∀i : 〈ϕk, ϕi〉 =
〈x̄i

k, dk〉
‖xi‖1

,

where x̄i
k denotes the i-th row of X̄k. Because of the ideally sparse structure of X0 the index sets

Ωi
k where the rows x̄i

k are non zero do not overlap, i.e. for i �= j we have Ωi
k ∩ Ωj

k = ∅, and the

conditions we need to satisfy are independent. So if we choose dk such that dk|Ωi
k

= ci
ksign(x̄i

k)|Ωi
k

we see that we should have

|〈ϕk, ϕi〉| = |ci
k| < 1, (7.27)

which is always satisfied and we get that any basis will in combination with ideally sparse data

constitute a local minimum.
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7.7 Probabilistic Analysis

In this section we will derive how many training signals are typically needed to ensure that a

basis constitutes a local minimum of the �1-criterion, given that the coefficients of these signals are

generated by a random process.

7.7.1 The Model

We assume that the entries xkn of the K×N coefficient matrix X are i.i.d. with xkn = εkngkn, where

the εkn are indicator variables taking the value one with probability p and zero with probability

1 − p, i.e. ε ∼ pδ1 + (1 − p)δ0. The variables gnk follow a standard Gaussian distribution, i.e.

centered with unit variance.

The important role of the indicator variables is to guarantee a strictly positive probability that the

entry xkn is exactly zero. The assumption that the gnk are centered Gaussians with unit variance

is mainly for simplicity reasons as it allows us to do all proofs using only elementary probability

theory. However, we believe that the same results hold for many other distributions as long as they

show a certain amount of concentration, as for instance Bernoulli ±1 with equal probability or any

other subgaussian distribution.

Let us start with a geometric interpretation of the necessary recovery conditions.

7.7.2 Geometric Inspiration

We want to show that with high probability for each index k there exists a vector dk with ‖dk‖∞ < 1

such that X̄kdk = Xk(sk)� − diag(‖xj‖1)j �=km̄k. From a geometric point of view, we need to verify

that the image of the unit cube Q|Λ̄k| = [−1, 1]|Λ̄k| by the linear operator X̄k contains the vector

uk := Xk(sk)� − diag(‖xj‖1)j �=km̄k. One way to ensure this to be true is to ask that:

• the vector uk belongs to the Euclidean ball BK−1
2 (α) of radius α, i.e., ‖uk‖2 ≤ α;

• the image of the unit cube Q|Λ̄k| := [−1, 1]|Λ̄k| by X̄k contains BK−1
2 (α).

We can see that the probability of satisfying both conditions will largely depend on the number

of non zero coefficients in each row. The more zeros the shorter the vectors sk and xk, thus the

more likely that ‖uk‖2 = ‖Xk(sk)� − diag(‖xj‖1)j �=km̄k‖2 is small, and the higher the dimension

of the unit cube, thus more chances its image covers a big ball. So we get a higher probability to

recover a basis, the sparser the signals are and the more incoherent the basis is, i.e. the smaller

‖m̄k‖2 = ‖mk‖2. The following theorem gives concrete estimates, derived by working out the details

of the geometric sketch above.

7.7.3 Main Theorem

Theorem 7.7.1. Denote the event ’the original basis is not a local minimum of the �1-criterion’

shortly by ’�’. If for a basis Φ we have maxk ‖mk‖2 < 1−2p
20 and the number of randomly generated

training signals exceeds N > 600(K−1)
(1−2p)2 where p < 1/2, the probability of ’�’ decays as

P(�) ≤ 2K

[
exp

(
(K − 1) log(61

√
K−1

p ) − (1 − 2p)pN

13

)

+ exp

(
− (1 − 2p)2pN

800

)
+ (K − 1) exp

(
−pN

4

)
+ exp

(−2p2N
)]

(7.28)
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The crucial probabilities in the bound above are the first exponential because of the term

O(K log K) and the second one because of the horrible constant 1/800. The third is dominated

by the first and for p > 1/1603 the last exponential is dominated by the second one. Thus in this

case we can get the cruder but more readable bound.

P(�) ≤ 4K exp

(
K log(61

√
K
p ) − (1 − 2p)pN

13

)
+ 4K exp

(
− (1 − 2p)2pN

800

)
.

