-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Towards Multi-Level Modeling of Self-Assembling
Intelligent Micro-Systems

Alcherio Martinoli
Distributed Intelligent Systems
and Algorithms Laboratory

_ EPFL-ENAC-ISTE-DISAL
Ecole Polytechnique Fédérale
de Lausanne (EPFL)
Lausanne, Switzerland

Grégory Mermoud
Distributed Intelligent Systems
and Algorithms Laboratory

_ EPFL-ENAC-ISTE-DISAL
Ecole Polytechnique Fédérale
de Lausanne (EPFL)
Lausanne, Switzerland

Juergen Brugger
Microsystems Laboratory
_ EPFL-STI-IMT-LMIS
Ecole Polytechnique Fédérale
de Lausanne (EPFL)
Lausanne, Switzerland
juergen.brugger@epfl.ch

gregory.mermoud@epfl.ch

ABSTRACT

We investigate and model the dynamics of two-dimensional
stochastic self-assembly of intelligent micro-systems with min-
imal requirements in terms of sensing, actuation, and con-
trol. A microscopic agent-based model accounts for spa-
tiality and serves as a baseline for assessing the accuracy
of models at higher abstraction level. Spatiality is relaxed
in Monte Carlo simulations, which still capture the binding
energy of each individual aggregate. Finally, we introduce
a macroscopic model that only keeps track of the average
number of aggregates in each energy state. This model is
able to quantitatively and qualitatively predict the dynam-
ics observed at lower, more detailed modeling levels. Since
we investigate an idealized system, thus making very few as-
sumptions about the exact nature of the final target system,
our framework is potentially applicable to a large body of
self-assembling agents ranging from functional micro-robots
endowed with simple sensors and actuators to elementary
microfabricated parts. In particular, we show how our suite
of models at different abstraction levels can be used for opti-
mizing both the design of the building blocks and the control
of the stochastic process.
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Aggregation is an ubiquitous phenomenon occuring at all
scales: atoms and molecules [19], microfabricated parts [3],
animals [14], and robotic systems, both with passive ob-
jects [1] and robots [9] as building blocks. Also, many func-
tional structures found in nature are generated by a specific
type of aggregation, self-assembly, which is essentially sto-
chastic, reversible, and directional [18], i.e. the stability of an
aggregate depends on the relative positioning of its building
blocks.

This paper investigates and models the self-assembly of
distributed intelligent micro-systems (e.g., micro-robots) with
minimal requirements in term of sensing, actuation, and con-
trol. Among the recent implementations of self-assembling
robots at the macroscale, Gross and colleagues demonstrated
self-assembly in Swarm-bots, a mobile robot equipped with a
gripper [9]. However, since they rely on a full breadth of sen-
sors, including cameras, as well as a neural network as con-
troller, their approach is not really suited to extreme minia-
turization (below one millimeter). Klavins and colleagues
have demonstrated self-assembly of triangular robotic mod-
ules that slide passively on an air table [11]. Here, perma-
nent magnets serve as binding mechanism and the building
blocks execute a common graph grammar in order to deter-
mine their actions. Once again, we believe that this type
of controller is a strongly limiting factor in the context of
extreme miniaturization. Garnier et al. [6] achieved a first
step towards this direction by successfully implementing bio-
inspired probabilistic aggregation in a group of Alice robots,
which are only 2 cm in size.

Based on our experience in fluidic self-assembly of mi-
crofabricated parts, we believe that future micrometer-sized
devices such as micro-robots must rely solely on stochastic
self-assembly in order to achieve reliable and controllable
collective pattern formation. In this context, we assume
that the individual nodes are moving around and colliding
in a random fashion; structured aggregates arise owing to
the fact that each unit has some preferential binding di-
rection, which makes aggregates with misaligned building
blocks less stable. However, the notion of directionality in-
volves an important difficulty: the probability of break-up of
an aggregate depends on the relative orientation of its build-
ing blocks. Yet, several instances of such building blocks
exist in reality, starting with molecules, which are typically
assembled by combining two functional groups that we call
sticky ends, which mediate the aggregation process. Along
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the same lines, one can design microfabricated parts that
have preferential binding direction according to their sur-
face properties and their shape [13]. Future self-assembling
intelligent micro-systems may exploit the same kind of in-
teractions, possibly controlled in real time by changing their
geometry, shape, or conformation.

