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Abstract—In this paper we find properties that are shared
between two seemingly unrelated lossy source coding setups with
side-information. The first setup is when the source and side-
information are jointly Gaussian and the distortion measure is
quadratic. The second setup is when the side-information is an
erased version of the source. We begin with the observation
that in both these cases the Wyner-Ziv and conditional rate-
distortion functions are equal. We further find that there is a
continuum of optimal strategies for the conditional rate distortion
problem in both these setups. Next, we consider the case when
there are two decoders with access to different side-information
sources. For the case when the encoder has access to the side-
information we establish bounds on the rate-distortion function
and a sufficient condition for tightness. Under this condition,
we find a characterization of the rate-distortion function for
physically degraded side-information. This characterization holds
for both the Gaussian and erasure setups.

I. INTRODUCTION

Lossy source coding with side-information available at the

encoder and the decoder is a well studied problem with

applications in the distribution of correlated pieces of data, for

instance in video coding. When there is only one decoder, the

problem is simply a conditional version of the rate-distortion

problem. In [8], Wyner and Ziv solved the case when only

the decoder has access to the side-information. They showed

that for Gaussian sources and quadratic distortion, the rate-

distortion tradeoff of their problem is the same as for the

conditional rate-distortion problem. In [1], Heegard and Berger

considered the Wyner-Ziv problem for several decoders, and

solved it for the case when the side-information sources are

stochastically degraded. In [2], Kaspi provided the optimal

tradeoff for the same problem, but with only one decoder

having access to side-information. He also solved a version

of this particular problem where the encoder knows the side-

information. In [5], we considered the problem of lossy source

coding for two decoders, each of which has access to a side-

information source, and where the encoder has full knowledge

of the side-information. The encoder sends the same message

to both decoders. This is a generalization of the problem

studied by Kaspi and we refer here to this problem as “source

coding for two informed decoders”. In [5], we solved the

Gaussian version of this problem for physically degraded side-

information.

In this paper, we extend the existing results in several

ways. First, we introduce discrete sources with “erased” side-

information, i.e., where the side-information source is the

output of an erasure channel whose input is the data source. We

show that with this type of side-information, discrete memory-

less sources have an intimate connection, in terms of proper-

ties, to Gaussian sources with Gaussian side-information. We

first show that the Wyner-Ziv and conditional rate-distortion

functions are equal for discrete sources with erased side-

information1. For all other results, we focus on the “binary-

erasure” special case, where the data source is binary. We

show that for the conditional rate-distortion problem, there is

a continuum of optimal strategies for both the Gaussian and the

binary-erasure case. This fact turns out to be useful in source

coding for two informed decoders. For this problem, we give

upper and lower bounds on the rate-distortion function, as well

as a sufficient condition for equality of these bounds. Using

this condition, the Gaussian result for physically degraded

side-information in [5] is easy to prove. We also show an

analogous result for the binary-erasure case, which shows

another connection between the two cases. As an auxiliary

result, we compute the binary-erasure rate-distortion function

for the Kaspi problem.

The paper is organized as follows. In Section III we state

and discuss the main results. Section IV contains a few

additional results about the Kaspi problem. These results are

somewhat auxiliary, but important because they are used in the

proofs of the main results. Section V contains these proofs.

Because of space limitations, we omit some of the proofs

and for some results, we provide only a rough proof outline.

The detailed proofs can be found in several technical reports

available online ([3],[6],[4]).

II. TERMINOLOGY

Definition 1: A Gaussian source coding problem is a setup

with a source X and (one or) two side-information sources

Y and Z, where (X,Y,Z) are real, jointly Gaussian random

variables. All reconstruction alphabets are real and we use

the quadratic distortion measure d(x, x̂) = (x − x̂)2 (for all

reconstructions).

1This result was found independently and simultaneously in [7] and by us
in [4].
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Definition 2: A binary-erasure source coding problem is

a setup with a source X and (one or) two side-information

sources Y and Z, where X is a Bernoulli- 12 random variable,

and Y and Z are the outputs of two binary erasure channels

(BECs) whose input is X . The two BECs may be correlated.

All reconstruction alphabets are binary and the distortion

measure is the Hamming distance d(x, x̂) = x ⊕ x̂ (for all

reconstructions), where ⊕ denotes modulo-2 addition over the

binary field.

Definition 3: For a given source coding problem, the rate-

distortion function expresses the smallest rate for which the

rate distortion pair (or triple) is achievable for the given

distortion(s).

III. MAIN RESULTS

The five theorems contained in this section constitute the

main results of this paper. All the results hold in an analogous

way for both the binary-erasure and the Gaussian case, hence

demonstrating the connection between the two cases. To the

best of our knowledge, all the results in this section are

new, with the exception of Theorem 1 which was found

independently and simultaneously in [7] and in [4]. Also, the

Gaussian part of Theorem 5 was already published in [5].

