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Abstract

Accurate estimation of quality of online services is both
an important and difficult problem, since a service has
many interdependent quality attributes influenced by sev-
eral contextual factors. It is even more challenging as qual-
ity ratings come from sources with unknown reliability, each
source may rate a service on different quality aspects. Al-
though several solutions have been proposed, there is little
work addressing all these issues thoroughly. In this paper,
we show that domain knowledge on service structure and
related constraints, such as causal dependencies among
quality attributes and contextual factors, while widely avail-
able, can be exploited to effectively address the above issues
in a theoretically-sound framework. Theoretical analysis
shows that computational cost of the approach is accept-
able, and accurate evaluation of service quality requires a
reasonable number of user feedback, provided services have
a small number of quality attributes and contextual factors.

Keywords: service, quality, trust, probabilistic learning,
probabilistic modeling, EM, MLE, Bayesian network

1 Introduction

While provisioning of services takes place electronically
or traditionally depending on the domain, any services can
be advertised, discovered and requested electronically via
the Internet. Examples of traditional services published on
advertisement sites such as Craigslist' are numerous, from
car rental, travel planning to house relocation services.

Accurate estimation of service quality is of paramount
importance in online environments. In business scenar-
ios with competitive providers, quality rating is normally
the decisive criteria influencing a user in selecting a ser-
vice among several functionally equivalent ones. For in-
stance, between two online travel planning services, a user

Thttp://www.craigslist.org

would aim for the one with better route coverage, more user-
friendly, and offer plans with lower price and transit time.

Ratings on quality of online services can be obtained
in many ways. Automatic monitoring and measuring ser-
vice quality is proposed in, for example, [1]. Such an ap-
proach is appropriate to measuring network-related quality
attributes of a Web service, e.g., response-time or avail-
ability, but inapplicable to other domain-dependent quality
properties of an online service in general, e.g., whether the
service conforms to its advertised functions or whether it is
easy to use the service. However, in reality users are even
more interested in these domain-dependent quality features.
O’Sullivan et al [2] give an extensive review of these quality
attributes across different service domains.

Alternatively, feedback from previous users can be used
as a relevant source to rate most quality attributes of a ser-
vice. Feedback is available in various places, from extended
registries [3] to professional forums and social networks.
In this case, a fundamental issue is the reliability or trust-
worthiness of these feedback sources, as reports from un-
known people can either be reliable or biased depending on
the innate behaviors and motivation of the ones sharing the
feedback. For example, competing service providers have
strong incentives to advertise their services as having the
highest possible quality and to badmouth quality of their
competitors in order to increase their revenues [4, 5].

Accurate estimation of service quality ratings is even
more challenging since these signals are multi-dimensional,
context-sensitive, and may be nondeterministic. A service
has several inter-dependent quality attributes whose values
may be influenced by various contextual factors nondeter-
ministically. Examples are dependencies between the mem-
bership type of a data hosting service, e.g., Amazon S3, and
download/upload bandwidth available to a member given
his network connection speed.

Several approaches propose using user feedback to eval-
uate quality ratings, e.g., [6,7]. However, most solutions ei-
ther estimate ratings on one service quality attribute, or rat-
ings on a number of independent quality dimensions. There
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are few work that address adequately all of the above issues:
the multi-dimensionality, context-sensitivity, and nondeter-
minism of service quality signals, as well as the reliability of
contributing feedback sources. Furthermore, very few work
considers the case where a user may only give feedback on
a few quality aspects of the service, resulting in a sparse set
of quality ratings.

This paper presents an overall framework to use service
domain knowledge to model and estimate ratings on quality
of services probabilistically, taking into account all these
above issues. The key idea is that knowledge on the struc-
ture of a service and related constraints, such as causal de-
pendencies among quality attributes, contextual factors, are
generally available in a service domain. This information
is exploited for the QoS modeling and learning process in
many aspects. First, we exploit the fact that for a service in
a specific domain, their QoS parameters and dependencies
to related contextual factors are well-known. With such an
assumption, the modeling of QoS capabilities of a service
results in a fixed-structure Bayesian network with small in-
degree bound, thus subsequent probabilistic learning and in-
ferences on it is scalable in terms of computational cost.
Second, we use constraints among quality attributes and
contextual factors, as well as the malicious behaviors of rat-
ing users and their rating values to define conditional prob-
abilities of the model, and filter invalid ratings to improve
performance of the quality rating estimation. Third, prior
beliefs on rating sources’ reliability and service provider’s
behavior are used to initialize the parameter learning of the
Bayesian network-based model of the service to further im-
prove the estimation accuracy. Our study shows that the
proposed learning framework with appropriate use of com-
monly available knowledge in a service domain offers us
many advantages:

e it gives theoretically-sound solutions to effectively
address the issues of multi-dimensionality, context-
sensitivity, and reliability of service quality ratings, while
applicable to many service domains.

e it enables a user to subjectively model and evaluate var-
ious quality dimensions of interested services according
to personalized preferences, prior beliefs and available
information on trustworthiness of the feedback sources.

o the quality learning works well given a sparse rating set:
we have obtained reasonably good results from previ-
ous experiments [8]: with a high fraction (more than
50%) of missing values from the reports of many biased
sources, the estimation accuracy is still acceptable. This
is mainly due to use of a QoS generative model: training
the model using available quality reports helps to learn
ratings on unobserved quality factors from observations
on other quality attributes. Furthermore, correlation be-
tween opinions of honest and trusted users are seamlessly
integrated in the learning step and help to identify reliable

reports and isolate biased ones.

