
QPipe: A Simultaneously Pipelined Relational Query Engine
Stavros Harizopoulos

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

stavros@cs.cmu.edu

Anastassia Ailamaki
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

natassa@cs.cmu.edu

Vladislav Shkapenyuk
Rutgers University

110 Frelinghuysen Road
Piscataway, NJ 08854

vshkap@cs.rutgers.edu

†

ABSTRACT
Relational DBMS typically execute concurrent queries indepen-
dently by invoking a set of operator instances for each query. To
exploit common data retrievals and computation in concurrent
queries, researchers have proposed a wealth of techniques, ranging
from buffering disk pages to constructing materialized views and
optimizing multiple queries. The ideas proposed, however, are
inherently limited by the query-centric philosophy of modern
engine designs. Ideally, the query engine should proactively coor-
dinate same-operator execution among concurrent queries, thereby
exploiting common accesses to memory and disks as well as com-
mon intermediate result computation.

This paper introduces on-demand simultaneous pipelining (OSP),
a novel query evaluation paradigm for maximizing data and work
sharing across concurrent queries at execution time. OSP enables
proactive, dynamic operator sharing by pipelining the operator’s
output simultaneously to multiple parent nodes. This paper also
introduces QPipe, a new operator-centric relational engine that
effortlessly supports OSP. Each relational operator is encapsulated
in a micro-engine serving query tasks from a queue, naturally
exploiting all data and work sharing opportunities. Evaluation of
QPipe built on top of BerkeleyDB shows that QPipe achieves a 2x
speedup over a commercial DBMS when running a workload con-
sisting of TPC-H queries.

1. INTRODUCTION
Modern decision-support systems (DSS) and scientific database
applications operate on massive datasets and are characterized by
complex queries accessing large portions of the database.
Although high concurrency is predominantly studied in transac-
tional workloads due to intensive updates, decision-support sys-
tems often run queries concurrently (hence the throughput metric
suggested in the specification of TPC-H, the prevailing DSS
benchmark). In a typical data warehousing installation, new data is
periodically bulk loaded into the database, followed by a period
where multiple users issue read-only (or read-heavy) queries. Con-

current queries often exhibit high data and computation overlap,
e.g., they access the same relations on disk, compute similar aggre-
gates, or share intermediate results. Unfortunately, run-time shar-
ing in modern execution engines is limited by the paradigm of
invoking an independent set of operator instances per query, poten-
tially missing sharing opportunities if the caches and buffer pool
evict data pages early.

1.1 Sharing Limitations in Modern DBMS
Modern query execution engines are designed to execute queries
following the “one-query, many-operators” model. A query enters
the engine as an optimized plan and is executed as if it were alone
in the system. The means for sharing common data across concur-
rent queries is provided by the buffer pool, which keeps informa-
tion in main memory according to a replacement policy. The
degree of sharing the buffer pool provides, however, is extremely
sensitive to timing; in order to share data pages the queries must
arrive simultaneously to the system and must execute in lockstep,
which is highly unlikely. To illustrate the limitations of sharing
through the buffer pool, we run TPC-H on X, a major commercial
system1 running on a 4-disk Pentium 4 server (experimental setup
details are in Section 5). Although different TPC-H queries do not
exhibit overlapping computation by design, all queries operate on
the same nine tables, and therefore there often exist data page shar-
ing opportunities. The overlap is visible in Figure 1a which shows
a detailed time breakdown for five representative TPC-H queries
with respect to the tables they read during execution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD 2005, June 14-16, 2005, Baltimore, Maryland, USA
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00 1. Licensing restrictions prevent us from revealing the vendor.

0

0.2

0.4

0.6

0.8

1

TPC-H Queries

Q8
Q12 Q13 Q14

N
or

m
al

iz
ed

 ti
m

e

100%

0%

Q19 0
10
20
30
40
50
60
70
80
90

0 2 4 6 8 10 12
Number of clients

Th
ro

ug
hp

ut
 (q

ue
rie

s/
ho

ur
)

Figure 1b. Throughput for
one to twelve concurrent
clients running TPC-H que-
ries on DBMS X and QPipe.

2 4 6 8 10 12
0

30

60

90

DBMS X
QPipe

Lineitem

Orders

Part

Other

Figure 1a. Time breakdown
for five TPC-H queries. Each
component shows time spent
reading a TPC-H table.

†Work done while the author was at Carnegie Mellon University.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147947755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1b shows the throughput achieved for one to twelve concur-
rent clients submitting requests from a pool of eight representative
TPC-H queries, for DBMS X and QPipe, our proposed query
engine. QPipe achieves up to 2x speedup over X, with the through-
put difference becoming more pronounced as more clients are
added. The reason QPipe exhibits higher TPC-H throughput than
X is that QPipe proactively shares the disk pages one query brings
into memory with all other concurrent queries. Ideally, a query
execution engine should be able to always detect such sharing
opportunities across concurrent queries at run time, for all opera-
tors (not just for table scans) and be able to pipeline data from a
single query node to multiple parent nodes at the same time. In this
paper, we call this ability on-demand simultaneous pipelining
(OSP). The challenge is to design a query execution engine that
supports OSP without incurring additional overhead.

1.2 State-of-the-Art in Data and Work Sharing
Modern database systems employ a multitude of techniques to
share data and work across queries. The leftmost part of Figure 2
shows those mechanisms and the center column shows the order in
which they are invoked, depending on the high-level phases of
query execution. Once a query is submitted to the system, it first
performs a lookup to a cache of recently completed queries. On a
match, the query returns the stored results and avoids execution
altogether. Once inside the execution engine, a query may reuse
precomputed intermediate results, if the administrator has created
any matching materialized views. To our knowledge, modern
engines do not detect and exploit overlapping computation among
concurrent queries. When an operator consumes tuples, it first per-
forms a buffer pool lookup, and, on a miss, it fetches the tuples
from disk. Buffer pool management techniques only control the
eviction policy for data pages; they cannot instruct queries to
dynamically alter their access patterns to maximize data sharing in
main memory.

The rightmost part of Figure 2 shows that during each of the three
basic mechanisms for data and work sharing there is a missed
opportunity in not examining concurrent queries for potential over-
lap. Often, it is the case that a query computes the same intermedi-
ate result that another, current query also needs. Or, an in-progress
scan may be of use to another query, either by reading the file in a
different order or by making a minor change in the query plan. It
would be unrealistic, however, to keep all intermediate results
around indefinitely, just in case a future query needs it. Instead,
what we need is a query engine design philosophy that exploits
sharing opportunities naturally, without incurring additional man-
agement or performance overhead.

1.3 On-demand Simultaneous Pipelining
To maximize data and work sharing at execution time, we propose
to monitor each relational operator for every active query in order
to detect overlaps. For example, one query may have already
sorted a file that another query is about to start sorting; by monitor-
ing the sort operator we can detect this overlap and reuse the sorted
file. Once an overlapping computation is detected, the results are
simultaneously pipelined to all participating parent nodes, thereby
avoiding materialization costs. There are several challenges in
embedding such an evaluation model inside a traditional query
engine: (a) how to efficiently detect overlapping operators and
decide on sharing eligibility, (b) how to cope with different con-
suming/producing speeds of the participating queries, and, (c) how
to overcome the optimizer’s restrictions on the query evaluation

order to allow for more sharing opportunities. The overhead to
meet these challenges using a “one-query, many-operators” query
engine would offset any performance benefits.