We can see that the general behaviour as predicted by the bound above is that to have a good chance

of recovering the dictionary we need the number of training signals N to grow faster than K log K

or d log d (for a basis the number of atoms equals the signal dimension). This is only a log-factor

larger than the absolute minimum of the K + 1 training signals necessary for learning a dictionary

of K elements.∗ So, as a practical example, for learning a basis for images of size 256× 256 pixels,

we would need around 727000 images. While this is a huge number for the more common approach

of learning a basis of patches of size 100 × 100 we would only need around 93000 patches, which is

still reasonable.

To state the theorem in a concrete form, we had to make some rough decisions on the way, crudely

bounding some intermediate probabilities. The next subsection gives a skeleton of the proof, indi-

cating where these choices had to be made, so in case all parameters, coherence and size of the basis,

probability of a coefficient to be non zero and number of training signals, are precisely known, it is

easy to retrace the steps and get the optimal bounds. In the course of that we will also prove the

following simple but totally abstract theorem.

Theorem 7.7.2. If for a basis Φ we have maxk ‖mk‖2 < (1 − p), then there exist constants b > 0

and a, c < ∞, depending only on p, such that for N > c · d we have

P(�) ≤ exp(a · d log d − b · N). (7.29)

7.7.4 Skeleton of the Proof - Probability Split

To estimate the overall probability that the original basis is not a local minimum of the �1-criterion,

we have a look at all aspects of the sufficient condition in (7.23) that could possibly go wrong and

bound their probabilities individually. First we can take the union bound over every row index k,

P(�) ≤ P
(∃k, s.t. �dk, s.t. ‖dk‖∞ < 1 and X̄kdk = uk

)
≤

K∑
k=1

P
(
�dk, s.t. ‖dk‖∞ < 1 and X̄kdk = uk

)
:=

K∑
k=1

P(�k).

We further split by conditioning on the number of zero coefficients in each row.

P(�k) =

N∑
M=0

P
(
�k | |Λ̄k| = M) · P(|Λ̄k| = M

)

≤
Mu∑

M=Ml

P
(
�k | |Λ̄k| = M) · P(|Λ̄k| = M

)
+ P

(|Λ̄k| < Ml ∪ |Λ̄k| > Mu

)
≤ max

Ml≤M≤Mu

P
(
�k | |Λ̄k| = M

)
+ P

(|Λ̄k| < Ml ∪ |Λ̄k| > Mu

)
∗Given only K training signals the dictionary giving the sparsest representation is the set of training signals itself.
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To bound the probability of the first term in the expression above, we use the geometric inspiration

from Subsection 7.7.2.

P
(
�dk, s.t. ‖dk‖∞ < 1 and X̄kdk = uk | |Λ̄k| = M

)
≤ P

(
X̄k(QM ) � BK−1

2 (αM )
)

+ P
(‖uk‖2 > αM | |Λ̄k| = M

)
,

Retracing our steps we can thus bound the overall probability of failure as

P(�) ≤
K∑

k=1

{
max

Ml≤M≤Mu

[
P
(
X̄k(QM ) � BK−1

2 (αM )
)

+ P
(‖uk‖2 > αM | |Λ̄k| = M

)]
+ P

(|Λ̄k| < Ml ∪ |Λ̄k| > Mu

)}
. (7.30)

From (7.30) it becomes clear how important it is to carefully choose the parameters Ml, Mu and αM

to keep the sum of all probabilities small. However, to make this choice we first need to estimate

the magnitude of the probabilities involved.

7.7.5 Estimating the Individual Probabilities

All estimates are based on concentration of measure results to bound the probability that a random

variable deviates a lot from its expected value.

We start with the easiest estimate, the probability of the number of zero coefficients in each row

being below Ml or above Mu, using Hoeffding’s inequality.

Theorem 7.7.3. Let Y1 . . . YN be independent random variables. Assume that the Yn are almost

surely bounded, meaning for 1 ≤ i ≤ N we have P(Yn ∈ [an, bn]) = 1. Then, for the sum of these

variables S = Y1 + . . . + YN we have the inequality

P(S − E(S) ≥ Nt) ≤ exp(− 2N2t2∑N
n=1(bn − an)2

),

which is valid for positive values of t, where E(S) is the expected value of S.