To our knowledge, this work is the first one that ef-
fectively exploits available knowledge in a service do-
main, model dependencies among service quality parame-
ters, contextual factors, and reliability of raters for the ben-
efits of the service quality estimation. Furthermore, while
we focus on modeling and assessing service quality, the
methodology is naturally applicable to other service’s non-
functional properties with probabilistic dependencies.

2 Framework overview

Fig. 1 gives an overview of our approach to probabilis-
tic modeling and estimation quality of a service from rat-
ings by many feedback sources. The modeling step builds
a QoS generative model of a service to represent its quality
capabilities. The learning (training) step trains the model
with feedback on quality of the service from many sources
to learn its unknown parameter. The third step estimates the
service quality level under a certain context by probabilistic
inference on the model learnt from two previous steps.

This framework can be integrated into a service reputa-
tion management framework [9] or a service search engine,
namely Seekda? to help users selecting the best services. In
this paper we will introduce candidate algorithms for the
above steps to evaluate quality of an example service and
analyze in details computational complexity of these algo-
rithms to demonstrate the possibility of our approach. These
algorithms, however, are subject to many optimizations and
can be replaced by better ones, as discussed later on.

3 System model and notations

Denote Q the set of quality parameters of a service,
where each ¢ € Q is assumed to have discrete values. While
this assumption largely simplifies our problem and subse-
quent analysis, it is both realistic and advantageous. First,
many quality attributes either have categorical values or are
best represented with ranges of values due to their uncer-
tain nature. Second, a rating on service quality is in fact
the conformance between the quality values promised and
delivered by the provider, as evaluated by the user. Such
ratings are best modeled as discrete grading scales, as nor-
mally used in rating hotels or travel planning services. Sim-
ilarly, let £ be the set of contextual factors affecting values
of quality parameters in Q. In this paper we only consider
the case where contextual factors have discrete/categorical
values. The same methodology, however, applies in the case
of continuous contextual factors and quality signals.
Motivating example: Consider a data hosting service
similar to Amazon S3 or services by other data hosting
providers. The following quality attributes are of our in-
terests: its maximal number of concurrent downloads M,
its download speed D and its upload speed U. Values of
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Figure 1: The framework overview.

these attributes are decided by the subscription price P and
the Internet connection type I of the service consumer. In
other words, P and I define the context, or the client-side
setting in which the provider promises to offer its data host-
ing service with specific quality level of M, D, and U.

Fig. 2(a) shows a Bayesian network-based model of
quality of the data hosting service with state spaces of all
nodes and probabilistic dependencies among them. Such
information is well-known in the data hosting domain and
may even be declared by the provider in his service adver-
tisement. Fig. 2(a), with conditional probabilities of each
variable given state of parent nodes, is example of a QoS
generative model of the data hosting service.
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Figure 2: (a) Example quality attributes and related contextual fac-
tors of a data hosting service, state spaces of each node, and depen-
dencies among them; (b) Dependencies among the trustworthiness
(reporting behavior) of an untrusted feedback source and its cor-
responding reported values; (c) The QoS generative model of the
data hosting service in simple form.

A user may obtain reports (ratings) on quality of a ser-
vice from a list of sources Z, only some of which are re-
liable. Reliable (trusted) sources 7 C 7 may include, for
example, third-party/commercial QoS monitoring services.
Untrusted sources Z\7 are usually previous service users.
The trusted sources and those quality attributes to be mon-
itored by them shall be private information of the learning
user. Otherwise, an adversary may disguise as an honest re-
porter to manipulate the QoS prediction effectively. For ex-
ample, the adversary can provide reliable information only
on those quality attributes monitored by trusted sources,
while reporting biased feedback on the others.

Let U be the set of variables in a QoS generative model
of a service. A node x € U represents either a quality at-
tribute, a contextual factor, the trustworthiness of an infor-
mation source, or the rating on a quality attribute. The do-
main value of x, or its state space, is denoted D,.. A directed

edge from one node to another denotes a probabilistic or
causal dependency between two variables. For brevity, we
denote 7, the set of parent nodes of z. If x represents a
quality attribute in Q, the set of contextual factors in £ that
x directly depends on is ¢, = m, N E.

The realization of x to some value v € D, is denoted as
x = v (similarly we have = # v). Whenever it is irrelevant
to mention v, we use the brief notation x*. Similarly, for
any given set S of random variables, we denote $* the joint
event in which each variable s € S is assigned certain value
in Ds. The conditional probability that x gets some value
given states of its parents 7, or a conditional probability
table (CPT) entry of the node x, is simply Pr(z* | 7%).

