
Computer Architecture Laboratory (CALCM)

Carnegie Mellon University

† Computer Science Dept.

University of Arizona

Store-Ordered Streaming of Shared Memory

Thomas F. Wenisch, Stephen Somogyi, Nikolaos Hardavellas,

Jangwoo Kim, Chris Gniady†, Anastassia Ailamaki and Babak Falsafi

Abstract

Coherence misses in shared-memory multiprocessors

account for a substantial fraction of execution time in many

important scientific and commercial workloads. Memory

streaming provides a promising solution to the coherence miss

bottleneck because it improves memory level parallelism and

lookahead while using on-chip resources efficiently.

We observe that the order in which shared data are consumed

by one processor is correlated to the order in which they were

produced by another. We investigate this phenomenon and

demonstrate that it can be exploited to send Store-ORDered

Streams (SORDS) of shared data from producers to consumers,

thereby eliminating coherent read misses. Using a trace-driven

analysis of all user and OS memory references in a cache-coherent

distributed shared-memory multiprocessor, we show that SORDS-

based memory streaming can eliminate between 36% and 100% of

all coherent read misses in scientific workloads and between 23%

and 48% in online transaction processing workloads.

1. Introduction

Long-latency cache-coherent accesses in scalable shared-

memory multiprocessors pose a performance-limiting bottleneck

in important commercial [3,18,31] and scientific [7,28,39] work-

loads. Advances in semiconductor fabrication technology and

innovations in chip design promise to continue increasing both the

number of transistors per die and transistor switching speeds.

These trends suggest that processing speed and on-chip storage

capacity will continue to grow. While processor speeds increase

rapidly, communication latency between chips improves more

slowly, magnifying the performance penalty of coherence misses.

Furthermore, the trend towards larger on-chip cache hierarchies

further exacerbates this shared memory wall, as larger caches

increase the fraction of off-chip memory stalls due to sharing [3].

To alleviate the shared memory bottleneck, future architec-

tures must hide the latency of coherence-induced read misses.

Although out-of-order execution can effectively overlap on-chip

accesses, it cannot hide long-latency coherent read misses because

of limited instruction window size. To eliminate coherence miss

latency completely, coherence transfers must be initiated well

ahead of demand misses by the processor. Furthermore,

approaches that transfer only a single block at a time will not

match the processor’s consumption rate. Instead, techniques

targeting long-latency misses must increase the memory level

parallelism (MLP) [5] as well as the lookahead of off-chip coher-

ence transfers. Memory streaming approaches [15,32,38], which

throttle the data transfer rate to match the consumption rate,

provide a promising solution to the shared memory bottleneck

because they improve MLP and lookahead while using on-chip

resources efficiently.

The primary challenge of memory streaming lies in identi-

fying the sequence of addresses to stream. Although stride-based

prediction allows for easy implementation [15,32], memory access

patterns in many important commercial [4] and scientific [28]

workloads are often highly irregular and not amenable to simple

predictive schemes. Recent research has shown that memory

access patterns, although arbitrarily complex, often repeat over the

course of program execution [4], a phenomenon called temporal

address correlation [38]. Temporal streaming exploits this

phenomenon to locate streams for arbitrarily complex patterns of

shared read accesses within a history of recent read misses [38].

However, a past miss sequence may be a poor indicator of future

accesses when a data structure’s layout is changing. Furthermore,

in some applications, the distance between recurring miss

sequences, and thus temporal streaming storage requirements,

grow with data set size.

In this paper, we propose Store-ORDered Streaming

(SORDS), a new memory streaming technique that addresses

changing data structures and is independent of the distance

between recurring data structure traversals. SORDS exploits the

phenomenon that, in scientific and OLTP workloads, shared

values are consumed in approximately the same order that they

were produced. We call this phenomenon producer-consumer

temporal address correlation. SORDS takes advantage of existing

prediction technology to identify when shared values are produced

[21,34] and which nodes will consume those data [17,20,34].

SORDS employs new hardware mechanisms to record the order

shared values are produced and stream shared data from producers

to consumers just before they are accessed. Unlike temporal

streams, store-ordered streams reflect changes to the data structure

layout made by the recorded stores. Furthermore, store-ordered

streams need only be buffered for the interval between the produc-

tion and consumption of a shared value, which can be far shorter

than the interval between recurring consumption sequences.

By analyzing memory access traces from full-system simula-

tion [12] of cache-coherent distributed shared-memory

multiprocessors running OLTP workloads with IBM DB2 and

scientific applications, we demonstrate:

• Producer-Consumer Temporal Address Correlation: We

show that the order in which shared values are consumed is sim-

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)
1089-795X/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147947759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ilar to the order in which they were produced. Across the

applications we study, 28%-72% of coherent read misses pre-

cisely follow production order. This fraction increases to 66%-

98% when allowing for slight reorderings within a four block

window.

• Practical SORDS Design: We propose a design for store-

ordered streaming with practical hardware mechanisms. Our

design can eliminate 36%-100% of coherent read misses in

scientific applications and 23%-48% in OLTP workloads.

The rest of this paper is organized as follows. In Section 2,

we introduce store-ordered streaming and justify our approach

from an analysis of the properties of shared data access

sequences. In Section 3, we present our design for a practical

hardware implementation of SORDS. In Section 4, we evaluate

our SORDS design through trace-based simulation. We discuss

related work in Section 5. Finally, we conclude in Section 6.

2. Store-Ordered Streaming

In this paper we propose Store-ORDered Streaming

(SORDS), a design for throttled streaming of data from producers

to consumers to hide memory read latency in a distributed

shared-memory (DSM) multiprocessor. SORDS is based on the

key observation that there is temporal correlation between data

production and subsequent consumption in shared memory: the

order in which shared values are consumed is similar to the order

in which they were produced. By capturing the production order,

SORDS enables throttling of the stream of shared data into small

buffers residing at the consumers just-in-time for consumption,

thereby converting coherent read misses into hits. We call the

similarity of the production and consumption orders producer-

consumer temporal address correlation, or P-C correlation.

2.1. SORDS Overview

A node in a DSM system must obtain exclusive access to a

cache block before writing it. Subsequently, the node continues

to access the block until another node in the system issues a read

to it, which causes a downgrade (exclusive-to-shared transition)

at the writer. The last store to a block prior to downgrade is called

a production. The first read of this newly-produced value by any

node is a consumption by that node. If a consumption requires a

coherence request to obtain the data, it is a consumption miss. In

a baseline DSM system, all consumptions incur consumption

misses. The goal of SORDS is to eliminate those misses.

