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Abstract

With the proliferation of database workloads on
servers, much recent research on server architec-
ture has focused on database system benchmarks.
The TPC benchmarks for the two most common
server workloads, OLTP and DSS, have been used
extensively in the database community to evalu-
ate the database system functionality and perfor-
mance. Unfortunately, these benchmarks fall short
of being effective in microarchitecture and memory
system research due to several key shortcomings.
First, setting up the experimental environment and
tuning these benchmarks to match the workload
behavior of interest involves extremely complex
procedures. Second, the benchmarks themselves
are complex and preclude accurate correlation of
microarchitecture- and memory-level bottlenecks
to dominant workload characteristics. Finally,
industrial-grade configurations of such benchmarks
are too large and preclude their use in detailed but
slow microarchitectural simulation studies of fu-
ture servers. In this paper, we first present an anal-
ysis of the dominant behavior in DSS and OLTP
workloads, and highlight their key processor and
memory performance characteristics. We then in-
troduce a systematic scaling framework to scale
down the TPC benchmarks. Finally, we propose
the DBmbench, consisting of two substantially
scaled-down benchmarks:µTPC-H andµTPC-C
that accurately (> 95%) capture the processor and
memory performance behavior of DSS and OLTP
workloads.

Copyright c© 2005 Minglong Shao. Permission to copy is
hereby granted provided the original copyright notice is repro-
duced in copies made.

1 Introduction

Database workloads — such as Decision Support
Systems (DSS) and Online Transaction Processing
(OLTP) — are emerging as an important class of
applications in the server computing market. Nev-
ertheless, recent research [1, 3, 12] indicates that
these workloads perform poorly on modern high-
performance microprocessors. These studies show
that database workloads have drastically different
processor and memory performance characteristics
as compared to conventional desktop and engineer-
ing workloads [18] that have been the primary fo-
cus of microarchitecture research in recent years.
As a result, researchers from both the computer ar-
chitecture and database communities are increas-
ingly interested in careful performance evaluation
of database workloads on modern hardware plat-
forms [1, 2, 3, 4, 5, 7, 12, 13, 15, 19, 20].

To design microprocessors on which database
workloads perform well, computer architects need
benchmarks that accurately represent these work-
loads. There are a number of requirements that
suitable benchmarks should satisfy. First, modern
wide-issue out-of-order superscalar processors in-
clude a spectrum of mechanisms to extract paral-
lelism and enhance instruction execution through-
put. As such, the benchmarks must faithfully
mimic the performance of the workloads at the
microarchitecture-level to allow for designers to
pinpoint the exact hardware bottlenecks. Second,
microarchitecture simulation tools [17] are also
typically five or more orders of magnitude slower
than real hardware [16, 22]. To allow for prac-
tical experimentation turnaround, architects need
benchmarks that are scaled down variations of the
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workloads [9] and have minimal execution time.
Third, the benchmark behavior should be determin-
istic when across scaled datasets and varying sys-
tem configurations to allow for conclusive experi-
mentation. Finally, the benchmark sources or exe-
cutables should either be readily available [18] or
at most require installation and setup skills charac-
teristic of a typical computer system researcher and
designer.

Unfortunately, conventional DSS and OLTP
database benchmarks,TPC-H andTPC-C [8], fall
far short of satisfying these requirements. The TPC
benchmarks have been primarily designed to test
functionality and evaluate overall performance of
database systems on real hardware. These bench-
marks have orders of magnitude larger execution
times than needed for use in simulation. To al-
low for practical experimentation turnaround, most
prior studies [1, 3, 4, 5, 13, 15, 20] employ ad
hoc abbreviations of the benchmarks (scaled down
datasets and/or a subset of the original queries)
without justification. Many of these studies tacitly
assume that microarchitecture-level performance
behavior is preserved.

Moreover, the TPC benchmarks’ behavior at the
microarchitecture-level may be non-deterministic
when scaled. The benchmarks include complex
sequences of database operations that may be re-
ordered by the database system depending the na-
ture of the sequence, the database system con-
figuration and the dataset size, thereby substan-
tially varying the benchmark behavior. Recent
research by Hankins et al. [9], rigorously ana-
lyzes microarchitecture-level performance metrics
of scaled datasets forTPC-C workloads and con-
cludes that performance metrics cease to match
when the dataset is scaled below 12GB. Unfortu-
nately, such dataset sizes are still too large to allow
for practical simulation turnaround.

Finally, the TPC benchmark kits for most state-
of-the-art database systems are not readily avail-
able. Modern database systems typically include
over one hundred configuration and installation
parameters. Writing and tuning the benchmarks
according to the specifications [21] on a given
database system to represent a workload of inter-
est may require over six months of experimentation
even by a trained database system manager [11]
and requires skills beyond those at hand for a com-
puter system designer.

In this paper, we presentDBmbench, a bench-

mark suite representing DSS and OLTP workloads
tailored to fit the requirements for microarchitec-
ture research. The DBmbench is based on the key
observation that the executions of database work-
loads are primarily dominated by a few intrinsic
database system operations — e.g., a sequential
scan or a join algorithm. By identifying these
operations, microarchitecture-level behavior of the
workloads can be mimicked by benchmarks that
simply trigger the execution of these operations in
the database system. We present the DBmbench
benchmarks in the form of simple database queries,
readily executable on database systems, and sub-
stantially reducing execution complexity as com-
pared to the TPC benchmarks. Moreover, by iso-
lating operation execution in stand-alone bench-
marks, the datasets can be scaled down to only hun-
dreds of megabytes while resulting in deterministic
behavior precluding any optimizations in operation
ordering by the database system.