In each row the number of zero coefficients |Λk| is N minus the number of non-zero coefficients

|Λ̄k|, which is the sum of the indicator variables
∑

n εkn. The εnk are taking only the values zero

and one, so ai = 0, bi = 1 and E(
∑

n εkn) = pN leading to

P(|Λk| − pN ≥ Nt) ≤ exp(−2Nt2).

Choosing t = (1 − p)εΛ and inserting |Λ̄k| = N − |Λk| we get

P(|Λ̄k| ≤ N(1 − p)(1 − εΛ)) ≤ exp(−2N(1 − p)2ε2
Λ).

To bound the converse probability that |Λ̄k| is very large, we set Yn = 1−εkn and again t = (1−p)εΛ

to get directly to

P(|Λ̄k| ≥ N(1 − p)(1 + εΛ)) ≤ exp(−2N(1 − p)2ε2
Λ).

So if we set Ml = N(1 − p)(1 − εΛ) and Mu = N(1 − p)(1 + εΛ) we get that

P
(|Λ̄k| < Ml ∪ |Λ̄k| > Mu

) ≤ 2 exp(−2N(1 − p)2ε2
Λ).
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Next we will estimate the typical size of the largest ball we can inscribe into the image of the

unit cube Q|Λ̄k| by X̄k when |Λ̄k| = M . We start with some geometrical observations.

Lemma 7.7.4. Let A be a matrix of size d × M . The image of the unit cube QM by A contains a

Euklidean ball of size α if and only if for all x with ‖x‖2 = 1 there exists a v ∈ QM , i.e. ‖v‖∞ ≤ 1

such that |〈Av, x〉| ≥ α.

Proof: It will be easier to prove the converse statement:

A(QM ) � Bd
2(α) ⇔ ∃x, ‖x‖2 = 1, s.t. ∀v ∈ QM , |〈Av, x〉| < α

While the ⇐ direction is obvious the ⇒ direction is slightly more tricky.

The image of QM by A is a convex polygon, that is symmetric around the origin. Let β < α

be the radius of the largest ball that can be inscribed into A(QM ). Choose ±x a pair of vectors

where the ball Bd
2 (β) touches the surface of the polygon. There the tangent planes to the ball

h+ : 〈y, x
‖x‖2

〉 = β, h− : 〈y, x
‖x‖2

〉 = −β are parallel to the facets of the polygon and as A(QM ) is

convex, it is enclosed between them, i.e. A(QM ) ⊆ {y : |〈y, x
‖x‖2

〉| ≤ β}. Thus for the unit norm

vector xβ = x
‖x‖2

and for all v ∈ QM we have |〈Av, xβ〉| ≤ β < α.

Lemma 7.7.5. If there exists an εN -net N for the unit sphere in Rd such that for all xi ∈ N we

have a vi ∈ QM such that |〈Avi, xi〉| ≥ α and ‖A‖2,∞ ≤ β, then A(QM ) ⊇ Bd
2 (α − βεN ).

Proof: By Lemma 7.7.4 we need to show that for all x with unit norm we can find v ∈ QM such

that |〈Av, x〉| ≥ α − βεN . Since N is an εN -net we can find x0 ∈ N with ‖x − x0‖2 < εN . For v0

we then have

|〈Av0, x〉| ≥ |〈Av0, x0〉| − |〈Av0, x − x0〉| ≥ α − ‖Av0‖2‖x − x0‖2 ≥ α − βεN .

As a corollary to the lemma above we get the following probabilistic estimate.

Corollary 7.7.6. Choose an εN -net N for the unit sphere in Rd with |N | ≤ ( 6
εN

)d. For a ’random’

d × M matrix A = (A1 . . . AM ) we can bound the probability that A(QM ) covers a ball of radius

α − βεN as

P
(
A(QM ) ⊇ Bd

2 (α − βεN
) ≥ 1 −

∑
xi∈N

P
(‖A�xi‖1 ≤ α

)− P
(∑

i

‖Ai‖2 ≥ β
)
.

Proof: A direct consequence of Lemma 7.7.5 and the following two observations

sup
‖v‖∞≤1

|〈Av, xi〉| = sup
‖v‖∞≤1

|〈v, A�xi〉| = ‖A�xi‖1,

‖A‖2,∞ ≤
∑

i

‖Ai‖2.