Designs that forward memory values from one DSM node

to another ahead of CPU requests must include mechanisms to

determine which values to forward, when, and to which nodes.

Figure 1 illustrates an example of how such mechanisms func-

tion in a DSM equipped with SORDS. Existing predictor

technology [34] allows each node to identify which stores consti-

tute productions of a shared cache block, and write the block

back to the directory node (1). SORDS records the sequence of

addresses that arrive at the directory, in production order, in a

large circular buffer called a stream queue (2). When a request

for an address arrives at the directory, SORDS fills the request,

locates the requested cache block in the stream queue, and

forwards several subsequent blocks to the consumer (3). As the

consumer hits on forwarded blocks, it signals the directory to

forward additional blocks (4).

Successful forwarding depends upon a high degree of

producer-consumer temporal address correlation. As long as the

consumer continues to access blocks roughly in “store” (i.e.,

production) order, SORDS can eliminate the read misses. Intu-

itively such P-C correlation does exist (1) in general, for both

data items within and across data structures [4] (e.g., parent and

child nodes in a B-Tree), and (2) in shared memory in particular,

because synchronization primitives guard against concurrent

accesses to a shared data structure. In the remainder of this

section, we show empirically that there is a high degree of P-C

correlation in scientific and OLTP workloads, and justify the

major design decisions of SORDS based on the nature of P-C

correlation.

2.2. Methodology & Benchmarks

We demonstrate P-C correlation and evaluate our proposed

SORDS design across a range of scientific and OLTP applica-

tions. We base our results on analysis of full-system memory

traces of a distributed shared-memory multiprocessor using

FLEXUS [12]. FLEXUS is a simulation framework that uses

modular component-based design and rigorous statistical

sampling to enable the development of complex models and

ensure representative measurement results with fast simulation

turnaround. FLEXUS builds on Virtutech Simics [24], a full

system simulator that allows functional emulation of unmodified

commercial applications and operating systems. The simulation

models all memory accesses that occur in a real system,

including all OS references. We configure Simics to run the

scientific applications on a simulated 16-node distributed shared-

memory multiprocessor running Solaris 8. The processing nodes

implement the SPARC III ISA. We evaluate SORDS with OLTP

workloads on Solaris 8 on SPARC and Red Hat Linux 7.3 on

x86. We study DB2 on two platforms because OS code has a

significant impact on database management system performance.

We simulate a 16-node SPARC system and an 8-node x86 system

(Simics uses a BIOS that supports only up to 8 CPUs for x86).

Table 1 describes the applications and inputs we use in this

study. We select a representative group of pointer-intensive and

array-based scientific applications that are (1) scalable to large

Consumer

last store
store

last store
last store
last store

A
B
C
B
D

(1)
(2)

miss A

fill
stream
stream

A
C
B

stream D

hit B

hit C

(3)

(4)

DirectoryProducer

hit D

Figure 1. Eliminating coherent read misses in SORDS.

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)
1089-795X/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

data sets, and (2) maintain a high sensitivity to memory system

performance when scaled. These include barnes [39], a hierar-

chical N-body simulation; em3d [7], an electromagnetic force

simulation; moldyn [28], a CHARMM-like molecular dynamics

simulation; and ocean [39], current simulation.

We run DB2 7.2 with the TPC-C workload [23], an on-line

transaction processing workload. We use a highly optimized

toolkit, provided by IBM, to build the TPC-C database and run

the benchmark. This toolkit provides a tuned implementation of

the TPC-C specified queries and ensures that correct indices exist

for optimal transaction execution. Prior to trace collection, we

warm the database until the transaction completion rate reaches

steady state. We analyze traces of at least 5,000 transactions.

2.3. Stream Properties

In this section, we explore the consumption sequence prop-

erties of multiprocessor applications, and identify the streaming

mechanisms required to eliminate consumption misses. To gauge

the full potential of streaming, we study it in the context of

“oracle” knowledge of which stores are productions, and which

nodes will subsequently consume these produced values. We

present practical prediction techniques that approximate these

oracles in Section 3.1.

Just-in-time streaming. Given perfect predictions, the

simplest streaming approach is to forward each shared value

immediately upon production to its precise set of consumers.

Such eager forwarding guarantees that each value arrives at each

consumer as early as possible, thereby minimizing the likelihood

of incurring a miss penalty.

This aggressive approach often performs poorly because a

producer often produces many values before consumers begin

consuming them. For some applications, buffering the produced

values at the consumer may require prohibitively large storage.

Moreover, the storage requirement is highly dependent on the

application’s sharing behavior. Figure 2 plots the fraction of

consumption misses eliminated by aggressive streaming as a

function of available (fully-associative) storage at the consumers.

For em3d, moldyn, and DB2 Solaris, hundreds to thousands of

cache blocks must be buffered to cover a significant fraction of

consumption misses. This result shows that forwarding data into

the conventional cache hierarchy would be counterproductive

because: (1) forwarding into the L1 cache would displace many

useful blocks, significantly reducing overall performance, and

(2) forwarding into lower-level caches or the local DRAM

memory [9] would incur a high (local) cache miss penalty,

reducing the gains from forwarding. Similarly, custom storage

would be too expensive both from an implementation cost and

lookup time perspective. Finally, these results are conservative in

that they assume perfect predictors. In practice, with real predic-

tors, storage requirements may be even higher because of

forwarding of unwanted data.

Aggressive streaming upon production requires too much

storage at the consumer to be successful. Instead, we propose

storing values in main memory upon production, and throttling

the forwarding rate to match the consumption rate. Throttling

will allow data to be streamed successfully into a small (e.g., 32-

entry) buffer. SORDS throttles the rate by forwarding streams in

chunks (i.e., small groups of blocks). When the consumer first

accesses any block in a chunk, it signals SORDS to forward the

next chunk. Thus, at steady state, only two chunks from each

simultaneously live stream need to be stored at the consumer.

The chunk size should be large enough to: (1) capture small reor-

derings between the production and consumption sequence, and

(2) overlap consumptions of one chunk with the forwarding of

the subsequent chunk. We address (1) in the following section

and (2) in Section 4.2.