Using hardware counters on an Intel Pentium
III platform running IBM DB2, we show that
the DBmbench benchmarks can match a key set
of microarchitecture-level performance behavior,
such as cycles-per-instruction (CPI), branch predic-
tion accuracy, and miss rates in the cache hierarchy,
of professionally tuned TPC benchmarks for DB2
to within 95% (for virtually all metrics). As com-
pared to the TPC benchmarks, the DBmbench DSS
and OLTP benchmarks: (1) reduce the number of
queries from 22 and 5 to 2 and 1 simple queries re-
spectively, (2) allow for scaling dataset sizes down
to 100MB, and (3) reduce the overall number of
instructions executed by orders of magnitude.

The remainder of this paper is organized as fol-
lows: section 2 introduces the basic database con-
cepts used in this paper. Section 3 describes a
framework to scale down database benchmarks and
the design of DBmbench. Section 4 discusses the
experimental setup and the metrics used to charac-
terize behavior at the micro-architecture level. Sec-
tions 5 evaluates the scaling framework and the
DBmbench. Section 6 presents a brief survey of
recent database workload characterization studies
and the research on microbenchmarks. Section 7
concludes the paper and outlines future work.



2 Background

Commercial database management systems
(DBMS) organize data intablesaccording to the
relational model[6]. Each table is defined by a
set offieldsand contains a set ofrecords, whereas
each record consists of values to the fields. To read,
filter, or modify stored information, users submit
queries to the DBMS using a query language
such asSQL. Figure 1(a) shows an example set of
relational tables, whereas Figure 1(b) illustrates
an example query to extract the names and GPAs
for all the students in the Computer Science
department. The query comprises four clauses:
SELECT chooses the fields to participate in the
answer (name from Student and the average over
score values from Course); FROM lists the tables
to process (Student and Course); WHERE states
the condition based on which to choose the records
to participate in the answer (the student must have
taken the course and the student should belong in
the CS department); GROUP BY denotes that the
average scores (GPAs) should be calculated per
student name. The query essentially summarizes
the relational operatorsto be used; the DBMS
executes the query using a set ofphysical oper-
ators. Unless explicitly noted, “operator” means
“physical operator.”

2.1 Basic Physical Operators

Operators are independent code pieces that con-
sume one or two input streams of records and pro-
duce one output stream. To execute a query, the
DBMS constructs aquery plan, i.e., a cooperating
tree of operators. A logical operator, may be exe-
cuted using several physical operators; therefore,
each query may be executed using one of many
possible query plans. No matter how complex a
SQL query is, however, it is executed using a fi-
nite set of basic operators. Most frequently used
operators are those implementing ascan, a join,
an order-by, a group-by, and anaggregate. For
brevity, this section only discusses read-only oper-
ators; the implementation of update, deletion, and
insertion operators is immaterial to this paper.

A table scanoperator (corresponding to the
“Scan” in Figure 2) reads through an entire ta-
ble and generates a stream of records that satisfy
a predicate(for example, “scan Student” in Fig-
ures 2(a), 2(b) only outputs Student records in CS).

Theselectivityof the predicate is calculated as the
number of records that satisfy the predicate divided
by the number of records in the input (in our exam-
ple, in Student). Anindex scanoperator (“IScan”
in Figures 2(c)) provides the same set of results as
a table scan by using anindex(a B+ tree that uses
field values as keys to point to records) to access the
table. An index scan is different than a table scan
in that it only accesses qualifying records through
the index. The index Idept used in Figure 2(c), for
instance, is built using Student.dept as key and can
be used to quickly identify records of CS students.
Assuming that Student is sorted on sid, the Idept is
a non-clusteredindex, because the records are not
sorted by the index key. This means that retrieving
CS student records through Idept results in random
record accesses in the Student table. Conversely, an
index on sid isclusteredas the records in the table
are stored in the same order as the index. Retriev-
ing a set of records within a range of sid values
results in one index probe to locate the beginning
value, and then a sequential scan through students
to obtain all the remaining qualifying records.

Table joins match tuples from two tables based
on an equality (equijoin) or other condition on
common fields. Joins are typically implemented
using variations of three algorithms:nested-loop,
sort-merge, and hash join. The nested-loop join
uses a two-level nested loop to compare each
record of one table with all the records of the other,
and can efficiently compute inequality joins. Sort-
merge first sorts the input tables, and then merges
the sorted runs using nested loops for duplicates; it
is most efficient when one (or both) inputs are al-
ready sorted on the join field. The hash join creates
a hash table on one of the inputs and then probes it
with records in the other; it is often the most effi-
cient for computing equijoins on unsorted inputs.

