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Abstract— This paper addresses a question raised by a
leading expert in the identification of multivariable systems: “Is
it necessary to excite all reference signals for the identification
of a multivariable system operating in closed loop with a linear
time-invariant controller?” On the basis of earlier results on
identifiability of closed-loop systems, he conjectured that this
was necessary. We show that it is not, on the basis of a careful
re-examination of the notions of identifiability and informative
experiments for closed-loop systems.

I. INTRODUCTION

This paper re-examines the identifiability of closed-loop
systems with a double objective: (i) clarify the differences
between several definitions of identifiability and propose one
that is both realistic and operational; (ii) establish conditions
on the controller and on the external excitation that guarantee
identifiability in the case of multi-input multi-output (MIMO)
systems. In particular, our results shed new light on the
experiment design question for MIMO systems.

Identifiability of linear systems operating in closed loop
was a much studied problem in the 1970’s and early 1980’s.
Results in [1], [2], [3], [4] seemed to fully answer all
questions about the identifiability of closed-loop systems
under different feedback configurations and for different
assumptions about the excitation signals and the measured
signals. Recently, there has been a renewed interest in closed-
loop identification in the context of least costly identification
experiment for control [5], [6]. Briefly speaking, this concept
refers to achieving a prescribed accuracy at the lowest
possible price, measured in terms of the duration of the
identification experiment, the perturbation induced by the
excitation signal, or any combination of these.

In this context, recent work has focused on the specific
contributions of the noise and of the external excitation signal
to the accuracy of the parameters and the transfer function
estimates, in both open and closed-loop identification [7],
[8]. In this paper, we extend this work in the direction of
MIMO systems by addressing a series of questions along the
following lines: what are the exact experimental conditions
that are required to make a MIMO system identifiable?
is it possible to estimate a model even without external
excitation? assuming that external excitation is required for
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reasons of either identifiability or accuracy, is it necessary
that all reference inputs be excited in a MIMO system?

In attempting to answer these and related questions, we
have observed the need for a reassessment of the definitions
of identifiability that were in use during the 1970’s. Indeed,
some of these definitions are unnecessarily demanding in
terms of a realistic identification setup. For example, the
main result in [2] states that in the case of a time-invariant
controller a MIMO closed-loop system is strongly system
identifiable if and only if all reference inputs are excited by
persistently exciting signals. On the basis of such results, it
is assumed by many in the system identification community
that it is necessary to excite all external reference inputs if
one wants to identify a system under closed-loop conditions.
We show in this paper that this is not the case. Furthermore,
our analysis will show that a certain accuracy level can
be obtained using a variety of possible external excitation
schemes; this includes, for example, excitation by just one
of the external reference signals.

Our contribution, therefore, is essentially one of clarifi-
cation. We recall the key definitions of identifiability and
establish a clear distinction between identifiability of a
model structure, and informativity (or richness) of the data
set. The first notion depends only on the model structure
chosen for the identification, and has nothing to do with the
‘true system’. The conditions on the richness of the data,
required for the existence of a unique global minimum of
the identification criterion, are also a function of the chosen
model structure. However, the data are collected on the true
system; thus, whether these richness conditions are satisfied
or not depends on the true system, the feedback configuration
in a closed-loop setup, and the richness of the external data.
For systems operating in closed loop, we show that if the
controller is chosen of sufficient complexity with respect
to the chosen model structure and if this model structure
is globally identifiable, then a unique model can always be
obtained without any external excitation, using information
from the noise source only. Any desired accuracy of the
parameter estimates can then be obtained by letting the data
length N be large enough. By adding external excitation at
one or several of the reference inputs, one can achieve the
desired accuracy in a shorter time.

The outline of our paper is as follows. In section II we
present the key concepts of identifiability and of informativ-
ity of the data set. Section III establishes convergence con-
ditions for the situation where the true system is contained
in the model set. Section IV presents a numerical example.
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II. IDENTIFIABILITY AND INFORMATIVITY

A. Definitions of identifiability

The concept of identifiability involves the true system, the
model structure used to estimate it, and the properties of the
data set which, in a closed-loop setting, also depend on the
feedback configuration. It has been given different contents
in the econometrics and in the engineering literature [9]; the
prevailing definition has also evolved over the years. [10]
establishes a useful distinction between consistency-oriented
and uniqueness-oriented definitions of identifiability.

