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ABSTRACT

Recently structural kinetic modeling has been proposed as
an intermediary approach between a full kinetic descrip-
tion of metabolic networks and a static constrained-based
analysis of them. It extends the null-space analysis by a
local stability analysis yielding a parametrization of the
Jacobian in terms of saturation levels of the involved re-
actions with respect to their substrate metabolite concen-
tration. These levels are normalized and stay within well-
defined bounds for every reaction. We utilize results from
robust control theory to determine subintervals of satu-
ration levels that render the steady state asymptotically
stable. In particular we apply Kharitonov’s theorem and
parametric Lyapunov functions in conjunction with inter-
val computation. A glycolytic pathway model comprising
12 reactions is used to illustrate the methods.

1. INTRODUCTION

Although nearly complete knowledge of the metabolic re-
actions that take place inside several model organisms is
now available, kinetic information about most of these re-
actions is unavailable. The challenge is to find out how
metabolic systems function as integrated wholes, even
though our knowledge of them is incomplete.

Mathematical models of metabolism will prove cru-
cial in this regard. In the description of cellular metabolism,
models have a long-standing tradition. Among the ear-
liest models are detailed kinetic representations of small
metabolic networks, such as models of glycolytic oscilla-
tions in yeast. Other prominent examples include models
of the red blood cell and of the core-metabolism of E. coli
(see [1] and the references therein). A detailed kinetic
model is a set of differential equations whose right-hand-
side reflects a rate law, a functional relation between the
metabolic flux within a reaction and the concentrations of
metabolites. In principle, such a model can predict the
time course of all system variables, such as metabolite
concentration changes. Rate laws, however, require ki-
netic information, and such information has always been
scarce. To this end such information depends on many
factors such as tissue type or experimental and physio-
logical conditions. Rate law characteristics are obtained
in vitro and it often remains questionable, whether these
characteristics can be applied to in vivo situations.

Due to the lack of kinetic information researcher’s at-
tention turned to more coarse-grained, structural models

such as flux balance analysis (FBA) [1]. FBA requires
only information about reaction stoichiometries and about
metabolic demands on a network. Using stoichiometric
information FBA identifies steady state fluxes that do not
violate the requirement of mass conservation. The down-
side of FBA is that it can not provide any information
about the dynamical properties of the metabolic system.
This includes the sometimes overlooked fact, that it does
not tell us whether every feasible flux corresponds to a sta-
ble steady state. That is, whether the network deliberately
set to this flux distribution will remain at this distribution
or whether it will swing off to another flux distribution at
the tiniest fluctuation.

A recent attempt to bridge the gap between explicit
kinetic models and coarse-grained structural modeling ap-
proaches such as FBA is the method of structural kinetic
modeling (SKM) [2]. This approach starts with the ob-
servation that many questions about metabolic systems
can be answered without an explicit kinetic model. For
example to determine under which conditions a steady
state loses its stability, only a local linear model of the
metabolic system is required.

We propose an extension of SKM based on robust sta-
bility theory that allows to determine stability intervals for
saturation levels of a SKM model. This reasoning about
entire sets of models heralds a new semi-quantitative ap-
proach [3] to the analysis and design of biochemical mod-
els.

2. STRUCTURAL KINETIC MODELING

SKM highlights the fact that even in the absence of de-
tailed kinetic information questions like the stability and
its margin of the steady state operating point can be ad-
dressed. Questions, classical steady state level analyses,
such as metabolic flux balance analysis can not address.
As outlined in the following, it does so by introducing a
direct parametrization of the Jacobian matrix that governs
local stability of the network. The classical formulation
for metabolic networks read

dS
dt
≡ Ṡ = Nv(S,k) (1)

with S the vector of concentration of all involved species,
N the N ×L stoichiometric matrix, v(S,k) the vector of
fluxes and k a vector comprising the parameters of all the
rate laws. If we assume that the network has at least one
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non-zero steady state at concentration S0 (does not need
to be stable) we can equivalently write