Order-by clauses are implemented using thesort
operator, that sorts records in the input table based
on a subset of fields. The sort operator is also
used as part of a sort-merge join or to implement a
group-by. Thegroup-byoperator classifies the in-
put records into groups based on a subset of fields,
and outputs the groups; it can be implemented us-
ing sorting or hashing. Theaggregateoperator ap-
plies a function (such asmax, sum, etc.) on the
input records and outputs a single value. Database
textbooks describe operators in detail [14].



sid

Student Course

cid sid scoreyearname dept.

(a) Tables.

FROM Student, Course
WHERE Student.dept=’CS’                     (i)

GROUP BY Student.name

       avg(Course.score) AS GPA
SELECT Student.name, 

      and Student.sid=Course.sid            (ii)

(b) An SQL query.

Figure 1:An example database workload consisting of two tables and anSQL query.

Hash Join

Scan Course Scan Student
dept=’CS’

Hash group−by

Aggregate

(a) Query plan 1.

Sort

Scan Course
Scan Student
dept=’CS’

Aggregate

Sort Merge Join

Sort group−by

(b) Query plan 2.

Aggregate

Nested Loop Join

Scan Course

dept=’CS’

IScan Idept (Student)

Sort group−by

(c) Query plan 3.

Figure 2:Query plan examples for the query in Figure 1(b).

2.2 Relational Query Optimization

As discussed above, there are multiple different
physical operators a query execution engine can
use to calculate the answer to a query. First, access
to a table may be sequential or through an index;
second, joins and group-by operations have various
implementations; third, there are several valid per-
mutations of inputs and operators in a query plan.
Although all valid query plans calculate the same
answer to the query, their relative performance may
vary wildly depending on the data distributions, as
well as the conditions used in the query. To eval-
uate, for instance, the subcondition (i) on Student
we can either use a table scan or the non-clustered
index Idept. If there are one million students in to-
tal, and half of them are in CS, we should just use
a table scan to filter out the non-CS records. If,
however, there are only a hundred CS students, it
will be preferable to use the index, despite that it is
non-clustered (and these will be one hundred ran-
dom record accesses).

To make this decision, we evaluate the cost of
each alternative based on theselectivityof the pred-
icate in the subcondition. There may be other de-
termining factors: for example, the input table size
relatively to the available memory size (buffer pool)
may determine the access method to be used, or
the relative input sizes of the joined files may de-
termine the algorithm and the order in which they
are joined. The exact relative costs of each access

method and each operation are calculated through
a statistics-based cost model in the heart of the
DBMS query optimizer.

Using the cost model, the optimizer evaluates all
the possible plans, and orders the query execution
engine to compute the answer based on the least ex-
pensive plan. Figure 2 shows three possiblequery
execution plansfor our example, whereas the to-
tal number of possible plans is exponential to the
number of tables involved in the query. Query
optimization in commercial DBMS is thus per-
formed through dynamic programming, and differ-
ent query plans execute different code. Therefore,
the DBMS may use a different instruction mix to
execute the same workload if any of the workload
of system configuration parameters varies.

3 Scaling Down Benchmarks

This section outlines a framework to scale down
benchmarks. We identify three dimensions along
which we can abbreviate benchmarks and discuss
the issues involved when scaling database bench-
marks workload along the dimensions. Then, we
present the design of DBmbench.

Decision-support system (DSS) workloads are
typically characterized by long, complex queries
(often 1MB of SQL code) running on large datasets
at low concurrency levels. DSS queries are char-
acterized from sequential access patterns (through



table scans or clustered index scans). By con-
trast, on-line transaction processing (OLTP) work-
loads consist of short read-write query statements
grouped in atomic units calledtransactions[8].
OLTP workloads have high concurrency levels, and
the users run many transactions at the same time.
The queries in the transactions typically use non-
clustered indexes and access few records, therefore
OLTP workloads are characterized by concurrent
random accesses.

The prevalent DSS benchmark is TPC-H [8].
TPC-H consists of eight tables, twenty-two read-
only queries (Q1–Q22) and two batch update state-
ments, which simulate the activities of a wholesale
supplier. For OLTP, the TPC-C benchmark por-
trays a wholesale supplier and several geographi-
cally distributed sale districts and associated ware-
houses [21]. It is comprised of nine tables and
five different types of transactions. TPC-H is usu-
ally executed in a single-query-at-a-time fashion
while TPC-C models multiple clients running con-
currently.

3.1 A Scaling Framework

A database benchmark is typically composed of a
dataset and a workload (set of queries or transac-
tion) to run on the dataset. Inspired by the dif-
ferences between DSS and OLTP outlined in Sec-
tion 3, we scale down a full benchmark along three
orthogonal dimensions, shown in Figure 3: work-
load complexity, dataset size, and level of concur-
rency.
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Figure 3:Benchmark-scaling dimensions.

In order to scale down a benchmark’s workload
complexity, one approach is to choose a subset
of the original queries [3, 15, 20]. Another ap-
proach is to reduce the query complexity by re-
moving parts of the query or reducing the num-
ber of items in the SELECT clause. Both meth-

ods effectively reduce query complexity at the cost
of sacrificing representativeness; choosing a sub-
set of queries may exclude important queries that
significantly affect behavior, while the complexity
reduction method may inadvertently result in dra-
matic changes to the query plans and thus modify
the benchmark’s behavior.

