Efficient Object Placement including Node Selection in a
Distributed Virtual Machine

Jose M. Velasco, David Atienza, Katzalin Olcoz, and Francisco Tirado

Computer Architecture and Automation Department (DAC YA)
Universidad Complutense de Madrid (UCM)
Avda. Complutense s/n, 28040 - Madrid, Spain
E-mail: mvelascc@ fis.ucm. es, {datienza, katzalin, ptirado } @dacya.ucm. ¢s

Currently, software engineering is becoming even more complex due to distributed computing.
In this new context, portability while providing the programmer with the single system image
of a classical VM is one of the key issues. Hence a cluster-aware Java Virtual Machine (JVM),
which can ransparently execute Java applications in a distributed fashion on the nodes of a
cluster, is really desirable. This way multi-threaded server applications can take advantage of
cluster resources without increasin g their programming complexity.

However, such kind of JVM is not ¢asy to design and one of the most challenging tasks is
the development of an efficient, scalable and automatic dynamic memory manager. Inside this
manager, one important module is the automatic recycling mechanism. i.e. Garbage Collector
(GC). It is a module with very intensive processing demands that must concurrently run with
user's application. Hence, it consumes a very critical portion of the total execution time spent

inside JVM in uniprocessor Systems, and its overhead increases in distributed GC because of
the update of changing references in different nodes.

In this work we propose an object placement strategy based on the connectivity graph and ex-
ecuted by the garbage collector. Our results show that the choice of an efficient technique pro-
duces significant differences in both performance and inter-nodes messaging overhead. More-

OVEL, our presented strategy improves performance with respect to state-of-the-art distributed
JVM proposals,

- When aJVM is ported into a distributed environment, one of the most challenging tasks
he development of an efficient, scalable and fault-tolerant automatic dynamic memory
nager. The automatic recycling of the memory blocks no longer used is one of the
most attractive characteristics of Java for software engineers, as they do not need to WOorTy
ut designing a correct dynamic Memory management. This automatic process, very
:_'_'-k:nown as Garbage Collection/Collector (GC), makes much easier the development of
omplex parallel applications that include different modules and algorithms that need to
e taken care of from the software engineering point of view. However, since the GC is
""”-a_t@flditiunal module with intensive processing demands that runs concurrently with the
lication itself, it always accounts for a critical portion of the total execution time spent
iside the virtual machine in uniprocessor systems. As Plainfosse” outlined, distributed
.f:'j?:-'isfﬂven harder because of the difficult Jjob to keep updated the changing references
ween address spaces of the different nodes.

509

Furthermore, the node choice policy for object emplacement is an additional task that
can facilitate or difficult an efficient memory management. The inter-node message pro-
duction increases proportionally to the distribution of objects that share dependencies.
These dependencies can be seen as a connectivity graph, where objects are situated in
the vertices and edges represent references.

In prior work, Fang et Al'' have proposed a global object space design based on object
access behaviour and object connectivity. Thus, they need to profile extensively the object
behaviour. Their work is restricted to the allocation phase and it is not related to the GC.
The main weakness of this approach is that knowledge of the connectivity graph during
the allocation phase requires a lot of profile code and extra meta-data. which results in
significant overhead in both performance and space.

In our proposal the object placement is based on object connectivity as well, but it is
managed by the GC and takes place during its reclaiming phase. Hence, we have eliminated
the profiling phase and the extra needed code. Moreover, after extensive experiments, we
have observed that the tracing GC family is the optimal candidate to implement such a
distributed scheme. Our results with distributed GCs show significant gains in performance
and reductions in amount of exchanged data in the distributed JVM implementation in
comparison to state-of-the-art distributed JVM schemes.

The rest of the paper is organized as follows. We first describe related work on both
distributed GC and JVM. Then, we overview the main topics in distributed tracing GC.
Next, we present our proposal based on suitable object placement and node selection during
GC. Then, we describe the experimental setup used in our experiments and the results

obtained. Finally, we present an overview of our main conclusions and outline possible
future research lines.

2 Related Work

Different works have been performed in the area of both distributed garbage collection
and distributed JVM. Plainfosse and Shapiro® published a complete survey of distributed
GC techniques. In addition, Lins details a good overview of distributed JVMs within the
Jones’s classical book about GC?.