Consistency-oriented identification deals with the question
of whether the parameter estimate θ̂N converges to the
‘true’ parameter θ0 in some stochastic sense. This definition
was prevalent in the 1970’s when system identification was
perceived as an exercise in finding the ‘true system’. When
identification began to be viewed as an exercise in finding
the best approximate system within a model structure, con-
vergence to a true θ0 became meaningless, since the model
structure may very well not contain a description of the true
system, i.e. there is no θ0. This is a severe limitation of the
consistency-oriented definition of identifiability.

Uniqueness-oriented identification [11] deals with the
question of whether the model structure is such that the
identification criterion has a unique global minimum. This
question has been addressed only for the asymptotic crite-
rion, when the data length tends to infinity, since the criterion
based on N data is a random variable [10]. While this
criterion no longer requires that the true system is in the
model set, it is also not satisfactory because the existence of
a unique minimum imposes conditions both on the model
structure and on the data set used for identification. The
conditions on the data set, in turn, depend on the true system
and on the experimental conditions: open- or closed-loop
configuration, richness of the signals.

From a users’ point of view, it is important to work
with a definition that clearly separates conditions on the
model structure, which are entirely a user choice, and on
the experimental conditions, which in many cases are also
a user choice. In other words, an operational definition of
identifiability is one in which the user can select a model
structure with the knowledge that it is identifiable, and in
which he/she can then select experimental conditions that
are suitable for that model structure without any knowledge
required about the true system. ‘Identifiable model structure’
means that it represents a given model for a unique value
of the parameter θ, while experimental conditions that are
‘suitable for that model structure’ means that with that model
structure and these experimental conditions the identification
criterion has, asymptotically, a unique global minimum. If
in addition the true system can be exactly described within
the chosen model structure, then the identified model will
asymptotically converge to this true system.

In the sequel, we propose such a definition, in which we
clearly separate between the concept of an identifiable model
structure, and that of informative experiments with respect
to that model structure.
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Fig. 1. Closed-loop configuration

B. The identification setup

We consider that the true system S is described by

S : y(t) = G(q−1)u(t) +H(q−1)e(t) (1)

where G(q−1) is a p × m stable, causal, rational transfer
function matrix, and H(q−1) is a p× p stable and inversely
stable transfer function matrix. The signal y(t) ∈ Rp is the
output of the true plant, u(t) ∈ Rm is the control signal,
while e(t) ∈ Rp is a zero-mean white noise input with
covariance matrix Λ. This true system is under feedback
control with a stabilizing controller K, a m×p causal rational
transfer function matrix (see Figure 1):

u(t) = K(q−1)[r(t)− y(t)]. (2)

The system (1) is identified using a model structure
parametrized by a vector θ ∈ Rd:

M(θ) : y(t) = G(q−1, θ)u(t) +H(q−1, θ)ε(t) (3)

The set of models M(θ), for all θ in some set Dθ ∈ Rd,
defines the model set M: M , {M(θ) | θ ∈ Dθ}. It is
assumed that the loop transfer function G(q−1)K(q−1) has
a non-zero delay, both for G(q−1) and G(q−1, θ), θ ∈ Dθ.
It is also assumed that H(0) = I . For brevity, we will most
often drop the argument q−1, thus referring to G(θ) and
H(θ). The true system belongs to this model set, S ∈ M,
if there is a θ0 such that M(θ0) = S. In our definitions of
identifiability, we shall not necessarily assume that S ∈ M.
A model [G(θ) H(θ)] uniquely defines the one-step-ahead
predictor of y(t) given all input/output data up to time t:

ŷ(t|t− 1, θ) , H−1(θ)G(θ)u(t) + [I −H−1(θ)]y(t)
= Wu(θ)u(t) +Wy(θ)y(t), (4)

Wu(θ) = H−1(θ)G(θ), Wy(θ) =[I −H−1(θ)].(5)

For later use, we introduce the following notation:

W (θ) , [Wu(θ) Wy(θ)], z(t) ,

[
u(t)
y(t)

]
(6)

where W denotes p × (m + p) rational transfer function
matrix. The one-step-ahead prediction error is defined as:

ε(t, θ) , y(t)− ŷ(t|t− 1, θ) = H−1(θ) (y(t)−G(θ)u(t)) .
(7)

Using a set of input-output data of length N acquired in
closed-loop operation, the estimate θ̂N is calculated via the



prediction error criterion [12]:

θ̂N = arg min
θ∈Dθ

1
N

N∑
t=1

εT (t, θ)ε(t, θ). (8)

It defines the model Ĝ = G(θ̂N ), Ĥ = H(θ̂N ). Under rea-
sonable conditions [12], θ̂N

N→∞−→ θ∗ , arg minθ∈Dθ
V̄ (θ),

with
V̄ (θ) , E[εT (t, θ)ε(t, θ)]. (9)

If S ∈ M and if θ̂N
N→∞−→ θ0, the parameter error converges

to a Gaussian random variable:
√
N(θ̂N − θ0)

N→∞−→ N(0, Pθ), (10)

Pθ = [I(θ)]−1 |θ=θ0 , (11)
I(θ) = E

(
ψ(t, θ)Λ−1ψ(t, θ)T

)
, (12)

with ψ(t, θ) = −∂ε(t,θ)
∂θ = ∂ŷ(t|t−1,θ)

∂θ . With ε(t, θ) ∈ Rp

and θ ∈ Rd, we define ∂ε(t,θ)
∂θ as a d × p matrix whose

(k, j)-th element is ∂εj(t,θ)
∂θk

. The matrix I(θ0) is called the
information matrix.

C. Identifiability of a model structure

Here we adopt a uniqueness-oriented definition proposed
in [12]; much of the paper serves to explain why this is an
operational definition.

Definition 2.1: A parametric model structure M(θ) is
globally identifiable at a value θ∗ if M(θ) = M(θ∗) ⇒
θ = θ∗. It is locally identifiable at θ∗ if M(θ) = M(θ∗) ⇒
θ = θ∗ for all θ in |θ−θ∗| < ε for some ε > 0. It is globally
identifiable if it is globally identifiable at almost all θ∗.
Comments: This definition is a property of the parametriza-
tion of [G(θ), H(θ)]. It tells us that if the model structure
is globally identifiable at some θ∗, then there is no other
parameter value θ 6= θ∗ that yields the exact same model as
M(θ∗). This definition does not say anything about possible
convergence to this value θ∗ or to a “true” parameter value
θ0. The definition does not require that the system is in the
model set, but it applies of course also to the situation where
S ∈ M.

We now provide an equivalent definition of local identifi-
ability. With W defined as in (6), we introduce:

~W (θ) , [W1(θ) W2(θ) . . .Wp(θ)] (13)

where Wk(θ) denotes the k-th row of W (θ) with dimension
m+p. Thus, ~W is a p(m+p) row vector of transfer functions.
The d× p matrix ψ(t, θ) can then be written as

ψ(t, θ) =
∂ ~W (θ)
∂θ

diag[z(t), z(t), . . . , z(t)] (14)

where ∂ ~W (θ)
∂θ is a d× p(m+ p) matrix of transfer functions,

while diag[z(t), z(t), . . . , z(t)] is a (p + m)p × p block-
diagonal matrix with z(t) in the diagonal blocks: see (6).

We now introduce the matrix Γ1(θ) ∈ Rd×d:

Γ1(θ) ,
∫ π

−π

∂ ~W (ejω, θ)
∂θ

∂ ~WH(ejω, θ)
∂θ

dω (15)

where ~WH(ejω) denotes ~WT (e−jω). The following result
is an alternative definition for local identifiability of a model
structure; see problem 4G.4 in [12] for a SISO version of
this result.

Theorem 2.1: A parametric model structure M(θ) is lo-
cally identifiable at θ∗ if Γ1(θ) is nonsingular at θ∗.
Proof: For θ close to θ∗ we can write

~W (ejω, θ) = ~W (ejω, θ∗)+(θ−θ∗)T ∂
~W (ejω, θ)
∂θ

+σ(|θ−θ∗|2)
(16)

where limθ→θ∗
σ(|θ−θ∗|2)
|θ−θ∗| = 0. Assume that for θ close to θ∗

we have W (ejω, θ) = W (ejω, θ∗) for all ω. It then follows
from (16) that (θ−θ∗)T ∂ ~W (ejω,θ)

∂θ +σ(|θ−θ∗|2) = 0 for all
ω. Multiplying this equation by its conjugate transpose and
integrating over ω yields

(θ−θ∗)T

{∫ π

−π

∂ ~W (ejω, θ)
∂θ

∂ ~WH(ejω, θ)
∂θ

dω

}
(θ−θ∗) = 0

(17)
If Γ1(θ) is nonsingular, this implies θ = θ∗.