Scaling down along the dataset size dimension is
fairly straightforward, because benchmark specifi-
cations typically provide rules or software to scale
down datasets. The main concern when scaling
down along this dimension is to preserve the per-
formance characteristics of the workload, as reduc-
ing the database size is likely to alter the query
plans (and consequently the instruction mix) and
cause performance bottlenecks to shift. Similarly,
scaling the level of concurrency is straightforward,
because benchmarks include in their specifications
the how many users should run per data unit. It is
important to abide by the scaling rules in the speci-
fications, to maintain the data and usage properties.

3.2 Framework Application to DSS
and OLTP Benchmarks

From the perspective of benchmark evaluation,
DSS queries are mostly read-only and usually ac-
cess a large portion of the dataset. While there
are also batch updates, read-only operations are the
critical part in a DSS workload. Queries are exe-
cuted one-at-a-time, and the execution process for
each query is predictable and reproducible. Fur-
thermore, while DSS queries vary enormously in
functionality, they typically spend most of their
time executing basic query operations such as se-
quential scan and/or join.

When examining the optimizer’s suggested plans
for TPC-H queries, we find that 50% queries are
dominated by table scans (over 95% of their exe-
cution time is estimated to be due to table scans)
whereas 25% of the queries spend more than 95%
of the time executing nested-loop joins. The re-
maining 25% of the queries executed table scans
for about 75% on average and nested-loop joins for
about 25% on average. Therefore, we can repre-
sent scan-bound and join-bound queries by execut-
ing the two dominant operators.

Considering the complexity and depth of a
TPC-H query plan, this result may seem counter-
intuitive; however, the major part of the filtering is
done at the lowest levels of the operator tree, and



the result size is reduced dramatically as execution
continues to the upper levels of the tree. In con-
clusion, DSS workloads can be scaled down by (1)
constructing representative queries that execute the
dominant operators; (2) using small datasets that
fit in the research testbed. The concurrency level is
already low in DSS.

OLTP workloads are characterized by a large
number of concurrent and continuous update-
intensive transactions that generate random-like
memory access patterns. Queries in OLTP work-
loads are simple and only touch a small fraction
of the dataset. OLTP execution is quite different
from that of DSS, in that it involves a stream of
concurrent transactions including numerous simple
queries and insert/update statements. Scaling down
OLTP benchmarks involves decreasing the num-
ber of concurrent clients and reducing the dataset
sizes. To accurately mimic the workload’s scat-
tered dataset access pattern, the concurrent clients
should execute one or more queries with random
access to memory.

3.3 DBmbench Design

DBmbench is a microbenchmark suite that can em-
ulate DSS and OLTP workloads at the computer ar-
chitectural level. DBmbench includes two tables
and three simple queries. The design principles are
(1) keeping table schemas and queries as simple as
possible; (2) focusing on the dominant operations
in DSS and OLTP.

DBmbench tables.DBmbench uses two tables,
T1 and T2, as shown in Table 1. T1 and T2 have
three fields each,a1, a2, anda3, which will be
used by the DBmbench queries. “padding” stands
for a group of fields that are not used by any of
the queries. We use the values of these fields as
“padding” to make records 100 Byte long, which
approximates the average record length of TPC-H
and TPC-C. The type of these fields makes no dif-
ference in the performance, and by varying its size
we can experiment with different record sizes with-
out affecting the benchmark’s queries.

The values of fielda1 are uniformly distributed
between 1 and 150,000, whereasa2 takes values
randomly within the range of 1 to 20,000 anda3
values are uniformly distributed between 1 and 50.
The distributions and values in these tables are a
properly scaled-down subset of the data distribu-
tions and values in the TPC-H tables.

DBmbench queries. Based on the discussion
in Section 3.2, the design of the DSS microbench-
mark mainly focuses on simplifying query com-
plexity. Moreover, as discussed previously, scan
and join operators typically dominate DSS query
execution time. Therefore, we propose two
queries for the DSS microbenchmark, referred to
asµTPC-H, as follows: sequential scan query with
sort (µSS) and join query (µNJ). The first two
columns of Table 2 show the SQL statements for
these two queries.

TheµSS query is a sequential scan over table T1.
We will use it to simulate the DSS queries whose
dominant operators are sequential scans. The two
parameters in the predicate,Lo andHi , are used to
obtain different selectivities. The order-by clause
sorts the query results by the values inn the a3 field,
and is added for two reasons. First, sort is an im-
portant operator in DSS queries, and the order-by
clause increases the query complexity effectively
to overcome common shortcomings in existing mi-
crobenchmarks [1, 11]. Second, the clause will not
alter the sequential scan access method, which is
instrumental in determining the basic performance
characteristics.

Previous microbenchmarks use aggregation
functions in the projection list to minimize the
server/client communication overhead [1, 11]. To
prevent the optimizer from omitting the sort oper-
ator, µSS uses “distinct” instead of the aggregate.
“Distinct” eliminates duplicates from the answer
and achieves the same methodological advantage
as the aggregate, because the number of distinct
values ina3 is small (less than or equal to 50), and
does not interfere with the performance character-
istics. Our experiment results corroborate these hy-
potheses.