A very relevant work in this area of distributed JVMs on a cluster of computing ele- =
ments 1s the dJVM framework by Zigman et AI®, which presents the distributed JVM as
a single system image to the programmer. Although the approach is very interesting and
novel, it is relatively conservative because it does not reclaim objects with direct or indi-
rect global references. Our work in this paper is particularly enhancing this proposal (see
Section 5.1) by removing its previously mentioned limitations to improve performance of
the distributed JVM. Similar approaches with more limited scope of application to dJJIVM
are cJVM™ and Jessica'*. cJVM, from Aridor et Al” is a distributed JVM built on top
of a cluster enabled infrastructure, which includes a new object model and thread imple-
mentation that are hidden to the programmer. Thus, cJVM uses a master-proxy model for
accessing remote objects. Jessica, from the university of Hong-Kong, employs a master-
slave thread model. The negative part of these approaches is that for each distributed thread
another thread exists in the master node, which handles I/O redirection and synchroniza-
tion. Recently, Daley et Al'” have developed a solution to avoid the need of a master node
In certain situations.

e (L e e T L T S e TR R S 1 Thes R Lot : .
T = el [HA=L ETL M e A e T P TR ST | LRkt | LTt 8 e S TR _ - |

e I.'."ﬂ"- F A, e = R e e e e LT H el | PYETEH B A B HE P s - =k
R e e L :-;!'_'I;'_. 8 f‘.r—;'.tﬂ-. A i A e T R i EEaitl SR T L e T e S
e e e R e e e Lt [E s S P

510

. H
..ﬂ__1.

Another variation to distributed JVMs is proposed by JavaParty'® from the university of
Karlsruhe. JavaParty uses language extensions to implement a remote method Invocation,
which is the main communication method in the cluster environment. The extensions
are precompiled into pure Java code and finally into bytecode. However, Java language
E augmentation does not provide good solutions as it does not provide a true single system

Image.

Finally, in Jackal'* and Hyperion'® it is proposed a direct compilation of multi-threaded
Java bytecode into C code, and subsequently into native machine code. Therefore, the Java
runtime system is not used when executing applications. The main negative point of this

scheme is the lack of flexibility and need to recompile the system when it is ported to
another underlying hardware architecture executing the JVM.

3 Distributed Tracing Garbage Collection

In our work, we have developed a new framework for the analysis and optimization of
tracing-based distributed GC by using the dJVM approach?® as initial starting point. How-
ever, conversely to dJVM our new framework does not include any reference counting GC
. mechanisms®, which are very popular in mono-processor GC solutions, because of two
" reasons. First, the reference counting GC is not complete and needs a periodical trac-
~ ing phase to reclaim cycles, which will create an unaffordable overhead in execution time
since it needs to block all the processing nodes. Second, the update of short-lived refer-
ences produces continuous messages to go back and forth between the different nodes of
- the distributed GC, which makes this algorithm not scalable within a cluster.
. Onthe contrary, as we have observed in our experiments, tracing GCs* seem to be the
more convenient option to create such distributed GCs. Conceptually, all consist in two
different phases. First, the marking phase allows the GC to identify living objects. This
~a phase is global and implies scanning the whole distributed heap. Second, the reclaiming
- phase takes care of recycling the unmarked objects (i.e., garbage). The reclaiming phase is
local to each node and can be implemented as a non-moving or as a moving GC. Thus, if
objects are moved, we need to reserve space. The amount of reserved space must be equal
1o the amount of allocated memory. Hence, the available memory is reduced by two.

OB

- L
e Pl
-'-'t.:":-'"\-.

oy k - . ' gk
Fore By B

4 Object Placement During Garbage Collection

- Our goal is to distribute objects in the cluster nodes according to a way that the commu-
~ nication message volume can be minimized. Ideally, a new object should be placed on
- the node where it is mainly required. Keeping this idea in mind, our proposed distributed
~ scheme has a main node in which all new objects are allocated. Then, when this node
~ runs out of memory, a local collection is triggered. During the tracing phase it is possi-
ble to know the exact connectivity graph. Therefore, we can select a global branch of the
references graph and move to a node a complete group of connected objects.