D. Informative experiments for a model structure

If a model structure is globally identifiable at some value
θ∗, it means that the model M(θ∗) cannot be represented
by any other M(θ) within the model class. However, in
order for an identification experiment to distinguish between
M(θ∗) and any other model M(θ), it must be sufficiently
informative with respect to that model structure.

We consider that the data are quasi-stationary [12]. An
experiment shall then refer to the data generation mechanism
which defines the asymptotic properties, and in particular the
spectrum, of the joint input-output process z(t) defined in
(6). It does not refer to a particular set of N data.

Definition 2.2: An experiment z(t) is called informative
with respect to a model set M if, for any two models W (1)

and W (2) in that set,

E{|[W (1)(q−1)−W (2)(q−1)]z(t)|2} = 0 (18)

implies

W (1)(ejω) = W (2)(ejω) for almost all ω, (19)

where W (i)(q) are defined from a model by (5)-(6).
The definition means that there cannot be two different

models within the model set that give exactly the same
predictions, when fed with the same data. It is easy to show
[12] that an experiment that yields Φz(ω) > 0 for almost all
ω is informative for all model structures.
Comments: (i) The definition of informative experiment
is with respect to a given model set, not with respect to
the true system, which may or may not belong to the
model set. In an identification experiment, one typically first
selects a globally identifiable model structure; this is a user’s
choice. Experimental conditions must then be selected that
are informative with respect to that structure; this is again
a user’s choice. However, the data are generated by the true
system, in open or in closed loop. Thus, the conditions that



make a data set z(t) informative with respect to some model
structure depend on the true system and on the possible
feedback configuration.
(ii) Informative experiments guarantee that no two different
models within the set can generate the same predictions. A
globally identifiable model structure additionally guarantees
that almost all models in the set are represented by a unique
parameter vector. The selection of a globally identifiable
model structure, together with an experiment that is infor-
mative with respect to that model structure then guarantees
that, asymptotically, the minimum of the criterion is almost
surely unique, since it is unique at almost all θ∗.

Consider now an identification experiment which gener-
ates data z(t) with a power spectrum Φz(ω). Combining
(12) and (14) yields:

I(θ) =
1
2π

∫ π

−π

∂ ~W (ejω, θ)
∂θ

diag [Φz(ω), . . . ,Φz(ω)]

∂ ~WH(ejω, θ)
∂θ

dω (20)

=
p∑

k=1

1
2π

∫ π

−π

∂Wk(ejω, θ)
∂θ

Φz(ω)
∂WH

k (ejω, θ)
∂θ

dω

We can now state the following theorem.
Theorem 2.2: Consider an identification experiment that

generates data with spectrum Φz(ω) and assume that a model
structure W (q, θ) is used. Then I(θ∗) > 0 if the following
two conditions hold:
(i) the model structure is locally identifiable at θ∗;
(ii) Φz(ω) > 0 for almost all ω.
Proof: The result follows immediately by combining the
positivity of Φz(ω) and the nonsingularity of Γ1(θ) that
results from Theorem 2.1.
Comments: (i) The positivity of the information matrix at a
value θ∗ results from the combination of the two ingredients
that are required to insure convergence to a unique minimum
of an identification criterion at θ∗: the local identifiability of
the model structure at θ∗ and the informativity of the data
with respect to that model structure.
(ii) The conditions of Theorem 2.2 are sufficient but they are
by no means necessary. As we shall see later, condition (ii)
is stronger than is needed. As for condition (i), we observe
from the second expression in (20) that the nonsingularity
of I(θ) can possibly be achieved with only one or a few of
the p terms in the sum.