Although previously proposed microbenchmark
suites [11] often omit the join operator, it is actu-
ally an important component in DSS queries and
has very different behavior from table scan [1].
To mimic the DSS workload behavior accurately,
we consider the join operator and propose theµNJ
query to simulate the DSS queries dominated by
the join operator. The predicate “Lo < T1.a2 <

Hi” adds an adjustable selectivity to the join query
so that we can control the number of qualifying
records by changing the values ofLo andHi .

The OLTP microbenchmark, which we call
µTPC-C, consists of one non-clustered index scan
query (µIDX), shown in the third column of Ta-



Table T1 Table T2
CREATE TABLE T1 (

a1 INTEGER NOT NULL,

a2 INTEGER NOT NULL,

a3 INTEGER NOT NULL,

<padding>,

FOREIGN KEY (a1) references T2

);

CREATE TABLE T2 (

a1 INTEGER NOT NULL PRIMARY KEY,

a2 INTEGER NOT NULL,

a3 INTEGER NOT NULL,

<padding>

);

Table 1:DBmbench database: table definitions

µSS query µNJ query µIDX query
SELECT distinct (a3)

FROM T1

WHERE Lo < a2 < Hi

ORDER BY a3

SELECT avg (T1.a3)

FROM T1, T2

WHERE T1.a1=T2.a1 AND Lo < T1.a2 < Hi

SELECT avg (a3)

FROM T1

WHERE Lo < a2 < Hi

Table 2:DBmbench workload: queries

ble 2. TheµIDX query is similar to theµSS query
in µTPC-H. The key difference is that, when evalu-
ating the predicate in the ”where” clause, the ta-
ble scan through the non-clustered index gener-
ates a TPC-C-like random access pattern. The
proposedµIDX query is a read-only query which
only partly reflects the type of actions in TPC-C.
The transactions also include a significant number
of write statements (updates, insertions, and dele-
tions). In our experiments, however, we found that
adding updates to the DBmbench had no effect in
the representativeness of the benchmark. The rea-
son is that, like queries, updates use the same in-
dexes to locate data, and the random accesses on
the tables through index search is the dominant
behavior in TPC-C. Therefore, theµIDX query
is enough to represent the benchmark. We scale
down the dataset to the equivalent of one ware-
house (100MB) and the number of concurrent users
to ten (as directed by the TPC-C specification).

4 Experimental Methodology

In this section, we present the experimental en-
vironment and methodology we use in the pa-
per. Industrial-strength large-scale database servers
are often configured with fully optimized high-
performance storage devices so that the execution
process is typically CPU- rather than I/O-bound.
A query’s processor execution and memory access
characteristics in such settings dominate overall
performance [3]. As such, we ignore I/O activity

in this paper and focus on microarchitecture-level
performance.

We conducted our experiments on a 4-way
733 MHz Intel Pentium III server. Pentium III
is a 3-way out-of-order superscalar processor with
16 KB level-one instruction and data caches, and a
unified 2 MB level-two cache. The server has 4 GB
of main memory and four SCSI disks of 35 GB ca-
pacity. To measure microarchitecture-level perfor-
mance, we use the hardware counters featured in
the processors to count events or measure opera-
tion latencies.1 We use Intel’s EMON tool to op-
erate the counters and perform measurements. The
counted events include the total number of retired
instructions, the number of cache misses at each
level, mispredicted branch instructions, and CPU
cycles, etc.

We use IBM DB2 UDB V.7.2 with Fix Pack-
age 11 [10] on Linux (kernel version 2.4.18) as
the underlying database management system, and
run TPC-H and TPC-C benchmarks. As in prior
work [3, 4, 5, 11, 20], we focus on the read-only
queries which are the major components of the
TPC-H workload, but our results can easily be ex-
tended to include the batch updates. For our exper-
iments, we used a slightly modified version of the
TPC-C kit provided by IBM which has been opti-

1We have also verified that the microarchitecture-level event
counts between the TPC benchmarks and DBmbench match on
a Pentium 4 platform. However, we are not aware of an execu-
tion time breakdown model for the platform to match the stall
time components, and therefore we omit these results in the in-
terest of brevity.



mized for DB2. Prior work [1] suggests that com-
mercial DBMS exhibit similar microarchitecture-
level performance behavior when running database
benchmarks. Therefore, expect the results in this
paper to be applicable to other database servers.

For TPC-H, we record statistics for the entire ex-
ecution of all the queries. We measure work units
in order to minimize the effect of startup overhead.
Each work unit consists of multiple queries of the
same type but with different values of the substi-
tute parameters (i.e., selectivity remains the same,
but qualifying records vary). We run each work
unit multiple times, and measure events per run.
The measurement is repeated several times to elim-
inate the random factors during the measurement.
The reported results have less than 5% discrepancy
across different runs.

For TPC-C, we count a pair of events during a
five-second fixed time interval. We measure events
multiple times and in different order each time. For
all experiments, we ensure that the standard devia-
tion is always lower than 5% and compute an aver-
age over the per-event collected measurements.

When scaling dataset sizes, we also change
the system configuration parameters to ensure the
setup is valid. Database systems include a myr-
iad of software-configured parameters. In the in-
terest of brevity and to allow for practical experi-
mental turnaround time, in this paper we focus on
the buffer pool size as the key database system pa-
rameter to vary. As database applications are heav-
ily memory-bound, the buffer pool size: (1) is ex-
pected to have the most fundamental effect on pro-
cessor/memory performance, and (2) often deter-
mines the values of other memory-related database
system parameters. For TPC-C, where the num-
ber of concurrent users is intuitively important for
the system performance, we also vary the degree of
concurrency. While we have studied other parame-
ters (such as degree of parallelism), we did not find
any insightful results based on them.