To support simultaneous pipelining, we introduce QPipe, a new
query engine architecture, based on the principles of the Staged
Database System design [17]. QPipe follows a “one-operator,
many-queries” design philosophy. Each relational operator is pro-
moted to an independent micro-engine which manages a set of
threads and serves queries from a queue. Data flow between micro-
engines occurs through dedicated buffers — similar to a parallel
database engine [10]. By grouping similar tasks together, QPipe
can naturally exploit any type of overlapping operation. We imple-
ment QPipe on top of the BerkeleyDB storage manager, using
native OS threads. The resulting prototype is a versatile engine,
naturally parallel, running on a wide range of multi-processor serv-
ers (tested on IA-64, IA-32, Linux and Windows). As Figure 1b
shows, QPipe exploits all data sharing opportunities, while execut-
ing the same workload as the commercial DBMS.

1.4 Contributions and Paper Organization
This paper (a) describes opportunities for data and computation
sharing across concurrent queries, (b) introduces a set of query
evaluation techniques to maximize data and work sharing, and, (c)
describes the design and implementation of QPipe, a simulta-
neously-pipelined execution engine. We demonstrate the effective-
ness of our techniques through experimentation with
microbenchmarks and the TPC-H benchmark. QPipe can effi-
ciently detect and exploit data and work sharing opportunities in
any workload and can achieve up to 2x throughput speedup over
traditional DBMS when running TPC-H queries.

The paper is organized as follows. Section 2 describes in more
detail data and work sharing techniques. Section 3 introduces the
techniques and challenges behind simultaneous pipelining. Section
4 describes the design and implementation of QPipe, while Section
5 carries out the experimental results. We conclude with future
research opportunities in Section 6.

PRECOMPUTED
MATERIALIZED

BUFFER POOL

QUERY

CACHE

reuse

MANAGER
reuse

data pages ?
in-memory

lookup

NO

execute query

reuse

VIEWS

final results ?

intermediate
results ?

exploit

execute operators

go to disk

in-progress

similar concurrent

other queries

what is missingexisting mechanisms

queries

operations from

alter access patterns
to reuse data pages

brought by other queries

QUERY
IN

RESULT

NO

Figure 2. Existing and desired mechanisms for sharing data
and work across queries.

NO

2. BACKGROUND & RELATED WORK
This section reviews techniques for sharing disk pages in the
buffer cache, along with mechanisms to share work across differ-
ent queries. It also briefly discusses related work in other contexts.

2.1 Buffer Pool Management
In its simplest form, a buffer pool manager keeps track of disk
pages brought in main memory, decides when to write updated
pages back to disk, and evicts pages (typically using a LRU policy)
when new ones are read. The Hot Set [25] and DBMIN [6] algo-
rithms rely on explicit hints from the query optimizer on query
access patterns. Since it is infeasible for the optimizer to predict
the query patterns in a multi-query environment, several algo-
rithms base replacement decisions on the observed importance of
different pages. LRU-K [22] and 2Q [18], for instance, improve
the performance of the traditional LRU eviction policy by tracking
multiple past-page references, while ARC [21] shows similar per-
formance improvements without relying on tunable parameters.

Since queries interact with the buffer pool manager through a
page-level interface, it is difficult to develop generic policies to
coordinate current and future accesses from different queries to the
same disk pages. The need to efficiently coordinate and share mul-
tiple disk scans on the same table has long been recognized [16]
and several commercial DBMS incorporate various forms of
multi-scan optimizations (Teradata, RedBrick [12], and SQL
Server [7]). The challenge is to bypass the restrictions implied by
the page-level interface in order to fully exploit the knowledge of
query access patterns, even if it requires run-time adjustments to
the query evaluation strategy.

2.2 Materialized Views
Materialized view selection [23] is typically applied to workloads
known in advance, in order to speed-up queries that contain com-
mon subexpressions. The most commonly used technique is to
exhaustively search all possible candidate views, while employing
various heuristics to prune the search space. It is important to note
that materialized views exploit commonality between different
queries at the expense of potentially significant view maintenance
costs. Modern tools for automatic selection of materialized views
[1] take such costs into account when recommending a set of views
to create [2]. The usefulness of materialized views is limited when
the workload is not always known ahead of time or the workload
requirements are likely to change over time.

2.3 Query Caching and Plan Recycling
Caching query results can significantly improve response times in
a workload that contains repeating instances of the same query or
queries that are subsumed by others. A recently proposed cache
manager [29] dynamically decides on which results to cache, based
on result computation costs, sizes, reference frequencies, and
maintenance costs due to updates. Semantic data caching [9] (as
opposed to page or tuple caching) can result in more efficient use
of a cache and reduced communication costs in client-server envi-
ronments. Query plan recycling [26] reduces the query optimiza-
tion time by exploiting potential similarity in the plans of different
queries. The queries are first clustered based on characteristics of
their execution plans, and then all queries assigned to a cluster use
the same plan generated for the cluster representative query. Both
approaches complement any type of run-time optimizations. QPipe
improves a query result cache by allowing the run-time detection

of exact instances of the same query, thus avoiding extra work
when identical queries execute concurrently, with no previous
entries in the result cache.

2.4 Multi-Query Optimization
Multiple-query optimization (MQO) [13][27][24] identifies com-
mon subexpressions in query execution plans during optimization,
and produces globally-optimal plans. Since the detection of com-
mon subexpressions is done at optimization time, all queries need
to be optimized as a batch. In interactive scenarios where queries
may arrive at any time, other queries that share the same computa-
tion may be already running (waiting to collect a batch delays the
early queries). In addition, to share intermediate results among
queries, MQO typically relies on costly materializations. To avoid
unnecessary materializations, a recent study [8] introduces a model
that decides at the optimization phase which results can be pipe-
lined and which need to be materialized to ensure continuous
progress in the system. In contrast, QPipe identifies and exploits
common subexpressions at run time without forcing the optimizer
to wait for a sufficient number of queries to arrive before optimiz-
ing a batch. Moreover, QPipe can efficiently evaluate plans pro-
duced by a multi-query optimizer, since it always pipelines shared
intermediate results.

2.5 Related Work in Other Contexts
TelegraphCQ (CACQ [20] and PSoup [4]) and NiagaraCQ [5]
describe techniques to share work across different queries in
stream management systems, by sharing either physical operators
or their state. Although the concept of sharing operators is similar
to what we propose in this paper, the different context creates an
entirely different problem. Queries in stream systems always pro-
cess the most recently received tuples. In traditional DBMS, que-
ries have specific requirements as to which tuples they need and in
what order they need to process them.

Despite a plethora of mechanisms to share data and work across
queries, the prevailing relational query execution paradigm is char-
acterized by two key properties that preclude full exploitation of
sharing opportunities. First, it deprives individual queries from
knowing about the state of other, concurrent queries. In doing so, it
prevents the system from taking action at run time, once an over-
lapping operation across different queries appears. Second, tradi-
tional query engines adhere to a static evaluation plan and to a
page-level interface to the storage manager. Despite the fact that
disk page access patterns are known in advance, sharing opportuni-
ties are limited since the system cannot adjust the query evaluation
strategy at run time.

3. SIMULTANEOUS PIPELINING
If two or more concurrent queries contain the same relational oper-
ator in their plans, and that operator outputs the same tuples on
behalf of all queries (or a query can use these tuples with a simple
projection), then we can potentially “share” the operator. The oper-
ator will execute once, and its output will be pipelined to all con-
suming nodes simultaneously. In this paper we refer to the ability
of a single relational operator to pipeline its output to multiple que-
ries concurrently as simultaneous pipelining. On-demand simulta-
neous pipelining (OSP) is the ability to dynamically exploit
overlapping operations at run time. OSP is desirable when there
exist opportunities for reusing data pages that the buffer pool man-
ager has evicted early, or intermediate computations across queries
that are not covered by pre-computed materialized views.

This section first characterizes what a “missed opportunity” for
data and work sharing is (Section 3.1). Then, it classifies all rela-
tional operators with respect to their effective “window of opportu-
nity,” i.e., what percentage of the operation’s lifetime is offered for
reuse (Section 3.2). Lastly, it describes the challenges in exploiting
overlap between relational operators (Section 3.3).