Producer-consumer temporal address correlation. Our

goal with SORDS is to exploit strong temporal correlation

between the production and consumption sequences to forward

blocks in production order. We quantify P-C correlation by calcu-

lating the distance (in number of productions) on the production

sequence between the productions that create values for two

consecutive consumptions. For example, if the production order

is {A,B,C,D} and the consumption order is {A,B,D,C} then the

production sequence distance between A and B is +1 (i.e., perfect

correlation; B follows A in the production sequence), whereas the

distance between D and C is -1 (i.e., the production of C immedi-

ately precedes the production of D). Larger positive or negative

distances indicate that the consumer has “jumped” from one part

of the production sequence to another.

We first evaluate the production distances of consumptions

relative to the total order of productions at each producer,

labelled “global” in Figure 3 (left). These results indicate that

production and consumption orders frequently match. An

average of 31% of all consumptions precisely follow global

Scientific benchmarks

barnes 64K particles., 2.0 subdiv. tol., 10.0 fleaves

em3d 400K nodes, 15% remote, degree 2, span 5

moldyn 19652 molecules, max interactions 2560000

ocean 514x514 grid, 9600 sec

OLTP benchmarks

DB2 Solaris
100 warehouses (10 GB), 96 clients,

450 MB buffer pool, 16 CPUs

DB2 Linux
100 warehouses (10 GB), 96 clients,

360 MB buffer pool, 8 CPUs

TABLE 1. Applications and input parameters.

Figure 2. Cumulative fraction of consumptions

eliminated as a function of storage size.

0

0.2

0.4

0.6

0.8

1

6
4

2
5
6

1
K

4
K

1
6
K

6
4
K

2
5
6
K

1
M

4
M

1
6
M

Cache Size (bytes)

C
u
m

.
F

ra
c
tio

n
 o

f

C
o
n
s
u
m

p
tio

n
s

barnes em3d moldyn
ocean DB2 Linux DB2 Solaris

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)
1089-795X/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

production order, indicating that there is significant opportunity

for production-ordered streaming.

It is not unusual for an application to interleave the produc-

tion of shared values for multiple consumers. From the point of

view of each consumer, productions destined for other

consumers pollute the global production sequence, decreasing P-

C correlation. Splitting the global production sequence into “per-

consumer” sequences using perfect knowledge of future

consumers extracts significantly more P-C correlation. Figure 3

(right) depicts the P-C correlation between each consumption

sequence, and its corresponding per-consumer production

sequence. An average of 51% of all consumptions precisely

follow the split per-consumer production orders.

The figure also indicates that a significant fraction of

consumptions are only slightly out-of-order with respect to the

global and per-consumer production sequences. The table in

Figure 3 sums the fraction of consumptions that follow the per-

consumer production sequence with a production distance of up

to four (i.e., the consumptions are out-of-order with respect to the

production sequence by at most four blocks). By forwarding

blocks in chunks, SORDS can tolerate these small reorderings

and has the potential to cover these consumptions. With a chunk

size of four blocks, SORDS can capture between 66% and 98%

of all consumptions. Larger chunk sizes provide diminishing

improvements.

In practice, SORDS can exploit both global and per-

consumer P-C correlation. In applications where sharing patterns

repeat and the set of consumers for each production can be

predicted (e.g., em3d), SORDS can take advantage of per-

consumer P-C correlation. When future consumers are less

predictable (as in the lock-based applications barnes and DB2),

SORDS can still exploit global P-C correlation. In contrast, eager

forwarding approaches rely solely on accurate consumer-set

prediction and have no recourse when consumer sets are not

predictable, as they have no other mechanism to identify which

nodes should receive forwarded data.

Stream on demand. The graphs in Figure 3 also indicate

that whereas the majority of production distances are small, the

distance distribution is fat-tailed in both directions. The tails of

the distribution arise from cases where the consumer jumps from

one portion of the production sequence to another. Together, the

distributions’ peak at +1 and significant tails indicate that the

production sequence is composed of a number of distinct streams

(i.e., consumption subsequences) that are ordered arbitrarily far

apart from each other; the consumer often jumps between

streams on the production sequence. This result has two impor-

tant implications. First, simple FIFO throttling schemes can not

be effective in streaming data from the production sequence,

because they enforce a strict total order and thus can not support

stream jumps. Second, to identify the start of the stream (i.e.,

stream head), to forward data just-in-time, and to avoid sending

unwanted data, streams should be initiated on demand, with a

miss to a cache block in the production sequence indicating a

new stream head. Thus, to supply each consumer with the appro-

priate segment of the production sequence, SORDS must provide

random access to the stream queue (which contains the produc-

tion sequence).

Figure 4 shows a cumulative breakdown of the fraction of

consumptions belonging to streams of a particular length,

assuming a forwarding chunk size of four. As the graph shows,

most streams are longer than 16 blocks. Although initiating

streams on demand incurs one consumption miss per stream (to

the stream head), SORDS sacrifices less than 1/16 of its potential

coverage to these misses.

0%

10%

20%

30%

40%

50%

60%

70%

80%

-8
K

-2
K

-5
1
2

-1
2
8

-3
2 -8 -2 1 4

1
6

6
4

2
5
6

1
K

4
K

Global Production Sequence Distance

%
 o

f
C

o
n
s
u
m

p
tio

n
s barnes

em3d

moldyn

ocean

DB2 Solaris

DB2 Linux

-8
K

-2
K

-5
1
2

-1
2
8

-3
2 -8 -2 1 4

1
6

6
4

2
5
6

1
K

4
K

Per-consumer Production Sequence Distance

Figure 3. Producer-consumer temporal address correlation. The left graph shows distances between consecutive

consumptions measured along the global production sequence. The right graph shows distance measured along per-

consumer sequences. The table lists the total percentage of consumptions with per-consumer production distance ± 4.

Per-consumer P-C

Correlation (± 4)

barnes 72%

em3d 98%

moldyn 66%

ocean 76%

DB2 Solaris 68%

DB2 Linux 84%

Global Per-consumer

Figure 4. Cumulative percentage of consumptions on

streams of a given length.

0%

20%

40%

60%

80%

100%

1 4

1
6

6
4

2
5
6

1
K

4
K

1
6
K

6
4
K

2
5
6
K

Stream Length (in blocks)

C
u
m

.
%

 o
f
C

o
n
s
u
m

p
tio

n
s

barnes em3d moldyn
ocean DB2 Linux DB2 Solaris

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)
1089-795X/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

Figure 4 also shows that some streams are hundreds of

cache blocks long. Prefetching or forwarding approaches that

transfer only a fixed number of blocks per miss [30,33] will

sacrifice a larger fraction of potential coverage than the single

miss per stream that SORDS incurs.