When measuring performance, we are primar-
ily interested in the following characteristics: (1)
query execution time breakdown, (2) memory stall
time breakdown in terms of cycles lost at vari-
ous cache levels and TLBs, (3) data and instruc-
tion cache misses per instruction at each level (4)
branch misprediction per instruction.

To break down query execution time, we bor-
row the model proposed and validated in [1] for
the the Pentium III family of processors. In this

model, query execution time is divided into cy-
cles devoted to useful computation and stall cy-
cles due to various microarchitecture-level mech-
anisms. The stalls are further decomposed into dif-
ferent categories. Hence, the total execution time
TQ can be expressed by the following equation:

TQ = TC +TM +TB +TR−TOVL

TC is the actual computation time;TM is wasted cy-
cles due to misses in the cache hierarchy;TB refers
to stalls due to the branch prediction unit includ-
ing branch misprediction penalty and BTB miss
penalty; TR is the stalls due to structural hazards
in the pipeline due to lack of functional units or
physical rename registers;TOVL indicates the cy-
cles saved by the overlap of the stall time because
of the out-of-order execution engine.

TM is further broken down into six components:

TM = TL1D +TL1I +TL2D +TL2I +TDTLB+TITLB

These are stalls caused by L1 cache misses (data
and instruction), L2 cache misses (data and instruc-
tion), and TLB misses respectively.

5 Evaluation

In this section, we compare and contrast the
microarchitecture-level performance behavior of
the TPC and DBmbench benchmarks. We first
present results for the DSS benchmarks followed
by results for the OLTP benchmarks.

5.1 Analyzing the DSS Benchmarks

When taking a close look at the query plans pro-
vided by the optimizer, we corroborate our intu-
ition from 3.2 that one of the two “scan” or “join”
operators account for more than 95% of the to-
tal execution time in each of the TPC-H queries.
We also find that these two operators remain dom-
inant across database system configurations and
dataset sizes. Therefore, we classify the TPC-
H queries into two major groups: “scan bound”
query and “join bound” query. We evaluate the
microarchitecture-level performance these groups
on a 10GB dataset.

Figure 4(a) shows the representative execution
time breakdowns of the two groups. Each bar
shows the contributions of the three primary mi-
croarchitectural stall components (memory stalls,
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(a) TPC-H execution time breakdown.
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Figure 4:TPC-H time breakdowns. Representative time breakdowns for the “scan bound” and “join bound” groups, which spend
their execution time mainly on sequential scan and join operators respectively.
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Figure 5:µSS vs. TPC-H “scan bound” query. The graphs show the time breakdowns ofµSS and TPC-H “scan bound” queries.
For theµSS query, we vary its selectivity from 1% to 100% to show how selectivity affects the behavior.

branch stalls, and resource stalls) as a percentage
of the total query execution time.

These results corroborate prior findings [1, 3]
that on average the processor is idle more than 80%
of the time when executing the TPC-H queries.
In both groups, the performance bottlenecks are
memory-related and resource-related stalls, each
accounting for approximately 25% to 50% of the
execution time. While we can not measure the ex-
act cause of the resource-related stalls, our conjec-
ture is that they are related to the load/store unit due
to the high overall fraction of memory accesses in
these queries.

Not surprisingly, the queries in the “join bound”
group have a higher computation time component
because joins are more computationally intensive
than sequential scans. Furthermore, control-flow in
joins are data-dependent and irregular, and as such
the “join bound” group exhibits a higher branch
misprediction stall (over 15%) component as com-
pared to the “scan bound” group whose execution
is dominated by loops exhibiting negligible branch
misprediction stall time.

Figure 4(b) depicts a breakdown of memory stall
time. The figure indicates that the “scan bound”
group’s memory stalls are dominated (over 90%)
by L2 data misses. These queries simply thrash the
L2 cache by marching over the entire dataset and
as such have no other relatively significant memory
stall component.

Unlike the “scan bound” queries, the “join
bound” queries suffer from frequent L1 i-cache
and i-TLB misses. These queries exhibit large
and dynamic i-cache footprints that can not fit in
a 2-way associative 16KB cache. The dynamic
footprint nature of these queries is also consistent
with their irregular control flow nature and their
high branch misprediction stalls. Moreover, fre-
quent branch misprediction also inadvertently pol-
lutes the i-cache with the wrong-path instructions,
thereby increasing the miss rate.

5.2 Comparison toµTPC-H

In this section, we compare the microarchitecture-
level performance behavior of the “scan bound”



and “join bound” TPC-H queries against their
µTPC-H counterparts. As before, TPC-H results
assume a 10GB dataset while theµTPC-H results
we present correspond to a significantly scaled
down 100MB dataset.

Figure 5(a) compares the execution time break-
down of theµSS query and TPC-H queries in the
“scan bound” group. The x-axis in the left graph
reflects the selectivity of the predicate in theµSS
query. These results indicate that the execution
time breakdown of the TPC benchmark is closely
mimicked by the DBmbench. Our measurements
indicate that the absolute benchmark performances
also match, averaging a CPI of approximately 4.1.