We then define the following important concepts.

Definition 1. The QoS generative model of a service is a
Bayesian network (U, D, ) with node set U, edge set D,
and parameter 6. The tuple (U, D) is a directed acyclic
graph where D = {(p,z),z € U,p € m,} defines prob-
abilistic dependencies among nodes in /. The parameter ¢
is the set of unknown conditional probability table (CPT)
entries Pr(z* | 7%) of each node = € U.

Definition 2. A QoS rating by a source j € 7 at time ¢t on
a service is defined as (7, ¢, V;‘), where V7 denotes a set of
reported values of j on a subset V; C Q U £. Specifically,
Vi ={z = ri(z) | € V;}, where rig(z) € D, is the
reported value of 5 on x at time ¢.

In general a source 7 may report only on a number of
quality attributes or contextual factors V;. Thus values
of several quality attributes and contextual factors may be
missing in a QoS rating. To estimate the unknown parame-
ter 6 of a QoS generative model, related QoS ratings from
many sources are combined to build a training set, which in-
cludes many observations (samples) on the model (Def. 3).

Definition 3. An observation or a sample on a QoS gener-
ative model is defined as v, = {x = x*,z € O}, where
x* € D, is a rating value on a node x € O, and the set
O C QU €& is a subset of quality attributes or contextual
factors whose values during a measurement epoch y can be
obtained by combining ratings from some sources.



4 Service quality modeling

Given own knowledge on the reliability of feedback
sources, a user may set up a QoS generative model of the
following types. The basic QoS generative model (Fig. 3a)
is applicable when the user collects ratings from own expe-
rience and only trusted sources. The extended QoS genera-
tive model (Fig. 3b) is used when the user collects feedback
from many sources Z, only a subset 7 of which is reliable.
A QoS generative model is built with the following steps:

1. Identify relevant quality attributes Q of the service, re-
lated contextual factors £ and their domain values. Dis-
cretize values of a continuous quality attribute into ranges
if necessary. Identify the causal/probabilistic relation-
ships among Q and £. This results in a basic QoS gener-
ative model as shown in Fig. 3(a).

2. For each untrusted feedback source j € Z\7, add a node
b; to represent the trustworthiness of j. For each b;,7 €
7 and for each ¢; € Q, add a node v;; with the same
domain as ¢;. Add a directed link from each b; and from
each ¢; to v;;. Thus, v;; represents the rating of a source
j € Z on a quality attribute ¢; € Q. The following nodes
are marked observable: all nodes v;;, £, and each ¢, rated
by a trusted source s € 7. Remaining nodes are hidden
nodes. This step results in an extended QoS generative
model (Fig. 3b) with an unknown parameter 6.

3. Well-known constraints among values of nodes are ex-
ploited to define certain CPT entries of the model. Par-
ticularly, one may set Pr(v;; = v | b; = reliable,q; =
v) =1, and Pr(v;; = v | b; # reliable, ¢; = v) = 0 for
any ¢; € Q,v € D,,,j € I\7. Other value constraints
of quality and contextual attributes can be exploited to set
CPT entries of related nodes. Formally, a constraint may
be of the form A, 2" — y* or Ay 2" — (y # V),
for some X C U, some y € U, and some v € D,. De-
fine BB be the domain knowledge built from those con-
straints. For each z € U, the following rules apply: if
KB = {r: — z*}, we define Pr(z* | 7%) = 13. If
KB = {r: — (x #Vv)},set Pr(z = v | nf) = 0.
Prolog programs can help to analyze such complex con-
straints to set values of related CPT entries.

The above steps result in a (personalized) QoS genera-
tive model of the service, with some pre-defined CPT en-
tries. Normally, a generative model is set up once for each
service type in a domain, with possible help of domain ex-
perts. We emphasize that it is possible to include dependen-
cies among quality attributes q;, or among contextual fac-
tors e; in Fig. 3(a,b). These dependencies are not shown for
the presentation clarity. However, our proposed algorithms
in coming sections are generic enough to handle these cases.
Also, we assume that values of contextual factors are verifi-

3We use the notation |= to represent the deduction (provability) of a
fact from a knowledge-base in first-order logic

able and thus are observable variables. This is not a strong
assumption since there is no direct incentive for feedback
sources to manipulate such values, but only values of con-
cerned quality parameters. Nevertheless, whenever contex-
tual values are subject to manipulation, it is trivial to extend
the above models and use the same approach with contex-
tual factors marked as hidden nodes. It is also notewor-
thy that available domain constraints are very useful as they
help to define many conditional probabilities of the model
(step 3.) and thus reduce the size of the parameter set 6 to
be estimated in later steps.

Figure 3: (a) The basic QoS generative model of a service; (b) The
extended QoS generative model. A rounded square surrounding
a node represents a group of similar variables, possibly with the
number of variables in the group. Shaded nodes are observable
(visible) variables whose values are known or obtained in some
ratings, whereas blank nodes are hidden variables whose values
are completely unknown.