It becomes apparent that our scheme incurs in a penalty, as objects are not distributed as
soon as they are created. However, in the lon g run, this possible penalty is compensated by
. three factors. First, a high percentage of Java objects are very short-lived. Therefore, in our
‘ proposal, we have a higher probability of distributing long-lived data, which means that we

e

-1}

511

avoid segregating objects that may die quickly. Second, as our experimental results show
(Section 5.3), we achieve a considerable reduction in the number of inter-node messages
due to the interval before the object distribution phase is applied. Finally, since all the
objects that survive a collection in the main node migrate to others nodes, we do not need to
reserve space for them. Thus, in the main node we have all the possible available memory,
without the reduction by a factor of two that occurs in all the moving GCs (see Section 3).

5 Experimental Setup and Results

In this section we first describe the whole simulation environment used to obtain detailed
memory access profiling of the JVM (for both the application and the GC phase). It is
based on cycle-accurate simulations of the original Java code of the applications under
study. Then, we summarize the representative set of GCs used in our experiments. Finally,
we introduce the sets of applications selected as case studies and indicate the main results
obtained with our experiments.

5.1 Jikes RVM and dJVM

Jikes RVM is a high performance JVM designed for research. It is written in Java and
the components of the virtual machine are Java objects®, which are designed as a modular
system to enable the possibility of modifying extensively the source code to implement
different GC strategies, optimizing techniques, etc. There are different compiling options
in Jikes. The baseline compiler does not perform any analysis and translates Java byte-
codes to a native equivalent. In addition, Jikes RVM has an optimizing compiler and an
adaptive compiler. Jikes is a Java virtual machine that runs on itself producing competitive
performance with production JVMs.

The dJJVM apprnachﬂ,q is an enhancement of Jikes RVM to construct a distributed VM.
Several infra-structured components were altered including inter-node communication, the
booting process and the use of system libraries. It provides a single system image to Java
applications and so it is transparent to the programmer. The dJVM employs a master-slave
architecture, where one node is the master and the rest are slaves. The boot process starts
at the master node. This node is also responsible for the setting up of the communication
channels between the slaves, holding global data and the loading of application classes.
The class loader runs in the master.

In dJVM objects are available remotely and objects have only a node local instance.
This is achieved by using a global and a local addressing schemes for objects. The global
data is also stored in the master with a copy of its global identifier in each slave node per
object. Each node has a set of universal identifiers. Instances of primitives types, array
types and most class types are always allocated locally. The exceptions are class types
which implement the Runnable interface.

The initial design of dJVM targets the Jikes RVM baseline compiler. dJVM uses ver-
sion 2.3.0 along with the Java memory manager Toolkit (J MTk)'. dJVM comes with dif-
ferent node selection policies: Round Robin (RR), random, etc. In our experiments, RR
slightly outperforms the others. Thus, we use RR in the reported results is best policy
choice for distributed JVMs. Finally, Jikes RVM code is scattered with a lot of assertion
checking code that we have disabled for our experiments.

512

i

5.2 Case Studies

We have applied the proposed experimental setup to dJVM running the most representative
benchmarks in the suite SPECjvm98 and the SPECjbb2000 benchmark®. These bench-
marks were launched as dynamic services and extensively use dynamic data allocation.
The used set of applications is the following:

-201_compress, _202_Jess, _209_db. 213 javac, 222 _mpegaudio and _227 Jack.
These benchmarks are not real multi-threading.

228 _mtrt: it is the multi-threaded version of 205 _raytrace. It works in a graphical
scene of a dinosaur. It has two threads, which make the render of the scene removed from
a file of 340 KB.

The suite SPECjvm98 offers three input sets(referred as s1, s10, $100), with different
data sizes. In this study we have used the biggest input data size, represented as s100, as it
produces a bigger amount of cross-references among objects.

SPECjbb2000 is implemented as a Java program emulating a 3-tier system with em-
phasis on the middle tier. All three tiers are implemented within the same JVM. These tiers
mimic a typical business application, where users in Tier 1 generate mputs that result in
the execution of business logic in the middle tier (Tier 2), which calls to a database on the
third tier. In SPECjbb2000, the user tier is implemented as random input selection.

