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ABSTRACT
Critical sections in database storage engines impact performance
and scalability more as the number of hardware contexts per chip
continues to grow exponentially. With enough threads in the sys-
tem, some critical section will eventually become a bottleneck.
While algorithmic changes are the only long-term solution, they
tend to be complex and costly to develop. Meanwhile, changes in
enforcement of critical sections require much less effort. We
observe that, in practice, many critical sections are so short that
enforcing them contributes a significant or even dominating frac-
tion of their total cost and tuning them directly improves database
system performance. The contribution of this paper is two-fold:
we (a) make a thorough performance comparison of the various
synchronization primitives in the database system developer’s
toolbox and highlight the best ones for practical use, and (b) show
that properly enforcing critical sections can delay the need to
make algorithmic changes for a target number of processors.

1. INTRODUCTION
Ideally, a database engine would scale perfectly, with throughput
remaining (nearly) proportional to the number of clients even for
a large number of clients. In practice several factors limit data-
base engine scalability. Disk and compute capacities often limit
the amount of work that can be done in a given system, and
badly-behaved applications (like TPC-C) generate high levels of
lock contention and limit concurrency. However, these bottle-
necks are all largely external to the database engine; within the
storage manager itself, threads share many internal data struc-
tures. Whenever a thread accesses a shared data structure, it must
prevent other threads from making concurrent modifications or
data races and corruption will result. These protected accesses are
known as critical sections, and can reduce scalability, especially
in the absence of other, external bottlenecks.

For the forseeable future, computer architects will double the
number of processor cores available each generation rather than
increasing single-thread performance. Database engines are
already designed to handle hundreds or even thousands of concur-
rent transactions, but with most of them blocked on I/O or data-
base locks at any given moment. Even in the absence of lock or I/
O bottlenecks, a limited number of hardware contexts used to
bound contention for the engine’s internal shared data structures.
Historically, the database community has largely overlooked criti-
cal sections, either ignoring them completely or considering them
a solved problem [1]. We find that as the number of active

threads grows the engine’s internal critical sections become a new
and significant obstacle to scalability. Analysis of several open
source storage managers [11] shows critical sections become bot-
tlenecks with a relatively small number of active threads, with
BerkeleyDB scaling to 4 threads, MySQL to 8, and PostgreSQL
to 16. These findings indicate that many database engines are
unprepared for this explosion of hardware parallelism. 

As the database developer optimizes the system for scalability,
algorithmic changes are required to reduce the number of threads
contending for particular critical section. Additionally, we find
that the method by which existing critical sections are enforced is
a crucial factor in overall performance and, to some extent, scal-
ability. Database code exhibits extremely short critical sections,
such that the overhead of enforcing those critical sections is a sig-
nificant or even dominating fraction of their total cost. Reducing
the overhead of enforcing critical sections directly impacts perfor-
mance and can even take critical sections off the critical path
without the need for costly changes to algorithms.

The literature abounds with synchronization approaches and
primitives which could be used to enforce critical sections, each
with its own strengths and weaknesses. The database system
developer must then choose the most appropriate approach for
each type of critical section encountered in during the tuning pro-
cess or risk lowering performance significantly. 

To our knowledge there is only limited prior work that
addresses the performance impact and tuning of critical sections,
leaving developers to learn by trial and error which primitives are
most useful. This paper illustrates the performance improve-
ments that come from enforcing critical sections properly, using
our experience developing Shore-MT [11], a scalable engine
based on the Shore storage manager [4]. We also evaluate the
most common types of synchronization approaches, then identify
the most useful ones for enforcing the types of critical sections
found in database code. Database system developers can then uti-
lize this knowledge to select the proper synchronization tool for
each critical section and maximize performance. 

The rest of the paper is organized as follows. Sections 2 and 3
give an overview of critical sections in database engines and the
scalability challenges they raise. Sections 4 and 5 present an over-
view of common synchronization approaches and evaluate their
performance. Finally, Sections 6 and 7 discuss high-level obser-
vations and conclude.