A. One Decoder

To convince the reader how similar the binary-erasure and

the Gaussian setups are, we first state two important results for

the case when there is only one decoder. It is well-known that

in the Gaussian case, the rate-distortion function for a single

decoder with side-information is

RX|Y (D) = RWZ(D) =
1

2
log

Var (X|Y )

D
,

no matter whether Y is available at the encoder or not. We

find that for the erasure case, a similar property holds:

Theorem 1: When X is a source taking values in a discrete

set X and Y is an erased version of X , i.e.,

Y =

{

X w.p. 1 − p

ǫ w.p. p,

then we have the following: Provided that the reconstruction

alphabet is X and the distortion measure d : X × X → R
+

is such that d(x, x) = 0 for all x ∈ X , the rate-distortion

function for a single decoder with side-information is

RX|Y (D) = RWZ(D) = pRX(
D

p
),

no matter whether Y is available at the encoder or not.

Here, RX(·) is the rate-distortion function of the source X

under the distortion measure d, when the decoder has no side-

information. To the best of our knowledge, there is no other

case in which the conditional and Wyner-Ziv rate-distortion

functions match for a discrete source. The proof of Theorem

1 can be found in the appendix of a technical report [4]. Note

that Theorem 1 holds for arbitrary, discrete sources. In the

rest of this paper, we focus on binary-erasure problems, where

the source X takes values in {0, 1}. In this case, Theorem 1

becomes:

Corollary 1: For the binary-erasure source coding problem

with one decoder and only one side-information Y , we have

RX|Y (D) = RWZ(D) = p(1 − h(
D

p
)),

where h(·) is the binary entropy function.

When the encoder knows the side-information, one can

either use the conditional rate-distortion scheme or the Wyner-

Ziv scheme, which is also applicable because the encoder

can ignore the side-information. Our second result for one

decoder shows that there are actually infinitely many differ-

ent schemes who are all optimal in this case. The condi-

tional rate-distortion function can be written as RX|Y (D) =
minpW |X,Y

(

I(X,Y ;W ) − I(W ;Y )
)

, where W takes values

in the reconstruction alphabet, and pW |X,Y is such that the

distortion requirement can be satisfied by some estimator

X̂ = g(W,Y ).
Theorem 2: For the Gaussian case and the binary-erasure

case, RX|Y (D) can be achieved by a continuum of auxiliary

random variables W (taking values in the reconstruction alpha-

bet R and {0, 1}), with I(W ;Y ) varying in [0,∞] and [0, 1−p]
for the Gaussian and the binary-erasure case, respectively.

The proof of Theorem 2 can be found in Section V.

Remark 1:When I(W ;Y ) = 0, then W corresponds to a lossy

description of the “innovation”, i.e., of the quantity X−f(Y ),
where f(Y ) is the best estimator of X from Y .

Remark 2: The continuum contains one choice of W for

which W −−◦ X −−◦ Y is a Markov chain. This choice of

W corresponds to the Wyner-Ziv scheme [8].

B. Two Informed Decoders

Consider now the rate-distortion setup depicted in Figure

1. The source X is to be described at distortion D1 and

D2, respectively to two decoders who have access to dif-

ferent side-information sources Y and Z, respectively. Both

Y and Z are also available at the encoder. We refer to

this problem as “source coding for two informed decoders”,

and we denote the corresponding rate-distortion function by

R(D1,D2). In the following, we present an upper and a lower

X̂1

X̂2

X

Y

Z

Decoder 1

Decoder 2

Encoder

Fig. 1. Source coding for two informed decoders.

bound on R(D1,D2), a sufficient condition for equality of the

bounds, and we show that this condition holds when the side-

information is physically degraded. All of these results are

valid for both the binary-erasure and the Gaussian case.
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In [5], we presented an achievable rate-distortion region

for the problem of source coding for two informed decoders

when (X,Y,Z) is a general discrete memoryless multisource

(Theorem 1 of that publication). For the Gaussian and binary-

erasure versions of the problem, we simplify that region by

dropping the auxiliary random variables U and V . The result

is the following upper bound on the rate-distortion function,

stated as a corollary to Theorem 1 in [5]:

Corollary 2: In the Gaussian and the binary-erasure case,

the rate-distortion function for two informed decoders

R(D1,D2) is at least as small as

R+(D1,D2) = min
pW |XY Z∈A(D1,D2)

max{I(X,Y ;W |Z),

I(X,Z;W |Y )} (1)

where A(D1,D2) is the set of all conditional distributions of

random variables W such that

• W is Gaussian or binary symmetric, respectively, and

jointly distributed with (X,Y,Z),

• ∃ X̂1(W,Y ) such that E
[

d(X̂1,X)
]

≤ D1,

• ∃ X̂2(W,Z) such that E
[

d(X̂2,X)
]

≤ D2.

