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ABSTRACT

Based on extensive experimental work two templates for
the laminae-specific connectivity pattern of cortical mi-
crocircuits have recently been published. We examine
their structural and computational properties and attempt
to correlate those properties. To characterize structure
or circuit topology we consider the distribution of net-
work motifs as well the algebraic connectivity of the net-
work. In order to understand the computational proper-
ties of these two templates, we have generated computer
models of them, consisting of Hodgkin-Huxley point neu-
rons with conductance based synapses that have a biolog-
ically realistic short-term plasticity. The performance is
assessed using nine generic computational tasks that re-
quire accumulation and merging of information contained
in two afferent spike inputs.

1. INTRODUCTION

Neurobiological studies have shown that cortical circuits
have a distinctive modular and laminar structure, with
stereotypical connections between neurons that are re-
peated throughout many cortical areas (see [1] and the ref-
erences therein). It has been conjectured that these stereo-
typical canonical microcircuits are not merely an artifact
of the specific mapping of afferent and efferent cortical
pathways or other anatomical constraints like evolution-
ary processes or development, but are also advantageous
for generic computational operations that are carried out
throughout the neocortex.

Over the past years detailed statistical data became
available that are based on two different experimental
methods became available: dual intracellular recordings
in vitro and cell morphology. The first dataset assembled
by [2] was estimated from 998 paired intracellular record-
ings with sharp electrodes in slices of somatosensory, mo-
tor and visual areas of adult rats and adult cats. It specifies
connection probabilities and connection strengths of ef-
fectively established synaptic connections between excita-
tory and inhibitory neocortical neurons, to which we will
refer as functional connectivity in this paper. The second
dataset assembled by [3] was predicted from bouton and
target densities in cat primary visual cortex estimated from
three-dimensional cell reconstructions. This dataset does
not specify the distribution of functional connections, but
rather represents potential synaptic connectivity.

We investigate these two cortical microcircuit tem-
plates with regard to local and global structural proper-
ties. In particular we are interested to establish a link be-
tween their structural and functional properties. In order
to evaluate the computational properties of microcircuit
templates we carried out computer simulations of detailed
cortical microcircuit models.

Similar to [4], our analysis is based on the assumption
that stereotypical cortical microcircuits have some “uni-
versal” computational capabilities, and can support quite
different computations in different cortical areas. Conse-
quently we concentrate on generic information processing
capabilities that are likely to be needed for many concrete
computational tasks: to accumulate, hold and fuse infor-
mation contained in Poisson input spike trains from two
different sources (modeling thalamic or cortical feedfor-
ward input that arrives primarily in layer 4, and lateral or
top-down input that arrives primarily in layers 2/3).

Here we investigate possible dependencies of the com-
putational performance of two cortical microcircuit tem-
plates of [2] and [3] on local as well as global character-
istic of the circuit topology. In particular we consider the
motif distribution and the algebraic connectivity, respec-
tively. In order assess the significance of these graph char-
acteristics of the two data-based microcircuit templates we
compare them with those of random control circuits.

2. CIRCUITS AND COMPUTATIONAL TASKS

The cortical microcircuit model according to the microcir-
cuit template assembled by [2] consisted of 600 neurons
located in layers 2/3, layer 4, and layer 5. The microcir-
cuit model according to the microcircuit template assem-
bled by [3] consisted of the same number of neurons but
includes an additional layer 6. Each layer consisted of a
population of excitatory neurons (E) and inhibitory neu-
rons (I) with a ratio of 4:1. The synaptic connection prob-
abilities of both models were rescaled to achieve on aver-
age the same number of 42000 synaptic connections. Be-
cause the cortical microcircuit template of [3] provides no
strengths of synaptic connections the corresponding val-
ues were adopted according to the template of [2]. Neu-
rons were modeled as conductance based single compart-
ment Hodgkin-Huxley point neurons. Background input
currents that were injected into each neuron, reflecting in-
put currents from a large number of more distal neurons,
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modeled as a one-variable stochastic process similar to
an Ornstein-Uhlenbeck process. The short term synaptic
dynamics (paired pulse depression and facilitation) was
modeled according to [5], with synaptic parameters cho-
sen to fit data from microcircuits in rat somatosensory cor-
tex. Two afferent input streams were injected into the cir-
cuit. The first input stream (representing thalamic input)
was injected mainly into layer 4, whereas the second af-
ferent input stream was injected into neurons in layers 2/3.