3.1 Data and Work Sharing Misses
Whenever two or more concurrent queries read from the same
table, or compute the same (or subset of the same) intermediate
result, there is potentially an opportunity to exploit overlapping
work and reduce I/O traffic, RAM usage, and CPU processing
time. A sharing miss in a workload is defined in terms of memory
page faults and computation as follows:

A query begins execution at time and completes
at time .

Definition 1. At time , requests page , which
was previously referenced at time . If the request
results in a page fault, and , the page fault is a
data sharing miss.

Definition 2. At time , initiates new computation
by running operator . If was also executed
between and , then there is a work sharing miss.

Sharing misses can be minimized by proactively sharing the over-
lapping operator across multiple queries. To clarify this procedure,
consider the scenario illustrated in Figure 3 in which two queries
use the same scan operators. For simplicity, we assume that the
main memory holds only two disk pages while the file is
pages long. Query 1 starts a file scan at time . As the scan
progresses, pages are evicted to make room for the incoming data.
At time , Query 2 arrives and starts a scan on the same table. At
this point, pages and are in main memory. These will
be replaced by the new pages read by the two scans: for Q1
and for Q2. At time , Q1 has finished and Q2 is about to
read page . The main memory now contains and
that Q2 just read. Page , however, was in main memory when
Q2 arrived in the system. This page (and all subsequent ones) rep-
resent data sharing misses by Q2.

With simultaneous pipelining in place, Query 2 can potentially
avoid all data sharing misses in this scenario. Assuming that Q2 is
not interested in which order disk pages are read — as long as the
entire table is read — then, at time , Q2 can “piggyback” on
Q1’s scan operator. The scan operator will then pipeline all pages
read simultaneously to both queries, and, on reaching the end of
file, a new scan operator, just for Q2, will read the skipped pages.
What happens, however, if Q2 expects all disk pages to be read in
the order stored in file? To help understand the challenges involved
in trying to minimize sharing misses, the next subsection classifies
relational operators with respect to their sharing opportunities.

3.2 Window of Opportunity (WoP)
Given that query Q1 executes a relational operator and query Q2
arrives with a similar operator in its plan, we need to know
whether we can apply simultaneous pipelining or not, and what are
the expected cost savings for Q2 (i.e., how many sharing misses
will be eliminated). We call the time from the invocation of an
operator up until a newly submitted identical operator can take

advantage of the one in progress, window of opportunity or WoP.
Once the new operator starts taking advantage of the in-progress
operator, the cost savings apply to the entire cumulative cost of all
the children operators in the query’s plan.

Figure 4a shows a classification of all basic operations in a rela-
tional engine with respect to the WoP and the associated cost sav-
ings for a simultaneously pipelined second query. We identify four
different types of overlap between the various relational operations
(shown on the top of the figure). Linear overlap characterizes
operations that can always take advantage of the uncompleted part
of an in-progress identical operation, with cost savings varying
from 100% to 0%, depending how late in the process Q2 joins Q1.
For example, unordered table scans (which do not care about the
order in which the tuples are received) fall in this category. Step
overlap applies to concurrent operations that can exploit each other
completely (100% cost savings), as long as the first output tuple
has not been produced yet. For example, in the probing phase of
hash-join, it may take some time before the first match is found;
during that time, Q2 can join Q1. Full overlap is the ideal case:
100% cost savings for the entire lifetime of the in-progress opera-
tion (for example, computing a single aggregate). The last cate-
gory, spike overlap, is all operations that cannot be overlapped,
unless they start at the exact same time; for example, a table scan
that must output tuples in table order can only piggyback on any
other scan if the first output page is still in memory. A spike over-
lap is the same as a step overlap when the latter produces its first
output tuple instantaneously.

Figure 4b shows two “enhancement” functions that can apply to
the aforementioned categories in order to increase both the WoP
and the cost savings. The buffering function refers to the ability of
an operator to buffer a number of output tuples. Since output is not
discarded immediately after it is consumed, an incoming request
has a wider window of opportunity for exploiting the precomputed
output tuples. For example, an ordered table scan that buffers N
tuples can be converted from spike to step. The materialization
function stores the results of an operator to be used later on. For
example, consider an ordered table scan. If a new, highly selective
(few qualifying tuples) query needs to scan the same table in stored
tuple order, then we can potentially exploit the scan in progress by
storing the qualifying tuples for the new query. This way we trade

Q Ts
Tc

Tr Q P
Tp

Ts Tp<

Tw Q
W W

Ts Tw

M 2»
Tt 1–

Tt
Pn 2– Pn 1–

Pn
P0 Tt 1+

Pn Pn 2– Pn 1–
Pn

Tt

Figure 3. Two queries independently start a file scan on the
same table. Query 2 is missing the opportunity to reuse all
pages, after Pn, that Query 1 brings momentarily in RAM.

S

Q1

time Tt-1
Q1 bring in

P0 P1 Pn Pn+1 Pm

R A M

P0

S

Q1

P0 P1 Pn Pn+1 PmS

Q2

Q1
Q2

Pn-2 Pn-1

memory

bring inPn

memory
P0

evict from
memory

time Tt

P0 P1 Pn Pn+1 PmS

Q2

Q2

Pn-2 Pn-1

Pn

evict from
memory

time Tt+1

Pn was in main

memory when

Q2 arriv
ed

at tim
e t !

reading part of the table with storing and then reading a potentially
significantly smaller number of tuples. This function can apply to
spike to convert it to linear, albeit with a smaller effective slope for
the cost savings.

Next, we break down each operator to its basic overlap types.

File scans. File scans have only one phase. If there is no restriction
on the order the tuples are produced, or the parent operator needs
the tuples in order but can output them in any order, then file scans
have a linear overlap. If tuple ordering is strict then file scans have
a spike overlap.

Index scans. Clustered index scans are similar to file scans and
therefore exhibit either linear or spike overlap depending on the
tuple ordering requirements. Unclustered index scans are imple-
mented in two phases. The first phase probes the index for all
matches and constructs a list with all the matching record IDs
(RID). The list is then sorted on ascending page number to avoid
multiple visits on the same page. This phase corresponds to a full
overlap as a newly arrived operator can exploit work in progress at
any point of time. The second phase is similar to file scan and so is
either linear or spike overlap.

Sort. Sorting consists of multiple phases, though, in our context,
we treat it as a two-phase operator. In the first phase the input is
sorted on the sorting attribute (either in memory or disk, depending
on the size of the file). During this phase any new arrival can share
the ongoing operation, and therefore it is a full overlap. The second
phase is pipelining the sorted tuples to the parent operator and it is
similar to a file scan (either linear or spike).

Aggregates. All aggregate operators producing a single result
(min, max, count, avg) exhibit a full overlap. Group-by belongs to
step overlap, since it produces multiple results. Buffering can
potentially provide a significant increase in the WoP, especially if
the provided buffer size is comparable to the output size.

Joins. The most widely used join operators are hash-join, sort-
merge join, and nested-loop join. Nested-loop join has a step over-
lap (it can be shared while the first match is not found yet). The
sorting phase of sort-merge join is typically a separate sort opera-
tor. The merging phase is similar to nested-loop join (step). Hash-
join first hashes and partitions the input relations. This phase is a
full overlap. The joining phase is again step overlap. Both buffer-
ing and materialization can further increase the WoP.

Updates. By their nature, update statements cannot be shared since
that would violate the transactional semantics.

