
Accelerating Database Operators Using
a Network Processor

Brian T. Gold* Anastassia Ailamaki* Larry Huston† Babak Falsafi*
bgold@cmu.edu natassa@cmu.edu larry.huston@intel.com babak@cmu.edu

*Carnegie Mellon University †Intel Research Pittsburgh
Pittsburgh, PA Pittsburgh, PA

ABSTRACT
Database management systems (DBMSs) do not take full
advantage of modern microarchitectural resources, such as
wide-issue out-of-order processor pipelines. Increases in pro-
cessor clock rate and instruction-level parallelism have left
memory accesses as the dominant bottleneck in DBMS ex-
ecution. Prior research indicates that simultaneous multi-
threading (SMT) can hide memory access latency from a sin-
gle thread and improve throughput by increasing the num-
ber of outstanding memory accesses. Rather than expend
chip area and power on out-of-order execution, as in current
SMT processors, we demonstrate the effectiveness of using
many simple processor cores, each with hardware support
for multiple thread contexts. This paper shows an existing
hardware architecture—the network processor—already fits
the model for multi-threaded, multi-core execution. Using
an Intel IXP2400 network processor, we evaluate the per-
formance of three key database operations and demonstrate
improvements of 1.9X to 2.5X when compared to a general-
purpose processor.

1. INTRODUCTION
Memory access stalls dominate execution time in modern

database management systems (DBMSs) [3, 6, 15, 19]. Ex-
ponential increases in processor clock rates and the relatively
slow improvement of DRAM access latency only exacerbate
the memory access bottleneck. Moreover, expending chip
area and power on wide-issue superscalar microarchitectures
or larger out-of-order instruction windows has produced di-
minishing returns for database workloads [15, 20].

Research has shown that memory access latency is the
key bottleneck in DBMS performance, and current archi-
tectures are unable to expose multiple pending accesses to
the memory system [15, 20]. Unlike most scientific applica-
tions, database operations exhibit sequences of dependent
memory accesses, which limit the opportunity for specu-
lation and out-of-order execution to issue parallel memory
accesses in a single-threaded microarchitecture. Instead of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the First International Workshop on Data Management on
New Hardware (DaMoN 2005); June 12, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM X-XXXXX-XX-X/XX/XX ... $5.00.
.

focusing on instruction-level parallelism in a single thread,
recent proposals show thread-level parallelism can signifi-
cantly improve database performance by increasing the ag-
gregate number of pending misses.

For example, simultaneous multithreading (SMT) hides
single-thread memory access latency by interleaving the ex-
ecution of threads on an aggressive out-of-order pipeline.
Lo et al. showed a 3X improvement in OLTP throughput
with a simulated eight-context SMT architecture [17]. How-
ever, the overhead of supporting multiple contexts on an
aggressive microarchitecture limits the expansion of SMT
architectures beyond four or eight threads.

In this paper, we increase memory-level parallelism fur-
ther by using many simple processing cores with basic hard-
ware support for low-overhead context switching. Unlike
SMT, each core in our model executes a single thread in
program order and switches contexts only on off-chip mem-
ory accesses. The area and power that would be devoted to
an aggressive microarchitecture are instead used to integrate
more cores on a single chip, increasing the thread parallelism
by a factor of eight over the most aggressive SMT propos-
als [17].

Our evaluation makes use of an existing hardware plat-
form, the network processor, which we find well-suited for
executing many relational operators. Using a real hardware
prototype, we demonstrate a 1.9X to 2.5X performance im-
provement over a 2.8GHz Pentium 4 Xeon on sequential
scan, index range scan, and hash join operators. In addition
to reporting performance improvements, we give insight on
how to map common database operators to the network pro-
cessor architecture.

This paper is organized as follows. In Section 2, we review
work related to query execution on current and future hard-
ware. In Section 3, we give an overview of network processor
architecture and the IXP2400 in particular. In Section 4, we
show how to map common database operators onto a net-
work processor. In Section 5, we present the results of this
study and conclude in Section 6.

2. RELATED WORK
In addition to architectural approaches to improving

memory-level parallelism, database researchers have pro-
posed a number of software techniques designed to reduce
memory access latency. Cache-conscious data placement at-
tempts to restructure the layout and placement of data to
improve spatial and/or temporal locality [2, 9]. However,
for many applications where access patterns are effectively

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147947754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

8 Microengines
Context

0

1 2 3

4 5 6 7

Local Memory

Active Context Waiting Contexts

Register Files

IXP2400 Microengine

DRAM

Controller

DRAM

PCI

Controller

Host CPU

Scratch

Memory

Figure 1: IXP2400 network processor features.

randomized (such as a hash join), memory access remains a
performance bottleneck.