Ṡi
S0
i

=
R∑
j=1

Nij
vj(S0)
S0
i

vj(S)
vj(S0)

. (2)

Introducing concentrations that are normalized by the
steady state concentration xi = Si

S0
i

one obtains

ẋ = Λµ(x), (3)

with the constant matrix Λij ≡ Nij
vj(S

0)

S0
i

and the vector

of normalized fluxes µj(x) ≡ vj(S)
vj(S0) . A linearization of

the system at the steady state x = 1 yields with Λµ(1) =
0

żi =
R∑
j=1

N∑
k=1

Λij
∂µj(z)
∂zk

∣∣∣∣
z=1

(zk − 1). (4)

Introducing the matrix θµj
zk ≡

∂µj(z)
∂zk

∣∣∣
z=1

we obtain the
local linear model

ż = Λθµ
z (z− 1). (5)

The stability of the nonlinear system (3) at x = 1 is thus
determined by the eigenvalues of the matrix Λθµ

z . The
matrix Λ contains the topological as well as the steady
state information, while every entry of the matrix θµ

z can
be interpreted as the relative saturation level of one partic-
ular reaction with respect to one particular substrate con-
centration.

3. ROBUST STABILITY

We can now apply the ideas of robustness analysis for lin-
ear systems to the Jacobian matrix J ≡ Λθµ

z of our lin-
earized metabolic network. Allowing uncertainty in the
kinetic rate law, corresponds here to an uncertainty about
the saturation matrix θµ

x . Thus we define the interval Ja-
cobian as

J(Bθ) =
{
J |J = Λθµ

x , θµ
x ∈ Bθ ⊂ RL×N

}
, (6)

with the hyperbox

Bθ ≡
{

θ | θµi
xj
∈ [θµi

xj
, θ̄µi
xj

], θµi
xj
≤ θ̄µi

xj
, ∀(i, j)

}
.

In the following, methods from robust control theory to
deal with such an interval matrix (6) are introduced and
extended.

3.1. Kharitonov polynomials

Given a Jacobian of a linearized dynamics, stability can
be determined by checking the Hurwitz property, i.e.,
whether all eigenvalues have negative real part. But how
to test stability of a whole family of Jacobians specified
by an interval matrix? One important theorem here is the
following due to Kharitonov [4].

Theorem 1. Every polynomial

p(λ, c) = c0 + c1λ+ · · ·+ cn−1λ
n−1 + cnλ

n (7)

of degree n which is an instance of the polynomial set
p(λ,Bc) = {p(λ, c) | c ∈ Bc} and cn > 0 is a Hurwitz
polynomial, if and only if the associated following four
Kharitonov polynomials

p+−(λ, c) = c̄0 + c1λ+ c2λ
2 + c̄3λ

3 + c̄4λ
4 + c5λ

5 + · · ·
p++(λ, c) = c̄0 + c̄1λ+ c2λ

2 + c3λ
3 + c̄4λ

4 + c̄5λ
5 + · · ·

p−+(λ, c) = c0 + c̄1λ+ c̄2λ
2 + c3λ

3 + c4λ
4 + c̄5λ

5 + · · ·
p−−(λ, c) = c0 + c1λ+ c̄2λ

2 + c̄3λ
3 + c4λ

4 + c5λ
5 + · · ·

(8)
are Hurwitz polynomials.

The result looks for very promising because it gives
a necessary and sufficient condition for stability. How-
ever, the necessity will be lost if the coefficients c are not
independent as it is the case for the characteristic polyno-
mial p(λ) = det(J− λI). Thus, for our case the theorem
just provides a sufficient condition, i.e., with this method
a family of stable Jacobians can be erroneously classified
as unstable (but not vice-versa). One way to compute the
characteristic polynomial and the coefficient interval Bc

induced by the interval Jacobian is to use interval arith-
metic [5]. Besides the above sufficiency, the use of inter-
val arithmetic introduces a second source of conservatism.