III. CONVERGENCE TO THE TRUE SYSTEM

We now consider the situation where the system is in the
model set: S ∈ M. Thus there exists a parameter vector
θ0 such that W (q−1, θ0) = W 0(q−1), where W 0(q−1) is
the one-step ahead prediction filter corresponding to the true
system: W 0 , [H−1G I −H−1]. In addition, we assume
that the model structure is globally identifiable at θ0. We
combine these two assumptions in a single statement.

Assumption 1: The model structure M(θ) is such that
M(θ0) = S for some θ0 and it is globally identifiable at θ0.

Comment: Assumption 1 does not necessarily imply that the
model M(θ) has the same structure as the true system; it can
be an overparametrization of S. For example, consider that
the true system is a single-input single-output ARX system
described by (1 + 0.8q−1)y(t) = 0.5u(t − 1) + e(t). This
system is contained in the model set M(a, b, c) defined by
the following ARMAX structure:

M(a, b, c) : (1 + aq−1)y(t) = bu(t− 1) + (1 + cq−1)ε(t),

which is globally identifiable at θ0 = (0.8, 0.5, 0).
Under Assumption 1 the Prediction Error identification

algorithm converges to the unique value θ0 if the data are
informative with respect to the chosen model structure.

Theorem 3.1: Consider a model structure that obeys As-
sumption 1, and let V̄ (θ) be defined by (9). Then
(i) θ0 is the unique minimum of V̄ (θ) if the data are
informative with respect to the model structure M(θ).
(ii) θ0 is an isolated minimum of V̄ (θ) if I(θ0) > 0.
Proof: (i) Let ŷ0(t) denote the optimal predictor for the true
system (1), such that for this true system: y(t) = ŷ0(t)+e(t).
The asymptotic cost criterion V̄ (θ) can then be written as

V̄ (θ) = E[|y(t)− ŷ(t|t− 1, θ)|2]
= E[|ŷ0(t)− ŷ(t|t− 1, θ)|2] + trΛ. (21)

Clearly, θ0 is a global minimum of V̄ (θ), yielding ŷ0(t) =
ŷ(t|t−1, θ0) and V̄ (θ0) = trΛ. Let θ̄ be another global min-
imum. This implies that E[|ŷ(t|t−1, θ0)− ŷ(t|t−1, θ̄)|2] =
0. Since the data is informative with respect to M(θ),
this implies W (θ̄) = W (θ0). By the global identifiability
assumption at θ0, this in turn implies that θ̄ = θ0.
(ii) We compute the first and second derivative of V̄ (θ).

V̄ ′(θ) = −2E
[
∂ŷ(t|t− 1, θ)

∂θ
ε(t, θ)

]
= 0 at θ = θ0. (22)

Here ∂ŷ(t|t−1,θ)
∂θ denotes a d× p matrix. As for V̄ ′′(θ), it is

a d× d matrix whose (k, j)-th element is

[
V̄ ′′(θ)

]
k,j

= −2E

{
p∑

l=1

∂2ŷl(t|t− 1, θ)
∂θk∂θj

εl(t, θ)

}
(23)

+2E
{
∂ŷ(t|t− 1, θ)

∂θk

∂ŷT (t|t− 1, θ)
∂θj

}
Since ε(t, θ0) = e(t) and since e(t) is uncorrelated with the
predictions up to time t− 1, the first term of (23) is zero at
θ = θ0. The result then follows, since V̄ ′′(θ0) = I(θ0).

We now present a range of experimental conditions that
are informative with respect to the chosen model structure
when the system operates under closed-loop control with a
fixed (i.e. non-switching) controller.

A. Identification without external excitation: r = 0.

We show that if one selects a model structure that obeys
Assumption 1, and if the identification is performed in
closed loop without external excitation (i.e. r = 0) but
with a controller K(q−1) of “sufficient complexity”, then
the asymptotic criterion V̄ (θ) has a unique global minimum



at the value θ0 for which M(θ0) = S. First we state two
technical lemma’s that will be needed subsequently.

Lemma 3.1: [13] Let D(z) be a row reduced1 polynomial
matrix of full row rank and let q(z) = p(z)D(z) where p(z)
is any polynomial row vector. Then

deg q(z) = maxj:pj(z) 6=0[deg pj(z) + kj ] (24)

where the degree of a vector is defined as the highest degree
of any of its elements, pj(z) is the j-th entry of p(z), and
kj is the degree of the j-th row of D(z).