Modeling example: Consider the basic QoS generative
model for the previous data hosting service (Fig. 2a). Sup-
pose that feedback on U is provided by a trusted source,
and feedback on M, D, and U is obtained from an untrusted
source with reporting behavior b;. We use My, D1, and Uy
to denote reported values by the untrusted source on M, D,
and U, respectively. P,I,U, My, Dy, and U; are marked
observable. Fig. 2(b) shows possible dependencies between
the trustworthiness by of a source and reported values U; on
the download speed of the data hosting service. A feedback
source observing a certain quality level may either report
the same value, or deliberately give higher or lower rating
value. E.g., a user may give a bad rating on service of its
competitors irrespective to the quality it actually perceives.
These reporting behaviors are denoted as reliable, advertis-
ing, and badmouthing respectively, i.e., the feedback source
is reliable with some unknown probability. Fig. 2(c) shows
the QoS generative model after the second modeling step.
We then exploit the following constraints to define some
CPT entries of the model. Given the above reporting be-
havior model, for any u € Dy we have Pr(U; = u |
by = reliable,U = u) = 1.0, Pr(U; = high | by =
advertising, U = u) = 1.0, and Pr(U; = low | by =
badmouthing, U = u) = 1.0. Also, if the maximal
number of downloads is deterministically defined by the
price, we set Pr(M = high | P = premium,I*) = 1,



Pr(M = acceptable | P = economic,I*) = 1, and
Pr(M = low | P = free,I*) = 1. Thus after the third
modeling step we have an extended QoS generative model
for the data hosting service with certain known CPT entries.
The unknown parameter 6 of the model consists of the re-
maining unknown CPT entries of by, M, and D.

Many existing works use certain instances of our above
generative models for their QoS prediction, though the
modeling is not stated explicitly. For example, those ap-
proaches considering a number of independent quality at-
tributes [10] consider a generative model of independent
nodes ¢;. Those work assuming the total reliability of feed-
back sources [6, 11] simply use the basic QoS generative
model and propose a training algorithm based on some
heuristics to estimate the model parameter 6. As a result,
this work provides a framework to apply various probabilis-
tic machine learning techniques to evaluate service quality
which generalizes existing approaches.

S Training and estimating service quality

Before using the QoS generative model for the estima-
tion of service quality, we need to train the model to learn
its unknown parameter 6. Specifically, collected QoS rat-
ings from many sources are used as training data to update
and estimate remaining unknown CPT entries of the model.
Training data preparation: A training data set includes
many samples on the QoS generative model, each sample is
obtained by combining related QoS ratings from different
sources during a measurement epoch (Def. 3).

As in the modeling, the knowledge base /CB built from
domain constraints can also be used to filter out impossible
observations in the report data set. For example, in the data
hosting service domain, the maximum concurrent number
of downloads for a subscribed user must be greater than 1,
meaning that Pr(M = low | P # free) = 0. Thus any
report by a source j of the form {M = low, P = economic}
or {M = low, P = premium} is impossible and should be
filtered out.

Consider a QoS rating (j,t,{z = rje(z) | z € V;}) sub-
mitted by a source j (see Def. 2). This report is removed if it
violates certain domain constraints in 3. Such a violation
is formally equivalent to:

3r:KB, () {y=nw}E{e#n@} O

yeV; yFx

Violations as (1) can be detected by Prolog programs to
eliminate invalid ratings of a source j. As j is likely to be
unreliable, its related nodes in Fig. 3b. (b;,v;; : ¢; € Q)
are also eliminated. This preprocessing reduces the learn-
ing cost in many ways: it reduces the size of the train-
ing data set, while preserving most relevant information for
the learning phase. Also, many nodes related to unreliable
sources are eliminated, thus simplifying the model and re-
ducing the number of parameters to be estimated.

Ratings on quality of the target service are transformed
into observations on the QoS generative model as in Al-
gorithm 1. The function selectRatingsInEpoch(u, R) re-
turns those QoS ratings in the set R whose timestamps
t are within a measurement epoch p. The function
findReportedNode(3j, x) returns the node v that represents
the reported value by j on the node x.

Algorithm 1 PrepareTrainingData(reportData  R):
trainingData T

1: for p = 0 to NumMeasureEpochs do
2: vy =0; R, = selectRatingsInEpoch(u, R);

3:  foreachreport (j,t, {z = ri(x) | z € V;}) in Ry, do
4: if j € T { reports from a trusted source } then
5: vy = v U{z =ri(x)};

6: else

7: for each z € V; do

8: v = findReportedNode(j, z);

9: vy =v,U{v=r(x)}

10: end for

11: end if

12:  end for

13:  Add asample v, to %;

14: end for

Learning by Maximum Likelihood Estimation (MLE):
The unknown parameter of a QoS generative model can be
estimated with traditional MLE techniques. This applies
when all nodes of the model are observable, e.g., the case
of a basic QoS generative model, or if training samples do
not contain missing values. Consider a simpler version of
the example data hosting service with two QoS attributes D
and U as shown in Fig. 4. Assume that feedback on D and
U is collected from an untrusted source with behavior b1,
and feedback on U is also provided by a trusted source.