Previous probabilistic models of aggregation [1, 4] and
self-assembly [11] did not account for directionality. Zheng
and Jacobs [20] proposed a first-order model for the self-
assembly of hybrid micro-systems, which does not, however,
account for reversibility. In their model, they assume that
two assembled building blocks cannot break apart and that
they have unique aggregation probability, which must be
determined experimentally. Deterministic models of aggre-
gation and flocking (which is conceptually similar to aggre-
gation, but involves a coordinated motion of the aggregate)
such as [17, 10] as well as graphical models of multi-robot
systems such as [15] are interesting complements, from a
system and control perspective, to our probabilistic model-
ing approach. However, they are not directly applicable to
self-assembly processes because they do not account for the
intrinsic randomness of these processes.

The present paper presents a suite of models at multiple
abstraction levels that are able to cope with the extremely
rich combination of features of multi-agent systems; this ap-
proach based on multi-level modeling has proven very suc-
cessful in modeling systems involving robots of a few cen-
timeters [1, 12, 2]. The complexity exhibited by stochastic
self-assembly prevents a single model to probe the dynamics
of the whole system. This fact motivates a combination of
multiple levels of abstractions (e.g., microscopic and macro-
scopic modeling or multiple levels of microscopic represen-
tations) into a consistent multi-level modeling framework.
On one hand, one needs microscopic modeling that is able
to capture low-level details, namely component direction,
shape, material, charge, and so on. On the other hand,
one is interested in models that can yield accurate numeri-
cal predictions of collective metrics and investigate, possibly
formally, macroscopic properties such as the size, the type
and the proportion of the resulting aggregates. Multi-level
modeling allows fulfillment of both requirements in a very ef-
ficient way by building up models at further abstraction lev-
els in order to capture the relevant features of the system.
Also, the calibration procedure can leverage the multiple
levels, using data collected at a given level for calibrating
parameters at one level above. In this paper, we use this
methodology to capture directionality at the macroscopic
level. Specifically, we start from a spatial microscopic mo-
del based on Netlogo [16], a programmable environment for
multi-agent simulations (Section 2.1). At this level of ab-
straction, the position and the velocity of each individual
agent is captured, thus making these simulations expensive
in terms of both computation and memory requirements. As
a result, we relax spatiality in a second type of microscopic
model, based on the Monte Carlo method (Section 2.2). In
this model, encountering probabilities are calculated using
a geometric approximation, and break-up probabilities are
shared with other models. Finally, a macroscopic model
based on a discretization of the state space is proposed (Sec-
tion 2.3).

2. MATERIALS AND METHODS

The system that we model hereafter is composed of No

agents (e.g., mobile robots, microfabricated parts), which we
call building blocks hereafter. These agents move randomly
throughout the environment (e.g., arena, liquid container)
and they can, upon collision, bind with each other, thus
forming an aggregate. The stability of an aggregate depends
on the alignment of its building blocks. From the stand-
point of an agent, this means that its propensity to leave
the aggregate depends on the bearing of its neighbor. For
the sake of simplicity, we assume in this paper that building
blocks have a single binding site that can handle only one
other building block at a time, thus implicitly limiting the
system to the formation of dimers. This assumption does
not limit the generality of our approach whatsoever as we
are specifically interested in capturing the directionality of
the aggregation process, and not the size of the aggregates.
Our multi-level modeling framework consists of three mod-
els at different abstraction levels: (1) a spatial microscopic
model (agent-based), (2) a nonspatial microscopic model
(Monte Carlo), and (3) a macroscopic model (mean field ap-
proach based on difference equations). The governing prin-
ciple of our modeling methodology is to build the suite of
models from the bottom up while conserving a consistent
set of parameters that are shared at all abstraction levels,
namely bond energies that determine break-up probabilities.
Encountering probabilities are either computed using a ge-
ometric approximation (nonspatial microscopic model and
macroscopic model) or explicitly simulated using a simple
collision routine (spatial microscopic model). Some param-
eters such as the average velocity of the building blocks are
estimated using models at lower abstraction levels.