Lemma 3.2: [15] Consider the Diophantine equation

AX +BY = 0, (25)

where A,B,X, Y are polynomial matrices in the variable z,
with X and Y given, and A and B unknown. The general
solution of this equation can be written as

B = −PX1, A = PY1, (26)

where X1, Y1 are a coprime solution of Y1X = X1Y and
P is an arbitrary polynomial matrix.

Now, consider Definition 2.2 and assume that

E{|[W (θ1)−W (θ2)]z(t)|2} = 0. (27)

Remembering (6), introducing ∆Wu(θ1, θ2) , Wu(θ1) −
Wu(θ2) and ∆Wy(θ1, θ2) , Wy(θ1)−Wy(θ2), and substi-
tuting u(t) = −Ky(t), we can rewrite (27) as

E{|[∆Wy(θ1, θ2)−∆Wu(θ1, θ2)K]y(t)|2} = 0. (28)

Since Φy(ω) is generically nonsingular for almost all ω,
this implies, using Parseval’s theorem and considering ∆Wy ,
∆Wu and K as rational transfer function matrices in the
variable z, that

∆Wy −∆WuK = 0. (29)

Now let
[∆Wy −∆Wu] = D−1 [B A] (30)

be a left coprime polynomial factorization with D(z) row
reduced and let kmax be the largest row degree of the
polynomial matrix [B A]. We can then state the main result
of this subsection.

Theorem 3.2: Let the true system (1) be identified in
closed loop with a feedback controller u(t) = −K(q−1)y(t)
without external excitation, using a model structure that
obeys Assumption 1. Let cmin denote the minimum observ-
ability index of any irreducible representation of K(q−1).
Then θ0 is the unique global minimum of the asymptotic
criterion V̄ (θ) if cmin > kmax.
Proof: Let K = XY −1 be a right coprime factorization.
Then, using equation (30), (29) can be written as:

AX +BY = 0 (31)

1See [14] for properties of polynomial matrices, such as coprime factor-
izations, column- or row-reduced matrices, etc.

where A ∈ Rp×m[z], B ∈ Rp×p[z], X ∈ Rm×p[z], Y ∈
Rp×p[z]. By Lemma 3.2, the general solution of (31) is

[B A] = P [−X1 Y1] , (32)

where K = Y −1
1 X1 is a left coprime row reduced fac-

torization of K, P is an arbitrary polynomial matrix in
Rp×m[z], while cmin is the smallest row degree of the matrix
[−X1 Y1] [14]. Now, if cmin > kmax then by Lemma 3.1
the only solution to (31) is obtained by setting P = 0 in
(32), which implies ∆Wy = 0 and ∆Wu = 0 by (30). The
result then follows from part (i) of Theorem 3.1.
Comments: (i) The choice of a controller that satisfies the
complexity requirement of the Theorem depends only on the
model structure chosen by the user; (ii) A similar result can
be found in [3].

B. Identification with external excitation: r 6= 0

We have just shown that closed-loop identification can
always be performed without external excitation, provided
a controller of sufficient complexity is chosen. However, by
doing so one may have to collect many data to arrive at
a prescribed level of accuracy. Applying external excitation
signals adds contributions to the information matrix I(θ),
and therefore decreases the covariance matrix Pθ for a same
number of data N .

Condition (27) can be rewritten as follows, using Parse-
val’s theorem:

tr{
∫ π

−π

[∆Wu(ejω, θ1, θ2) ∆Wy(ejω, θ1, θ2)]Φz(ω)

×[∆Wu(ejω, θ1, θ2) ∆Wy(ejωθ1, θ2)]H} = 0. (33)

This implies ∆Wu(ejω, θ1, θ2) ≡ 0 and ∆Wy(ejω, θ1, θ2) ≡
0 if Φz(ω) > 0 for almost all ω. The conditions under
which this holds depend on the experimental conditions, and
therefore on the true system [G H] and on the controller
K. The expression of z as a function of the true closed-loop
system is as follows:

z ,

(
u
y

)
=
[

I K
−G I

]−1 [
K 0
0 H

](
r
e

)
(34)