To finally get a quantitative estimate, we need the following two concentration of measure inequal-

ities, whose proofs can be found in the appendix of [26].

Theorem 7.7.7. Let A = (A1 . . . AM ) be a matrix of size d×M , whose entries follow the distribution

described in Subsection 7.7.1, Aij = εijgij, i = 1 . . . d, j = 1 . . .M , and x ∈ Rd be a vector with unit
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norm. Then

a) P
(‖A�x‖1 ≤ Mp(

√
2
π − εα)

) ≤ 2 exp

(
− ε2

αMp

2 +
√

2εα

)
,

b) P
( M∑

j=1

‖Aj‖2 ≥ M
√

pd(1 + εβ)
) ≤ 2 exp

(
− ε2

βM
√

p

2
√

p +
√

2εβ

)
.

From the first equation we see that α has to smaller than
√

2
π Mp. Indeed, since we also have the

converse bound, i.e.

P
(‖Ax‖1 ≥ Mp(

√
2
π + εα)

) ≤ 2 exp

(
− ε2

αMp

2 +
√

2εα

)
, (7.31)

the probability of finding a unit vector x such that sup‖v‖∞≤1 |〈Av, x〉| = ‖A�x‖1 < Mp(
√

2
π + εα)

rapidly approaches 1, meaning that the radius of the maximal ball cannot exceed Mp(
√

2
π + εα).

In an attempt to simultaneously balance the resulting probabilities and keep them readable we choose

εα =
√

2/π− 1/3, leading to α = Mp/3, εβ = 1/3, leading to β = 4M
√

pd/3, and εN = 10−1
√

p/d.

Using Corollary 7.7.6 we arrive at

P
(
A(QM ) � Bd

2 (
Mp

5
)
) ≤ 2(60

√
d
p )d exp

(
−Mp

13

)
+ 2 exp

(
− M

√
p

18
√

p + 3
√

2

)

Note that for p ≤ 1
2 we have exp

(
− M

√
p

18
√

p+3
√

2

)
≤ exp

(
−Mp

12

)
, which leads to the simpler bound,

P
(
A(QM ) � Bd

2 (
Mp

5
)
) ≤ 2 exp

(
d log(61

√
d

p
) − Mp

13

)
. (7.32)

Last we will estimate the probability that the vector uk = Xk(sk)� − diag(‖xj‖1)j �=km̄k is not

contained in the Euklidean ball of radius α = Mp/5.

One way to make sure ‖uk‖2 is small is to check that both its components are small, i.e. if ‖Xk(sk)�‖2

is smaller than qα for some q ∈ [0, 1] and ‖ diag(‖xj‖1)j �=km̄k‖2 is smaller than (1 − q)α, we have

‖Xk(sk)� − diag(‖xj‖1)j �=km̄k‖2 ≤ ‖Xk(sk)�‖2 + ‖ diag(‖xj‖1)j �=kmk‖2 < α, leading to the bound

P
(‖Xk(sk)� − diag(‖xj‖1)j �=km̄k‖2 > α | |Λ̄k| = M

)
≤ P

(‖Xk(sk)�‖2 > qα | |Λ̄k| = M
)

+ P
(‖ diag(‖xj‖1)j �=kmk‖2 > (1 − q)α

)
.

Using the fact that ‖ diag(‖xj‖1)j �=kmk‖2 ≤ maxj �=k ‖xj‖1‖mk‖2 and a union bound over j the

second term in the equation above can in turn be bounded as

P
(‖ diag(‖xj‖1)j �=kmk‖2 > (1 − q)α

) ≤ ∑
j �=k

P
(‖xj‖1‖mk‖2 > (1 − q)α

)
,

so that we finally get

P
(‖Xk(sk)� − diag(‖xj‖1)j �=km̄k‖2 > α | |Λ̄k| = M

)
≤ P

(‖Xk(sk)�‖2 > qα | |Λ̄k| = M
)

+
∑
j �=k

P
(‖xj‖1‖mk‖2 > (1 − q)α

)
. (7.33)
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To keep the sum of the two probabilities small, it its again necessary to carefully choose the size of

parameter q, which will depend on the magnitude of ‖mk‖2 measuring the coherence of the basis. It

is easy to see that when the basis is orthogonal we have ‖mk‖2 = 0 and can set q = 1. For further

bounds we need another two concentration of measure results, whose proofs can again be found in

the appendix of [26].