2. CRITICAL SECTIONS INSIDE DBMS
Database engines purposefully serialize transaction threads in
three ways. Database locks enforce consistency and isolation
between transactions by preventing other transactions from
accessing the lock holder’s data. Locks are a form of logical pro-
tection and can be held for long durations (potentially several
disk I/O times). Latches protect the physical integrity of database
pages in the buffer pool, allowing multiple threads to read them
simultaneously, or a single thread to update them. Transactions
acquire latches just long enough to perform physical operations
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(at most one disk I/O), depending on locks to protect that data
until transaction commit time. Locks and latches have been stud-
ied extensively [1][7]. Database locks are especially expensive to
manage, prompting proposals for hardware acceleration [21]. 

Critical sections form the third source of serialization. Data-
base engines employ many complex, shared data structures; criti-
cal sections (usually enforced with semaphores or mutex locks)
protect the physical integrity of these data structures in the same
way that latches protect page integrity. Unlike latches and locks,
critical sections have short and predictable durations because they
seldom span I/O requests or complex algorithms; often the thread
only needs to read or update a handful of memory locations. For
example, a critical section might protect traversal of a linked list.
Critical sections abound throughout the storage engine’s code. In
Shore-MT, for example, we estimate that a TPC-C Payment trans-
action — which only touches 4-6 database records — enters
roughly one hundred critical sections before committing. Under
these circumstances, even uncontended critical sections are
important because the accumulated overhead can contribute a sig-
nificant fraction of overall cost. The rest of this section presents
an overview of major storage manager components and lists the
kinds of critical sections they make use of.

Buffer Pool Manager. The buffer pool manager maintains a pool
for in-memory copies of in-use and recently-used database pages
and ensures that the pages on disk and in memory are consistent
with each other. The buffer pool consists of a fixed number of
frames which hold copies of disk pages and provide latches to pro-
tect page data. The buffer pool uses a hash table that maps page
IDs to frames for fast access, and a critical section protects the list
of pages at each hash bucket. Whenever a transaction accesses a
persistent value (data or metadata) it must locate the frame for that
page, pin it, then latch it. Pinning prevents the pool manager from
evicting the page while a thread acquires the latch. Once the page
access is complete, the thread unlatches and unpins the page,
allowing the buffer pool to recycle its frame for other pages if nec-
essary. Page misses require a search of the buffer pool for a suit-
able page to evict, adding yet another critical section. Overall,
acquiring and releasing a single page latch requires at least 3-4
critical sections, and more if the page gets read from disk.

Lock Manager. Database locks preserve isolation and consistency
properties between transactions. Database locks are hierarchical,
meaning that a transaction wishing to lock one row of a table must
first lock the database and the table in an appropriate intent mode.
Hierarchical locks allow transactions to balance granularity with
overhead: fine-grained locks allow high concurrency but are
expensive to acquire in large numbers. A transaction which plans
to read many records of a table can avoid the cost of acquiring row
locks by escalating to a single table lock instead. However, other
transactions which attempt to modify unrelated rows in the same
table would then be forced to wait. The number of possible locks
scales with the size of the database, so the storage engine main-
tains a lock pool very similar to the buffer pool. 

The lock pool features critical sections that protect the lock
object freelist and the linked list at each hash bucket. Each lock
object also has a critical section to “pin” it and prevent recycling
while it is in use, and another to protect its internal state. This
means that, to acquire a row lock, a thread enters at least three
critical sections for each of the database, table, and row locks. 

Log Manager. The log manager ensures that modified pages in
memory are not lost in the event of a failure: all changes to pages

are logged before the actual change is made, allowing the page’s
latest state to be reconstructed during recovery. Every log insert
requires a critical section to serialize log entries and another to
coordinate with log flushes. An update to a given database record
often involves several log entries due to index and metadata
updates that go with it. 

Free Space Management. The storage manager maintains meta-
data which tracks disk page allocation and utilization. This infor-
mation allows the storage manager to allocate unused pages to
tables efficiently. Each record insert (or update that increases
record size) requires entering several critical sections to determine
whether the current page has space and to allocate new pages as
necessary. Note that the transaction must also latch the free space
manager’s metadata pages and log any updates.

Transaction Management: The system maintains a total order of
transactions in order to resolve lock conflicts and maintain proper
transaction isolation. Whenever a transaction begins or ends this
global state must be updated. In addition, no transaction may com-
mit during a log checkpoint operation, in order to ensure that the
resulting checkpoint is consistent. Finally, multi-threaded transac-
tions must serialize the threads within a transaction in order to
update per-transaction state such as lock caches. 