Software prefetching hides memory access latency by in-
serting timely prefetch instructions among existing data ac-
cess references. Jump pointers [14, 18, 21] were proposed for
linked data structures such as the hash table chains stud-
ied in this paper. The basic idea of a jump pointer is to
automatically prefetch cache blocks from specially inserted
pointers in existing data structures. In a hash table, for
example, the ‘next’ pointer of each linked list element is
prefetched as soon as a list element is fetched. Jump pointers
may require extensive modifications to software data struc-
tures and may provide insufficient lookahead cache miss la-
tency increases.

In [8], Chen et al. showed that with properly inserted
prefetch instructions in a hash join algorithm, a performance
increase of 2.0-2.9X could be achieved in simulation. This
work studied two approaches to prefetching in a hash join
and detailed how to partition the join code to insert timely
prefetch instructions. Group prefetching exploits spatial
parallelism to overlap multiple cache misses from indepen-
dent probe tuples. Software-pipelined prefetching, by con-
trast, hides memory accesses in a pipeline of probe opera-
tions. Our hash join implementation is most similar to the
group prefetching in [8], because we exploit inter-tuple par-
allelism across multiple hardware threads.

In addition to SMT, the architecture community has in-
vestigated several other multi-threading strategies. Simi-
larly to the network processor model, switch-on-miss multi-
threading switches contexts on infrequent events such as L2
cache misses [1, 10]. Prior evaluations used a limited number
of thread contexts (four or fewer) and a single core, whereas
current technology affords us 8 thread contexts per core and
8 or more processing cores per chip. Tera’s MTA [4] imple-
mented fine-grained multi-threading by storing 128 thread
contexts in hardware and switching among ready threads
every clock cycle. We are not aware of any evaluation of
database workloads on the MTA architecture.

A number of recent papers have explored the use of graph-
ics processors in the execution of database operators [5, 11,
22]. Modern graphics processors are exemplified by 8-16
parallel pipelines and very high-bandwidth memory inter-
faces, making them well-suited for some database opera-
tions. The principle disadvantage to graphics architectures
remains their restrictive programming model, which lim-
its control flow and prohibits random writes to memory.

Active Waiting Ready

T0 T1 T2 TN T0 T1 T2

DRAM

Request

DRAM

Available

Thread States:

M
ic

ro
e

n
g

in
e

 T
h

re
a

d
s

time

DRAM Latency

T0

T1

T2

TN

Aggregate

Resume

Execution

Figure 2: Thread execution on a microengine.

Consequently, a small subset of database operators have
been mapped to current graphics architectures. In contrast,
the network processor’s general purpose programming model
supports any relational operator that a conventional archi-
tecture can execute.

3. NETWORK PROCESSOR OVERVIEW
Many network applications process numerous indepen-

dent streams of packets. The high bandwidth and par-
allelism required in these situations often exceeds what a
general-purpose microprocessor can provide. The recent
emergence of special-purpose architectures, termed network
processors, addresses the need for high-throughput compute
elements in such applications.

In this paper, we use the Intel IXP2400 network proces-
sor, shown in Figure 1 as a block diagram. Network pro-
cessors contain a number of simple processing cores, termed
microengines (MEs) in the Intel chips. The IXP2400 has 8
microengines clocked at 600 MHz, and each microengine has
hardware support for 8 thread contexts. Switching thread
contexts takes just 4 clock cycles. More information on the
network processor hardware can be found in [12, 13].

The IXP2400 has several levels of memory, listed in Ta-
ble 1. Unlike a general-purpose processor, the IXP2400
has no hardware-managed memory hierarchy. Data in lo-
cal memory can only move to and from DRAM (or SRAM)
with an explicit sequence of microengine instructions. This
explicit control allows the programmer to control ‘cached’
data structures and know they will remain in low-latency
storage. The software-managed memory makes program-
ming more difficult, particularly for algorithms with com-
plex control flow. Our experience shows that relatively few
data structures need to move between levels of memory, and
memory access is otherwise straightforward.

Table 1: IXP2400 Memory Hierarchy

Type Size Latency (cycles)
DRAM 1GB > 120
SRAM 128MB > 90

Scratchpad 16KB (on-chip) > 60
Local Memory 2560B (per-ME) 3

Slot array

0 1

4

2

3

n

01234n

21

P
a
g
e

Record header Attributes

Figure 3: Record layout on a page.