Theorem 7.7.8. a. Let B be a matrix of size d×L, whose entries follow the distribution described

in Subsection 7.7.1, Bij = εijgij, i = 1 . . . d, j = 1 . . . L, and s be a vector of length L with

entries sj = ±1, j = 1 . . . L. Then for εs > 0

P
(‖Bs‖2

2 ≥ dLp(1 + εs)
) ≤ 2 exp

(
− dpε2

s

6 + 2εs

)
. (7.34)

b. Let x be a vector of length N , whose entries follow the distribution described in Subsection 7.7.1,

xi = εigi, i = 1 . . .N . Then for εm > 0

P
(‖x‖1 ≥ pN(

√
2
π + εm)

) ≤ 2 exp

(
− pNε2

m

2 + εm/
√

2

)
. (7.35)

We apply the theorem to the matrix Xk, the vector sk and the vectors xj to further bound the

probability in (7.33). Write shortly d = K − 1. If (qα)2 > dLp and (1 − q)α >
√

2
π pN‖mk‖2, we

set εs = (qα)2

dLp − 1 and εm = (1−q)α
pN‖mk‖2

−
√

2
π to get

P
(‖Xk(sk)� + ‖xk‖1m̄k‖2 > α

) ≤ 2 exp

(
− (qα)2

2L
· cs

)
+ 2d exp

(
− (1 − q)α

√
2

‖m‖k
· cm

)
,

with cs =
(1 − dLp

(qα)2 )2

1 + 2 dLp
(qα)2

and cm =
(1 −

√
2
π

pN‖mk‖2

(1−q)α )2

1 + pN‖mk‖2

(1−q)α (2
√

2 −
√

2
π )

.

Let us investigate the conditions that there exist εs, εm > 0 in more detail. For α = Mp
5 we first

need

1 <
q2p2M2

25dLp
.

At worst M = Ml = (1 − εΛ)(1 − p)N and L = N − Ml = (εΛ + p − εΛp)N) so we need that,

1 <
N

d
· q2p(1 − εΛ)2(1 − p)2

25(εΛ + p − εΛp)
,

which will always be satisfied as soon as the number of signals N is large enough. The second

condition

1 <

√
π

2

(1 − q)pM

5pN‖mk‖2
(7.36)

is more interesting as in the worst case for M = Ml it is equivalent to

‖mk‖2 <

√
π

2

(1 − q)(1 − εΛ)(1 − p)

5
<

√
π

2

(1 − p)

5
,
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which means that as soon as ‖mk‖2 ≥ √
π
2

(1−p)
5 we cannot find εΛ, q > 0 to get an εm > 0. Looking

back at the estimate of the radius of the maximal ball we see that α necessarily has to be smaller

than
√

2
π Mp, leading to

‖mk‖2 < 1 − p.

This means that as soon as ‖mk‖2 ≥ (1 − p) the size of the vector uk grows faster than the size of

the maximal ball, and recovery can no longer be guaranteed.

However, let’s assume that ‖mk‖2 < M
20N and choose q = 1/

√
3. If M2 > 300dL/p a long calculation

shows that we have

P
(‖Xk(sk)� − diag(‖xj‖1)j �=km̄k‖2 >

Mp

5

) ≤ 2 exp

(
−M2p2

400L

)
+ 2d exp

(
−Np

4

)

If we combine this estimate with the estimate in (7.32), we can bound the probability that uk is not

in the image of the unit cube by X̄k as, (d = K − 1),

P
(
�k | |Λ̄k| = M

) ≤ 2 exp

(
d log(61

√
d
p ) − Mp

13

)
+ 2 exp

(
−M2p2

400L

)
+ 2d exp

(
−Np

4

)
(7.37)

Keeping in mind that L = N − M , we see that the expression above is the smaller the larger

M is. Thus if we want to bound it over Ml ≤ M ≤ Mu we need to insert the minimal value

M = Ml = (1 − εΛ)(1 − p)N . For aesthetic reasons we choose εΛ = p/(1 − p), leading to Ml =

(1 − 2p)N and N − Ml = 2pN . Putting this together with the estimate that M ≥ Ml we get that

if maxk ‖mk‖2 < 1−2p
20 and N > 600(K−1)

(1−2p)2 the probability of not recovering the dictionary as local

minimum of the �1-criterion can be bounded as

P(�) ≤ 2K

[
exp

(
(K − 1) log(61

√
K−1

p ) − (1 − 2p)pN

13

)

+ exp

(
− (1 − 2p)2pN

800

)
+ (K − 1) exp

(
−pN

4

)
+ exp

(−2p2N
)]

.