Next, we provide a lower bound on R(D1,D2).
Theorem 3: In the Gaussian and the binary-erasure case, the

rate-distortion function for two informed decoders R(D1,D2)
is lower bounded by

R−(D1,D2) =max
{

min
pW |XY Z∈A(D1,D2)

I(X,Y ;W |Z),

min
pW |XY Z∈A(D1,D2)

I(X,Z;W |Y )
}

, (2)

where A(D1,D2) is defined as in Corollary 2.

This lower bound is obtained by assuming that a genie makes

one of the side-information sources available to the decoder

who does not know it, followed by additional steps. In [5], we

developed a similar lower bound for the Gaussian case. The

proof of Theorem 3 can be found in Section V.

We find that in some cases, R−(D1,D2) and R+(D1,D2)
match, and in the next result, we provide a sufficient condition

for this equality.

Definition 4: Let S∗ ⊆ A(D1,D2) be the set of all opti-

mizers of the first minimization in (2), i.e., pW∗|XY Z ∈ S∗ if

and only if

I(X,Y ;W ∗|Z) = min
pW |XY Z∈A(D1,D2)

I(X,Y ;W |Z). (3)

Similarly, let S∗∗ be the set of all optimizers of the second

minimization in (2).

Theorem 4: When I(W ∗;Z) ≤ I(W ∗;Y ) for some

pW∗|XY Z ∈ S∗ or I(W ∗∗;Z) ≥ I(W ∗∗;Y ) for some

pW∗∗|XY Z ∈ S∗∗, then R+(D1,D2) = R−(D1,D2).
The proof of Theorem 4 can be found in Section V.

This theorem is particularly useful to find an exact character-

ization of the rate-distortion function for physically degraded

side-information.

Definition 5: In source coding for two informed decoders,

we say that the side-information is physically degraded if

(X,Y,Z) forms a Markov chain in either of the orders

X −−◦ Y −−◦ Z or X −−◦ Z −−◦ Y .

Theorem 5: In source coding for two informed encoders

with physically degraded side-information, the rate-distortion

function is R(D1,D2) = R+(D1,D2) for both the Gaussian

and the binary-erasure case.

This theorem generalizes a Gaussian result that was presented

in [5]. A rather lengthy proof of that Gaussian result was

provided in [6]. The novelty here is that the same result also

holds for the binary-erasure case, and that Theorem 4 can be

used to obtain a relatively simple proof for both the Gaussian

and the binary-erasure case. The proof can be found in Section

V.

Application of Theorem 2: In [6], we noted that if (X,Y )
has the same statistics as (X,Z), then a Wyner-Ziv code,

optimized for the decoder with the more strict distortion

requirement, is optimal. Theorem 2 provides us with an

interesting extension of this idea: Pick one of the two decoders,

say Decoder 1, and implement a scheme that achieves the

conditional rate-distortion function for Decoder 1, RX|Y (D1).
Different random variables W out of the continuum described

in Theorem 2 are more or less useful for Decoder 2, i.e., for

estimating X from (W,Z). To find the best out of all the

strategies that have rate RX|Y (D1), one should find the W

from the continuum that is most useful for Decoder 2 and that

satisfies I(W ;Y ) ≤ I(W ;Z). This last condition is required

to ensure that although the encoder uses a binning scheme

for Decoder 1, Decoder 2 is also able to identify the correct

member of the bin described by the message. A more detailed

study of this technique is left as future work.

Bound on the Gap: If we compare the upper and lower

bounds given in Corollary 2 and Theorem 3, respectively,

we notice that the only difference between upper and lower

bound is that the minimization and the maximization are

inverted. This fact can be used to bound the gap between

the two bounds. For instance, assume that I(X,Y ;W ∗|Z) ≥
I(X,Z;W ∗∗|Y ), where W ∗ and W ∗∗ are as in Definition 4.

Then,

R+(D1,D2) − R−(D1,D2)

≤max{I(X,Y ;W ∗|Z), I(X,Z;W ∗|Y )}
− I(X,Y ;W ∗|Z)

=
[

I(X,Z;W ∗|Y ) − I(X,Y ;W ∗|Z)
]+

=
[

I(W ∗;Z) − I(W ∗;Y )
]+

.