3.2. Quadratic Stability

Quadratic stability of a linear interval system is defined
that for each member of this interval family one can use
the same quadratic Lyapunov function to determine stabil-
ity. With that, quadratic stability is stronger than testing
the Hurwitz stability of each of the members. Thus for
a interval system that is quadratically stable all members
are stable, but a system that is not quadratically stable can
still be stable for all members. Quadratic stability thus
gives us just another way to obtain conservative stability
bounds. However, quadratic stability can be determined
without conservatism with a finite number of tests. An
L ×N interval matrix can be thought of describing a hy-
perbox in RLN . The vertices of this box are associated
with all the K = 2LN possible combinations of interval
boundaries.

Theorem 2. A linear interval system is quadratically sta-
ble if and only if all its vertex systems are stable.

It remains to find a common Lyapunov function for all
vertex systems. The proof of the theorem is based on the
observation that every point in the hyperbox is an element
of the convex hull of vertex points

J(α) =
K∑
k=1

αkJk with
K∑
k=1

αk = 1 and αk ≥ 0,

(9)
where Jk denote the vertex matrices. Quadratic stability
corresponds to finding one common Lyapunov function
xTPx for all vertex matrices Jk. Thus we have to solve
the simultaneous set of Lyapunov equations

JTi P + PJi ≺ 0 (10)

for i = 1, . . . ,K and P � 0, the common positive-
definite Lyapunov matrix.



3.3. Affine Quadratic Stability

In contrast to classical quadratic stability (Section 3.2),
affine quadratic stability searches for quadratic parameter-
dependent Lyapunov function, where the dependency is
assumed to be affine. Writing it in terms of polytopes for
the family of Jacobian

J(α) =
K∑
k=1

αkJk with
K∑
k=1

αk = 1 and αk ≥ 0,

(11)
with Jk the vertex matrices, we seek for a Lyapunov ma-
trix of the form

P(α) =
K∑
k=1

αkPk, (12)

where the matrices Pk have to be found. Thus we obtain
the Lyapunov equation,

J(α)TP(α) + P(α)J(α) ≺ 0 (13)

that has to hold for any α in the convex combination.
In general affine quadratic stability leads to bilinear ma-
trix inequalities that are difficult to solve. However, forc-
ing another constraint on the Lyapunov function, namely
multi-convexity [6] one arrives at vertex conditions simi-
lar to the one in Section 3.2.

4. GLYCOLYTIC PATHWAYS

To illustrate our approach we present a minimal model of
glycolysis in Section 4.1 and medium sized model in 4.2.

4.1. Minimal Model

A minimal model of the glycolytic pathway is depicted in
Fig. 1. where A, B, X0, S and X1 corresponds to the

A B 2B 2A

SX0 X1

A B
v3

v2v1

Figure 1. Minimal model of the glycolytic pathway

concentrations of ATP, ADP, Glucose, 1,3P2G and Pyru-
vate, respectively. The corresponding differential equa-
tions read

d
dt

SA
B

 =

+1 −1 0
−1 +2 −1
+1 −2 +1

 v1(A)
v2(S,B)
v3(A)

 , (14)

where we assume the following kinetic rate laws

v1(A) =
k1A

1 +
(
A
Ki

)n (15)

v2(S,B) = k2SB (16)

v3(A) =
k3A

Km +A
(17)
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Figure 2. Affine parameter transform introducing conser-
vatism; uncertainty-rectangle in parameter space and its
image (dark gray) under the affine mapping Φ, the bound-
ing rectangle from interval arithmetic in coefficients space
and its image in the parameter space (light gray).