We have also used a variant of the SPECjbb2000 benchmark for our experiments.
SPECjbb2000 simulates a wholesale company whose execution consists of two stages.
During startup, the main thread sets up and starts a number of warehouse threads. During
steady state, the warehouse threads execute transactions against a database (represented as
in-memory binary trees). This variant of SPECjbb2000 that we have used is called pseudo-
Jbb: pseudojbb runs for a fixed number of transactions (120,000) instead of a fixed amount

of time.
5.3 Experimental Results

In our experiments we have utilized as hardware platform a 32-node cluster with a faust
Ethernet communication hardware between the nodes. The networking protocol is standard

~ TCP/IP. Then, each node is a Pentium IV, 866 Mis with 1024 Mb and Linux Red Hat 7.3.

| Our experiments cover different types of configurations of the 32-node cluster, in the
o range of 2 to 32 processors. We have executed the benchmarks presented in the previous
- section in different single- and multi-threaded configurations to have a complete design
- exploration space. Precisely, we have executed pseudo JBB, _228_mtrt as multi-threaded
- applications, in combination with the rest of the other SPEC jvm98 and jbb2000 bench-
- marks, which are all single-threaded.
- Inour first set of experiments, shown in Fig. 1, we report the number of messages with
_ distributed data that need to be exchanged between the nodes using our approach and in
~ the case of the original dJVM. The results are normalized to the volume of messages of
~ the original dJVM framework. These results indicate that our proposed approach reduces
~ the number of messages that need to be exchanged with distributed information in all the
~ possible configurations of processors with respect to dJVM, even in the case of single-
. threaded benchmarks. In fact, in complex and real-life multi-threaded applications, the
reduction is very significant and always is above 20% . Moreover, the best configuration of

- distributed JVM is four processing nodes in both cases, and in this case the reduction in the

513

Number of Messages Reduction
GpseudalBB B 229 _mirt O i
BO% 1
m% !;-‘PWI
- i
% i 1
+ H _—
-4 |
0% 3sis $ T
13 : :"*:,l fea sy es
A% —r‘ a L +- e - .
i L4 i : :
. b | . o jrrrar—] :
'ME".. .-.-h;.-' + : ++-1.-- . e § : % 3
% A :1**‘“':.: 34 o SRR 1:- .. ¥ L .
0% 52 B ' A4 ' _ 2551 NN . AEMF. :
2 4 8 16 32
Humber of Processors

Figure 1. Reductions percentages in the number of messages exchanged between the 32 processing nodes of the
cluster in our distributed JVM scheme for different sets of SPEC jvm98 and jbb2000 benchmarks. The results
are normalized to the total amount of messages used in the dJVM

amount of exchanged data between nodes 1s approximately 40% on our side in comparison
to dJJVM.

In our second set of experiments, shown in Fig. 2, we have compared the execution time
of our approach (node selection After Garbage Collection or AGC in Fig. 2) against Jikes
RVM running on a uniprocessor system (or just one processor of the 32-node cluster).
We have also compared the execution time of dJVM against Jikes RVM and the results
are normalized in both cases to the single-processor Jikes RVM solutions. Thus, results in
Fig. 2 greater than one mean that the distributed approaches are faster than the uniprocessor
one.

Our results in Fig. 2 indicate that the previously observed reduction in the number of
messages translates in a significant speed-up with respect to dJVM (up to 40% pertor-
mance improvement) and single-processor Jikes RVM (up to 45% performance gains). In
addition, in Fig. 2 we can observe that single-threaded applications (i.¢., most of the jvym98
benchmarks) are not suited to distributed execution since the lack of multiple threads and
continuous access to local memories severely affects the possible benefits of distributed
JVM schemes. Thus, instead of achieving speed-ups, any distributed JVM suffers from
performance penalties (up to 40%) with respect to monoprocessor systems, specially with
a large number of processing nodes (i.e., 8 or more nodes) are used.

Finally, our results indicate that even in the case of multi-threaded Java applications
of SPEC jvm98 and jbb2000 benchmarks, due to the limited number of threads available,
the maximum benefits of distributed JVMs are with four processing nodes. Moreover,
although pseudoJBB obtains forty percent speedups with eight processors, the difference in
execution time related to four processors does not compensate for the amount of resources

wasted in this computation and the observed computation efficiency of the overall cluster

is lower in this case than with 4 processing nodes.

514

= ey =i e =
e e e b g A DS TR | et | e e T e o e i A

s M g e e e

SpeedUp

DAGC-pseudoJBB @ dJV M-pseudolBB g AGC-mtr GavM-mit BAGC-HwmSE gdivM-jwnasg

....................

TRSSRALGEESN
,' 4% w &£ d g

.......
|||||||
A

.......