As explained before in section 4, for any value d of D,
Pr(Dy =d | by = reliable, D = d) = 1, Pr(D; = high |
by = advertising,D = d) = 1,Pr(Dy = low | by =
badmouthing, D = d) = 1. Similarly, for any u € Dy:
Pr(Uy = u | by = reliable,U = u) = 1,Pr(U; =
high | b1 = advertising,U = u) = 1,Pr(U; = low |
b1 = badmouthing, U = u) = 1. Unknown CPT entries of
the model in Fig. 4 are: Pr(b; = reliable) = h, Pr(b; =
advertising) = a, Pr(D = high) =z, Pr(D = low) = m,
and Pr(U = high) = p, Pr(U = low) = ¢. The unknown
parameter of the model is thus § = {h, a,z, m,p, q}.

Suppose that we have a training data set T = {v,,,1 <
@ < N} from feedback on D, U built according to Algo-
rithm 1. Each observation v, is the combination of ratings
from the trusted source (on U) and the untrusted source (on
Dand U),so v, = {U = u*, Uy = uf,D; = d{'}. The
probability of getting an observation v, is:

Pr(va|0) = Pr(u" uf df|0)

= Y Pr(b1)Pr(D)Pr(u")Pr(d} | b1, D)Pr(uf | b1,U)

b1,D

We select # maximizing the log likelihood LL(6) of
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Figure 4: The generative QoS model of a data hosting service with
two QoS parameters D and U, monitored by two sources, one of
which is untrusted with behavior b;.

obtaining the training set ¥, i.e., § = argmax,LL(0) =
>, Pr(vy | 0). Basic transformations give us*:

LL(O) = Z log Pr(u") + Z log{l{ul:u;f}Pr(d'f)h +

W Iz

1{u‘f:d*{:high}“ + 1{u’f:d*1‘:|ow}(1 —a—h)} @

One may readily estimate 6 from reported values

2w Lur =higny

ut uf,df from (2). E.g., we have p = =T and

W, similar to standard majority voting tech-
niques for“ratings on U. The reliability of the feedback
source (h) can be estimated numerically via standard opti-
mization techniques. This results in an estimate of h based
on similarity between ratings u* of the feedback source and
ratings of the trusted one uﬁt , similar to intuition.
Learning by EM algorithm: For real services with many
quality attributes and contextual variables, the resulting
QoS generative models are more complex. Additionally,
the training data set is likely to contain many missing val-
ues since each source may report on only a number of qual-
ity attributes. Direction maximization of the log likelihood
function LL(6) as above becomes non-trivial and does not
give a closed-form solution of the estimated parameter 6.
Many approaches for estimating the parameter ¢ under
such situations are applicable [12]. In this paper, we pro-
pose the Expectation-Maximization (EM) algorithm [13] to
estimate € for its many advantages. First, it works well on
any QoS generative model and is especially useful if the log
likelihood function is too complex to be directly optimized.
Furthermore, it deals with incomplete data and converges
rapidly. Its main disadvantages are the possibility to reach
to a sub-optimal estimate (a local maximum of the log like-
lihood) with a bad initialization. However, we believe that it
is possible to have an acceptably good initialization of 6 to
compensate these disadvantages, given personalized beliefs
of the learning user on the behaviors of service providers
and raters. The EM algorithm is given in Algorithm 2.
Line 1 of Algorithm 2 initializes unknown CPT en-
tries of the generative model. Each conditional probability
Pr(z* | m%) can be initialized in many ways depending on
available information: from prior beliefs of the user, as in

4The function 14 evaluates to 1 if A is true and 0 otherwise

° Algorithm 2 LearnParameter(model M, trainingData

S:{V,uvlgUgN})
1: Init unknown Pr(z* | ) for each node x of M; /*Initialize 6%/
2: repeat
: for each observation v, in T do

3

4 Compute Pr(z*, 7% | vy, 0), Pr(n} | vy, 0) for each node x;
5:  end for

6:  Eope =3, Pr(z*, 3 | vy, 0); Epe = 30, Pr(my | vy, 0);
7:  for each node = do

8: Pr(z* | n%) = Egpz/Epe: /* Update 0 */

9:  end for

0:  Recompute LL(0) =}, logPr(v, | 0) with new 0;

1: until convergence in LL(0) or after a maximal number of iterations;

10:
1

the service advertisement by the provider, or as completely
random. For the data hosting service, the learning user may
assign Pr(b;) with his or her subjective belief on the trust-
worthiness of the source j. CPT entries of M, D, U in the
data hosting service may be initialized as in the service ad-
vertisement. Lines 3 — 6 implement the Expectation step
of the EM algorithm, where the expected counts F,,,, and
E,. of two joint events (z*, 7;) and 7, are computed, given
each observation v, in collected reports and current param-
eter 6. Any exact or approximate probabilistic inference al-
gorithm can be used to compute the posterior probabilities
Pr(n% | vy,0) and Pr(z*, 7% | v, 0). The Junction Tree
Algorithm (JTA) [14], is a good candidate as it produces ex-
act results, works for all QoS generative models, and is still
computationally scalable as shown in our later analysis.