2.1 Spatial Microscopic Model

Our spatial microscopic model is implemented in Netl-
ogo, a powerful multi-agent simulation environment [16]. In
this model, the dynamics of each individual agent is cap-
tured. Hereafter, we describe how we model the dynamics
of the building blocks and the bonds that mediate the self-
assembly.

2.1.1 Building Block Modeling

In our approach, we assume that building blocks are ra-
dially symmetric bodies with a mass m, a position Z € R?
of their center of mass, a velocity # € R?, an orientation 6,
and a radius 7. The environment has a finite area Ao and
has toroidal boundary conditions.

Two building blocks By and Bz of radius r1 and r2, re-
spectively, located at a distance d from each other, collide if
and only if d < r1 + r2. The collision of two building blocks
invariably leads to the formation of a bond. This assumption
will be discussed in further details below.

A building block B; of mass m undergoes stochastic per-
turbations of its trajectory, which can be described by a
Langevin equation:

mv=—yv+N(0,nv) (1)

where v is the velocity of the particle, v is a drag constant
for small Reynolds number, and A(0, 1 v2) a stochastic force
term of variance n 2, which is proportional to the agitation
of the system represented by the unitless value v/2 (nis a
constant term in Newton). For the sake of simplicity, we
assume here that an aggregate undergoes, on average, the
same stochastic perturbations as its building blocks. This
assumption, which is obviously not verified in the case of



large aggregates, shall be relaxed in further work. Equa-
tion 1 is obviously relevant to building blocks that undergo
Brownian motion, but one could use another equation of
motion without restricting the validity of the approach pre-
sented in this paper.

The microscopic model captures the conformation of each
aggregate, by keeping track of the relative positioning of
each building block. Each building block is connected, if
part of an aggregate, to other building blocks, called its
neighbors, through a set of bonds. Each bond has a given
energy AF, which depends on the relative alignment of the
building blocks and determines its stability (see Section 2.1.2
for further details).

In this paper, we simplify our model as much as we can:
building blocks are represented by circles with a certain
orientation and a single preferential binding direction that
can handle at most one other building block at a time.
The collisions are handled in a purely deterministic fash-
ion based on the relative alignment of the colliding assem-
blies & = (01 62)T € [0, 7] (see Figure 1). For the sake of
simplicity, we also assume that each individual node can de-
termine the relative orientation of its neighbor with a perfect
accuracy.

4
>

building blocks aggregate

Figure 1: The relative alignment of two aggregated
building blocks is given by two angles 6; € [0, 7] and
02 € [0, 7], i.e. the bearing of each building block with
respect to the other. We assume that 6; and 6, fully
determine the energy (and therefore the stability)
of the aggregate.

2.1.2 Bond Modeling

A bond is created upon collision of two building blocks,
and its energy AF is given by a Gaussian-like function of the
relative alignment & = (6; 62)7 of the colliding assemblies:
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where Fyonq is the maximal bond energy, g, and oy, are pa-
rameters denoting the misalignment tolerance of each build-
ing block, and 6; and 0 are the angles depicted in Figure 1.
This energy function implies that aggregates with properly
aligned building blocks have maximal bond energy (in ab-
solute value). We expect this arbitrary energy function to

be flexible and meaningful enough to be applied to a large
body of target systems.

In our case, we assume that all building blocks have the
same tolerance of misalignment, and the bond energy can
therefore be written

®3)

0% + 03
AE(§) = —Epond - €xp (— it 2).
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where the parameter gy can be tuned as a function of the
building block properties (shape, surface properties, etc.)

To determine the policy of bond destruction, we use a mo-
del similar to the well-known law of mass action in chem-
istry. We know that the equilibrium constant K of a reaction
k4

k
A+B§AB with K = . * (4)

can be written as a function of the energy AE of the formed

bond:
ke —AFE
K—K—exp<EB> (5)

where k4 and k_ are the forward and backward rate con-
stants, respectively, and Ep is the mean energy of the par-
ticles in the system, if they are thermally randomized to the
Maxwell-Boltzmann distribution.