We modeled hypothetical projection neurons in layers
2/3 and layer 5 as linear neurons. The weights of synaptic
connections from the presynaptic neurons to the readout
neuron were optimized for specific tasks. The informa-
tion processing tasks comprised spike pattern classifica-
tion, i.e. classification of spike patterns in either of the
two afferent input streams, as well as real-time compu-
tations on the firing rates of both input streams (tasks 1-
5). For information processing tasks with spike patterns
readout neurons were trained to classify which of the two
spike templates fixed for input 1 (input 2) was injected
during the last time interval [t− 30 ms, t ms], denoted as
task tcl1(t) (tcl2(t)), or during the preceding time inter-
val [t − 60 ms, t − 30 ms], denoted as task tcl1(t − ∆t)
(tcl2(t− ∆t)). Note that the latter task may be viewed as
a memory task (with distractors). Nonlinear fusion of in-
formation from both input streams was tested by training
readouts to output the exclusive-or (XOR) of the two bits
that represent the labels of the two templates from which
the most recent spike patterns in the two input streams
had been generated (task 5). This computation involves a
nonlinear “binding” operation on spike patterns. In addi-
tion we analyzed nonlinear computations on time-varying
firing rates of input stream 1, r1(t), and input stream 2,
r2(t). (.)NL denotes computations on the purely nonlin-
ear components of the specified tasks (tasks 6-9). For fur-
ther details see [4].

Control circuits have the same components and the
same global statistics of neurons and synaptic connec-
tions. Amorphous circuits were generated from data-
based circuits by randomly rewiring recurrent synaptic
connections whereas no synaptic connection was allowed
to occur more than once. The rewiring was carried out
under the constraint that the pre- and postsynaptic neu-
ron type (i.e. E or I) of each synaptic connection stays
the same. Degree-controlled circuits preserve the degree
distributions of neurons in all layers but otherwise lack a
laminae-specific connectivity pattern. Degree-controlled
circuits were constructed from data-based circuits by ran-
domly exchanging the target neurons of pairs of recurrent
synaptic connections that emerge from the same neuron,
and have neurons of the same type (i.e. E or I) as target.
For the circuits in Fig. 3 and Fig. 4 indicated as EE, IE,
EI and II the rewiring was carried out under the constraint
that only synaptic connections with postsynaptic neurons
of the type indicated by the first letter (i.e. E or I) and
presynaptic neurons of the type indicated by the second
letter (i.e. E or I) were scrambled.
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Figure 1. Two-node and three-node motif distributions for
the Thomson et al. (A) and Binzegger et al. (B) corti-
cal microcircuit template; (C) enumeration of all possible
two-nodes and three-node motifs.

3. MOTIFS

Motifs are stereotypical connectivity pattern on a local
scale. They commonly are taken to be all possible con-
nectivity patterns between three or four nodes. In realistic
networks particular motifs appeared to be overrepresented
[6]. Attempts have been made to attribute them particular
signal processing functions. For instance a three-node co-
herent feedforward motifs is considered a sign-sensitive
persistence filter [6] in transcriptional networks. Here we
investigate the two-node and three-node motif distribu-
tions for the two considered microcircuit templates. In
Fig. 1 their respective motif distribution is shown. The
significance of these motif distributions with respect to
amorphous variants is assessed using the Z-score, i.e., the
difference in motif count between the data-based micro-
circuit and its amorphous variant normalized by the stan-
dard deviation of the motif count for the amorphous cir-
cuit. The Z-score for the two data-based circuits is shown
in Fig. 2.

4. ALGEBRAIC CONNECTIVITY

Algebraic connectivity was introduce by Fiedler [7] and
was shown to be related to other important graph char-
acteristics such as the diameter or the classical connec-
tivity of a graph. Algebraic connectivity also appeared
to be central for the synchronizability of an ensemble of
dynamical systems coupled over a network. The higher
the algebraic connectivity, the lower the required coupling
strengths between the systems in order to achieve com-
plete synchronization of the ensemble [8]. These finding
represents the motivation of the current work to investi-
gate the relation of this graph measure to the computa-
tional performance. For undirected graphs algebraic con-
nectivity is determined by the second largest eigenvalue of
the Laplacian matrix of the graph [7]. Several extensions
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Figure 2. Z-score (defined as the difference in the aver-
age motif count for the specified circuits and correspond-
ing amorphous circuits measured in units of the standard
deviation of the motif count for amorphous circuits) for
Thomson et al. circuit (A) and Binzegger et al. circuit
(B).

to directed graphs exists, two of which will be considered
in the sequel. We will refer to them as connectivity ac-
cording to C. W. Wu or F. Chung indicating where they
were proposed [8, 9]. Following [9] a random walk on a
directed graph can be defined by denoting

Pij =
Aij

di
(1)

whereas Aij denotes an element of the adjacency matrix
of the graph and di =

∑
j Aij is the out-degree of node

i. The matrix P is a valid transition matrix of a discrete-
time Markov chain, i.e., its contains only non-negative el-
ements and the rows sum up to one