Summary. We showed that: (1) to stream effectively,

forwarding must be throttled, (2) SORDS can throttle forwarding

by exploiting the strong producer-consumer temporal address

correlation, and (3) SORDS must provide random access to the

production sequence to allow for initiating streams on demand.

Based on these observations, we now present a design for

SORDS.

3. A Design for Store-Ordered Streaming

In Section 2, we presented an overview of how SORDS

eliminates coherent read misses and analyzed the phenomenon of

producer-consumer temporal address correlation on which

SORDS relies and its implications for a SORDS design. In this

section, we present our design for a practical hardware imple-

mentation of SORDS.

To support scalable systems, the SORDS functionality must

be distributed across all DSM nodes, much like a distributed

directory scheme. The SORDS hardware at each node records

the production order for shared values and forwards streams of

these values to consumers. SORDS’s operation comprises five

steps:

1. Predict which stores produce shared values and forward

these values to the directory.

2. Predict the set of consumers for each production.

3. Append the block’s address to the end of stream queues for

each predicted consumer.

4. Upon a demand miss, locate the missing address in the

stream queue and forward a chunk starting at this location.

5. Upon a hit in a consumer’s streamed value buffer, notify the

stream engine to forward the next chunk.

Figure 5 depicts the hardware components that SORDS

adds to a base DSM node. The numbers in the figure indicate

which of the above steps each component participates in. A

DownGrade Predictor (DGP) at each processor approximates the

production oracle discussed in Section 2.3. It predicts the last

store to a cache block prior to a subsequent consumption miss,

self-downgrades the cache block, and writes the produced data

back to main memory (1). A Consumer Set Predictor (CSP)

located in the directory approximates the consumer-set oracle

discussed in Section 2.3. When a self-downgraded block arrives

at main memory, CSP predicts which nodes will request shared

copies of it (2). The operation of DGP and CSP is described in

Section 3.1.

Once CSP has predicted a set of consumers, the Stream

Engine (SE) records the address of the produced block on one or

more stream queues (3) located in main memory. When a

consumer later requests this block, the SE accesses the stream

queue and begins forwarding the stream from that location (4).

Note that the stream queue contains only a list of addresses—the

data for each block are read from memory as the blocks are

streamed. At the consumer node, forwarded data are stored in a

Streamed Value Buffer (SVB) that is accessed in parallel with the

data cache (5). When a load hits in the SVB, the data are trans-

ferred to the L1 data cache, and, if necessary, a hit notification is

sent to the producer’s SE requesting more data from the stream.

Section 3.2 details the structure and operation of the SE and

SVB.

3.1. Predicting Productions & Consumer Sets

SORDS uses two predictor components to identify when

shared values are produced, and which nodes will subsequently

consume those values. Computer architecture literature contains

extensive studies of hardware mechanisms to make these predic-

tions [17,20,21,34]. The choice of particular predictor designs is

orthogonal to the streaming mechanisms in SORDS.

We study SORDS with DGP [34] as the production

predictor because it has been shown to be effective in commer-

cial workloads. We evaluate SORDS with two alternative

consumer set predictors: CSP [24], a history-based predictor that

can identify complex sharing patterns; and LastMask, a simple

sharing predictor that predicts the consumer set for a new

production of a block will match the final consumer set of the

previous production of the block. We briefly summarize the oper-

ation of DGP and CSP here, but refer readers to [24] for a

thorough discussion of the implementation, hardware costs, and

design parameter sensitivity of these predictors.

The goal of DGP is to identify productions. DGP associates

the downgrade event for a production with the sequence of store

instructions accessing the block, from the time the block is first

modified until the last store prior to its downgrade. As store

instructions are processed, the DGP hardware encodes the PCs

into a trace for each block present in the cache. A block’s current

trace is entered into a signature table when the block is down-

graded. If the new on-line trace calculated for a block upon a

store is present in the signature table, the DGP triggers a self-

downgrade of the block. Thus, DGP captures program behaviors

that repetitively lead to productions.

The goal of CSP is to predict the consumers of each produc-

tion. The intuition underlying CSP is that the pattern by which

values move between nodes, although arbitrarily complex, is

repetitious. CSP maintains a history of the most recent sharing

pattern for each block in the directory. Each history entry records

the producer and consumers of the last few productions of the

block. CSP associates the set of consumers of a production with

the history that led to the production, and stores this association

Figure 5. Anatomy of a SORDS-based DSM node.

CPU

L1

L2

DGP
Memory

DSMCSP

downgrades

feedback

stores

Network Interface

(1)

(2)

(3)

(5)

HW

SVB
Stream Queues

Stream
Engine

(4)

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)
1089-795X/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

in a signature table. Upon a production, CSP uses the current

history for the block to obtain a predicted set of consumers from

the table. Thus, CSP accurately predicts consumers when sharing

patterns repeat.

3.2. Mechanisms for Streaming

The SORDS Stream Engine (SE) is designed to provide the

functionality identified as necessary in Section 2.3 to exploit

both global and per-consumer P-C correlation. This section

details the functionality of the SE.

The SE records the sequence in which DGP-downgraded

blocks arrive at the directory. Potentially thousands of values

may be produced before any are consumed, resulting in large

stream queues. Thus, the data structures pertaining to stream

queues are stored in a private region of DRAM at each node,

with a small cache in the SE used to accelerate accesses [26].

Figure 6 (left) depicts the layout of the SE’s private memory

space. The space is divided into two main structures: a set of

stream queues (the majority of storage), and a block indirection

table. The stream queues are circular queues that store lists of

cache block addresses in production order, while the block indi-

rection table enables lookup of an address across stream queues.

The stream queue storage is divided into separate regions that

each record productions by one node. Within each producer’s

region, there are per-consumer stream queues for each consumer

node, and one additional global queue. In a 16-node system,

there are 17 stream queues within each of the 16 producer

regions.

Figure 6 (center) depicts the operation of the SE when a

DGP-triggered self-downgrade arrives. The SE obtains a CSP

prediction for the produced block. If a consumer set is not

predicted (e.g., because of low confidence or because the sharing

history has never been encountered before), the production

address is appended to the global stream queue. To facilitate fast

stream lookup, the SE also records the index of the stream queue

entry in a stream pointer field stored with the block’s directory

entry. If CSP predicts a consumer set, the production address is

appended to each of the indicated per-consumer stream queues.