One can interpret the rate constants k+ and k_ as proba-
bilities of bond formation and destruction. Now, recall that
we assumed above that all collisions lead to an aggregation
regardless of the energy of the formed, which is similar to
setting k4 = 1. Therefore, the probability that one bond of
energy AFE will break up in the next time interval [¢,t + T
can be written:

prk_~T:eXp<ﬁ>~T (6)
Ep

In the systems we are investigating, one cannot assume
that the kinetic energies of the building blocks are random-
ized to any specific distribution. Furthermore, the system
agitation is not limited to thermal agitation. Hence, the
term Ep has to be replaced by a parameter a2, that is,
an energy term (« is a constant term in Joule) proportional
to the agitation of the system, in its most general sense (see
also Equation 1). Therefore, the breakup probability ps of
a bond of energy AFE(€) can be written:

ml© =exp (22 ) 7 (7)

av?

2.2 Nonspatial Microscopic Model

NetLogo offers an interesting framework for spatial mo-
deling, but it is expensive both in term of memory and
computation. Indeed, the simulation stores the position,
the orientation, and the neighbors of each agent. Also, it
must determine at each iteration and for each pair of agents
whether a collision occured or not. Hereafter, we describe
a Monte Carlo approach, which does not capture spatiality,
i.e. it does not keep track of the position and orientation of
each individual. It is a stochastic microscopic model that, in
contrast to macroscopic models (see Section 2.3), does not
rely on a mean field assumption and a single representation
for the whole multi-unit system. Indeed, each collision event
is sampled individually and bonds are represented individu-
ally, even though it keeps track only of the total, absolute,



and discrete number of single building blocks. Furthermore,
the algorithm stores only one piece of information about
bonds: the relative positioning ¢ of the building blocks they
are connecting. Figure 2 outlines the pseudocode of the al-
gorithm.

Since our model is nonspatial, collisions must be handled
in a probabilistic fashion. Using a geometric approximation,
the probability of encountering between two building blocks
of radius r is written

T wy
c ™~ 8
P A (8)

where 7 is the average velocity of the building blocks (Equa-
tion 1), T the sampling time, wq = 27 is the diameter of the
building blocks, and Ay, is the total area of the arena [12].

Algorithm 1: Pseudocode of the Monte Carlo simulation

input : a time span tspan and a total number of building blocks Ng
output: one realization of the time evolution of the system

data structures:

— B; denotes the i-th buidling block, with ¢ =1, ..., Ny

— N is the number of single building blocks, initially Ng

— N, is the number of single building blocks that collided (Np < N)

—Zc = (&1,...,&n,) is the vector of aggregates that have just been formed,
with & = (01,5, 02,;) the relative alignment of the aggregate i

— Za = (&1,...,&n,) is the vector of all aggregates, initially empty

— N, denotes the total number of aggregates, i.e. the size of Ea

foreach ¢ in tspan do
— Generate a random vector X¢ = (z9,...,2%) with 2§ ~ U(0,1)
— Compute n. the number of building blocks B; that collided, i.e. that
satisfy the condition zf < p. - N (Equation 8)
Generate a random vector of relative alignments ¢ = (&1,...,&n,)
with & = (01,4,02,:) and 04, ~ U(0,7)
— Append E¢ to Za and let N, < size(Ea)
Generate a random vector X° = (z1,...,z%,) with 2§ ~ U(0,1)
— Remove from E, all aggregates & that broke up, i.e. that satisfy the
condition z§ < P,(&) (Equation 7)
Let np be the number of & removed from Za
—Let N+ N +2np, —2n.
end

Figure 2: Pseudocode of the non-spatial Monte
Carlo simulation.

2.3 Macroscopic Model

Both agent-based and Monte Carlo simulations are com-
putationally expensive stochastic models, which only pro-
vide a single realization of the time evolution of the system.
As a result, one must always perform several runs in order
to obtain statistically meaningful results. Hereafter, we de-
scribe a macroscopic model of directional aggregation, which
allows one to overcome these limitations. Our model is a
time-discrete difference equation system, where k denotes
the current iteration (time step) and kT the actual time,
with T" the sampling time, which is left out in the equations
for the sake of simplicity, and should be chosen small enough
in comparison to the system time constants/dynamics.