The Maximization step of the EM algorithm is imple-
mented in lines 7 — 9 of Algorithm 2, therein we update
the model parameters Pr(z* | %) such that they maximize
the training data’s likelihood, assuming that the expected
counts computed in lines 3 — 6 are correct. The two Expec-
tation and Maximization steps are iterated till the conver-
gence of the log likelihood LL(#) of the training data set ¥,
which gives us an approximation of unknown CPT entries
Pr(z* | %) of the QoS generative model.

The set of visible variables in the QoS generative model
may be changed after a user runs Algorithm 2, uses the ser-
vice, and updates statistics of some quality attributes ¢; with
his own experience. Thus the learning of the model param-
eters is a reinforcement process with increasing accuracy
over time, given availability of more training data to esti-
mate a fewer number of parameters.

We do not consider possible optimization techniques,
e.g., adjust the weight of each sample v, according its re-
cency, to accelerate the learning convergence. The use of
other parameter learning algorithms, e.g., a Bayesian learn-
ing method, is also possible. These issues are subject to
future work and thus beyond the scope of this paper.
Service quality estimation: Our goal is to compute the
joint probability Pr(D* | ®*) that the service offers a set
D C Q of quality attributes at a desired level D* = {¢*,q €



D} and under a client context * = {e* | e € & C £}.
This probability implies whether a service performs better
than another in terms of the quality features D* under en-
vironmental setting ®*. Thus, the result can be used for
ranking and selection of appropriate services among func-
tionally equivalent ones given their expected quality levels.
The trustworthiness of an untrusted feedback source j, i.e.,
Pr(b;), is also of our interests, as this helps to select more
reliable sources for future estimation, especially it is costly
to obtain information from such feedback sources.

Given a generative QoS model with a known parameter
6, the computation of the above probabilities using proba-
bilistic inference algorithms is straightforward [14] as fol-
lows. Values of contextual variables in ® are defined ac-
cording to setting of the user, then a probabilistic inference
algorithm, such as JTA [14] is run on the model to compute
the probability Pr(D* | ®*). Regarding the trustworthi-
ness of feedback sources, all probabilities Pr(b;) are al-
ready computed during the parameter learning step.

For example, suppose that we want to estimate the prob-
ability that the service with the QoS generative model in
Fig. 2(c) provides data hosting service with download speed
level D = high. Also assume that the user wants a free
service. The probability Pr(D = high | P = free) can
be done automatically with available probabilistic inference
algorithm, given a QoS generative model with known CPT
entries. Due to space limitation, we refer readers to [14] for
a comprehensive tutorial on possible inference algorithms.
The most important aspect is if we know conditional prob-
ability entries of a QoS generative model, the whole above
inference procedure can be done fully automatically with
acceptable computational cost (Section 6).

6 Analysis of the approach

Detailed experiments to evaluate accuracy of the estima-
tion of quality rating on a service are much dependent on the
services. Empirical experimental analysis of our approach
with different services are subject to future work. However,
experimental results on the example data hosting services
are available [8]. Even with a high fraction (more than a
half) of missing values from the reports of biased sources,
the accuracy of our QoS estimates is still acceptable.

At the moment, we have obtained some theoretical re-
sults showing possibilities of our approach, whose appli-
cations are widely general to any service domain. These
results show that domain knowledge can be exploited ef-
fectively to help the probabilistic modeling and estimation
of service ratings with reasonable cost and acceptable accu-
racy. However, we emphasize that the algorithms presented
in this paper are merely suggestive, despite their general
suitability to many scenarios. Therefore, further optimiza-
tions and better algorithms can be used to increase the effi-
ciency and accuracy of the QoS estimations.

We will estimate the most significant computational cost
in our framework, which is the parameter learning and prob-
abilistic inferences on the QoS generative model. Consider
a worst case scenario where each of m quality attributes has
t contextual factors as parent nodes. There are n feedback
sources being used, none of which are trusted. Suppose that
every node has a k-ary state space. In a specific domain and
for a certain service, t, m, and k are fixed values, known to
the service user, and typically much smaller than n. The
Bayesian network of such a generative model has a total
of t + m +n + mn = O(n) nodes. The number of un-
known CPT entries Pr(x* | 7%) in the parameter 6 is at
mostng = (k—1)t+(k—1)k'm~+(k—1)n+(k—1)k*mn =
(k —1)(kK*mn +n+ k'm +t) = O(n). The term k — 1
is due to the normalization constraints as each variable has
a k-ary state space.

Assume that a source j sends [N reports on some qual-
ity attributes. In fact, /N approximates the number of mea-
surement epochs, or the number of samples obtained from
Algorithm 1. The functions selectRatingsInEpoch and
findReportedNode can be implemented with computational
cost O(1), e.g., with hash-based storage techniques. Since
the cost of three loops in lines 1, 3,7 of Algorithm 1 are re-
spectively O(N), O(n), and O(t + m), the computational
cost of Algorithm 1 is O(Nn(t + m)) = O(Nn). Even
better, this step is usually done off-line. The computa-
tion that needs to be done on-demand is the estimate of
Pr(D* | ®*), which has a cost of O(n) (Proposition 1).