To support rapid lookup for all occurrences of the address, the SE

creates a linked list within the block indirection table pointing to

all private stream queue locations of the block. The head of this

linked list records a bit mask indicating which private stream

queues contain the address. The stream pointer in the directory

points to the head of this linked list. The directory overhead of

the stream pointer is log2(max entries on queue) + 1 bits. We

analyze the storage requirement of stream queues in Section 4.3.

Figure 6 (right) depicts the operation of the SE upon receipt

of a read miss at the directory. If the stream pointer for the block

is initialized, the coherence engine passes the requested address,

identity of the requesting node, and the stream pointer to the SE

for processing. The SE uses the stream pointer to quickly deter-

mine which stream queues contain the block. If the block’s

address is present on a stream queue for this consumer, the

stream engine initiates streaming from the indicated stream

queue location. The number of blocks to forward is determined

by the chunk size parameter of the SORDS design (see

Section 4.3).

Each consumer stores streamed blocks in its Streamed Value

Buffer (SVB), a small fully-associative buffer with LRU replace-

ment. The buffer stores block addresses, values, and the stream

context. The stream context is composed of the identity of the

forwarding SE, an identifier for the associated stream queue, and

a stream queue pointer indicating from where forwarding should

continue. The SVB contains only clean data, and SVB entries are

discarded upon a write by any node (including the local node) to

maintain coherence. Upon a hit in the SVB, the streamed block is

transferred to the L1 data cache and a hit notification containing

the stream context is sent to the SE indicating where the stream

should be continued. The advantage of tracking stream context

through the SVB is that the SE does not need to track live

streams—each consumer supplies the necessary state with each

hit notification. Thus, the number of parallel streams is limited

only by storage constraints at the consumer. Upon a hit, other

blocks in the SVB from the same chunk are flagged to avoid

duplicate hit notifications.

Figure 6. Stream Engine data structures and processing. The left-most figure depicts the data structures the SE stores

in memory. The center and right-most figure depict the SE processing a production and demand miss, respectively.

SE Private Memory Layout

N regions
(1 per node)

N

Per-consumer

Stream Queues

Global

block address

state sharers stream ptrstate sharers stream ptr

bitmask

SE Processing a Production SE Processing a Demand Miss

DGP

produce X

SE CSP

append to stream queues

state sharers stream ptrstate sharers stream ptr

record stream ptr

predict consumers

state sharers stream ptrstate sharers stream ptr

node requests n X

X

stream ptr != 0 in directory

SE
Locate in queuesX

X
Y
Z Load and Y Z

Y Z, [SE m @ index i]

Forward , context to Y, Z n

node n

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)
1089-795X/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

4. Results

We first report the effectiveness of the predictor mecha-

nisms we use to identify productions and predict consumer sets

as input to the SORDS streaming mechanisms. We then analyze

the design parameters of the SORDS streaming hardware.

Finally, we evaluate the effectiveness of our proposed SORDS

hardware at eliminating consumption misses.

4.1. Predictor Results

SORDS depends upon accurate prediction of productions,

and benefits greatly from accurate prediction of the consumer set

for each production. Table 2 presents the coverage and mispre-

diction rate of our production predictor (DGP), and the two

alternative sharing prediction techniques, CSP and LastMask, as

described in Section 3.1. Coverage is the fraction of productions

or consumers correctly identified by a prediction mechanism.

Mispredictions represent over-predictions—stores incorrectly

identified as productions or predicted consumers which do not

read a produced value.

Our DGP results corroborate previously published results

[34] for both scientific and commercial applications. The trace-

based DGP exhibits near-perfect coverage with low discards on

the scientific applications, which are generally repetitive across

program iterations. OLTP workloads exhibit data-dependent

behavior, and therefore productions are less predictable. The

higher rate of DGP mispredictions for OLTP applications will

not degrade performance if a relaxed memory system [1,10] is

employed, because the additional write misses from DGP

mispredictions can be fully overlapped. The high DGP coverage

across applications ensures that there is significant opportunity

for SORDS to eliminate consumption misses, as SORDS cannot

stream producted values that the predictor does not identify.

The history-based CSP sharing predictor equals or outper-

forms simple last mask prediction across applications. For the

scientific applications with stable and highly repetitive sharing

patterns (em3d, moldyn, ocean), CSP predicts nearly all sharers

correctly, with virtually no mispredictions. In the lock-based

applications (barnes, DB2) where sharing patterns change

frequently, CSP predicts conservatively, while last mask often

predicts an incorrect sharing list. CSP’s confidence mechanism

gives it an advantage over last mask for these applications. Accu-

rate CSP predictions, where possible, allow SORDS to exploit

per-consumer P-C correlation for more accurate streaming.

4.2. Chunk Size & Forwarding Lookahead

The primary role of the SORDS chunk size parameter is to

ensure that the consumer node does not stall waiting for

forwarded data while consuming a long stream. SORDS incurs a

full network round-trip latency each time the consumer requests

forwarding of the next stream chunk. When successive consump-

tions are clustered together in bursts, there is insufficient time to

forward each block individually. For SORDS to be effective, we

must select a chunk size that is sufficiently large to supply

enough data to satisfy typical bursts of consumptions. However,

if we choose too large a chunk size, storage at the consumer is

wasted and fewer streams can be followed in parallel. Thus,

selecting a chunk size involves balancing storage requirements at

the consumer and overlapping the round-trip messaging delay of

forwarding during consumption bursts.

We analyze each of our workloads to find the typical bursts

of consumptions that must be overlapped for various forwarding

delays. We measure forwarding delay in instructions executed at

the consumer to remain independent of microarchitecture and

cache configuration. For each forwarding delay, we measure how

many consumptions on average occur within one forwarding

window for all windows containing a burst of more than one

consumption. We consider only consumptions that occur in clus-

tered bursts because consumptions that are further apart than the

forwarding delay can be successfully streamed at any chunk size.

Figure 7 shows the results of our chunk size analysis. The

required chunk size for an application depends on its IPC and the

round-trip network latency. For a 2-hop round-trip network

latency of 500 cycles and an IPC of 0.4 for the OLTP workloads

[2], a round-trip corresponds to 200 instructions. For this design

point, Figure 7 shows that a chunk size of four will fully overlap

the consumption bursts. For a typical scientific benchmark IPC

of 1.4 [8], Figure 7 shows that a chunk size of four to six will

fully overlap the consumption bursts for all scientific applica-

tions except for ocean.