3.1 Programming Model
Each microengine uses its low-overhead context switch-

ing to hide memory access latency from individual threads.
Thread execution is non-preemptive—a thread explicitly re-
leases control of the microengine, and the next thread is cho-
sen round robin from the set of ready threads. Figure 2 illus-
trates this style of multi-threaded execution. Threads wait
for specific hardware signals from the memory controller or
other peripheral, indicating their operation has completed
and the thread is ready to run.

Although the programming model is somewhat unusual,
the basics of parallel programming still apply. When map-
ping database operators to threads in a network processor,
we desire independent threads that do not require synchro-
nization. Where synchronization is required, we place these
threads on the same microengine, wherever possible. The
non-preemptive programming model means no explicit syn-
chronization is required between threads on a single micro-
engine. Only one thread runs at any time, and the pro-
grammer controls when a context switch occurs. Intra-
microengine coordination is accomplished through global
registers, which can be accessed in a single cycle and incur
no overhead.

In mapping common relational operators to the network
processor, we find that data accesses can be statically mapped
to one level in the memory hierarchy (list in Table 1). For
example, we know that individual record attributes in a se-
quential scan will have no temporal locality and can there-
fore be kept in DRAM. Metadata, such as page headers or
lock tables, should be kept close the processor in local mem-
ory or scratchpad space.

The next section gives an explanation of how to decom-
pose common database operators onto network processor
threads.

4. RUNNING DATABASE OPERATIONS
In this paper, we study three fundamental database oper-

ators: a sequential scan, a clustered or non-clustered index
scan, and a hash join. Prior work [3] used a similar set
of operations to evaluate DBMS execution behavior. The
sequential scan models linear, contiguous access to one re-
lation. The non-clustered index scan represents random,
non-clustered access over a single table. Two-table access
patterns are modeled through an equijoin, implemented us-
ing the most common and challenging operator—a hash join.

hash

key attributes

1

2 3 4

Figure 4: Probing a hash table.

The hash join models contiguous access to one table, and a
dependent, random access to the second relation.

4.1 Sequential Scan
We model a sequential scan by iterating over all records

on a set of pages, accessing one or more attributes in each
record. We use slotted data pages with a layout derived from
the Shore storage manager [7]. In general, records are vari-
able length, and both a slot array and record header are used
to find attribute data in the page. Figure 3 illustrates the se-
quence of operations in our sequential scan model. Reading
an attribute requires at least accessing the slot array (labeled
‘1’ in the figure), however accessing variable-length records
requires a second indirection through the record header (la-
beled ‘2’).

In the network processor implementation, each page is
scanned by one microengine, with each thread fetching data
from one record. By assigning pages to each microengine, we
avoid costly synchronization overhead while tracking com-
pleted record indices. Pages are assigned round-robin to
distribute work.

When a page is first accessed, the slot array is brought
into the microengine’s local memory to reduce subsequent
access latency. Threads access tuple data in 64-byte chunks,
which are stored in local registers and processed accordingly.
The evaluations in this paper use attributes smaller than
the maximum 64-byte DRAM transfer, so only one memory
access is required.

4.2 Index Scan
Similarly to the sequential scan, we model an index scan

by iterating over a set of pages, accessing one or more at-
tributes in each record. In this case, however, we access a
uniformly-distributed fraction of the records on each page.
This model corresponds to a range scan where a list of pages
is built from an index lookup, and then the pages are ac-
cessed sequentially. We assume the data access time domi-
nates index lookup.

The network processor implementation of the index scan
follows directly from the sequential scan discussed above.
The key performance impact of the index scan is the over-
head of accessing the slot array. When accessing all records
on a page, this initial cost is amortized. For low selectivities,
however, the slot array access approaches the tuple access
in cost.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7 8 9

Threads/Microengine

T
h

r
o

u
g

h
p

u
t

R
e
la

ti
v
e
 t

o
 P

4

1 microengine

2 microengines

4 microengines

8 microengines

Figure 5: Relative throughput in sequential scan for

varying amounts of parallelism, as compared to a

2.8GHz Pentium 4.

4.3 Hash Join
We model the probe phase of a hash join, which for large

relations will dominate time spent constructing the hash ta-
ble itself. Figure 4 shows the sequence of data accesses when
probing the hash table. Similar to the sequential scan, each
page of the outer relation is assigned to one microengine in
the network processor. Each thread in a microengine walks
the hash table with a single record from the assigned page
until a match is found.