3.3 Challenges in Simultaneous Pipelining
A prerequisite to simultaneous pipelining is decoupling operator
invocation and query scope. Such a decoupling is necessary to
allow an operator to copy its output tuples to multiple queries-con-
sumers. In commercial DBMS this decoupling is visible only at the
storage layer. Whenever a query needs tuples from the disk it waits
for them to be placed at a specified buffer. From the query’s point
of view, it does not make a difference whether there is a single or
multiple I/O processes delivering the same tuples to multiple que-
ries. A similar decoupling should apply to all relational operators
to implement simultaneous pipelining techniques. Following, we
outline the remaining challenges.

Run-time detection of overlapping operations. To make the
most out of simultaneous pipelining, the query engine must track
the progress of all operators for all queries at all times. Whenever a
query is submitted, the operators in its plan must be compared with
all the operators from all active queries. The output of each com-
parison should specify whether there is an overlapping computa-
tion in-progress and whether the window of opportunity (WoP) has
expired. This run-time detection should be as efficient as possible
and scale well with the number of active queries.

Multiple-scan consumers. When new scan requests for the same
table arrive repeatedly and dynamically share a single scan, a large
number of partial scans will then be active on the same relation.
Ideally, these partial scans should again synchronize the retrieval
of common tuples, which requires additional bookkeeping. File
scans with different selectivities and different parent consumption
rates can make the synchronization difficult. If one file scan blocks
trying to provide more tuples than its parent node can consume, it
will need to detach from the rest of the scans. This might create a
large number of partial scans covering different overlapping and
disjoint regions of the relations, further complicating synchroniza-
tion efforts.

Order-sensitive operators. Query optimizers often create plans
that exploit “interesting” table orders by assuming that the scanned
tuples will be read in table order. For example, if a table is already
sorted on a join attribute, the optimizer is likely to suggest a
merge-join and avoid sorting the relation. Such scans have a spike

buffering materialization

Applies to
linear, step

Applies to
step, spike

100%

0%

Q2 gain

0% 100%
Q1 progress

100%

0%

Q2 gain

0% 100%
Q1 progress

linear step full spike

• table scan (either as
an operator or part of
reading sorted files,
hashed partitions etc.)

• index scan
• hash join (probe)
• group-by
• nested-loop join
• merge join

• hash join (partitioning)
• sort
• single aggregate
• non-clustered index
scan (RID list creation)

• ordered table scan

100%

0%

Q2 gain

0% 100%
Q1 progress

100%

0%

Q2 gain

0% 100%
Q1 progress

100%

0%

Q2 gain

0% 100%
Q1 progress

100%

0%

Q2 gain

0% 100%
Q1 progress

Figure 4a. Windows of Opportunity for the four basic operator overlap types. Figure 4b. WoP enhancement functions.

WoP and therefore cannot take advantage of an ongoing scan. In
case the ordered scan is highly selective (few qualifying tuples), a
materialization function could help by storing the qualifying
tuples, and reusing them later, in order. The challenge, however, is
to exploit the scan in progress even if the new, order-sensitive scan
does not perform any filtering.

Deadlocks in pipelining. The simultaneous evaluation of multiple
query plans may lead to deadlocks. Consider for example two que-
ries that share the results of two different scans (table A and B). If
one query needs to advance scan A to be able to process the last
value read from B, while the other query has the opposite need,
advancing B to process A’s last read value, then the two queries
become deadlocked. The existence of a buffer can only delay the
appearance of a deadlock in this case. The challenge is to effi-
ciently detect potential deadlock situations and avoid them while
still making the most out of overlapping computations.

4. QPIPE: DESIGN & IMPLEMENTATION
This section describes QPipe, a new architecture that efficiently
applies simultaneous pipelining, and the techniques QPipe
employs to address the above-mentioned challenges. First, we
briefly describe the design philosophy behind conventional query
engines (Section 4.1), before introducing the QPipe engine design
(Section 4.2). We then describe how OSP is implemented in QPipe
(Section 4.3) along with the details of the QPipe/BerkeleyDB pro-
totype (Section 4.4).

4.1 Conventional Engine Design
Traditional relational query engine designs follow the “one-query,
many-operators” model, and therefore are query-centric. Query
plans generated by the optimizer drive the query evaluation pro-
cess. A query plan is a tree with each node being a relational oper-
ator and each leaf an input point (either file scan or index scan)
[14]. The execution engine evaluates queries independently of
each other, by assigning one or more threads to each query. The
high-level picture of the query engine consists of two components
— the execution environment, where each query performs all of
its intermediate computations, and the storage manager which han-
dles all requests for disk pages (see also Figure 5a). Queries dis-
patch requests to the disk subsystem (storage engine) and a

notification mechanism informs the query when the data is placed
in a pre-specified memory location. The storage engine optimizes
resource management by deciding which pages will be cached or
evicted. Since all actions are performed without having cumulative
knowledge of the exact state of all current queries, conventional
engines cannot fully exploit data and work sharing opportunities
across queries.

4.2 The QPipe Engine
QPipe implements a new, alternative execution model that we call
“one-operator, many-queries,” and therefore is an operator-centric
architecture (Figure 5b). We first introduced this execution model
in the Staged Database System design [17], which assigns DBMS
components into independent stages, allowing for database instal-
lations that are easier to scale and maintain. In QPipe, each opera-
tor is promoted to an independent micro-engine (µEngine).
µEngines accept requests (in the form of packets) and serve them
from a queue. For example, the Sort µEngine only accepts requests
for sorting a relation. The request itself must specify what needs to
be sorted and which tuple buffer the result needs to be placed into.
The way a query combines the independent work of all µEngines is
by linking the output of one µEngine to the input of another, there-
fore establishing producer-consumer relationships between partici-
pating µEngines. In the current prototype, tuple buffers are
implemented in shared-memory, however, this communication
module can easily be replaced with a message passing mechanism,
to deploy QPipe in distributed environments.

The input to QPipe is precompiled query plans (we use plans
derived from a commercial system’s optimizer). Query plans pass
through the packet dispatcher which creates as many packets as the
nodes in the query tree and dispatches them to the corresponding
µEngines. Each µEngine has a queue of incoming requests. A
worker thread that belongs to that µEngine removes the packet
from the queue and processes it. Packets mainly specify the input
and output tuple buffers and the arguments for the relational opera-
tor (e.g., sorting attributes, predicates etc.). µEngines work in par-
allel to evaluate the query. The evaluation model resembles a push-
based execution design [15], where each operator independently
produces tuples until it fills the parent’s input buffer. If the output
is consumed by a slower operator, then the intermediate buffers
regulate the data flow.

S S

S IJ

A J

J

S

S

I

A

J
A S

A

J

Query 1
Query 2 Query 3

Engine-A
Q1
Q2Q3

Conventional Query Engine

thread

packet
dispatcher

µ

Engine-Jµ

Engine-Iµ
Engine-Sµ

The QPipe Engine

plans
query

storage engine

Figure 5a. Conventional engines evaluate
queries independently of each other. Disk
requests are passed to the storage engine.

plans
query

Q3

Q1 in out

Q1-S

Q1 in out

Q1-I

Q1 packet at J
in

Q1-J

Q

Q

Q

Q

Q1 packet at S

query

packets
query

pool

execution
environment

reading

writing

writing

reading

intermediate
buffers

global

thread
local

pool

incoming

queue
packet

Figure 5b. In QPipe every relational operator is a micro-engine. For sim-
plicity, only four operators are shown (Scan, Index-scan, Join, Aggrega-
tion). Queries are broken into packets and queue up in the µEngines.

Q1
Q2

Q2
Q2Q3

Q1Q2

Q3
Q2Q3

Q1Q2
Q2

Since QPipe involves multiple local thread pools (one for each
µEngine), efficient scheduling policies are important to ensure low
query response times. We follow a two-level scheduling approach.
At the higher level, the scheduler chooses which µEngine runs
next and on which CPU(s). Within each µEngine, a local scheduler
decides how the worker threads are scheduled. In this paper, we
use a round-robin schedule for the µEngines, with a fixed number
of CPUs per µEngine, and the default, preemptive processor-shar-
ing (PS) that the OS provides for the worker threads. Since this
simple policy guarantees that the system always makes progress,
response times for all queries were held low. As part of future
work, we plan to experiment with different, self-adjustable sched-
uling policies.