The version of ocean we study (taken from [39]) is an

enhanced version of the original benchmark that uses sub-

blocking to improve the communication to computation ratio.

Sub-blocking has the effect of grouping all the consumptions of a

sub-block into a single burst. This optimization is counterproduc-

DGP CSP LastMask

Cov Misp Cov Misp Cov Misp

barnes 88% 4% 38% 4% 40% 56%

em3d 100% 0% 100% 0% 100% 0%

moldyn 97% 0% 99% 0% 31% 59%

ocean 82% 7% 89% 4% 80% 20%

DB2 Solaris 67% 14% 9% 6% 23% 75%

DB2 Linux 71% 8% 45% 17% 11% 87%

TABLE 2. Production and sharing prediction results.

Figure 7. Required chunk size as a function of

stream round-trip fetch time.

0

5

10

15

20

25

30

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

Stream Fetc h Time (Ins truc tions Ex ec uted)

A
v
g
.
N

u
m

b
e
r

o
f
C

o
n
s
u
m

p
tio

n
s

barnes em3d moldy n
oc ean DB2 Solar is DB2 Linux

OLTP A pps

IPC=0.4

Sc ientif ic A pps

IPC=1.4

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)
1089-795X/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

tive with SORDS, because SORDS will ensure a steady stream

of blocks even if consumptions are evenly spaced. However,

even if SORDS cannot fully overlap all consumptions for ocean,

it will still improve performance by reducing the number of

misses to one per chunk.

4.3. SORDS Design Space

We performed an analysis of the storage requirements for

SORDS stream queues, and found that increasing storage beyond

2048 entries per stream queue had little effect on any application.

With fewer entries, coverage drops off rapidly. With 2048

entries, the total storage required at each node for a 16-node

system is roughly 5.5 MB (17 stream queues for each of 16

producers; up to 10 bytes per entry). The 5.5 MB storage require-

ment is large enough to prevent SORDS from using on-chip

SRAM for stream queues, but is a negligible fraction of main

memory.

Section 4.2 investigated the SORDS chunk size and deter-

mined that between four and six blocks are required to overlap

the round-trip latency of forwarding. Chunk size also affects

SORDS coverage. Increasing chunk size with fixed storage at the

consumer reduces the number of streams that can be followed in

parallel, which increases the likelihood of replacing useful but as

yet unconsumed blocks. To avoid this effect, we have found that

sending only a single head block upon creation of a new stream is

effective at reducing the number of replaced blocks, without

sacrificing much coverage. When the head block is consumed,

we forward the remainder of long streams using the chunk size

derived in Section 4.2.

Figure 8 presents SORDS results for a variety of forwarding

chunk designs, demonstrating the effect of this optimization.

These results use CSP as the sharing predictor. “Coverage” is the

fraction of all consumptions that SORDS eliminates. “Training”

are consumptions that SORDS cannot eliminate, and are instead

used to train the prediction mechanisms. “Discards” are blocks

that were forwarded to a consumer but never used—either the

SVB evicted the block or it was invalidated because of a write by

another processor. First, the graph shows that SORDS is very

effective at eliminating nearly all consumptions for the applica-

tions where CSP is highly effective (em3d, moldyn, ocean) and

SORDS can exploit per-consumer P-C correlation. In moldyn,

there is a phase of execution that is characterized by many

parallel, short streams. This phase causes the ~20% gap between

SORDS coverage and moldyn’s perfect CSP coverage. For the

lock-based applications, where CSP is less effective, SORDS

still eliminates 25% to 50% of coherence misses. Second,

Figure 8 shows that our head block optimization is effective at

reducing discards. Only moldyn suffers from the optimization,

again because of its frequent short streams.

Figure 9 evaluates SORDS across sharing predictors. Mask

refers to the last sharing mask prediction technique. For applica-

tions where sharing prediction is effective, SORDS sees

considerable advantage from being able to exploit per-consumer

rather than global P-C correlation. In barnes, where consumers

are generally unpredictable, the high discard rate for the None

category shows that forwarding from the global stream queue

causes many discards. Global P-C correlation is relatively poor

for barnes (see Figure 3). The last mask prediction technique

never places blocks on the global stream queue because it always

predicts a set of consumers. CSP, however, will not predict

sharers if prediction confidence is low. Thus, CSP exhibits a

similar, though smaller, discard effect as seen without a sharing

predictor. In DB2 Linux, coverage without a sharing predictor is

slightly higher than CSP, as non-predicted consumers are able to

find long streams on the global stream queue. However,

removing the sharing predictor doubles the discards.

4.4. Comparison to Alternative Techniques

Figure 10 compares our final SORDS design with two other

techniques for eliminating coherent read misses. Eager shares

DGP and CSP with SORDS, but forwards produced blocks to

predicted consumers immediately upon production. Stride is an

adaptive stride prefetcher that examines memory patterns at the

Figure 8. SORDS sensitivity to forwarding chunk size. Each forwarding chunk design is listed as x-y. x refers to the size

of the head chunk sent upon a demand miss, y refers to the body chunk size sent in reply to a hit notification.

216 234

0%

50%

100%

150%

200%

 1
-1

 1
-4

 1
-6

 1
-8

 6
-6

 1
-1

 1
-4

 1
-6

 1
-8

 6
-6

 1
-1

 1
-4

 1
-6

 1
-8

 6
-6

 1
-1

 1
-4

 1
-6

 1
-8

 6
-6

 1
-1

 1
-4

 1
-6

 1
-8

 4
-4

 1
-1

 1
-4

 1
-6

 1
-8

 4
-4

barnes em3d moldyn ocean DB2 Solaris DB2 Linux

%
 o

f
C

o
n
s
u
m

p
tio

n
s Coverage Training Discards

216 285

Figure 9. SORDS with various sharing predictors.

0%

50%

100%

150%

N
o
n
e

M
a
s
k

C
S

P

N
o
n
e

M
a
s
k

C
S

P

N
o
n
e

M
a
s
k

C
S

P

N
o
n
e

M
a
s
k

C
S

P

N
o
n
e

M
a
s
k

C
S

P

N
o
n
e

M
a
s
k

C
S

P

barnes em3d moldyn ocean DB2

Solaris

DB2

Linux

Coverage Training Discards
187 171 113

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)
1089-795X/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

directory for strided accesses. When a stride is located, the

prefetcher sends the next four blocks along the stride. SORDS

and Eager are each considered for two different SVB sizes (4KB

and 16KB).