Proposition 1. (see Appendix for a proof) The compu-
tational cost of one probabilistic inference on the worst-
case QoS generative model using the Junction Tree Algo-
rithm [14] is O(n).

From Proposition 2, the cost of one EM iteration is
O(Nn?). Given the fact that in practice the EM algorithm
converges fast, and we consider a limited number of con-
tributing sources, Algorithm 2 is scalable in terms of com-
putational cost with respects to the training data size N.

Proposition 2. (see Appendix for a proof) The computa-
tional cost of one EM iteration of Algorithm 2 is O(Nn?).

Learning errors and sample complexity: the sample
complexity to learn the parameter of a fixed-structure
Bayesian network, or the required number of samples N
to learn # with optimal error, is well-known in the compu-
tational learning literature [12, 15, 16]. In fact, the required
number of samples in our learning framework is exponen-
tial in terms of the in-degree bound of nodes and grows less
than linearly with the network size [15, 16]. For the QoS
generative model in our worst-case scenario with a bound
of node’s in-degree of O(t 4+ m) and network size of O(n),
the sample complexity is N = O(n2™™). This complexity
implies that our approach is feasible for estimating QoS of



services with a moderate number ¢ 4+ m of quality attributes
and contextual factors.

7 Related work

Many work propose to measure service quality using
dedicated monitoring services or QoS brokers, namely [1,
17-19]. Quality ratings from these sources are reliable yet
expensive to obtain and maybe inscalable in terms of costs.
Some work [1] is only applicable to measuring network-
related performance metrics of Web services, e.g., response-
time, availability, but not for online services in general.

There are several approaches to using feedback from
users to estimate quality and reputation of a service,
namely [7, 10, 20]. [10] only suggests to identify every re-
quester to avoid report flooding. [7] proposes another ap-
proach for evaluating and selection of Web services based
on the difference among their QoS capability vectors. More
recently, [6] proposes a collaborative filtering to estimate
the quality of a new service using only reports of users
whose experience is similar to him. [20] proposes the se-
lection of services that are popularly used by many service
users through the analysis of a network of services. These
approaches usually have one or some of the following lim-
itations: they either ignore the estimation of reliability of
ratings, consider only a single quality attribute, or a num-
ber of independent quality properties of a service. Sec-
ond, they are mostly based on ad hoc heuristics that are
not theoretically sound. The notions of context are usually
not included. Our proposed framework takes into account
all these important issues and generalizes many above ap-
proaches in a theoretically sound way.

Approaches most related to our work are in trust man-
agement literature, which we do not survey due to space
limitation and refer the readers to [4, 5] for an comprehen-
sive review. The work in this paper is based on our pre-
vious work on Bayesian modeling and learning of peer’s
quality [8]. In [21] the authors propose modeling e-market
services as a Bayesian network and use a Bayesian learn-
ing approach to estimate distribution of the model param-
eters. [22] uses a simple Bayesian network to learn the
trustworthiness of a party by the EM algorithm. These ap-
proaches do not exploit the dependencies among quality at-
tributes and contextual factors, as well as the presence of
trusted parties to reduce the cost of probabilistic learning
and inference on the models. Also, the problem of learning
on a QoS generative model given a set of observations with
missing data values have not been studied. As a side-effect,
our framework, though independently developed, appears
to subsume these specific approaches.

8 DISCUSSION & FUTURE TRENDS

The problem of estimation service quality in SOA envi-
ronments has many challenging requirements, of which the

most important are the multi-dimensionality and context-
sensitivity of the quality signal of a service. Fortunately,
domain knowledge on the structure of a service and related
characteristics, such as causal dependencies among quality
attributes, contextual factors, are generally available. This
information should be exploited effectively for the benefits
of the QoS modeling and learning process.

The framework presented in this paper is developed on
the light of the above. Our goal is to provide a starting point
to the application of several probabilistic machine learning
techniques in estimating the quality of Web services. The
proposed framework is independent of the service domain
and thus is generally applicable to a variety of application
scenarios. We have also obtained reasonably good results
from previous experiments [8]: even with a high fraction of
missing values from the reports of biased sources, the accu-
racy of our QoS estimates is still acceptable. However, it is
noteworthy that the algorithms presented in this paper are
merely suggestive, despite their general suitability to many
scenarios. Therefore, further optimizations and better algo-
rithms can be used to increase the efficiency and accuracy of
the QoS estimations. We provide hereafter a list of possible
improvements.

In reasonably stable environment with mostly reliable re-
porting sources, using even simpler QoS generative models
are sufficient. For example, instead of using a separate vari-
ables b; for each feedback source j, one can use a common
variable b to model overall behavior of these sources. The
number of unknown parameters in such simple generative
models is much smaller, thus computational cost of proba-
bilistic learning and inferences can be reduced significantly.
The training data set becomes less sparse and as a result, the
convergence speed and the accuracy of the parameter learn-
ing can be improved.