Pe = e

with the N -dimensional unit vector e = (1, . . . , 1)T .
Strong connectedness of a directed graph means that there
exits a directed path from every node to every other node.
If the graph is strongly connected according to the Frobenius-
Perron theorem the matrix P has a simple eigenvalue of
one and the corresponding left eigenvector is the station-
ary distribution of the Markov chain

φP = φ

and sometimes called the Perron vector. The Laplacian of
a directed graph can then be defined according to [9] as

L = I− Φ1/2PΦ−1/2 + Φ−1/2PT Φ1/2

2
(2)

with Φ = diag(φ). We denote the second smallest eigen-
value of L as the connectivity according to F. Chung.
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Figure 3. Mean and standard deviation of algebraic con-
nectivity according to C. W. Wu [8] for 100 random real-
izations of the Thomson et al. circuit (left) and Binzegger
et al. circuit (right) and six amorphous variants thereof.
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Figure 4. Mean and standard deviation of algebraic con-
nectivity according to F. Chung [9] for 100 random real-
izations of the Thomson et al. circuit (left) and Binzegger
et al. circuit (right) and six amorphous variants thereof.

Equation (2) is a normalized version of the combinatorial
Laplacian [9] L̃ = Φ1/2LΦ1/2

L̃ = Φ− ΦP + PT Φ
2

An alternative definition of the Laplacian for directed
graph, that is analog to that of an undirected graph in-
volves the outdegrees of nodes [8]

L̂ = diag(d)−A.

The connectivity according to C. W. Wu is then the small-
est eigenvalue of the matrix 1

2QT (L̂ + L̂T )Q, where Q
is a N × (N − 1) matrix with orthonormal columns that
are orthogonal to the unit vector e, where N denotes the
number of nodes.

The algebraic connectivity according to C. W. Wu and
F. Chung for both considered data-based circuits and their
amorphous variants are shown in Fig. 3 and Fig. 4, respec-
tively.

5. RESULTS AND DISCUSSION

The motif distributions of Thomson et al. circuits and
Binzegger et al. circuits differ significantly. The connec-
tivity patterns of Thomson et al. circuits show a distinc-
tive motif distribution with over-represented three-node
motifs 3, 5, and 11 and lacking motifs 2, 4, and 7 when
compared to amorphous networks (see Fig. 2). In con-
trast for Binzegger et al. circuits highly connected three-
node motifs are over-represented, whereas motifs consist-
ing of only two links occur less frequent compared to
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Figure 5. Significant (Spearman ρ < 0.05 or Pearson
p < 0.05) positive or negative correlation between three-
motif (left) and two-motif counts (right) and computa-
tional performance for nine different task for the Thom-
son et al. circuit; not significant correlation are indicated
by empty boxes.
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Figure 6. Significant (Spearman ρ < 0.05 or Pearson p <
0.05) positive or negative correlation between algebraic
connectivity according to C. W. Wu (A) and C. Chung
(B) and computational performance for the Thomson et
al. circuit (left) and the Binzegger et al. circuit (right); not
significant correlation are indicated by empty boxes.

corresponding amorphous networks. We further showed
for Thomson et al. circuits that the frequency of specific
three-node motifs is correlated with performance for the
chosen set of 9 information processing tasks. It turned out
that the absolute difference in motif probability between
the databased microcircuit and its amorphous variant is
positively correlated with the computational performance
of various tasks, in particular for the 6 characteristic mo-
tifs specified above (see Fig. 5). Therefore the superior
computational performance of Thomson et al. circuits
when compared to its amorphous variant can not be at-
tributed to the more or less frequent occurrence of single
motifs, but is rather a property of the characteristic motif
distribution as a whole. Algebraic connectivity according
to F. Chung [9] turned out to be a discriminate measure
for the data-based circuit and its various control circuits
(see Fig. 4) because of its low variance. The computa-
tional performance for Thomson et al. circuit shows a
significant negative correlation consistent throughout all
tasks (see Fig. 6). This does not hold for the Binzegger
et al. circuit. The finding that a higher connectivity of
the network deteriorates the computational performance is
consistent with the observation that sparse heterogeneous
networks support higher computational performance than
dense and uniform networks.

6. CONCLUSION

We considered two recently published data-based corti-
cal microcircuit templates and compared their local and
global structural features in the light of their computa-
tional performance for nine generic tasks. For reference
we generated a collection of random control circuits that
lack the laminae-specific connectivity pattern of the tem-
plates but comprise the same number of components. We
found that both circuits show distinctive motif distribu-
tion compared with their control variants. We found for
the Thomson et al. circuit that particular three-node mo-
tifs are consistently positively correlated with the compu-
tational performance and that the algebraic connectivity
is negatively correlated with the performance for specific
tasks.
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