To minimize hash bucket length, we place the hash ta-
ble header in DRAM to allow it to grow beyond the net-
work processor’s limited on-chip storage. A general-purpose
microprocessor with large on-chip cache has a distinct ad-
vantage here, as the frequently accessed bucket headers will
likely be kept in cache. For modestly-sized outer relations,
however, the network processor will offset the cost of access-
ing the header by overlapping the cost of pointer-chasing
from many simultaneous probes.

5. EVALUATION
In this section, we describe the methodology used in this

work and our experimental results. We study three fun-
damental operators used in nearly all DBMS queries: se-
quential scan, index scan, and hash join. We discuss the
implications of these results on other, similar query opera-
tors.

5.1 Methodology
The experiments presented in this paper use a Radisys

ENP-2611 development board, which places an Intel IXP2400
network processor and 256MB PC2100 DRAM on a PCI ex-
pansion card. The IXP2400 contains 8 microengines clocked
at 600MHz, each with support for 8 thread contexts.

Network processor DRAM is separate from the main mem-
ory on the host computer. When a microengine thread ac-
cesses DRAM, it accesses the local DRAM on the expansion
card. Integrating a network processor with a full DBMS on a
host processor requires transferring data from system mem-
ory to DRAM on the network processor expansion card. We
do not model these overheads in this paper.

0

5

10

15

20

25

0% 20% 40% 60% 80% 100%

Selectivity

T
h

r
o

u
g

h
p

u
t

(
M

tu
p

le
s
/

s
e
c
)

Pentium 4

Network Processor

Figure 6: Throughput in index scan with varying

selectivity. The network processor result uses 8 mi-

croengines with 8 threads per microengine.

We use a 2.8GHz Pentium 4 Xeon with 512KB L2 cache
and 3GB of PC2100 DRAM as the general-purpose reference
platform. We disable Hyper-Threading in our experiments,
because these operators are bound by the number of miss
handlers (four in the Pentium 4 used). Experiments using
Hyper-Threading on this processor showed no performance
improvements. For the Pentium 4, the database operators
were coded in C and compiled using gcc-3.2 with -O6 op-
timization. Experiments with the Intel C Compiler (icc)
found no measurable difference. Where applicable, we re-
port cache miss rates and branch predictor accuracy using
the PAPI performance counter library.

Our evaluations use the TPC-H dbgen tool to generate re-
alistic data tables using a scale factor of 0.25 (250MB ASCII
dataset). The scan operators use the orders table, while
the join operator uses orders as the inner relation and the
lineitem relation as the outer. We chose a 250MB dataset so
that all data would fit in memory on the network processor
expansion card.

5.2 Sequential Scan
We sequentially scan the records of the TPC-H orders

table and extract customer keys from each record. Fig-
ure 5 shows the relative throughput for varying levels of
thread parallelism, as compared to the 2.8GHz Pentium
4 implementation. We observe that an aggregate total of
four threads are required to (nearly) match the Pentium 4
throughput. More than four threads on a single microengine
produces diminishing returns as the bottleneck becomes in-
struction execution in the microengine’s simple pipeline. That
is, threads remain in the ready state waiting for another
thread to yield control of the pipeline.

The number of miss handlers constrains the Pentium 4
throughput, as only four L1D misses can be outstanding
at any time. Because TPC-H relations consist of variable-
length records, the hardware stride prefetcher reduces L2
misses by just 10%. Each record access incurs one off-chip
miss; however, the sequential scan consumes just over one-
third of the available memory bandwidth with hardware
prefetching turned off. The Pentium 4 is unable to expose

97.5%

98.0%

98.5%

99.0%

99.5%

100.0%

0% 20% 40% 60% 80% 100%

Selectivity

B
r
a
n

c
h

 P
r
e
d

ic
to

r
 A

c
c
u

r
a
c
y

Figure 7: Branch predictor accuracy for index scan.

sufficient memory-level parallelism to hide the long off-chip
access latency.

The peak speedup of 1.9X is obtained with an aggregate
of 16 threads on the network processor. Note, however, that
the bottleneck with 16 threads is now the memory controller,
which limits the number of simultaneous outstanding ac-
cesses to 16. Adding more than 16 threads produces no im-
provement, whether through more microengines or increas-
ing the number of threads per microengine. Alleviating this
bottleneck requires a more aggressive memory controller or
increasing the number of memory controllers and distribut-
ing accesses across them. The Intel IXP2800 takes the lat-
ter approach, using three Rambus DRAM channels and dis-
tributing all DRAM requests across the three channels.