SORDS is clearly superior to eager forwarding. Eager

forwards data prematurely, replacing useful data in the

consumer’s small SVB, leading to high discard rates in em3d,

moldyn, and ocean. In cases where CSP makes few predictions,

eager forwarding sends few blocks, resulting in both low

coverage and low discards.

SORDS is also superior to stride-based prefetching, in both

coverage and discards. Stride results in many discards because it

is incapable of throttling. The access patterns in em3d and ocean

are not strided, resulting in much lower coverage for stride.

SORDS provides about 10% more coverage for DB2 Solaris, and

20% more for moldyn. Coverage is similar for barnes. For DB2

Linux and barnes, SORDS coverage is limited by the difficulty of

sharing prediction, which does not limit the stride prefetcher.

SORDS is relatively insensitive to the size of the

consumer’s SVB. Because there are few streams followed in

parallel, and throttling limits occupancy at the buffer, 4KB of

storage is sufficient. Moldyn is the exception, because its many

parallel streams put significant pressure on the SVB during

bursts. Eager forwarding is more sensitive to buffer size, because

the SVB must contain all produced but unconsumed values.

5. Related Work

Prior studies have shown that coherent write miss latency

can be hidden through relaxed consistency models [1], or by

speculatively relaxing ordering constraints under sequential

consistency [10]. Coherence optimizations directly reduce the

latency of coherent read misses through optimizing the coher-

ence protocol for particular access patterns [16,36], predicting

coherence activity and initiating it in advance of explicit requests

[17,20,21,27], or speculatively using incoherent values [13].

Token coherence [25] eases the implementation of these optimi-

zations by splitting coherence protocols into separate

performance and correctness protocols, reducing the protocol

verification burden. However, these proposals either target only

specific sharing patterns (e.g., migratory or false sharing) or hide

only part of the coherence latency (e.g., one hop of a coherence

transaction). Furthermore, none of these proposals increase

coherence MLP.

Prefetching techniques [11,14,22,30,33] can initiate coher-

ence transfers in advance of processor requests, and thus have the

potential to fully eliminate the latency of a coherence miss.

However, many prefetchers limit their maximum effectiveness

by targeting only one miss at a time [11,14,22] or transferring a

fixed number of blocks per miss [30,33]. At the other extreme,

forwarding [19] places no restriction on block transfers, poten-

tially forwarding too many blocks ahead of consumer demand

and increasing pressure on limited on-chip storage. In contrast,

memory streaming approaches throttle the transfer of arbitrary

length access sequences and thereby avoid sacrificing opportu-

nity while using limited on-chip storage efficiently.

Other proposals advocate increasing the effective MLP by

simulating the effects of larger instruction windows through run-

ahead execution [29] or by decoupling the computation and

memory-access slices of program execution [6,35,37]. However,

in contrast to history-based streaming techniques like SORDS,

these approaches do not increase memory-level parallelism when

memory accesses are dependent—for example, when chasing

pointers in linked-data structures, one memory access must

complete before the subsequent access can proceed. Techniques

seeking to exceed the dataflow limit through value prediction or

to increase MLP at the processor (e.g., SMT) or the chip level

(e.g., CMP) are complementary to our work.

6. Conclusion

In this paper, we presented SORDS, a memory streaming

technique for eliminating coherent read misses in distributed

shared-memory systems. We demonstrated the phenomenon of

producer-consumer temporal address correlation—that produc-

tion and consumption orders are highly similar—and showed

how to exploit this to improve performance. We demonstrated

that throttled streaming is essential for eliminating a large frac-

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

S
1
-4

 4
K

S
1
-4

 6
4
K

E
 4

K

E
 6

4
K

s
tr

id
e

S
1
-4

 4
K

S
1
-4

 6
4
K

E
 4

K

E
 6

4
K

s
tr

id
e

S
1
-6

 4
K

S
1
-6

 6
4
K

E
 4

K

E
 6

4
K

s
tr

id
e

S
1
-6

 4
K

S
1
-6

 6
4
K

E
 4

K

E
 6

4
K

s
tr

id
e

S
1
-4

 4
K

S
1
-4

 6
4
K

E
 4

K

E
 6

4
K

s
tr

id
e

S
1
-4

 4
K

S
1
-4

 6
4
K

E
 4

K

E
 6

4
K

s
tr

id
e

barnes em3d moldyn ocean DB2 Solaris DB2 Linux

%
 o

f
C

o
n
s
u
m

p
tio

n
s

Coverage Training Discards

Figure 10. SORDS compared to alternative techniques for eliminating consumption misses. The “S x-y z” bars

represent SORDS with a head chunk of x, a body chunk of y, and a forward buffer of z bytes. The “E z” bars refer to eager

forwarding with a forward buffer of z bytes. The “stride” bar refers to stride-based prediction.

233 200 200 192

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)
1089-795X/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

tion of coherence misses with minimal storage. We introduced a

first design for SORDS comprising: DGP to identify down-

grades; CSP to predict subsequent consumers; and a Stream

Engine to stream data at the rate of consumption. We evaluated

this design and showed that SORDS can eliminate 36%-100% of

coherent read misses in scientific applications and 23%-48% in

OLTP workloads.

References

[1] S. V. Adve and K. Gharachorloo. Shared memory consistency
models: A tutorial. IEEE Computer, 29(12):66–76, Dec. 1996.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs on
a modern processor: Where does time go? In The VLDB Journal,
pages 266–277, Sept. 1999.

[3] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory system
characterization of commercial workloads. In Proceedings of the
25th Annual International Symposium on Computer Architecture,
pages 3–14, June 1998.

[4] T. M. Chilimbi and M. Hirzel. Dynamic hot data stream prefetching
for general-purpose programs. In Proceedings of the SIGPLAN’02
Conference on Programming Language Design and Implementa-
tion (PLDI), June 2002.

[5] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture optimiza-
tions for exploiting memory-level parallelism. In Proceedings of
the 31st Annual International Symposium on Computer Architec-
ture, June 2004.

[6] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee,
D. Lavery, and J. P. Shen. Speculative precomputation: Long-range
prefetching of delinquent loads. In Proceedings of the 28th Annual
International Symposium on Computer Architecture, July 2001.

[7] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy,
S. Lumetta, T. von Eicken, and K. Yelick. Parallel programming in
Split-C. In Proceedings of Supercomputing’93, Nov. 1993.