7.8 Discussion

We have developed some algebraic conditions on a dictionary coefficient pair to constitute a local

minimum of the �1 dictionary learning criterion. In case the dictionary is an incoherent basis we

have shown that for coefficient matrices generated from a random sparse model the resulting basis

coefficient pair suffices these conditions with high probability as long as the number of training

signals grows like d log d. These are exciting new results but since dictionary learning is a relatively

young field they lead to more open questions. For the special case when the dictionary is assumed

to be a basis it would be desirable to show the converse direction, i.e. if the coherence of the basis

is too high and the training signals are generated by the same random sparse model, the basis

coefficient pair will not be a local minimum. Ideally this breakdown coherence maxk ‖mk‖2 would

be the same or close to (1 − p). Another helpful result would be to prove that under the random

model there exists only one local minimum which then has to be the global one, and could be found

with simple descent algorithms. Numerical experiments in two dimensions support this hypothesis.

Figure 7.2 is a plot of the �1-cost ‖Φ−1Y ‖1 for all possible two-dimensional bases, where both atoms

are parametrised by their angle θi to the x-axis, θi ∈ [0, π]. The N = 500 training signals Y = Φ0X0

were generated using the random sparse model with p = 0.5. As can be seen the only two local
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minima are at the original dictionary Φ0 and at the dictionary corresponding to Φ0 with permuted

columns (the sign ambiguity is avoided by restricting the angles to the interval [0, π]).

Finally much harder research will have to be invested to extend the current results to the over-

Figure 7.2: �1-cost as a function of all two-dimensional bases

complete and the noisy case. In the overcomplete case the null space has to be taken into account,

which prevents a straightforward generalisation from the intrinsic conditions to the explicit ones.

In the noisy case already the formulation of the problem has to be changed as we cannot expect

the best dictionary for the noise contaminated training data to be exactly the same as the original

dictionary but only close to it.



Outlook 8
In the first part of the thesis we have seen that even though finding sparse representations is hard,

the situtation is not hopeless. In particular Chapter 2 showed that sensing dictionaries can improve

algorithms like Thresholding and (O)MP, and Chapters 3/4 that on average the behaviour of both

algorithms is quite good. Finding sparse representations is by now a huge field of research, with new

algorithms and variants of existing ones, both general or specialised to certain dictionaries being

developed every day. In short the field is being thoroughly explored. The same can be said for

the topic presented in Chapter 5. Compressed Sensing is new, hot and sexy. The already existing

literature is enormous, as can be seen on the Compressive Sensing Resources website at

http://www.dsp.ece.rice.edu/cs/}.

The situation is different for the subjects broached in the last two chapters. While classification

itself is quite a big and well explored field as well, the dictionary or subspace view seems quite novel.

However, while all the ideas presented here can certainly be further developed, as pointed out at

the end of Chapter 6, the main message to be learned is that every element or group of elements

in a dictionary can have a meaning. The same idea had already been touched at the beginning

of Chapter 4 when discussing the applications of multichannel signal approximations, where every

atom corresponded to a thought. Thus, keeping this connection between atoms and meanings in

mind can help bring new views to many data mining problems.

Dictionary learning finally is a young and very important field. Indeed any theory about finding

sparse representations or compressed sensing is only useful if you can actually find a dictionary

providing these sparse representations. In that sense dictionary learning is also further research

into sparse representations or compressed sensing. At the moment there exist only a handful of

algorithms, some of which are too inefficient to work for real applications, and a little bit of theory.

However, for real life applications what is needed are fast algorithms that can handle big data sizes

and a theoretical framework to guarantee that they work, which makes exploring the directions

pointed out at the end of Chapter 7 all the more important.
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