3. THE DREADED CRITICAL SECTION
By definition, critical sections limit scalability by serializing the
threads which compete for them. Each critical section is simply
one more limited resource in the system that supports some maxi-
mum throughput. As Moore's Law increases the number of
threads which can execute concurrently, the demand on critical
sections increases and they invariably enter the critical path to
become the bottleneck in the system. Database engine designers
can potentially improve critical section capacity (i.e. peak
throughput) by changing how they are enforced or by altering
algorithms and data structures.

3.1 Algorithmic Changes
Algorithmic changes address bottleneck critical sections by either
reducing how often threads enter them (ideally never), or by
breaking them into several “smaller” ones in a way that distrib-
utes contending threads as well (ideally, each thread can expect
an uncontended critical section). For example, buffer pool manag-
ers typically distribute critical sections by hash bucket so that
only probes for pages in the same bucket must be serialized.

In theory, algorithmic changes are the superior approach for
addressing critical sections because they can remove or distribute
critical sections to ease contention. Unfortunately, developing and
implementing new algorithms is challenging and time consuming,
with no guarantee of a breakthrough for a given amount of effort.
In addition, even the best-designed algorithms will eventually
become bottlenecks again if the number of threads increases
enough, or if non-uniform access patterns cause hotspots. 

3.2 Changing Synchronization Primitives
The other approach for improving critical section throughput is
by altering how they are enforced. Because the critical sections
we are interested in are so short, the cost of enforcing them is a
significant — or even dominating — fraction of their overall cost.
Reducing the cost of enforcing a bottleneck critical section can
improve performance a surprising amount. Also, critical sections



tend to be encapsulated by their surrounding data structures, so
the developer can change how they are enforced simply by
replacing the existing synchronization primitive with a different
one. These characteristics make critical section tuning attractive if
it can avoid or delay the need for costly algorithmic changes.

3.3 Both are Needed
Figure 1 illustrates how algorithmic changes and synchronization
tuning combined give the best performance. It presents the per-
formance of Shore-MT at several stages of tuning, with through-
put given on the log-scale y-axis as the number of threads in the
system varies along the x-axis. These numbers came from the
experience of converting Shore to Shore-MT [11]. The process
involved beginning with a thread-safe but very slow version of
Shore and repeatedly addressing critical sections until internal
scalability bottlenecks had all been removed. The changes
involved algorithmic and synchronization changes in all the major
components of the storage manager, including logging, locking,
and buffer pool management. The figure shows the performance
and scalability of Shore-MT at various stages of tuning. Each
thread repeatedly runs transactions which insert records into a pri-
vate table. These transactions exhibit no logical contention with
each other but tend to expose many internal bottlenecks. Note
that, in order to show the wide range of performance the y-axis of
the figure is log-scale; the final version of Shore-MT scales
nearly as well as running each thread in an independent copy of
Shore-MT.

The “B1” line at the bottom represents the thread-safe but
unoptimized Shore; the first optimization (A1) replaced the cen-
tral buffer pool mutex with one mutex per hash bucket. As a
result, scalability improved from one thread to nearly four, but
single-thread performance did not change. The second optimiza-
tion (T1) replaced the expensive pthread mutex protecting buffer
pool buckets with a fast test and set mutex (see Section 4 for
details about synchronization primitives), doubling throughput for
a single thread. The third optimization (T2) replaced the test-and-
set mutex with a more scalable MCS mutex, allowing the doubled
throughput to persist until other bottlenecks asserted themselves
at four threads. 

B2 represents the performance of Shore-MT after many subse-
quent optimizations, when the buffer pool again became a bottle-
neck. Because the critical sections were already as efficient as
possible, another algorithmic change was required (A2). This
time the open-chained hash table was replaced with a cuckoo

hash table to further reduce contention for hash buckets, improv-
ing scalability from 8 to 16 threads and beyond (details in [11]). 

This example illustrates how both proper algorithms and proper
synchronization are required to achieve the highest performance.
In general, tuning primitives improves performance significantly,
and sometimes scalability as well; algorithmic changes improve
scalability and might help or hurt performance (more scalable
algorithms tend to be more expensive). Finally, we note that the
two tuning optimizations each required only a few minutes to
apply, while each of the algorithmic changes required several
days to implement and debug. The performance impact and ease
of reducing critical section overhead makes tuning an important
part of the optimization process.