5.3 Index Scan
The index scan also iterates over the orders table, but

now tuples are selected at random within each page. Fig-
ure 6 illustrates the results, where the network processor
throughput is obtained from 8 microengines with 8 threads
per microengine. Results were identical using any configu-
ration providing at least 16 threads.

We see a sharp drop in throughput on the network proces-
sor as selectivity decreases, because of the relative increase
in overhead of accessing the slot array. As fewer tuples are
fetched from a page, the initial slot array access becomes
more expensive. The shape of the Pentium 4 curve dif-
fers due to branch misprediction effects. As selectivity ap-
proaches 50%, branch mispredictions peak, as illustrated in
Figure 7. The cost of instruction rollback on a misprediction
is not the primary source of performance overhead. Rather,
the lost opportunity for look-ahead and prefetching of fu-
ture tuples is the major overhead in the non-clustered range
scan. Prior work indicates a significant fraction of time in
DBMS execution is due to branch mispredictions [3].

5.4 Hash Join
We model a ‘simple’ hash join where the inner relation fits

in a single hash table in memory. The results here are ap-
plicable to partition-based hash joins, such as GRACE [16],
which repetitively execute simple hash joins over each parti-
tion. In our model, elements in the hash table contain order
keys from the TPC-H orders relation. We use 32K hash

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7 8 9

Threads/Microengine

T
h

r
o

u
g

h
p

u
t

R
e
la

ti
v
e
 t

o
 P

4

1 microengine

2 microengines

4 microengines

8 microengines

Figure 8: Relative throughput in probe of hash table

for varying amounts of parallelism, as compared to

a 2.8GHz Pentium 4.

buckets to restrict the average bucket depth to 2.08. This
configuration was intentionally biased towards the Pentium
4 to make our analysis conservative. Using fewer buckets
increases the length of each bucket chain and improves the
network processor’s relative performance. Each cell in the
hash bucket chain contains four (key, pointer) pairs to min-
imize memory accesses in both the network processor and
Pentium 4 implementations.

Figure 8 shows the relative join throughput as the num-
ber of microengines and threads varies. The data-dependent
branches and cache misses on the Pentium 4 implementa-
tion have a significant impact on single-thread performance.
Given a total of 4 threads, the network processor meets or
outperforms the Pentium 4. As in the sequential and index
scans, the limited parallelism in the memory controller of
the IXP2400 limits speedup beyond 2.5X.

The thread-level parallelism and memory-controller bot-
tleneck on the IXP2400 account for the similarity in Fig-
ures 5 and 8. In these operations, the fundamental perfor-
mance improvement comes from issuing more parallel re-
quests to memory on the network processor. The relative
performance in the hash join is higher than the sequential
scan because the data-dependent, random memory access
patterns hamper the Pentium 4’s ability to expose parallel
memory accesses.

6. CONCLUSIONS
Memory access stalls dominate DBMS execution time,

and the continued scaling of processor clock frequency only
exacerbate the problem. We demonstrate that existing net-
work processors, with their multi-core, multi-threaded archi-
tecture, can expose more parallel accesses to memory than
a conventional, single-threaded processor. We study the im-
plementation of three fundamental database operators: se-
quential scan, index scan, and hash join. We demonstrate
speedups ranging from 1.9X for the sequential scan to 2.5X
for the hash join. With selectivity less than 50%, the net-
work processor outperforms a 2.8GHz Pentium 4 by more
than 3X in an index scan.

7. ACKNOWLEDGEMENTS
The authors would like to thank Jared Smolens for help

with early versions of this work, Minglong Shao for help with
Shore, and members of the Carnegie Mellon Impetus group
and the anonymous reviewers for their feedback on earlier
drafts of this paper. This work was partially supported by
grants and equipment donations from Intel corporation and
a graduate fellowship from the Department of Defense.

8. REFERENCES

[1] A. Agarwal, J. Kubiatowicz, D. Kranz, B.-H. Lim,
D. Yeung, G. D’Souza, and M. Parkin. Sparcle: An
evolutionary processor design for large-scale
multiprocessors. IEEE Micro, pages 48–61, June 1993.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and
M. Skounakis. Weaving relations for cache
performance. In Proceedings of 27th International
Conference on Very Large Data Bases, September
11-14, 2001, pages 169–180, 2001.

[3] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A.
Wood. DBMSs on a modern processor: Where does
time go? In Proceedings of 25th International
Conference on Very Large Data Bases, September
7-10, 1999, pages 266–277, 1999.