QPipe can achieve better resource utilization than conventional
engines by grouping requests of the same nature together, and by
having dedicated µEngines to process each group of similar
requests. In the same way a disk drive performs better when it is
presented with a large group of requests (because of better disk
head scheduling), each µEngine can better optimize resource usage
by processing a group of similar requests. Although the focus of
this paper is reusing data pages and similar computation between
different queries at the same µEngine, we built QPipe to achieve
better utilization of all resources in the system (extra CPUs, RAM,
CPU caches etc.). We discuss other benefits of this architecture
along with future work in the last section. Next, we describe the
implementation of OSP techniques.

4.3 Support for Simultaneous Pipelining
In QPipe, a query packet represents work a query needs to perform
at a given µEngine. Every time a new packet queues up in a
µEngine, we scan the queue with the existing packets to check for
overlapping work. This is a quick check of the encoded argument
list for each packet (that was produced when the query passed
through the packet dispatcher). The outcome of the comparison is
whether there is a match and which phase of the current operation
can be reused (i.e., a sorted file, and/or reading the sorted file).
Each µEngine employs a different sharing mechanism, depending
on the encapsulated relational operation (the sharing opportunities
are described in Section 3.2).

There are two elements that are common to all µEngines: the OSP
Coordinator and the Deadlock Detector (Figure 6a). The OSP
Coordinator lays the ground for the new packet (the “satellite”
packet) to attach to the in-progress query’s packet (the “host”
packet), and have the operator’s output simultaneously pipelined to
all participating queries. The OSP Coordinator handles the addi-
tional requirements and necessary adjustments to the evaluation
strategy of the satellite’s packet original query. For example, it
may create an additional packet to complete the non-overlapping
part of an operation (this scenario is described in Section 4.3.2).
The Deadlock Detector ensures a deadlock-free execution of
simultaneously pipelined schedules. The pipelining deadlock prob-
lem is explained in Section 4.3.3 whereas the details of the algo-
rithms employed are discussed elsewhere [30].

Figure 6b illustrates the actions the OSP coordinator takes when
two queries have an overlapping operation. In this scenario, we
assume Query 1 has already initiated a join of step overlap (e.g.,
merge-join), and a few tuples have already been produced, but are
still stored in Q1’s output buffer. Without OSP (left part of Figure
6b), when Q2 arrives, it will repeat the same join operation as Q1,
receiving input and placing output to buffers dedicated to Q2.

When the OSP Coordinator is active, it performs the following
actions:

1. It attaches Q2’s packet (satellite) to Q1 (host).

2. It notifies Q2’s children operators to terminate (recursively, for
the entire subtree underneath the join node).

3. It copies the output tuples of the join that are still in Q1’s buffer,
to Q2’s output buffer.

4. While Q1 proceeds with the join operation, the output is copied
simultaneously to both Q1’s and the satellite’s output.

The above steps are illustrated in Figure 6b (right part).

Once the OSP Coordinator attaches one or more satellite packets to
a host packet, a “1-producer, N-consumers” relationship is formed
between the participating queries. QPipe’s intermediate buffers
regulate the dataflow. If any of the consumers is slower than the
producer, all queries will eventually adjust their consuming speed
to the speed of the slowest consumer. Next, we describe (a) how
QPipe deals with the burden of frequently arriving/departing satel-
lite scans (4.3.1), (b) the actions the OSP Coordinator takes to
exploit order-sensitive overlapping scans (4.3.2), (c) how QPipe
prevents deadlocks (4.3.3), and, (d) how QPipe handles lock
requests and update statements.

4.3.1 Synchronizing Multiple Scan Consumers
Scan sharing of base relations is a frequently anticipated operation
in QPipe. A large number of different scan requests with different
requirements can easily put pressure on any storage manager and
make the bookkeeping in a design that shares disk pages difficult.
Sharing of multiple scans to the same table was first described in
the RedBrick Data Warehouse implementation [12], and several
other commercial systems such as Teradata and SQL Server [7]
mention a similar functionality in their implementation. Details of
the mechanisms employed, such as what kind of bookkeeping the
storage manager performs and how the technique scales to multi-
ple concurrent scans with different arrival times, are not publicly

Engineµ

Q1

Q2

relational operator

OSP
coordinator

deadlock
detectorcode

parameters
Engineµ

• available RAM
• number of threads
• number of CPUs
• scheduling policy

free threads busy threads

scheduling
thread

main routine
Engineµ

Figure 6a. A µEngine in detail.

Join
Q1 in outin

without OSP with OSP

Q1 Q1
Q1

Join
Q2 in outin

Q2 Q2
Q2

Join

Q1 in out1, out2in
Q21

Q1 Q1 Q1

Q2

3
copy

Q2 Q2

COMPLETE

2
4

OSP
coordinator

Figure 6b. Simultaneous pipelining on two join operations.

query intermediate buffers

disclosed. Moreover, the existing literature describes only scenar-
ios where queries do not depend on the table scan order.

To simplify the management of multiple overlapping scans in
QPipe, we maintain a dedicated scan thread that is responsible for
scanning a particular relation. Once a new request for scanning a
relation arrives, a scanner thread is initiated and reads the file
(Figure 7). The scanner thread essentially plays the role of the host
packet and the newly arrived packet becomes a satellite (time

 in Figure 7). Since the satellite packet is the only one scan-
ning the file, it also sets the termination point for the scanner
thread at the end of the file. When later on, (time), a new packet
for scanning the same relation arrives, the packet immediately
becomes a satellite one and sets the new termination point for the
scanner thread at the current position of the file. When the scanner
thread reaches the end-of-file for the first time, it will keep scan-
ning the relation from the beginning, to serve the unread pages to
Query 2.

This circular scan implementation simplifies the bookkeeping
needed to track which queries are attached at any time. Moreover,
it is the job of the OSP Coordinator to allow a packet to attach to
the scanner thread or not, depending on the query requirements.
For example, the query may need to start consuming pages only
after another operator in the plan has started producing output. In
our implementation, the OSP coordinator applies a late activation
policy, where no scan packet is initiated until its output buffer is
flagged as ready to receive tuples. Late activation prevents queries
from delaying each other.

4.3.2 Order-Sensitive Scans
Consider a join operation where the base relations are already
sorted on a joining key. In this case, the query plans may use a
merge operator directly on the sorted files. If a scan is already in
progress and a second query arrives, it encounters a spike overlap,
and thus, it will not be able to attach. There are two cases, how-
ever, that the scan in progress can still be exploited.

First, if the parent operator of the merge-join does not depend on
the order in which its input tuples are received, then the OSP Coor-
dinator creates two merge-join packets for the same query. The
first packet joins the remaining portion of the shared relation with
the non-shared relation, providing output tuples to the order-insen-
sitive parent. Afterwards, the second packet processes the unread

part of the shared relation and joins it again with the non-shared
relation. To avoid increasing the total cost, the OSP Coordinator
always assumes the worst case scenario of reading the non-shared
relation twice in order to merge the two disjoint parts of the shared
relation. If the total cost does not justify sharing the operation, the
OSP Coordinator does not attach the packets.

Second, if the selectivity of the scan is high (few qualifying tuples)
or the selectivity of the merge operation is high, then the OSP
Coordinator may choose to use the materialization function to save
out-of-order results that are cheap to produce. Once the scan
reaches the beginning of the relation, the query resumes regular
execution, passing the result tuples to the parent of the merge.
Once the scan reaches the page it first attached to, the saved results
are used to compute the rest of the merge.