The µSS query with high selectivity sorts more
records, thereby increasing the number of branches
in the instruction stream. These branches do not ex-
hibit any patterns and are difficult to predict, which
unavoidably results in a higher branch mispredic-
tion rate. As shown in Figure 5(a), theµSS query
successfully captures the representative character-
istics of the TPC-H queries in the “scan bound”
group: it exposes the same bottlenecks and has sim-
ilar percentages of each component. Figure 5(b)
compares the memory stall breakdowns of theµSS
query and the “scan bound” queries. TheµSS query
exposes the same bottlenecks at the L2 (for data ac-
cesses) and L1 instruction caches.

To mimic the “join bound” queries, we focus on
the nested loop join because it is the only join op-
erator that appears to be dominant. To represent
TPC-H’s behavior accurately, we build an index on
the join fields when evaluatingµNJ. We do so be-
cause most join fields in the TPC-H workload have
indexes, and the index decreases the query execu-
tion time significantly.
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Figure 6:µNJ vs. TPC-H “join bound” query. The graph
shows the time breakdowns ofµNJ and TPC-H “join bound”
queries. For theµNJ query, we vary its selectivity from 1% to
100% to show how selectivity affects the behavior.

Figure 6 examines the execution time breakdown
of the µNJ query and the “join bound” queries. It
shows that selectivity significantly affects the ex-
ecution time breakdown of theµNJ query, and a
20% selectivity best represents the characteristics
of a “join bound” query. We also verify that the ab-
solute performance measured in CPI matches be-
tween the TPC queries and the scaled down DBm-
bench query with a 20% selectivity. The average
CPI for these benchmarks are approximately 2.95.

Figure 7(a) and Figure 7(b) compare the stall
event frequencies across the benchmarks suites.
Much like the “scan bound” queries, the execution
of µSS is dominated by L2 cache misses. Similarly,
besides the high fraction of L2 cache stalls, the ex-
ecution ofµNJ much like the “join bound” queries
also incurs a high rate of L1 i-cache misses and
branch mispredictions. The L1 d-cache misses are
often overlapped Moreover, the actual differences
in event counts between the benchmark suites are
negligible.

In summary, the simpleµSS andµNJ queries
in µTPC-H closely capture the microarchitecture-
level performance behavior of the “scan bound”
and “join bound” queries in the TPC-H work-
load respectively. µTPC-H reduces the number
of queries in TPC-H from 22 to 2. Moreover,
µTPC-H allows for scaling down the dataset with
predictable behavior from 10GB to 100MB. We
measure a reduction in the total number of instruc-
tions executed from 1.8 trillion in TPC-H to 1.6 bil-
lion in µTPC-H, makingµTPC-H a suitable bench-
mark suite for microarchitecture simulation and re-
search.

5.3 Analyzing the OLTP Benchmarks

Figure 8 shows the execution time and memory
stall breakdowns for a 150-warehouse, 100-client
TPC-C workload corresponding to a 15GB dataset.
Much like the TPC-H results, these results corrob-
orate prior findings on microarchitecture-level per-
formance behavior of TPC-C [1].

The effect of the high instruction cache miss
rates result in an increased memory stall compo-
nent, which is nevertheless dominated by L2 stall
time due to data accesses. The reason is that, al-
though the L2 data miss rate is not that high, in
TPC-C each L2 data miss reflects I/O delays (TPC-
C incurs I/O costs regardless of the dataset size, be-
cause it logs the transaction updates).
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Figure 7:µTPC-H vs. TPC-H The graphs compare the miss ratios ofµTPC-H and TPC-H
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Figure 8:TPC-C time breakdowns.

5.4 Comparison toµTPC-C

Figure 9(a) compares the execution time break-
down of theµIDX query and the TPC-C bench-
mark. It shows that theµIDX query with 0.01% and
0.1% selectivity mimics the execution time break-
down of TPC-C. Increasing the selectivity to 0.1%,
however, also achieves the desired memory stall
breakdown (shown in Figure 9(b)). The interesting
result here is that selectivity is important to fine-
tune memory stall breakdown.

The execution of a singleµIDX query exhibits
fewer stall cycles caused by L1 instruction cache
misses. This is because the TPC-C workload
has many concurrently running transactions which
aggravate the localities in the instruction stream.
We an improve the similarity by running multiple
µIDX queries. We increase the L1 instruction cache
miss rate from 0.017 to 0.032 with 10 currently
running queries, which is similar to the L1 instruc-
tion cache miss rate of TPC-C (≃ 0.036).

Figure 10 shows the miss ratios ofµIDX with
a 0.1% selectivity and TPC-C. We can see from
the graph that the branch misprediction rate of the

µIDX query is the performance metric that is far
from the real TPC-C workload. The simpler exe-
cution path of theµIDX query might be the reason
for this discrepancy. The branch misprediction rate
cannot be improved with a higher degree of con-
currency. Fortunately, this discrepancy does not af-
fect the performance bottleneck, as shown in Fig-
ure 9(a). This branch prediction mismatch, how-
ever, results in a small overall CPI difference of 8.4
for µIDX as compared to 8.1 for TPC-C.
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Figure 9:µIDX vs. TPC-C. The graphs show the time breakdowns ofµIDX and TPC-C.

