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Abstract— Particle Swarm Optimization (PSO) algorithm is 
known to be very efficient solution for electromagnetic (EM) 
optimization problems. In this paper we show that binary 
tournament selection applied to PSO algorithm further speeds-
up its convergence. Having in mind that EM simulation is the 
most time-consuming part of the optimization, reducing the 
overal number of iterations (EM solver calls) is of a paramount 
relevance. 

I. INTRODUCTION 
The Particle Swarm Optimization (PSO) algorithm is 

known to be a very good optimization algorithm for various 
multidimensional problems with medium number of 
optimization variables [1]. Because of its implementation 
simplicity and relatively fast convergence, it has been 
continuously gaining popularity since it was introduced by 
Kennedy and Eberhart in 1995 [2]. The method was first used 
by the antenna community in 2004 and it was shown to be 
very efficient for electromagnetic problems [3]. In this paper, 
we apply a binary tournament selection strategy to the 
classical PSO algorithm [4] to see if it can further improve 
performances of the classical PSO. After the whole swarm has 
moved, binary tournament selection is applied to form a new 
swarm. We randomly choose a pair of particles. The one with 
the lower cost-function wins the tournament and becomes the 
particle of the new swarm. Both particles are then placed back 
to the pool of particles, and the process is repeated for p times, 
where p is the number of particles in the swarm. The new 
swarm, built in this manner, can have several particles with 
the same starting position. 

Both the Classical PSO and this hybrid version of PSO, 
called Tournament Selection PSO algorithm, have been 
applied to several layered media problems, in order to 
compare convergence performances of these algorithms. The 
geometry of the EM structure is optimized by PSO, and a 
cost-function is evaluated using in-house solvers based on 
mixed potential integral equations specially tailored to model 
planar multilayered structures [5], [6]. 

As suggested in [3] and [4], for both variants of PSO 
algorithms the maximal velocity is set to be equal to the 
dynamic range for each dimension of the optimization space, 
while cognitive and social rate coefficients are 

 As the boundary condition, an invisible wall 
strategy [3] is used. For the Classical PSO, the intertial weight 
w is lineary decreased from 0.9 to 0.4 over the course of the 
run, while for Tournament Selection PSO it is constant and set 
to w=0.73. A variable total number of particles is considered. 

II. 1ST OPTIMIZATION PROBLEM 
The first optimization problem is a classical microstrip 

antenna [7]. It consists of a feeding line, a quarter-wavelength 
transformer, and a radiating patch as illustrated in Fig.1.  

 

 
Fig. 1  Geometrry of the problem 

The optimization parameters are the length L and the width 
W of the patch (that determine the operating frequency of the 
antenna) and the length Lm and the width Wm of the quarter-
wavelength transformer (a matching transmission line that 
ensures the impedance of the patch is matched to the 50Ω 
feeding line). The length and the width of the 50Ω feeding 
line are , . The dielectric layer on 
which the metallization is printed is Duroid 

 of thickness  and backed by a ground 
plane. Microstrip antennas are narrowband radiators and by 
optimizing the specified geometry its bandwidth is not 
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affected, but we will be able to target its operating frequency 
(in our case set to be ). The optimization space is: 

 
 
 

The optimization goal is to minimize s11 at the operation 
frequency. The cost-function is defined: 

 
Both algorithms are run for 10 times to estimate the 

average outcome of the optimization. The averaged-best found 
solutions versus the number of iterations are shown in Fig.2. 
We see that the tournament selection significantly speeds up 
the convergence of the PSO algorithm.  

 
Fig. 2  Convergence of the algorithms    

 

III. 2ND OPTIMIZATION PROBLEM 
The second optimization problem is an SSFIP (Strip-Slot-

Foam-Inverted-Patch) antenna, shown in Figs. 3-4. It is well-
known that microstrip patch antennas have significant 
advantages in terms of size, ease of fabrication and 
compatibility with the printed circuits. However, their main 
drawback is their relative narrow bandwidth. In order to 
overcome this problem, SSFIP antenna concept was 
developed [8]. The coupling from the line to the patch is 
provided by a slot etched in the ground plane. The slot must 
not resonate over the operating frequency band of the antenna 
in order to avoid radiation toward the back of antenna, which 
would interfere with the radiation from the patch. 

 

 
Fig. 3  SSFIP antenna geometry 

 

 

Fig. 4  SSFIP antenna geometry – optimization parameters. 

The optimization parameters are: the length  and the width 
of the patch antenna, the length  and the width  of the 

slot, offset  between the centres of the patch antenna and the 
slot, and the length of the feeding line  (see Fig.4). The 
optimization space is: 

 
 

 
 

 
 

 
The optimization goal is to minimize  at the operating 

frequency (1.75 GHz), while controlling the antenna 
bandwidth. From our experience, we defined the cost-function 
as follows: 

 

 

 

 
 

Both algorithms are run for 10 times to estimate the 
average outcome of the optimization. The averaged-best found 
solutions versus the number of iterations are shown in Fig.5. 



 
Fig. 5  Convergence of the algorithms    

After 2000 iterations both algorithms converge to 
practically the same value. Nevertheless, the Tournament 
Selection PSO algorithm has faster convergence.  

Both algorithms found the solutions that satisfy our 
requirements.  parametar for one of those solutions is 
shown in Fig.6.  

 
Fig. 6  of the SSFIP antenna that satisfies our requirements 

 

IV. 3RD OPTIMIZATION PROBLEM 
The third optimization problem is a broadside coupled filter, 

shown in Figs.7-8. All the resonators are printed on different 
substrates and placed one above the other. The optimization 
parameters are the lengths of the resonators, ,  and ,  
their width,  and the resonators’ offsets from the box, , 
and (see Fig.7).  The optimization space is: 

 
 

 
 

 

We want our filter to have  for the band-pass 
frequencies, and we want to control its bandwidth. For that 
purpose, the cost-function is defined as: 

 
 
 

 

 

 

 
 

 

 

 
Fig. 7  Geometry of broadside coupled filter 

 



 

Fig. 8  Broadside coupled filter geometry – optimization parameters 

Both algorithms are run for 10 times. The averaged-best 
found solutions versus the number of iterations are shown in 
Fig.9. 

 
Fig. 9  Convergence of the algorithms  

 
For the small number of iterations Tournament Selection 

PSO algorithm has faster convergence. After 1000 iterations it 
is outperformed by Classical PSO algorithm. Nevertheless, 
Tournament Selection PSO still finds a very good solution. 

Both algorithms found the solutions that satisfy our 
requirements.  parametar for one of those solutions is 
shown in Fig.10.  

 
Fig. 10  of the broadside coupled filter that satisfies our requirements 

V. CONCLUSIONS 
We have applied Classical and Tornament Selection PSO 

algorithms to several multilayered media problems, in order to 
compare their performances. From the presented results, we 
see that the tournament selection significantly speeds-up the 
convergence of the PSO algorithm. Since the EM simulation 
is the most time-consuming part of the optimization, reducing 
the overal number of iterations (EM solver calls) is of a great 
significance. 
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