4. SYNCHRONIZATION APPROACHES
The literature abounds with different synchronization primitives
and approaches, each with different overhead (cost to enter an
uncontended critical section) and scalability (whether, and by
how much, overhead increases under contention). Unfortunately,
efficiency and scalability tend to be inversely related: the cheap-
est primitives are unscalable, and the most scalable ones impose
high overhead; as the previous section illustrated, both metrics
impact the performance of a database engine. Next we present a
brief overview of the types of primitives available to the designer.

4.1 Synchronization Primitives
The most common approach to synchronization is to use a syn-
chronization primitive to enforce the critical section. There are a
wide variety of primitives to choose from, all more or less inter-
changeable with respect to correctness.

Blocking Mutex. All operating systems provide heavyweight
blocking mutex implementations. Under contention these primi-
tives deschedule waiting threads until the holding thread releases
the mutex. These primitives are fairly easy to use and understand,
in addition to being portable. Unfortunately, due to the cost of con-
text switching and their close association with the kernel sched-
uler, they are not particularly cheap or scalable for the short critical
sections we are interested in. 

Test-and-set Spinlocks. Test-and-set (TAS) spinlocks are the sim-
plest mutex implementation. Acquiring threads use an atomic
operation such as a SWAP to simultaneously lock the primitive and
determine if it was already locked by another thread, repeating
until they lock the mutex. A thread releases a TAS spinlock using a
single store. Because of their simplicity TAS spinlocks are
extremely efficient. Unfortunately, they are also among the least-
scalable synchronization approaches because they impose a heavy
burden on the memory subsystem. Variants such as test-and-test-
and-set [22] (TATAS), exponential back-off [2], and ticket-based
[20] approaches reduce the problem somewhat, but do not solve it
completely. Backoff schemes, in particular, are very difficult (and
hardware-dependent) to tune.

Queue-based Spinlocks. Queue-based spinlocks organize con-
tending threads into a linked list queue where each thread spins on
a different memory location. The thread at the head of the queue
holds the lock, handing off to a successor when it completes.
Threads compete only long enough to append themselves to the
tail of the queue. The two best-known queuing spinlocks are MCS
[16] and CLH [5][15], which differ mainly in how they manage
their queues. MCS queue links point toward the tail, while CLH

Figure 1.Algorithmic changes and tuning combine to give best per-
formance.A<n> is an algorithm change; B<n> is a baseline;
T<n> is synchronization tuning.
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links point toward the head. Queuing improves on test-and-set by
eliminating the burden on the memory system and also by decou-
pling lock contention from lock hand-off. Unfortunately, each
thread is responsible to allocate and maintain a queue node for
each lock it acquires. In our experience, memory management can
quickly become cumbersome in complex code, especially for CLH
locks, which require heap-allocated state.

Reader-Writer Locks. In certain situations, threads enter a critical
section only to prevent other threads from changing the data to be
read. Reader-writer locks allow either multiple readers or one
writer to enter the critical section simultaneously, but not both.
While operating systems typically provide a reader-writer lock, we
find that the pthreads implementation suffers from extremely high
overhead and poor scalability, making it useless in practice. The
most straightforward reader-writer locks use a normal mutex to
protect their internal state; more sophisticated approaches extend
queuing locks to support reader-writer semantics [17][13].

A Note About Convoys. Some synchronization primitives, such
as blocking mutex and queue-based spinlocks, are vulnerable to
forming stable quasi-deadlocks known as convoys [3]. Convoys
occur when the lock passes to a thread that has been descheduled
while waiting its turn. Other threads must then wait for the thread
to be rescheduled, increasing the chances of further preemptions.
The result is that the lock sits nearly idle even under heavy conten-
tion. Recent work [8] has provided a preemption-resistant form of
queuing lock, at the cost of additional overhead which can put
medium-contention critical sections squarely on the critical path.

4.2 Alternatives to Locking
Under certain circumstances critical sections can be enforced
without resorting to locks. For example, independent reads and
writes to a single machine word are already atomic and need no
further protection. Other, more sophisticated approaches such as
optimistic concurrency control and lock-free data structures allow
larger critical sections as well.