4.3.3 Deadlocks in Simultaneous Pipelining
Whenever the execution engine pipelines tuples produced by a
query node to multiple consumers, it introduces the possibility of
deadlock. Since nodes can only produce tuples as fast as the slow-
est consumer allows them to, loops in the combined query plans
can lead to deadlocks. One such scenario was described in Section
3.3. This problem is not specific to QPipe; it has been also identi-
fied and studied in the context of multi-query optimization [8],
where materialization of intermediate results is used as a deadlock
prevention mechanism. The proposed algorithm makes conserva-
tive decisions since it relies on static analysis of the query plans.

We developed a dynamic model that uses the well-understood con-
cept of Waits-For graphs to define deadlocks in pipelined execu-
tion engines. Our model uses information about the state of QPipe
buffers (full, empty, or non-empty) without making any assump-
tions about operator consumer/producer rates. This allows us to
pipeline the results of every query node, only materializing the
tuples in the event of a real deadlock. Based on our model, we pro-
pose an efficient algorithm to detect deadlocks at run time and
choose an optimal set of nodes to materialize that minimizes the
total cost of executing all concurrent queries. Having run-time
information available enables us to select a provably optimal set of
nodes to materialize. This work, along with experimentation with
MQO plans using commercial DBMS optimizers is described else-
where [30].

4.3.4 Locks and Updates
Data and work sharing techniques are best exploited in read-
mostly environments, such as concurrent long-running queries in
data warehouses, where there is high probability of performing
overlapping work. Workloads with frequent concurrent updates to
the database limit the percentage of time that scans can be per-
formed (due to locking), and therefore restrict the overall impact of
data sharing techniques. QPipe runs any type of workload, as it
charges the underlying storage manager (BerkeleyDB in the cur-
rent implementation) with lock and update management by routing
update requests to a dedicated µEngine with no OSP functionality.
As long as a sharing opportunity appears, even in the presence of
concurrent updates, QPipe will take advantage of it. If a table is
locked for writing, the scan packet will simply wait (and with it, all
satellite ones), until the lock is released.

4.4 The QPipe/BerkeleyDB Prototype
The current QPipe prototype is a multi-threaded, parallel applica-
tion that runs on shared-memory multiprocessor systems. Each
µEngine is a different C++ class with separate classes for the

Tt 1–

Tt

Figure 7. Circular scan operation. Q1 initiates the scanner
thread (Tt-1). Q2 attaches immediately when it arrives (Tt) and
sets the new termination point for the circular scan at page Pn.

time Tt-1

Q2

P1
eof P0

Pn
Pn+1

Q1

1

2
time Tt

scanner

Q1 attached

Q2 attached

old termination point
for scanner thread

new termination point
for scanner thread

time Tt+1

thread-pool support, the shared-memory implementation of queues
and buffers (including query packets), the packet dispatcher, and
the OSP Coordinator. Calls to data access methods are wrappers
for the underlying storage manager. The bare system is a runtime
consisting of a number of idle threads, as many as the specified
µEngines times the number of threads per µEngine. The OS sched-
ules the threads on any of the available CPUs. Client processes can
either submit packets directly to the µEngines or send a query plan
to the packet dispatcher which creates and routes the packets
accordingly. The basic functionality of each µEngine is to dequeue
the packet, process it, optionally read input or write output to a
buffer, and destroy the packet. The client process reads the final
results from a shared-memory buffer.

We implement relational-engine functionality by inserting rela-
tional processing code to each µEngine, and providing the packet
dispatcher code to transform precompiled query plans into packets.
The database storage manager adds the necessary transactional
support, a buffer-pool manager, and table access methods. In the
current prototype we use the BerkeleyDB database storage man-
ager and have implemented the following relational operators:
table scan (indexed and non-indexed), nested-loop join, sort,
merge-join, hybrid hash join, aggregate (both simple and hash-
based). The current implementation is about 7,000 lines of C++
code (BerkeleyDB itself is around 210,000 lines).

In addition to BerkeleyDB, we have successfully applied the
QPipe runtime with OSP support to two other open source DBMS,
MySQL and Predator[28]. Since there is typically a clear division
between the storage manager and the rest of the DBMS, it was
straightforward to transfer all function calls to the storage manager
inside the µEngines. Taking the optimizer’s output and redirecting
it to the packet dispatcher was also straightforward. The time con-
suming part of the conversion is to isolate the code for each rela-
tional operator. Fortunately, each relational operator uses a limited
set of global variables which makes it easy to turn the operator into
a self-contained module with parameters being passed as an
encoded structure.

5. EXPERIMENTAL RESULTS
This section presents our experimentation with the QPipe proto-
type. We experiment using two datasets. The first dataset is based
on the Wisconsin Benchmark [11] which specifies a simple
schema with two large tables and a smaller one. We use 8 million
200-byte tuple tables for the big tables (BIG1 and BIG2 in the exper-
iments) and 800,000 200-byte tuples for the small table (SMALL).

The total size of the tables on disk is 4.5GB. The second dataset is
a 4GB TPC-H database generated by the standard dbgen utility.
The total size of the dataset on disk (including indices and storage
engine overhead) is 5GB. All experiments are run on a 2.6 GHz P4
machine, with 2GB of RAM and four 10K RPM SCSI drives
(organized as software RAID-0 array), running Linux 2.4.18. We
discard all result tuples to avoid introducing additional client-
server communication overhead. In all of the graphs, “Baseline” is
the BerkeleyDB-based QPipe implementation with OSP disabled,
“QPipe w/OSP” is the same system with OSP enabled, and
“DBMS X” is a major commercial database system. When running
QPipe with queries that present no sharing opportunities, we found
that the overhead of the OSP coordinator is negligible.

5.1 Sharing Data Pages
5.1.1 Exploiting Overlapping Unordered Scans
In this experiment we examine how well QPipe with OSP per-
forms when exploiting the linear overlap of table scans. We evalu-
ate three different workloads with 2, 4, and 8 concurrent clients
running TPC-H Query 6. The 99% of execution time is spent per-
forming an unordered table scan of the LINEITEM relation. We
evaluate the performance of circular scans in QPipe as a function
of different query interarrival times. We vary the interarrival time
for a set of queries from 0 sec (highest overlap) to 100 sec (rela-
tively little overlap). The goal of the experiment is to investigate
the amount of redundant I/O that we can save by employing OSP.

The results are shown in Figure 8. The vertical axis is the total
number of disk blocks read during the workload execution time.
For workloads where queries arrive simultaneously, traditional
disk page sharing through the buffer pool manager performs well.
However, as the query interarrival time grows to 20 sec, the data
brought in by the running query are completely evicted from the
buffer pool by the time the next query arrives. On workloads with a
high degree of overlap (20 sec interarrival time) QPipe with OSP
can save up to 63% of the total I/O cost. As the interarrival time
grows and the overlap between queries shrinks the two curves
approach each other (and remain flat at the same point for 120 sec
or more when there is no overlap). QPipe w/OSP always exploits
all data sharing opportunities, whereas the baseline system
depends on the timing of different arrivals to share data.