Several other parameter learning methods, e.g., a
Bayesian learning approach, can be used in our framework
in place of the EM algorithm. Many domain-dependent
optimizations, e.g., adding weights for each sample based
on its recency, are also possible. The readers are referred
to [12] for a comprehensive review on existing techniques
and their comparative advantages. Similarly, instead of us-
ing the standard JTA algorithms [14], approximate yet more
efficient probabilistic inference procedures may be used, es-
pecially if we know the shape of the QoS generative model.
Incremental versions of the training data preprocessing, the
data preparation, and the EM algorithms are also available.

In practice, our approach can be implemented with lit-
tle effort, given the availability of several Bayesian network
tools and libraries. Interested readers are referred to [23]
for a comparative review. Based on our own experience, for
research experiments and analysis purposes, the BNT MAT-
LAB toolbox [24] is best suited. The Netica library [25] is
an easy to use and a very powerful tool for other implemen-



tations that need to integrate with existing working systems.

We do not address in this paper the mechanism to mo-
tivate (rational) users to provide truthful feedback on their
consumed services. This is an important problem since any
QoS estimation method relies on sufficient samples for a
reasonable accurate learning. Side-payment mechanisms
via scoring rules [26] or based on trusted reference re-
ports [27] are promising approaches to this problem. Exten-
sion of these mechanisms to the case of services with multi-
dimensional quality signals and with bounded-rational users
are both challenging and interesting research questions.

9 CONCLUSION

This paper presents an overall framework for the proba-
bilistic modeling and estimation of quality ratings of online
services. We present methods to exploit available knowl-
edge in a service domain to build a probabilistic graphical
model that generates ratings on quality of a service. We
have proposed and analyzed some candidate algorithms for
the model parameter learning and service quality estima-
tions. Our QoS modeling and learning steps take into con-
sideration feedback information provided by both trusted
and untrusted reporting users on different QoS attributes of
the evaluated service. As a result, the learning framework
enables the effective elimination of possibly biased infor-
mation in favor of or against certain service providers and
thus gives an accurate picture of service quality to support
quality-based selection and ranking of services.

10 APPENDIX

Proof of Proposition 1. The worst case scenario of the QoS
generative model is shown in Fig. 5(a).

Figure 5: (a) The extended QoS generative model in worst-case
scenario; (b) The extended QoS generative model after the moral-
ization and triangulation step; (c) The junction tree of the extended
QoS generative model.

The result of the moralization and triangulation steps of
the Bayesian network in Fig. 5(a) is shown in Fig. 5(b).
The corresponding junction tree of this Bayesian network
is given in Figure 5(c). This junction tree has nm + n edges
and the maximal clique size with ¢ + m nodes. Thus the
computational complexity of each inference using the JTA
algorithm is O(2(nm+n)2tT™) = O(nm2t+™), where the
factor 2(nm + n) corresponds to the number of messages

passed during the inferences, and the complexity 2™ is
the computation cost for marginalization of variables in the
maximal clique e; ...e¢q1 ... g of the constructed junc-
tion tree. Therefore, one probability inference of the JTA
algorithm cost O(nm2t+t™) = O(n) for fixed ¢, m.

Proof of Proposition 2. From Proposition 1, the cost of
computing a probability Pr(z* | C*), where C* denotes
the setting of some variables in the generative model to cer-
tain states, is O(n). This cost is bigger than the cost to
compute either Pr(z*, 7} | v,,,0) or Pr(x} | v,,0) in line
4 of Algorithm 2, as the former requires an additional sum
over all unwanted variables.

Using the above result, one can verify that the compu-
tation cost for lines 3 — 6 of Algorithm 2 is O(Nn?%k) =
O(Nn?), with N is the number of observation cases. The
computation cost for the loop in lines 7 — 9 is O(n), since
there are ng = O(n) CPT entries Pr(z* | 7%) in the model.

The computation of the log likelihood LL(f) =
>, logPr(v, | 0) (line 10 of Algorithm 2) involves the
summation over all hidden variables h,, (variables whose
values not reported) for each observation v,. Since the
nodes b;, 1 < j < n are independent, each sum Pr(v,, | §)
can be implemented with the cost O(kt™*1n) = O(n) as
follows:

Pr(vy |8) = Y Pr(h,v,|6)
hy,

Pr(qt | Trq;A,,O)P'r'(e;‘ | wer,,é')

x I > Prv; | 0)Pr(vi; | bs,a,0)

J=1 b,

The terms Pr(q’ | 74e,0), Pr(e} | mer, Pr(b; | 0),and
Pr(vl; | bj,q}',0) are known CPT entries of the current
parameters 6 already computed after the Maximization step
(line 7 — 9 of Algorithm 2).

Consequently, the total computation cost of each EM
iteration in Algorithm 2 is O(Nn?) + O(n) + O(n) =
O(Nn?) for n contributing sources and N training samples.
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