[4] G. Alverson, R. Alverson, D. Callahan, B. Koblenz,
A. Porterfield, and B. Smith. Exploiting heterogeneous
parallelism on a multithreaded multiprocessor. In
Proceedings of the 6th ACM International Conference
on Supercomputing, July 1992.

[5] N. Bandi, C. Sun, A. E. Abbadi, and D. Agrawal.
Hardware acceleration in commercial databases: A
case study of spatial operations. In Proceedings of the
30th International Conference on Very Large Data
Bases, August 31 - September 3 2004, pages
1021–1032, 2004.

[6] P. A. Boncz, S. Manegold, and M. L. Kersten.
Database architecture optimized for the new
bottleneck: Memory access. In Proceedings of 25th
International Conference on Very Large Data Bases,
September 7-10, 1999, pages 54–65, 1999.

[7] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall,
M. L. McAuliffe, J. F. Naughton, D. T. Schuh, M. H.
Solomon, C. K. Tan, O. G. Tsatalos, S. J. White, and
M. J. Zwilling. Shoring up persistent applications. In
Proceedings of the 1994 ACM SIGMOD International
Conference on Management of Data, May 24-27,
1994., pages 383–394, 1994.

[8] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C.
Mowry. Improving hash join performance through
prefetching. In Proceedings of the 20th International
Conference on Data Engineering, March 30 - April 2,
2004, pages 116–127, 2004.

[9] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Making
pointer-based data structures cache conscious. IEEE
Computer, 33(12):67–74, 2000.

[10] R. J. Eickemeyer, R. E. Johnson, S. R. Kunkel, M. S.
Squillante, and S. Liu. Evaluation of multithreaded
uniprocessors for commercial application
environments. In Proceedings of the 23rd International
Symposium on Computer Architecture (ISCA), pages
203–212, 1996.

[11] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast computation of database operations
using graphics processors. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, June 13-18, 2004, pages 215–226, 2004.

[12] Intel Corporation. Intel IXP2400 Network Processor:
Hardware Reference Manual. Intel Press, May 2003.

[13] E. J. Johnson and A. R. Kunze. IXP2400/2800
Programming: The Complete Microengine Coding
Guide. Intel Press, 2003.

[14] M. Karlsson, F. Dahlgren, and P. Stenström. A
prefetching technique for irregular accesses to linked
data structures. In Proceedings of the 6th International
Symposium on High-Performance Computer
Architecture, 8-12 January 2000, pages 206–217, 2000.

[15] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael,
and W. E. Baker. Performance characterization of a
quad pentium pro smp using oltp workloads. In
Proceedings of the 25th Annual International
Symposium on Computer Architecture, June 27 - July
1, 1998, pages 15–26, 1998.

[16] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka.
Application of hash to data base machine and its
architecture. New Generation Comput., 1(1):63–74,
1983.

[17] J. L. Lo, L. A. Barroso, S. J. Eggers, K. Gharachorloo,
H. M. Levy, and S. S. Parekh. An analysis of database
workload performance on simultaneous multithreaded
processors. In Proceedings of the 25th Annual
International Symposium on Computer Architecture,
June 27 - July 1, 1998, pages 39–50, 1998.

[18] C.-K. Luk and T. C. Mowry. Compiler-based
prefetching for recursive data structures. In
Proceedings of the 7th International Conference on
Architectural Support for Programming Languages and
Operating Systems, October 1-5, 1996, pages 222–233,
1996.

[19] S. Manegold, P. A. Boncz, and M. L. Kersten. What
happens during a join? Dissecting cpu and memory
optimization effects. In Proceedings of 26th
International Conference on Very Large Data Bases,
September 10-14, 2000, pages 339–350, 2000.

[20] P. Ranganathan, K. Gharachorloo, S. V. Adve, and
L. A. Barroso. Performance of database workloads on
shared-memory systems with out-of-order processors.
In Proceedings of the 8th International Conference on
Architectural Support for Programming Languages and
Operating Systems, October 3-7, 1998, pages 307–318,
1998.

[21] A. Roth and G. S. Sohi. Effective jump-pointer
prefetching for linked data structures. In Proceedings
of the 26th Annual International Symposium on
Computer Architecture, May 2-4, 1999, pages
111–121, 1999.

[22] C. Sun, D. Agrawal, and A. E. Abbadi. Hardware
acceleration for spatial selections and joins. In
Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, June 9-12, 2003,
pages 455–466, 2003.