Optimistic Concurrency Control. Many data structures feature
read-mostly critical sections, where updates occur rarely, and often
come from a single writer. The reader's critical sections are often
extremely short and overhead dominates the overall cost. Under
these circumstances, optimistic concurrency control schemes can
improve performance dramatically by assuming no writer will
interfere during the operation. The reader performs the operation
without enforcing any critical section, then afterward verifies that

no writer interfered (e.g. by checking a version stamp). In the rare
event that the assumption did not hold, the reader blocks or retries.
The main drawbacks to OCC are that it cannot be applied to all
critical sections (since side effects are unsafe until the read is veri-
fied), and unexpectedly high writer activity can lead to livelock as
readers endlessly block or abort and retry.

Lock-free Data Structures. Much current research focuses on
lock-free data structures [9] as a way to avoid the problems that
come with mutual exclusion (e.g. [14][6]). These schemes usually
combine optimistic concurrency control and atomic operations to
produce data structures that can be accessed concurrently without
enforcing critical sections. Unfortunately there is no known gen-
eral approach to designing lock free data structures; each must be
conceived and developed separately, so database engine designers
are have a limited library to choose from. In addition, lock-free
approaches can suffer from livelock unless they are also wait-free,
and may or may not be faster than the lock-based approaches under
low and medium contention (many papers provide only asymptotic
performance analyses rather than benchmark results).

Transactional Memory. Transactional memory approaches
enforce critical sections using database-style “transactions” which
complete atomically or not at all. This approach eases many of the
difficulties of lock-based programming and has been widely
researched. Unfortunately, software-based approaches [23] impose
too much overhead for the tiny critical sections we are interested
in, while hardware approaches [10][19] generally suffer from com-
plexity, lack of generality, or both, and have not been adopted.
Finally, we note that transactions do not inherently remove conten-
tion; at best transactional memory can serialize critical sections
with very little overhead.

5. CHOOSING THE RIGHT APPROACH
This section evaluates the different synchronization approaches
using a series of microbenchmarks that replicate the kinds of crit-
ical sections found in database code. We present the performance
of the various approaches as we vary three parameters: Con-
tended vs. uncontended accesses, short vs. long duration, and
read-mostly vs. mutex critical sections. We then use the results to
identify the primitives which work best in each situation.

Each microbenchmark creates N threads which compete for a
lock in a tight loop over a one second measurement interval (typi-
cally 1-10M iterations). The metric of interest is cost per iteration
per thread, measured in nanoseconds of wall-clock time. Each
iteration begins with a delay of To ns to represent time spent out-

Figure 2.Performance of mutex locks as the contention (left) and the duration of the CS (right) vary.
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side the critical section, followed by an acquire operation. Once
the thread has entered the critical section, it delays for Ti ns to
represent the work performed inside the critical section, then per-
forms a release operation. All delays are measured to 4 ns accu-
racy using the machine’s cycle count register; we avoid
unnecessary memory accesses to prevent unpredictable cache
misses or contention for hardware resources. 

For each scenario we compute an ideal cost by examining the
time required to serialize Ti plus the overhead of a memory bar-
rier, which is always required for correctness. Experiments
involving reader-writers are set up exactly the same way, except
that readers are assumed to perform their memory barrier in par-
allel and threads use a pre-computed array of random numbers to
determine whether they should perform a read or write operation. 

All of our experiments were performed using a Sun T2000
(Niagara [12]) server running Solaris 10. The Niagara chip is a
multi-core architecture with 8 cores; each core provides 4 hard-
ware contexts for a total of 32 OS-visible "processors". Cores
communicate through a shared 3MB L2 cache. 

5.1 Contention
Figure 2 (left) compares the behavior of four mutex implementa-
tions as the number of threads in the system varies along the x-
axis. The y-axis gives the cost of one iteration as seen by one
thread. In order to maximize contention, we set both To and Ti to
zero; threads spend all their time acquiring and releasing the
mutex. TATAS is a test-and-set spinlock variant. MCS and
ppMCS are the original and preemption-resistant MCS locks,
respectively, while pthread is the native pthread mutex. Finally,
“ideal” represents the lowest achievable cost per iteration, assum-
ing that the only overhead of enforcing the critical section comes
from the memory barriers which must be present for correctness. 

As the degree of contention of the particular critical section
changes, different synchronization primitives become more
appealing. The native pthread mutex is both expensive and
unscalable, making it unattractive. TATAS is by far the cheapest
for a single thread, but quickly falls behind as contention
increases. We also note that all test-and-set variants are extremely
unfair, as the thread which most recently released it is likely to
re-acquire it before other threads can respond. In contrast, the
queue-based locks give each thread equal attention.