5.1.2 Exploiting Overlapping Clustered Index-Scans
In this experiment we evaluate our technique for exploiting over-
laps between ordered scans, essentially converting a spike overlap

Time difference between

N
um

be
r o

f d
is

k
bl

oc
ks

 re
ad

Figure 8. Total number of disk blocks read for three different configurations (2, 4, and 8 concurrent users sending TPC-H Query 6)
with varying user interarrival times (0-100 sec). The number of blocks read remains flat for longer than 120 sec interarrival times.

query arrivals (sec)

4 clients2 clients 8 clients

0 20 40 60 80 100

10M

20M

30M

10M

20M

30M

10M

20M

30M

F

A

LINEITEM

TPC-H query #6 plan
Baseline
QPipe w/OSP

Baseline
QPipe w/OSP

Baseline
QPipe w/OSP

Time difference between
query arrivals (sec)

0 20 40 60 80 100
Time difference between

query arrivals (sec)

0 20 40 60 80 100

to linear. We submit to QPipe two instances of TPC-H Query #4
which includes a merge-join at different time intervals. The full
plan of Query #4 is shown in Figure 9. Even though the merge join
relies on the input tuples being ordered, there is no need for the
output of the join to be properly ordered. QPipe with OSP takes
advantage of this property of the query plan, and allows ordered
scans to attach to the existing one even though it is already in
progress. Once the merge join consumes the input produced by the
overlapping scans it initiates a new partial scan to retrieve the
records it missed due to the late arrival. Figure 9 shows that QPipe
with OSP significantly outperforms the baseline system with OSP
disabled.

5.2 Reusing Computation in Aggregates/Joins
5.2.1 Sort-merge Join
The sort-merge join operator consists of a sort which is a full + lin-
ear overlap, followed by a merge which is a step overlap. In the
next experiment, we use two similar 3-way join queries from the
Wisconsin Benchmark. The graph in Figure 10 shows the total
elapsed time from the moment the first query arrives until the sys-
tem is idle again. We vary the interarrival time for the two queries
from 0 sec up to the when there is no overlap between the queries.
The graph shows that QPipe with OSP can exploit commonality
for most of the query’s lifetime (that’s why the line for QPipe w/

OSP remains flat most of the time) resulting in a 2x speedup. In
this case, QPipe w/OSP is able to merge the packets from the two
different queries during the merge phase of the sort-merge join.
The baseline system performs better when the queries arrive close
to each other (point zero on the horizontal axis), as it can share
data pages in the buffer pool.

5.2.2 Hash join
In this experiment we evaluate a full + step overlap operator, hash
join. We submit to QPipe two instances of TPC-H query #4 which
uses a hash join between the LINEITEM and ORDERS relations
varying interarrival time. We expect that QPipe with OSP will be
able to reuse the building phase of hash join. The graph axes are
the same as in the previous figures. Figure 11 shows that QPipe
with OSP can reuse the entire results of the build phase of the
hash-join (20 seconds mark). After the hash join starts producing
the first output and it is no longer possible to reuse the results of
the build phase, QPipe still is able to significantly reduce the I/O
costs by sharing the results of the scan in progress on LINEITEM.

5.3 Running Full Workloads
In the next experiment we compare the performance of QPipe with
OSP against the baseline system and the commercial DBMS X,
using a set of clients executing a random mix of queries from the
TPC-H benchmark. The query mix is based on TPC-H queries #1,
#4, #6, #8, #12, #13, #14, and #19. To make sure that multiple cli-
ents do not run identical queries at the same time, the selection
predicates for base table scans were generated randomly using the
standard qgen utility. Even though all the queries had different
selection predicates for table scans, QPipe’s circular scans are able
to take advantage of the common accesses to LINEITEM,
ORDERS and PART. We use hybrid hash joins exclusively for all
the join parts of the query plans. Since hash joins do not rely on the
ordering properties of the input streams, we are able to use unor-
dered scans for all the access paths, which have large windows of
opportunity. We vary the number of clients from 1 to 12 and mea-
sure the overall system throughput. Each client is given 128MB of
memory to use for the sort heap and the hash tables. When running
a single client we observe that the workload is disk-bound.

Figure 12 shows that QPipe w/OSP outperforms both the baseline
system and X. For a single client, the throughput of QPipe and X is
almost identical since the disk bandwidth is the limiting factor. As

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140

Figure 10. Sharing multiple operators, with sort (S) at the
highest level. The two queries have the same predicates for
scanning BIG1 and BIG2, but different ones for SMALL.

S S

I

M-J

S

I

BIG1 BIG2

M-J

I

S

SMALL

Time difference between query arrivals (sec)

To
ta

l r
es

po
ns

e
tim

e
(s

ec
)

20

150

200

100

40 60 100 120

Baseline
QPipe w/OSP

Wisconsin Benchmark

0 80

50

query #17 plan

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140

Figure 9. Sharing order-sensitive clustered index scans (I) on
ORDERS and LINEITEM between two queries starting at differ-
ent time intervals. Merge-join (M-J) expects tuples in key
order. Since sort (S) does not assume a specific ordering, QPipe
w/OSP performs 2 separate joins to share the in-progress scan.

Time difference between query arrivals (sec)

To
ta

l r
es

po
ns

e
tim

e
(s

ec
)

20

300

200

100

40 60 100 120 140

Baseline
QPipe w/OSP I I

S

M-J

A

ORDERS LINEITEM

TPC-H query #4 plan

0 80

(dark-colored nodes are
shared across queries)

implemented with merge-join

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140

Figure 11. Changing the plan of TPC-H query #4 to use hash-
join allows for a window of opportunity on sharing the build
phase of the hash-join (first 20 secs). If the second query
arrives later than that, it still can share the scan on LINEITEM.

Time difference between query arrivals (sec)

To
ta

l r
es

po
ns

e
tim

e
(s

ec
)

20

300

200

100

40 60 100 120 140

Baseline
QPipe w/OSP

F F

S

H-J

A

ORDERS LINEITEM
0 80

TPC-H query #4 plan
implemented with hash-join

sharing
build table

sharing file scan on LINEITEM

the number of clients increases beyond 6, DBMS X is not able to
significantly increase the throughput. On other hand, QPipe with
OSP takes full advantage of overlapping work and achieves a 2x
speedup over DBMS X. The difference in the throughput between
the baseline system and DBMS X shows that X’s buffer pool man-
ager achieves better sharing than the one BerkeleyDB employs. In
Figure 13 we show the average response time for the same mix of
TPC-H queries, for QPipe w/OSP and the baseline system, using
10 concurrent users and changing the think time of each user. As
this experiment shows, QPipe w/OSP achieves high throughput
without sacrificing query response times.

6. CONCLUSIONS AND FUTURE WORK
Multiple concurrent queries often operate on the same set of tables,
using the same set of basic operators in their query plans. Modern
DBMS can therefore execute concurrent queries faster by aggres-
sively exploiting commonalities in the data or computation
involved in the query plans. Current query engines execute queries
independently and rely on the buffer pool to exploit common data,
which may miss sharing opportunities due to unfortunate timing.
Previous efforts to explore overlapping work include multiple
query optimization, materialized views, and exploitation of previ-
ous results; all these approaches, however, involve caveats and
overhead that makes them impractical in several cases. If, how-
ever, we change the query engine philosophy from query-centric
(one-query, many-operators) to operator-centric (one-operator,
many-queries) we can proactively detect and exploit common data
and computation at execution time with no additional effort or
overhead. In this paper we first propose a set of techniques and
policies to exploit overlapping work between concurrent queries at
run time. Then, we present QPipe, a new architecture that naturally
supports the proposed techniques and offers several advantages:

• By applying on-demand simultaneous pipelining of common
intermediate results across queries, QPipe avoids costly materi-
alizations. In fact, Qpipe can efficiently evaluate plans pro-
duced by a multi-query optimizer.

• QPipe improves performance (throughput and response time)
when compared to tuple-by-tuple evaluation engines (iterator
model) by saving extraneous procedure calls and by improving
temporal locality. As an example, recent work [31] introduces a
buffer operator to increase the number of tuples processed at
one time at each operator. QPipe reaps such memory-hierarchy

benefits for free, because it is designed to proactively exploit
locality in memory hierarchy.