Capturing Directionality at the Macroscopic Level

First, we shall notice that one can describe the dynamics
of each building block B by a Markov chain with a set of
states X'. The state space X®) shall be discrete, finite, and
it must reflect the type of the aggregate s that the robot is
a part of. Unfortunately, the space S of aggregate’s types
is not discrete. Indeed, even though we can distinguish be-
tween single building blocks and pairs in a discrete manner,
pairs take continuous energy values. As a consequence, we

need to discretize S in order to obtain a discrete and fi-
nite state space X®). Now, a pair is fully defined by the
relative positioning of its building blocks &, which is a two-
dimensional vector. Fortunately, the symmetry of Equa-
tion 3 allows one to simplify this definition to a scalar, that
is, the norm of the relative positioning, denoted

6% = |I¢]I” = 61 + 65 € [0,27°], (9)

which can be easily discretized into a set of K averaged
values 62 given by

»

o~ 1\ 272
0.:<¢—5)-% withi=1,2,...,K.  (10)

-

Therefore, the state space of the Markov chain is given by
X(B> =35; € S84 (11)

with Sg the discretized space of aggregate’s types, with so
representing single building blocks, s; pairs with an aver-

aged relative positioning norm 6? with¢=1,2,..., K and a
binding energy
62
AFE(8;) = Fyond - €Xp . (12)
20;

Therefore, the probability for a building block B to ag-
gregate with another building block into a pair of averaged

relative positioning norm 6? is
PP (k4+1) = 5| P (k) = 50) = 1. (13)

Similarly, the probability for a building block B to leave a

pair with an averaged relative positioning norm 6? is given
by

PXP(k+1) =50 | XP (k) = 5:) : Sa = [0,1]  (14)
and will be denoted p;(s;). A pair will break up if one or
both of its building blocks leaves. Therefore, the probability
pu(s;) for a pair of type s; to break up (Equation 7) can be
written
1—(1—pi(s))?
pu(si) - (2= pu(si)

AE(s;
= exp (#) (15)

a2

Py (si)

Using a set of difference equations, one can summarize the
average state transitions of each individual Markov dynami-
cal system, and thus keep track of the number of aggregates
of type s € Sq. We write N; the average number of aggregate
of type s;.

The average number of single building blocks N, is given
by the following difference equation

Ny(k+1) = Ny(k) = 2 (pb Np(k)) — pe - No(k)>  (16)
with
po = (po(s1),- -, pol(sx))”
Np (k) = (N1(k), ..., Nk (k)"

and p. is the collision probability (Equation 8) and (- -)
is the scalar product. The scalar term (pp Np(k)) is the
average number of pairs that broke up at iteration k. The
term p. - N (k:)2 is the average number of building blocks



that collided and formed a pair at iteration k. Similarly, the
number of pairs of type s; with ¢ =1,..., K is given by the
following difference equation

Nk = 1) - ) Nk @)

where f(i) : Z4+ — [0,1]. The term py(s;) - N;(k) is the aver-
age number of pairs of type s; that broke up at iteration k.
The term p.- Ns(k)? is the average number of building blocks
that collided and formed a pair at iteration k, regardless its
type. Since two building blocks are needed to form a pair,
this term is divided by two. Furthermore, since all formed
pairs are not of type s;, the function f(i) determines the
fraction of formed aggregates that are actually of type s;.

Hence, the function f(i) shall be a discretized version of
the probability density of the random variable Z, which de-
notes the probability that a formed aggregate has a relative
positioning norm 62 € [0, 272]. Now, since 6% = 67 4 63, one
can write Z = X? 4+ X?, where X is a random variable that
denotes the probability that 6; or 62 take a specific value in
[0, 7]. We assume that X is uniformly distributed, i. e. X ~
U(0,m). Therefore, we have that X* ~ Beta(0,m, 1,1) [§]
and its probability den51ty is given by

x/m)"1/? T —1/2 2
fx2(x) = W = % (;) with z € [0, 77]

Ni(k+1)

Now, the probability density of Z = X2 + X2 is given
by the convolution of the probability density of X? with
itself [8]:

fz(2) = fx2(2) % fx2(2)

L)

Since z € [0, 27%], we need to normalize fz(z) such that

fz(27%) =0 and /oo fz(z) dz =1,

which leads to

= if z € [0,77]

1 ™ 1 s 2 2
fz(2) = W—zarctan( 72)—5 if z € 7%, 277]

0 otherwise.

