
Brief Announcement: Parallel Depth First vs.
Work Stealing Schedulers on CMP Architectures

Vasileios Liaskovitis∗, Shimin Chen†, Phillip B. Gibbons†,
Anastassia Ailamaki∗, Guy E. Blelloch∗, Babak Falsafi∗, Limor Fix†,

Nikos Hardavellas∗, Michael Kozuch†, Todd C. Mowry∗,†, Chris Wilkerson‡

∗Carnegie Mellon University †Intel Research Pittsburgh ‡Intel Microprocessor Research Lab

Categories and Subject Descriptors: D.4.1 Operating
Systems: Process Management—threads, scheduling.
General Terms: Algorithms, Measurement, Performance.
Keywords: Chip Multiprocessors, Scheduling, Caches.

1. ABSTRACT
In chip multiprocessors (CMPs), limiting the number of

off-chip cache misses is crucial for good performance. Many
multithreaded programs provide opportunities for construc-

tive cache sharing, in which concurrently scheduled threads
share a largely overlapping working set. In this brief an-
nouncement, we highlight our ongoing study [4] comparing
the performance of two schedulers designed for fine-grained
multithreaded programs: Parallel Depth First (PDF) [2],
which is designed for constructive sharing, and Work Steal-
ing (WS) [3], which takes a more traditional approach.

Overview of schedulers. In PDF, processing cores are
allocated ready-to-execute program tasks such that higher
scheduling priority is given to those tasks the sequential pro-
gram would have executed earlier. As a result, PDF tends to
co-schedule threads in a way that tracks the sequential exe-
cution. Hence, the aggregate working set is (provably) not
much larger than the single thread working set [1]. In WS,
each processing core maintains a local work queue of ready-
to-execute threads. Whenever its local queue is empty, the
core steals a thread from the bottom of the first non-empty
queue it finds. WS is an attractive scheduling policy because
when there is plenty of parallelism, stealing is quite rare.
However, WS is not designed for constructive cache sharing,
because the cores tend to have disjoint working sets.

CMP configurations studied. We evaluated the perfor-
mance of PDF and WS across a range of simulated CMP
configurations. We focused on designs that have fixed-size
private L1 caches and a shared L2 cache on chip. For a fixed
die size (240 mm2), we varied the number of cores from 1 to
32. For a given number of cores, we used a (default) config-
uration based on current CMPs and realistic projections of
future CMPs, as process technologies decrease from 90nm
to 32nm.

Summary of findings. We studied a variety of benchmark
programs to show the following findings.

For several application classes, PDF enables significant
constructive sharing between threads, leading to better uti-
lization of the on-chip caches and reducing off-chip traffic

Copyright is held by the author/owner(s).
SPAA’06, July 30–August 2, 2006, Cambridge, Massachusetts, USA
ACM 1-59593-262-3/06/0007.

1 2 4 8 16 32
0

0.5

1

1.5

number of cores (default configurations)

L2
 m

is
se

s 
pe

r 
10

00
 in

st
ru

ct
io

ns

 

 

pdf
ws

1 2 4 8 16 32
0

5

10

15

20

25

30

number of cores (default configurations)

sp
ee

du
p 

ov
er

 s
eq

ue
nt

ia
l

 

 

pdf
ws

Figure 1: PDF vs. WS for parallel merge sort

compared to WS. In particular, bandwidth-limited irregular
programs and parallel divide-and-conquer programs present
a relative speedup of 1.3–1.6X over WS, observing a 13–
41% reduction in off-chip traffic. An example is shown in
Figure 1, for parallel merge sort. For each schedule, the
number of L2 misses (i.e., the off-chip traffic) is shown on
the left and the speed-up over running on one core is shown
on the right, for 1 to 32 cores. Note that reducing the off-
chip traffic has the additional benefit of reducing the power
consumption. Moreover, PDF’s smaller working sets provide
opportunities to power down segments of the cache without
increasing the running time. Furthermore, when multiple
programs are active concurrently, the PDF version is also
less of a cache hog and its smaller working set is more likely
to remain in the cache across context switches.

For several other applications classes, PDF and WS have
roughly the same execution times, either because there is
only limited data reuse that can be exploited or because the
programs are not limited by off-chip bandwidth. In the lat-
ter case, the constructive sharing PDF enables does provide
the power and multiprogramming benefits discussed above.

Finally, most parallel benchmarks to date, written for
SMPs, use such a coarse-grained threading that they cannot
exploit the constructive cache behavior inherent in PDF. We
find that mechanisms to finely grain multithreaded applica-
tions are crucial to achieving good performance on CMPs.

2. REFERENCES
[1] G. E. Blelloch and P. B. Gibbons. Effectively sharing a cache

among threads. In Proc. ACM SPAA, 2004.
[2] G. E. Blelloch, P. B. Gibbons, and Y. Matias. Provably efficient

scheduling for languages with fine-grained parallelism. JACM,
46(2), 1999.

[3] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. JACM, 46(5), 1999.

[4] V. Liaskovitis, S. Chen, P. B. Gibbons, A. Ailamaki, G. E.
Blelloch, B. Falsafi, L. Fix, N. Hardavellas, M. Kozuch, T. C.
Mowry, and C. Wilkerson. Scheduling threads for constructive
cache sharing on CMPs. Intel Research Pittsburgh tech. rep.,
June 2006.brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147947768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