Since GK is strictly causal, the first matrix is always nonsin-
gular. Assuming that K has full normal rank, then Φz(ω) > 0
for almost all ω if Φr(ω) > 0 for all ω. However, while this
is a sufficient condition for the generation of informative
data, it is by no means necessary. A complete analysis of
the conditions that make closed-loop data, obtained with
a time-invariant controller, informative with respect to a
MIMO model structure is based on the analysis of the linear
dependencies of the matrix (see (33)):

[∆Wu(ejω, θ1, θ2) ∆Wy(ejω, θ1, θ2)]Φz(ω) (35)

when the data are generated by (34). This type of analysis
for single-input single-output systems is performed in [16].
Informative data can be obtained from noise excitation only
(if K is sufficiently complex), from some or all of the
reference signals, or from a combination of reference signals



and noise excitation. A full-scale analysis is beyond the scope
of this conference paper.

In [2] it was shown that, in the case of a time-invariant
controller, strong system identifiability can be achieved only
if all references are excited. However, strong system identi-
fiability means that the model estimate must converge to the
true system for all model structures that can represent the
true system. This requirement is too strong to be practical,
since in practice the user selects a particular model structure.

In the next section, we illustrate with a 2-input 2-output
example that it is possible to achieve the prescribed level of
accuracy by exciting one of the reference signals only.

IV. SIMULATION RESULTS

The following ARX structure is considered:

A1y1(t) = B11u1(t) +B12u2(t) + e1(t)
A2y2(t) = B21u1(t) +B22u2(t) + e2(t)

with A1 = 1 − 0.9535q−1, B11 = 0.744q−1, B12 =
−0.8789q−1, A2 = 1 − 0.9329q−1, B21 = 0.5786q−1,
B22 = −1.302q−1; e1 and e2 are mutually independent zero-
mean white Gaussian noises with λ1 = λ2 = 0.05. We con-
sider the parameter vector θ = (b11, b12, b21, b22, a1, a2)T .
The plant is controlled by a 2 × 2 PI controller which
stabilizes the plant without other performance consideration:

K(q−1) =

(
0.55−0.45q−1

(1−q−1)
0.15−0.08q−1

(1−q−1)
0.24−0.18q−1

(1−q−1)
−0.35+0.33q−1

(1−q−1)

)
. (36)

We want to attain the desired accuracy by exciting one of
the reference signals only. Parametrize the reference signal
spectra as follows [5],

Φri
(ω) = Rri

(0) + 2
m∑

k=1

Rri
(k)cos(kω) ≥ 0 ∀ω (37)

where i = 1, 2, and m is a positive integer, and consider the
following experiment design problem [6]:

minimize
Φr1 ,Φr2

Er2

subject to trPθ ≤ γ
1
2π

∫ π

−π
Φui

(ω)dω ≤ Eui
, i = 1, 2

1
2π

∫ π

−π
Φr2(ω)dω ≤ Er2

Φr1(ω) = 0, Φr2(ω) ≥ 0 ∀ω

(38)

where γ = 1, Eu1 = Eu2 = 0.4 and m = 50 in (37). The
solution r2(t) with the minimal energy required to satisfy the
constraints yields Er2 = 1.777. A Monte-Carlo simulation
is performed to verify the results of the experiment design.
r1(t) is kept equal to zero, while r2(t) is generated according
to the solution of the optimization problem (38). The data
length is N = 1000. The trace of Pθ computed by 500
Monte-Carlo runs is trPθ = 1.047. This slightly exceeds
the bound γ = 1; this is due to the fact that the optimization
problem is solved using the asymptotic covariance expression
(see (11)-(12)), while the Monte-Carlo computations are
based on estimates obtained from 1000 data. The simulation
confirms that it is not necessary to excite both reference
signals to attain a given accuracy level.

V. CONCLUSIONS

The origin of this work was to take a critical look at a
statement made to us: “For the identification of a MIMO
system based on closed-loop data collected with a time-
invariant controller, it is necessary to excite all reference
inputs.” We have shown that this is not the case. In analyzing
this question, we have made a clear distinction between iden-
tifiability of a model structure, and selection of experimental
conditions that make the data informative with respect to
that structure. We have shown that, once a model structure is
selected, the user can always chose a controller of sufficient
complexity that will make the data informative with respect
to that model structure. We have also shown that the addition
of reference signal excitation may serve to improve the
quality of the parameter estimates, but that several excitation
scenarios can typically be considered.
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