Therefore, the function f() is given by

z0 NP
f(@) :/ fz(2) dz with { W) =% ( 1) (19)

5 2
1) u(i) = 2%=i

with 1(¢) and u(z) the lower and upper bound, respectively,
of the i-th subinterval of [0, 27].

Capturing Self-Alignment at the Macroscopic Level

All the aforementioned models assume that mitigated bonds
either break up or remain unchanged. However, in reality,
two aggregated building blocks may change their relative
alignment because of random mitigation of their common
bond. Indeed, the agitation of the system and collisions
with other aggregates may cause the bond to change its en-
ergy state without breaking up, thus resulting in a change in
the alignment of the aggregate. Our macroscopic model can
be easily extended in order to take this phenomenon, which
we call self-alignment, into account. To achieve that, we

just need to modify slightly the difference equations govern-
ing the dynamics of pairs (Equation 17) such that pairs of
type s; can turn into pairs of type s;—1 and s;4+1 at certain
rate a— (i) and a4 (i), respectively. As a result, the num-
ber of pairs of each type is given by the following system of
difference equations:

Nalk+1) = M) = 1) PR vy
+as(2)- No(k) — as(1)- Ni(k)
NA/«H)—M(ka(i)J%W pu(s2) - Nl
a (4 1) Newa (k) — a(0) - N(l)
sl 1) N0 ) N6
Nk +1) = Nic() = £(0) - P20
= po(sk) — a—(K) - Nk(k) + ar (K = 1) - Nk -1(k)

where i = 2,..., K —1. Unfortunately, determining the form
of ay(4) and a_ (z) is not straightforward and these rates may
depend strongly on the nature of the interactions among the
building blocks. In this paper, we assume that these rates
are proportional to the break-up probability of the aggre-
gate, i.e. a4 (i) = a—(i) = a - py(s;), where a is a constant
parameter, which defines the ratio between self-alignment
and break-up rates. This form accounts for the fact that
self-alignment and break-up are both due to the role of ag-
itation in mitigating the bonds, and that stable bonds are
less likely to change their energy state as well. Whether this
form is realistic enough to probe self-alignment phenomena
of real systems remains an open question, which is beyond
the scope of this paper and will be therefore adressed in
future work.

3. RESULTS AND DISCUSSION

If not stated otherwise, the parameters are set as follows in
all experiments: Eponga = 5.0 J, m=1.0kg, r=0.3 m, v =
1.0kg-s , a=1J,n=1N, g9 = 185 rad, and V2 =0.4.
All models share the exact same set of parameters, except
for the average velocity v of the building blocks, which is
sampled from the spatial microscopic simulation (one could
also solve Equation 1).

Difference equations are solved by numerical integration
for 25000 time steps (time discretization of the system 7' =
1s) with Ng(0) = No = 1000 and a discretization K = 3000.
In all experiments, we performed 10 runs of the Monte Carlo
simulation and 10 runs of the agent-based simulation, both
for 25000 s.

Available performance metrics of the system include the
yield Y (k) (i.e., the proportion of pairs with respect to the
total number of aggregates® at iteration k), of course, but
also a measure of the average misalignment of the aggregates
at iteration k, denoted M (k). These two metrics can be
described by the following formulae:

Y - TN 20)

No(k) + 30, Ni(k)

'Here, single building blocks are counted as an aggregate.



For No = 1000, all models show a good agreement (Fig-
ure 3), even though the Monte Carlo simulation and the
macroscopic model exhibits a slightly faster convergence,
which is probably due to their non-spatiality. Indeed, a
building block that is surrounded by stable aggregates may
take quite some time before encountering another free build-
ing block. This suboptimal mixing tends to slow the process
down; this phenomenon is not captured by non-spatial mod-
els.
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Figure 3: Comparison of the dynamics of the sys-
tem (proportion of pairs) predicted by the macro-
scopic model with K = 3000 (dashed), the Monte
Carlo simulation (continuous), and the agent-based
simulation (bold).
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Figure 4: Error in the prediction of the macroscopic
model with different values of K € [100,3000] with
respect to a baseline prediction with K = 3000. In-
terestingly, in the close neighborhood of K = 276,
the error is small (approximately 0.6%) whereas it
attains 4% for K = 657.