[8] Z. Cvetanovic. Performance analysis of the Alpha 21364-based HP
GS1280 multiprocessor. In Proceedings of the 30th Annual Interna-
tional Symposium on Computer Architecture, pages 218–229, June
2003.

[9] B. Falsafi and D. A. Wood. Reactive NUMA: A design for unifying
S-COMA and CC-NUMA. In Proceedings of the 24th Annual
International Symposium on Computer Architecture, pages 229–
240, June 1997.

[10] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC + ILP = RC? In
Proceedings of the 26th Annual International Symposium on
Computer Architecture, pages 162–171, May 1999.

[11] D. Gracia Pérez, G. Mouchard, and O. Temam. MicroLib: A case
for the quantitative comparison of micro-architecture mechanisms.
In Proceedings of the 37th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 37), Dec. 2004.

[12] N. Hardavellas, S. Somogyi, T. F. Wenisch, R. E. Wunderlich,
S. Chen, J. Kim, B. Falsafi, J. C. Hoe, and A. G. Nowatzyk.
Simflex: A fast, accurate, flexible full-system simulation frame-
work for performance evaluation of server architecture. SIGMET-
RICS Performance Evaluation Review, 31(4):31–35, April 2004.

[13] J. Huh, J. Chang, D. Burger, and G. S. Sohi. Coherence decoupling:
Making use of incoherence. In Proceedings of the Eleventh Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XI), October 2004.

[14] D. Joseph and D. Grunwald. Prefetching using Markov Predictors.
In Proceedings of the 24th Annual International Symposium on
Computer Architecture, pages 252–263, June 1997.

[15] N. P. Jouppi. Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers. In
Proceedings of the 17th Annual International Symposium on
Computer Architecture, pages 364–373, May 1990.

[16] A. Kägi, N. Aboulenein, D. C. Burger, and J. R. Goodman. Tech-
niques for reducing overheads of shared-memory multiprocessing.
In Proceedings of the 1995 International Conference on Supercom-
puting, pages 11–20, July 1995.

[17] S. Kaxiras and C. Young. Coherence communication prediction in
shared memory multiprocessors. In Proceedings of the Sixth IEEE
Symposium on High-Performance Computer Architecture, Jan.
2000.

[18] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E.
Baker. Performance characterization of a quad Pentium Pro SMP

using OLTP workloads. In Proceedings of the 25th Annual Interna-
tional Symposium on Computer Architecture, June 1998.

[19] D. Koufaty, X. Chen, D. Poulsen, and J. Torrellas. Data forwarding
in scalable shared-memory multiprocessors. In Proceedings of the
1995 International Conference on Supercomputing, page ?, 1995.

[20] A.-C. Lai and B. Falsafi. Memory sharing predictor: The key to a
speculative coherent DSM. In Proceedings of the 26th Annual
International Symposium on Computer Architecture, May 1999.

[21] A.-C. Lai and B. Falsafi. Selective, accurate, and timely self-invali-
dation using last-touch prediction. In Proceedings of the 27th
Annual International Symposium on Computer Architecture, June
2000.

[22] A.-C. Lai and B. Falsafi. Dead-block prediction & dead-block
correlating prefetchers. In Proceedings of the 28th Annual Interna-
tional Symposium on Computer Architecture, July 2001.

[23] C. Levine. TPC-C: The OLTP benchmark. In TPC Technical Report
Article at www.tpc.org.

[24] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner.
Simics: A full system simulation platform. IEEE Computer,
35(2):50–58, Feb. 2002.

[25] M. K. Martin, M. D. Hill, and D. A. Wood. Token coherence:
Decoupling performance and correctness. In Proceedings of the
30th Annual International Symposium on Computer Architecture,
June 2003.

[26] S. S. Mukherjee, B. Falsafi, M. D. Hill, and D. A. Wood. Coherent
network interfaces for fine-grain communication. In Proceedings of
the 23rd Annual International Symposium on Computer Architec-
ture, pages 247–258, May 1996.

[27] S. S. Mukherjee and M. D. Hill. Using prediction to accelerate
coherence protocols. In Proceedings of the 25th Annual Interna-
tional Symposium on Computer Architecture, June 1998.

[28] S. S. Mukherjee, S. D. Sharma, M. D. Hill, J. R. Larus, A. Rogers,
and J. Saltz. Efficient support for irregular applications on distrib-
uted-memory machines. In Fifth ACM SIGPLAN Symposium on
Principles & Practice of Parallel Programming, July 1995.

[29] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execu-
tion: an effective alternative to large instruction windows. IEEE
Micro, 23(6):20–25, November/December 2003.

[30] K. J. Nesbit and J. E. Smith. Data cache prefetching using a global
history buffer. In Proceedings of the Tenth IEEE Symposium on
High-Performance Computer Architecture, February 2004.

[31] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso.
Performance of database workloads on shared-memory systems
with out-of-order processors. In Proceedings of the Eighth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS VIII), Oct. 1998.

[32] T. Sherwood, S. Sair, and B. Calder. Predictor-directed stream
buffers. In Proceedings of the 33rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO 33), December
2000.

[33] Y. Solihin, J. Lee, and J. Torrellas. Using a user-level memory
thread for correlation prefetching. In Proceedings of the 29th
Annual International Symposium on Computer Architecture, May
2002.

[34] S. Somogyi, T. F. Wenisch, N. Hardavellas, J. Kim, A. Ailamaki,
and B. Falsafi. Memory coherence activity prediction in commer-
cial workloads. In Proceedings of the Third Workshop on Memory
Performance Issues (WMPI-2004), June 2004.

[35] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton.
Continual flow pipelines. In Proceedings of the Eleventh Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XI), Oct. 2004.

[36] P. Stenstrom, M. Brorsson, and L. Sandberg. Adaptive cache coher-
ence protocol optimized for migratory sharing. In Proceedings of
the 20th Annual International Symposium on Computer Architec-
ture, pages 109–118, May 1993.

[37] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream
processors: Improving both performance and fault tolerance. In
Proceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS IX), November 2000.

[38] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki,
and B. Falsafi. Temporal streaming of shared memory. In Proceed-
ings of the 32nd Annual International Symposium on Computer
Architecture, June 2005.

[39] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological consid-
erations. In Proceedings of the 22nd Annual International Sympo-
sium on Computer Architecture, pages 24–36, July 1995.

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)
1089-795X/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on March 30, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