A singleµIDX query is not enough to mimic the
instruction-related performance behavior of TPC-
C. We can achieve better approximation by running
multiple µIDX queries. As for the data cache, the
µIDX query represents TPC-C well on the L1 data
cache. Less locality in our simpleµIDX query’s
execution, however, causes a higher L2 data cache
miss rate.

In summary, theµIDX query can expose the exe-
cution bottlenecks of TPC-C successfully. Running
multiple µIDX queries (usually 10) can closely
mimic the execution path of the TPC-C workload
with a 7.06% relative error. TheµIDX query fails
to approximate the branch misprediction rate of the
TPC-C workload. We should take this into account
when predicting the branch behavior of the TPC-C
benchmark.µTPC-C reduces the dataset size from
10GB to 100MB as compared to TPC-C. It also
reduces five transactions containing approximately
50 queries to just a single query. The total num-
ber of instructions executed per transaction is re-
duced from 91.65 million in TPC-C to 2.75 million
in µTPC-C.

6 Related Work

Database workloads evaluation at the architectural
level is a prerequisite toward improving the subop-
timal performance of database applications on to-
day’s processors. It identifies performance bottle-
necks in software and hardware and points out the
direction of future efforts. Several workloads char-
acterization efforts [1, 2, 3, 4, 5, 13, 15, 20] explore
the characteristics of OLTP and/or DSS on vari-
ous hardware platforms using either a small-scale
database or a subset of a standard workload or both.

Three studies [3, 15, 20] emphasize the scale-down
issues and demonstrate that the modified bench-
marks they use do not affect the results. How-
ever, they still lack detailed analysis based on suffi-
cient experiments on database systems with differ-
ent scales. Most recently, Diep et al. [7] report how
varying the configuration parameters affects the be-
havior of an OLTP workload. They propose a pa-
rameter vector consisting of number of processors,
disks, warehouses, and concurrent clients to rep-
resent an OLTP configuration. They then formu-
late empirical relationships of the configurations
and show how these configurations change the crit-
ical workload behavior. Hankins et al [9] continue
this work by first proposing two metrics, average
instructions per transaction (IPX) and average cy-
cles per instruction (CPI) to characterize OLTP be-
havior. Then they conduct an extensive, empirical
examination of anOraclebased commercial OLTP
workload on a wide range of the proposed metrics.
Their results show that the IPX and CPI behavior
follows predictable trends which can be character-
ized by linear or piece-wise linear approximations.

There are a number of recent proposals for mi-
crobenchmarking database systems. The first pro-
cessor/memory behavior comparison of sequential-
scan and random-access patterns across four
database systems [1] uses an in-memory TPC-like
microbenchmark. The microbenchmark used con-
sists of a sequential scan simulating a DSS work-
load and a non-clustered index scan approximat-
ing random memory accesses of an OLTP work-
load. Although the microbenchmark suite is suffi-
ciently similar to the behavior of TPC benchmarks
for the purposes of the study, a comprehensive
analysis varying benchmark configuration param-
eters is beyond the scope of that paper. Another



study [11] evaluates the behavior of a similar mi-
crobenchmark. Their microbenchmark simulates
two sequential scan queries (Q1 and Q6) from the
TPC-H suite, whereas for TPC-C, it devises read-
only queries that generate random memory/disk ac-
cess to simulate the access pattern of OLTP appli-
cations. Computation complexity affects the rep-
resentativeness of the proposed micro-DSS bench-
mark, while the degree of database multiprogram-
ming affects the micro-OLTP benchmark.

In this paper, we build on the previous work as
follows. First, we address the scaling problem from
a database’s point of view in addition to the tradi-
tional microarchitecture-approaches. We examine
how query complexity, as one important dimension
of the scaling framework, can be reduced while
preserving their key hardware level characteristics.
Second, we use a wealth of metrics that are im-
portant to obtain a complete picture of the work-
load behavior. Third, we build microbenchmarks
for both DSS and OLTP workload.

7 Conclusions

Database applications and systems are emerging as
the popular (if not dominant) commercial work-
loads. Computer architects are increasingly re-
lying on database benchmarks to evaluate fu-
ture server designs. Unfortunately, conventional
database benchmarks are prohibitively complex to
set up, and too large to experiment with and ana-
lyze when evaluating microarchitecture-level per-
formance bottlenecks.

In this paper, we first presented a detailed per-
formance study of the dominant DSS and OLTP
benchmarks, TPC-H and TPC-C, and highlighted
their key processor and memory performance char-
acteristics. We then introduced a systematic scaling
framework to scale down benchmarks for database
workloads. We presented experiments on scaled-
down TPC-H and TPC-C benchmarks to verify the
viability of the framework.

Finally, we presented the DBmbench bench-
marks, µTPC-H andµTPC-C, consisting of sub-
stantially scaled-down benchmarks for DSS and
OLTP workloads. We showed that these bench-
marks accurately mimic the microarchitecture-
level execution time breakdown of TPC-H and
TPC-C. The benchmarks allow computer archi-
tects to carry out detailed performance analysis of

microarchitecture accurately with little complexity
and reduced experimental turnaround time.
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