Also, the accuracy of the macroscopic model degrades
as K decreases, especially at the steady state, where the
system is governed by the smallest break-up probabilities.
However, as depicted by Figure 4, the error depends on K
in a strongly non-linear fashion, and there are multiple local
minima where the macroscopic model performs well in spite
of a small value of K. These non-linearities arise from the
interplay between the discretization of the space of aggre-
gate’s types S and the actual form of the function f(7). The
computational cost of the model being proportional to K,
an interesting solution would consist in using a non-uniform

discretization of the space S so that the error is minimized.
Nevertheless, as shown by Figure 4, even small K (e.g.,
around 600) are appropriate for qualitatively probing the
dynamics of the system. Note however that these “good”
values of K vary as a function of the control and design pa-
rameters of the system. However, for K > 2000, we consis-
tently observed excellent quantitative agreement with other
models, with very few variations of the error.

Another potential source of inaccuracy of our macroscopic
model is related to the small numbers of individual building
blocks Np. In Figure 5, one can clearly see that the accu-
racy of the macroscopic model with respect to the Monte
Carlo simulation degrades gracefully as Ny decreases; for
No = 50, the macroscopic model actually predicts a much
faster growth of the pair ratio than that observed in Monte
Carlo simulations, whereas an almost perfect match is ob-
served for Ny = 500. Indeed, the predictions of deterministic
difference equations are valid only for large populations of
individuals. Stochastic modeling represents a potential so-
lution to this problem [7], which may become crucial in the
case of centimeter-scale robotic systems that usually involve
only a few tens of units.
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Figure 5: Comparison of the long run prediction

(50000s) of the Monte Carlo simulation (No = 50, tri-
angles; Ny = 100, squares; Ny = 500, circles) and the
macroscopic model (Ny = 50, dotted line; Ny = 100,
dashed line; Ny = 500, continuous line) for different
total number of individual building blocks Nj.

3.1 Model-based Design and Control of Self-
Assembling Systems

Models become really useful when one is interested in op-
timizing a given process, in particular when the behavior of
the system is strongly non-linear and counter-intuitive. In
this paper, we investigate an idealized system with two de-
sign parameters, i.e. the maximal bond energy FEyonq and
the misalignment tolerance oy, as well as one control pa-
rameter, i.e. the agitation of the system v,. In reality, the
design parameters would translate into properties of the self-
assembling agents such as their shape, their surface chem-
istry, or the type of interaction force mediating the self-
assembly process. For instance, capillary forces tend to be
longer range and much stronger than purely hydrophobic
interaction. As a result, the former would have a higher
misalignment tolerance than the latter, as well as a larger
maximal bond energy.

As stated before, the yield is not the unique performance
metrics of the system, and one may want to optimize also



the average misalignment M. In this regard, the misalign-
ment tolerance oy of the building blocks plays a key role.
Indeed, as depicted by Figure 6, while a large misalignment
tolerance increases the yield, it also worsen the alignment of
the aggregates. Note that the relationship between oy and
M is linear whereas the one between oy and Y is not. There-
fore, one can find an interesting tradeoff between a high yield
(around 96%) and a quite good alignment (around 0.62) for
a misalignement tolerance of 0.5 radians (35.5 degrees). This
type of information is crucial when designing and optimiz-
ing a new system, and it would be prohibitively expensive to
achieve such systematic exploration of the parameter space
using realistic simulations and even a priori impossible using
real hardware.
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Figure 6: Influence of the misalignment tolerance oy
(in radians) on both the yield Y (k) and the average
misalignment of the aggregates M(k) at k£ = 25000.
Note the nearly perfect linear relationship between
the average misalignment and the misalignment tol-
erance.

Our macroscopic models can also be used for optimizing
the control of the system. For instance, we investigate how
the yield of the system varies as a function of the agita-
tion vs. To this end, we systematically vary the parame-
ter v, in the interval [0,1] with a granularity of 0.01 (Fig-
ure 7). Interestingly, the relation between the yield and the
agitation is strongly non-linear and exhibits an optimum
around v} = 0.15.