With A+B = const it can be reduced to a 2-dimensional
system, whereas the Jacobian matrix reads

J =
(
−α1 α1(ξ + α2)
+2 −ξ − θ − 2α2

)
, (18)

with α1 ≡ A0

S0 and α2 = A0

B0 . The characteristic polyno-
mial is then

p(λ, ξ, θ) = λ2 + λ(ξ + α1 + 2α2 + θ) + (θ − ξ),

with θ ∈ [θ, θ̄] and ξ ∈ [ξ, ξ̄]. For Kharitonov analy-
sis we apply interval arithmetic to the affine transform Φ
that maps the parameters to the coefficients of the poly-
nomial. The parameter rectangle maps under this trans-
form to a parallelotope. To obtain the interval coeffi-
cient of the polynomial one has to bound the parallelo-
tope with another rectangle. In the original parameter
space that bounding rectangle corresponds to a larger re-
gion of parameter space. That steps corresponds exactly
to the conservatism hidden in the Kharitonov test. To il-
lustrate this we show the result of that mapping and its in-
verse for this 2-dimensional model in Fig. 2. Fig. 3 shows
the real stability region in parameter space (gray) and the
inscribed stability rectangles determine by quadratic sta-
bility, affine quadratic stability and Kharitonov’s method.
Kharitonov’s method as well as affine quadratic stability
do not show any conservatism but quadratic stability re-
turns a more conservative result. The proposed general al-
gorithms to determine the stability intervals for the three
methods of Section 3 is iterative and proceeds by a multi-
dimensional bisection. The bisection uses the supplied
nominal stable parameter set (indicated in Fig. 3) as an
expansion point. Due to the dependency of the bisection
on this nominal values and on its particular expansion pol-
icy, we can not guarantee that the final stability rectangle
is the one of maximum volume possible for a particular
method.

The specific policy applied here is that all parameter
dimensions are expanded simultaneously at an rate that is



Figure 3. Stability region in terms of the saturation pa-
rameters θ and ξ for a steady state flux v = 1 and the
steady state concentrations A0 = 1, B0 = 1 and S0 = 1
obtained stability boxes for the three different methods.

proportional to the size of the initial bounding box. If a
proposal box in unfeasible we sequentially test every di-
mension separately whether it can be expanded. The di-
mensions that can be expanded further are then simulta-
neously expanded. Alternatively, algorithms based on the
branch-and-bound method may be used.

4.2. Medium-Scale Model

The second considered model of the glycolytic pathway
is depicted in Fig. 4. We have 12 unknown saturation pa-
rameters of the involved reactions which are just known
to reside within particular bounding interval (by knowing
the cooperativity of the reactions). The stability of the
system is sensitive to the strength of the inhibitory feed-
back ξ ∈ [0, n] and with it, the different levels of sat-
uration θµ1

ATP = 1 − ξ (reaction Glc → FBP), where
n is the estimated upper bound for the effective kinetic
order of the inhibition. To perform our stability analy-
sis we make the assumption that all saturation parame-
ters are within θµs ∈ (0, 1], except θµ1

ATP with ξ ∈ [0, 2].
Michaelis-Menten kinetics leads to an interval (0, 1]. Fur-
thermore, we assume to be given a stable nominal param-
eter set θ̃µs = 0.8 and ξ̃ = 1. The stability hyperbox
is expanded around the nominal set taking into account
the following constraint to simplify the bisection method.
The side lengths of the box are kept equal for all param-
eters, except for θµ1

ATP , that was varied individually. The
12-dimensional stability region obtained via Karithonov’s
method is shown in Fig. 5. The stability region may be ex-
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Figure 4. Medium-scale model of the glycolytic pathway
featuring 12 unknown saturation parameters of the reac-
tions.
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Figure 5. Hyperbox describing a guaranteed region
for asymptotic stability in parameter space based on
Karithonov’s method; each of the saturation parameters
can vary independently within that interval and result in a
stable system.

panded further by decoupling these parameter dimensions
in the bisection.

5. CONCLUSION

We incorporated methods from robust control into the
framework of structural kinetic modeling. Guaranteed
multivariate stability intervals for unknown reaction sat-
uration levels can be determined. Multivariate bisection
was used in conjunction with the binary stability tests.
Those were based on Kharitonov’s theorem, quadratic sta-
bility and quadratic affine stability. Two simple models of
the glycolytic pathway are used to illustrate the method.
The important conceptual advance of the presented ap-
proach is that it operates on whole family of models, in-
stead of individual models.
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