• QPipe provides full intra-query parallelism, taking advantage
of all available CPUs in a multi-processor server for evaluating
a single query, regardless of the plan's complexity.

In the near future we plan to use QPipe as a platform to conduct
research in the following areas:

• Since QPipe naturally resembles parallel database designs, we
plan to deploy it in distributed environments (grid computing)
and study work allocation (an orthogonal problem to data
placement) along with load balancing and query scheduling
algorithms.

• QPipe's ability to group similar tasks together gives us the
opportunity to further optimize RAM and disk usage by lever-
aging the characteristics of each operation in the system inde-
pendently.

• As an extension to the techniques presented in this paper we
plan to study dynamic, transparent plan alteration techniques
(similar to [19]) to create more opportunities for reusing over-
lapping work.

7. EPILOGUE
Database computing arguably represents the most challenging
server computing environment, whereas decision support (DSS)
installations of massive data sets and multiple concurrent users are
typical in today's enterprises. Locality and predictability of differ-
ent tasks running in a system has long been the key property that
computer and storage architects, along with software designers
have exploited to build high-performance computing systems. Dif-
ferent implementation iterations of caching and prefetching tech-
niques both in hardware and software already span more than three
decades. This paper shows that the key to optimal performance is
exposing all potential locality both in data and in computation, by
grouping similar tasks together. QPipe, our proposed query execu-
tion engine architecture, leverages the fact that a query plan offers
an exact description of all task items needed by a query, and
employs techniques to expose and exploit locality in both data and
computation across different queries. Most importantly, we have
successfully applied the QPipe architecture in two open-source
DBMS and two storage managers, making the case that QPipe
design can apply with relatively few changes to any DBMS.

0
10
20
30
40
50
60
70
80
90

0 2 4 6 8 10 12

Figure 12. TPC-H throughput for the three systems increasing
the number of concurrent users from 1 to 12, and keeping
think time to zero.

Number of clients

Th
ro

ug
hp

ut
 (q

ue
rie

s/
ho

ur
)

2 4 6 8 10 12
0

30

60

90

DBMS X
QPipe w/OSP

Baseline

0

200

400

600

800

1000

1200

Figure 13. Average response time for QPipe w/OSP and the
baseline system for a mix of TPC-H queries, varying the think
time, for 10 concurrent users (low think times correspond to
high system load).

Think time (sec)

Av
er

ag
e

re
sp

on
se

 ti
m

e
(s

ec
)

0 20 40 60 240

200

400

600

800

1000

1200
Baseline QPipe w/OSP

0

8. ACKNOWLEDGEMENTS
We cordially thank Kun Gao and Steve Schlosser for technical sup-
port, and the SIGMOD reviewers for their comments. We are also
grateful to IBM for supporting this work through an IBM faculty
partnership award and a graduate student fellowship, and to NSF
for supporting grants CCR-0113660, IIS-0133686, and CCR-
0205544.

9. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. “Auto-

mated selection of materialized views and indexes in SQL
databases.” In Proc. VLDB, 2000.

[2] J. A. Blakeley, P. Larson, and F. W. Tompa. “Efficiently
updating materialized views.” In Proc SIGMOD, 1986.

[3] M. Carey et al. “Shoring Up Persistent Applications.” In
Proc. SIGMOD, 1994.

[4] S. Chandrasekaran and M. J. Franklin. “Streaming Queries
over Streaming Data.” In Proc. VLDB, 2002.

[5] J. Chen, D. DeWitt, F. Tian, and Y. Wang. “NiagaraCQ: A
scalable continuous query system for internet databases.” In
Proc. SIGMOD, 2000.

[6] H.T. Chou and D. J. DeWitt. “An evaluation of buffer man-
agement strategies for relational database systems.” In
Proc. SIGMOD, 1985.

[7] C. Cook. “Database Architecture: The Storage Engine.”
Miscrosoft SQL Server 2000 Technical Article, July 2001.
Available at: http://msdn.microsoft.com/library

[8] N. Dalvi, S. K. Sanghai, P. Roy, and S. Sudarshan. “Pipelin-
ing in Multi-Query Optimization.” In PODS, 2001.

[9] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava, and M.
Tan. “Semantic Data Caching and Replacement.” In Proc.
VLDB, 1996.

[10] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A.
Bricker, H. Hsiao, and R. Rasmussen. “The Gamma Data-
base Machine Project.” In IEEE TKDE, 2(1), pp. 44-63,
Mar. 1990.

[11] D. J. DeWitt. “The Wisconsin Benchmark: Past, Present,
and Future.” The Benchmark Handbook, J. Gray, ed., Mor-
gan Kaufmann Pub., San Mateo, CA (1991).

[12] P. M. Fernandez. “Red Brick Warehouse: A Read-Mostly
RDBMS for Open SMP Platforms.” In SIGMOD, 1994.

[13] S. Finkelstein. “Common expression analysis in database
applications.” In Proc. SIGMOD, 1982.

[14] G. Graefe. “Iterators, Schedulers, and Distributed-memory
Parallelism.” In Software-practice and experience, Vol. 26
(4), pp. 427-452, Apr. 1996.

[15] G. Graefe. “Volcano - An Extensible and Parallel Query
Evaluation System.” In TKDE 6(1): 120-135, 1994.

[16] J. Gray. “The Next Database Revolution.” Keynote, SIG-
MOD, 2004.

[17] S. Harizopoulos and A. Ailamaki. “A Case for Staged Data-
base Systems.” In Proc. CIDR, 2003.

[18] T. Johnson and D. Shasha. “2Q: A Low Overhead High Per-
formance Buffer Management Replacement Algorithm.” In
Proc. VLDB, 1994.

[19] N. Kabra and D. J. DeWitt. “Efficient Mid-Query Re-Opti-
mization of Sub-Optimal Query Execution Plans.” In Proc.
SIGMOD, 1998.

[20] S. R. Madden, M. A. Shah, J. M. Hellerstein, and V. Raman.
“Continuously Adaptive Continuous Queries over
Streams.” In Proc. SIGMOD, 2002.

[21] N. Megiddo and D. S. Modha. “ARC: A Self-Tuning, Low
Overhead Replacement Cache.” In Proc. FAST, 2003.

[22] E. J. O'Neil, P. E. O'Neil, and G. Weikum. “The LRU-K
page replacement algorithm for database disk buffering.” In
Proc. SIGMOD, 1993.

[23] N. Roussopoulos. “View indexing in relational databases.”
In ACM Trans. on Database Systems 7(2):258-290,1982.

[24] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. “Efficient
and Extensible Algorithms for Multi Query Optimization.”
In Proc. SIGMOD, 2000.

[25] G. M. Sacco and M. Schkolnick. “Buffer management in
relational database systems.” In ACM TODS, 11(4):473-
498, Dec. 1986.

[26] P. Sarda, J. R. Haritsa. “Green Query Optimization: Taming
Query Optimization Overheads through Plan Recycling,” In
Proc. VLDB, 2004.

[27] T. K. Sellis. “Multiple Query Optimization.” In ACM
TODS, 13(1):23-52, Mar. 1988.

[28] P. Seshadri, M. Livny, and R. Ramakrishnan. “The Case for
Enhanced Abstract Data Types.” In Proc. VLDB, 1997.

[29] J. Shim, P. Scheuermann, and R. Vingralek. “Dynamic
caching of query results for decision support systems.” In
Proc. SSDBM, 1999.

[30] V. Shkapenyuk, R. Williams, S. Harizopoulos, and A. Aila-
maki. “Deadlock Resolution in Pipelined Query Graphs.”
Carnegie Mellon University Technical Report, CMU-CS-
05-122, 2005.

[31] J. Zhou and K. A. Ross. “Buffering Database Operations for
Enhanced Instruction Cache Performance.” In Proc. SIG-
MOD, 2004.