We expect the same type of complex behavior to appear
in real systems since the role of agitation is always two-fold:
it tends to favor aggregation by increasing the average veloc-
ity of the particles (and therefore the number of collisions)
while favoring disaggregation by making aggregates less sta-
ble. Therefore, one key design question arises: in terms of
yield and misalignment, is a system with strong agitation
and stable bonds preferable to a system with low agitation
and unstable bonds? Figure 8 shows how each performance
metric is influenced by these parameters. As expected, high-
est yields are achieved within the zone of moderate agitation
and high bond energies; this zone also corresponds to the
lowest average misalignments. These results emphasize the
crucial role of agitation for optimizing, and more generally,
controlling self-assembly processes.

However, as stated before, mitigated bonds do not neces-
sarily break up; they may only change their energy state,
thus resulting either in a better or worse relative alignment
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Figure 7: The proportion of pairs at k£ = 25000 as a
function of the agitation of the system v;. An opti-
mum can be observed around v = 0.15. Generally
speaking, high yields (higher than 70%) are achieved

by a moderate agitation (between 0.05 and 0.3).

Average misalignment

Figure 8: Yield Y (k) (a) and average misalignment
M(k) (b) at k = 25000 for two systematically varying
parameters: the agitation of the system v, € [0,1],
and the maximal bond energy FEina € [0,8] (900
runs of the macroscopic model with Ny = 1000,
K =1500). Both high yields and small misalignments
are achieved with moderate agitation and high bond
energies.

of the building blocks. Interestingly, this phenomenon of
bond mitigation, which we call self-alignment, does not im-
pede the self-assembly process. On the contrary, because
stabler bonds tend to be less likely to change their energy
state, self-alignment allows the system to converge more
quickly towards its equilibrium, as depicted by Figure 9.
This observation, however, is obtained using a model that
still needs to be validated at lower abstraction levels. This
task is challenging because the exact impact of agitation and
collisions with other building blocks on the energy state vari-
ations of the bonds is difficult to capture at the microscopic
level and/or in realistic simulations, and goes beyond the
scope of this paper.

More generally, one limitation of the models presented
above is that they do not account for the detailed embodi-
ment of the building blocks, which can usually be captured
only using realistic physical simulations. Furthermore, we
observed in recent studies using a real swarm of miniatur-
ized robots [5] that the embodiment of the building blocks
can play a critical role in the self-assembly process. For
instance, the embodiment generates geometric obstructions
that make bonds less likely to form; often this is due to large
chains obstructing the paths of other robots, or aggregates
forming near walls where further aggregation is not possible.
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Figure 9: Comparison of the system dynamics pre-
dicted by the macroscopic model with and without
self-alignment, and for different values of the rate
parameter a. As expected, self-alignment speeds up
the convergence of the system to the steady state.

4. CONCLUSION

The suite of models at multiple levels presented in this
paper is not only capable of capturing directionality in ag-
gregation processes, but it also provides an insight into what
design and control parameters are optimal in term of yield
and alignment quality of the aggregates. While this pa-
per emphasizes an “horizontal”, methodological, platform-
independent approach, it must be noted that our modeling
framework is applicable to a wide range of self-assembling
systems since very few fundamental assumptions are made
about the nature of the system, thus making our approach
suitable for a full breadth of target platforms ranging from
centimeter-scale mobile robots down to micro-robots or, more
generally, micro-electro-mechanical systems.

In the future, we envision to extend our formalism to both
of these platforms, in particular regarding the development
of stochastic models for coping with small populations of
building blocks and robots. More importantly, we aim at
validating and calibrating our models with real robotic ex-
periments at different length scales.

Last, this paper emphasizes the utmost importance of agi-
tation for controlling self-assembly. However, one important
limitation of our approach is precisely that it relies on a first
order approximation for modeling agitation of the system,
and more particularly its influence on the stability of the
bonds. Developing faithful models of agitation and under-
standing the complex interplay between agitation and bond
stability in various real systems is one of our objective for
future research.
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