Ko

AN L5550 15555 SR LSS5 TN

b
=0

Humber of procesors

ure 2. Performance speed-ups of different distributed JVMs for different SPEC jvm98 and jbb2000 bench-
8. The results are normalized to the Jikes RVM running locally in 1 cluster node

Conclusions and Future Work

n the last years software design has increased its complexity due to an extensive effort 1o
oit distributed computing. In this new working environment, portability while provid-
the programmer with the single system image of a classical JVM has become of the
in challenges. Thus, it is really important to have efficient Java Virtual Machine (JVM)
can execute Java applications in a distributed fashion on the processing nodes of clus-
without incurring in significant processing efforts added to the software programmer.
this direction, JVMs need to evolve to provide an efficient and scalable automatic recy-
g mechanism or Garbage Collector (GC).
~ In this paper we have presented an object placement strategy based on the connectivity
oh and executed by the GC. Our results show that our new scheme provides significant
ctions in the amount of exchanged messages between the processing nodes of a 32-
e cluster. Due to this reduction in the number of messages, our approach is faster than
ate-of-the-art distributed JVMs (up to 40% on average). In addition, our results indicate
distributed single-threaded applications (e. g., most benchmarks included in the SPEC
98) are not suited to distributed execution. Finally, our experiments indicate that the
imum gains are obtained with a limited number of processors, namely, 4 processors
it of 32 in an homogeneous cluster.
 In this work, our distributed JVM scheme places objects after the first GC in the master
e occurs. As future work we intend to extend object migration after every global GC.
ur belief is that that this feature can produce significant additional improvements in multi-
ided applications, both in execution time and number of messages reduction.

515

Acknowledgements

This work is partially supported by the Spanish Government Research Grant TIN2005-

05619.
References
1. IBM. The Jikes' research virtual machine user’s guide 2.2.0., (2003).

10.

11.

12.

13.

14.

13.

16.

http://ﬂﬁs.saftware.ibm.cmm/devel@perwerks/ﬂssfjikesrvm/

 The source for Java technology, (2003). http: //3java.sun.com
" R. Jones. Garbage Collection: Algorithms for Automatic Dynamic Memory Manage-

ment. 4th edition, (John Wiley & Sons, 2000).

" R. Jones and R. D. Lins, Garbage Collection: Algorithms for Automatic Dynamic

Memory Management, (John Wiley & Sons, 1996).

_ D. Plainfosse and M. Shapiro, A survey of distributed garbage collection techniques,

- Proc. International Workshop on Memory Management, (1995).
SPEC, Spec documentation, (2000). http: / /wWwww .spec.org/

M. Factor. Y. Aridor and A. Teperman, A distributed implementation of a virtual

machine for Java. Concurrency and Computation: Practice and Experience.

. J. Zigman and R. Sankaranarayanara, djvm - a distributed jvm on a cluster, Technical

report, Australia University, (2002).

. J. Zigman and R. Sankaranarayanara, djvm - a distributed jvm on a cluster, in: 17th

European Simulation Multiconference, Nottingham, UK, (2003).

A. Daley, R. Sankaranarayana and J. Zigman, Homeless Replicated Objects,
in: 2nd International Workshop on Object Systems and Software Architectures
(WOSSA’2006), Victor Harbour, South Australia, (2006).

W. Fang, C.-L. Wang and F. C. M. Lau., On the design of global object space for
efficient multi-threading Java computing on clusters, J. Parallel Computing, 11-12
Elsevier Science Publishers, (2003)

R. Veldema, R. Bhoedjang and H. Bal, Distributed Shared Memory Management for
Java. Technical report, Vrije Universiteit Amsterdam, (1999).

The Hyperion system: Compiling multi-threaded Java bytecode for distributed ex-
ecution. http://wwwé.wiwiss. fu-berlin.de/dblp/page/record/
jmurnalsfpc/AntaniuBHMMNOl

JESSICA?2 (Java-Enabled Single-System-Image Computing Architecture version 2).
http://i.cs.hku‘hk/ clwang/prmjects/JESSICBZ.html

Cluster Virtual Machine for Java. http://www.haifa.il.ibm.com
/prﬂjects/systems/cjvm/index.html
JavaParty.

http:f/svn.ipd.uni—karlsruhe.de/trac/javaparty/wiki/

516