5.2 Duration
Another factor of interest is the performance of the various syn-
chronization primitives as the duration of the critical section var-
ies (under medium contention) from extremely short to merely
short. We assume that a long, heavily-contended critical section is
a design flaw which must be addressed algorithmically. 

Figure 2 (right) shows the cost of each iteration as 16 threads
compete for each mutex. The inner and outer delays both vary by
the amount shown along the x-axis (keeping contention steady).
We see the same trends as before, with the main change being the
increase in ideal cost (due to the critical section’s contents). As
the critical section increases in length, the overhead of each prim-
itive matters less; however, ppMCS and TATAS still impose 10%
higher cost than MCS, while pthread more than doubles the cost.

5.3 Reader/Writer Ratio
The last parameter we study is the ratio between the readers and
the writers. Figure 3 (left) characterizes the performance of sev-
eral reader-writer locks when subjected to 7 reads for every write
and with To and Ti both set to 100 ns. The cost/iteration is shown
on the y-axis as the number of competing threads varies along the
x-axis. The TATAS mutex and MCS mutex apply mutual exclu-
sion to both readers and writers. The TATAS rwlock extends a
normal TATAS mutex to use a read/write counter instead of a sin-
gle “locked” flag. The MCS rwlock comes from the literature
[13]. OCC lets readers increment a simple counter as long as no
writers are around; if a writer arrives, all threads (readers and
writers) serialize through an MCS lock instead. 

We observe that reader-writer locks are significantly more
expensive than their mutex counterparts, due to the extra com-
plexity they impose. For very short critical sections and low
reader ratios, a mutex actually outperforms the rwlock; even for
the 100ns case shown here, the MCS lock is a usable alternative. 

Figure 3 (right) fixes the number of threads at 16 and varies the
reader ratio from 0 (all writes) to 127 (mostly reads) with the
same delays as before. As we can see, the MCS rwlock performs
well for high reader ratios, but the OCC approach dominates it,
especially for low reader ratios. For the lowest read ratios, the
MCS mutex performs the best — the probability of multiple con-
current reads is too low to justify the overhead of a rwlock.

6. DISCUSSION AND OPEN ISSUES
The microbenchmarks from the previous section illustrate the
wide range in performance and scalability among the different

Figure 3.Performance of reader-writer locks as contention (left) and reader-writer ratio (right) vary.
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primitives. From the contention experiment we see that the
TATAS lock performs best under low contention due to having
the lowest overhead; for high contention, the MCS lock is supe-
rior thanks to its scalability. The experiment also highlights how
expensive it is to enforce critical sections. The ideal case (mem-
ory barrier alone) costs 50 ns, and even TATAS costs twice that.
The other alternatives cost 250 ns or more. By comparison a store
costs roughly 10 ns, meaning critical sections which update only
a handful of values suffer more than 80% overhead. As the dura-
tion experiment shows, pthread and TATAS are undesirable even
for longer critical sections that amortize the cost somewhat.
Finally, the reader-writer experiment demonstrates the extremely
high cost of reader-writer synchronization; a mutex outperforms
rwlocks at low read ratios by virtue of its simplicity, while opti-
mistic concurrency control wins at high ratios. Figure 4 summa-
rizes the results of the experiments, showing which of the three
synchronization primitives to use under what circumstances. We
note that, given a suitable algorithm, the lock free approach might
be best. 

The results also suggest that there is much room for improve-
ment in the synchronization primitives that protect small critical
sections. Hardware-assisted approaches (e.g. [18]) and imple-
mentable transactional memory might be worth exploring further
in order to reduce overhead and improve scalability. Reader-
writer primitives, especially, do not perform well as threads must
still serialize long enough to identify each other as readers and
check for writers.

7. CONCLUSION
Critical sections are emerging as a major obstacle to scalability as
the number of hardware contexts in modern systems continues to
grow and a large part of the execution is computation-bound. We
observe that algorithmic changes and proper use of synchroniza-
tion primitives are both vital to maximize performance and keep
critical sections off the critical path in database engines and that
even uncontended critical sections sap performance because of
the overhead they impose. We identify a small set of especially
useful synchronization primitives which a developer can use for
enforcing critical sections. Finally, we identify several areas
where currently available primitives fall short, indicating poten-
tial avenues for future research.
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