IV. AUXILIARY RESULTS

In [2], Kaspi found the rate-distortion function to a setup

where a source X is encoded for two decoders. One decoder

has access to a side-information source Y , while the other

decoder is uninformed. The encoder knows Y . We call this

problem the Kaspi problem. The Kaspi problem is a special

case of source coding for two informed decoders, in which

one of the side-information sources is constant (Figure 1 with

Z = constant). The results in this section could be viewed

as a special case of Theorem 5. However, we present them
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as independent results, and we will use them in Section V to

prove our main results, including Theorem 5.

In [5], we computed the rate-distortion function for the

Gaussian Kaspi problem. We repeat that result here:
Theorem 6: (Theorem 2 in [5].) Let X ∼ N (0, σ2

X), and
Y = X + N , with N ∼ N (0, σ2

N ) independent of X . In the
Gaussian Kaspi problem defined by these sources, the rate-
distortion function RKaspi(D1,D2) is given by the following
four regimes:

1) if D1 ≥ σ2

Xσ2

N

σ2

X
+σ2

N

and D2 ≥ σ2
X , then RKaspi(D1,D2) = 0,

2) if D1 ≥ D2σ2

N

D2+σ2

N

and D2 < σ2
X , then

RKaspi(D1,D2) = 1
2 log

σ2

X

D2

,

3) if D1 <
σ2

Xσ2

N

σ2

X
+σ2

N

and D2 ≥ D1 +
σ4

X

σ2

X
+σ2

N

, then

RKaspi(D1,D2) = 1
2 log

σ2

Xσ2

N

D1(σ2

X
+σ2

N
)
,

4) otherwise, RKaspi(D1,D2) = 1
2 log

σ2

X

D2(1−ρ2

0
)
,

where ρ0 = σXD1

σN (σ2

X
−D1)D2

Φ and

Φ =
q

D2(σ2
X

− D2) −

s

(σ2
X

D2

D1
(σ2

N
− D1) − σ2

N
D2)(

D2

D1
− 1).

The detailed proof of this theorem can be found in [3].

It turns out that the binary-erasure Kaspi problem is very

similar to its Gaussian counterpart. In particular, we have the

following result:
Theorem 7: In the binary-erasure Kaspi problem, the rate-

distortion function RKaspi(D1,D2) is given by the following
four regimes (where p is the erasure probability of the BEC):
1) if D1 ≥ p

2 and D2 ≥ 1
2 , then RKaspi(D1,D2) = 0,

2) if D1 ≥ pD2 and D2 < 1
2 , then

RKaspi(D1,D2) = 1 − h(D2),
3) if D1 < p

2 and D2 ≥ D1 + 1−p
2 , then

RKaspi(D1,D2) = p
(

1 − h(D1

p
)
)

,

4) otherwise,

RKaspi(D1, D2) = 1 − h
` D2 − D1

1 − p

´

+ p
“

h
` D2 − D1

1 − p

´

− h
` D1

p

´

”

.

The detailed proof of this theorem can be found in [4].

Corollary 3: In both the Gaussian case and the binary-

erasure case, the rate-distortion function of the Kaspi problem

is

RKaspi(D1,D2) = min
pW |XY

I(X,Y ;W ),

where the indicated minimization is over all auxiliary random

variables W such that

• W is Gaussian or binary symmetric, respectively, and

jointly distributed with (X,Y ),

• ∃ a function X̂1(W,Y ) such that E
[

d(X̂1,X)
]

≤ D1,

• ∃ a function X̂2(W ) such that E
[

d(X̂2,X)
]

≤ D2.

The proof of this corollary is given in the appendix.

V. PROOFS OF THE MAIN RESULTS

A. Sketch of the proof of Theorem 2

In the Gaussian case, W can be parametrized by 3 real

parameters. Since scaling of W by a constant changes neither

the rate nor the distortion, 2 relevant paremeters remain.

However, since I(X;W |Y ) = 1
2 log Var(X|Y )

Var(X|W,Y )
, we see

that any choice of W that satisfies Var (X|W,Y ) = D is

optimal. After imposing this constraint, one of the parameters

that specify W is still free, hence the continuum. In the

binary-erasure case, W can be parametrized by 2 crossover-

probabilities connecting X and W (for the two cases when Y

is an erasure or not). It is clear that when Y is not an erasure,

i.e., when Y = X , the best estimate of X given (W,Y ) should
be Y . Hence, one of the two parameters has no importance

in computing the expected distortion achieved by the optimal

scheme. In addition, the same parameter plays no role in the

rate expression I(X;W |Y ), either. Hence the continuum.

B. Proof of Theorem 3

If a genie makes Z available to Decoder 1, we obtain a new

setup that we call the “conditional Kaspi setup”. In this new

setup, Decoder 1 is more powerful than before, and hence, the

rate-distortion function of the conditional Kaspi setup gives a

lower bound on R(D1,D2).
Note that in the conditional Kaspi setup, all three entities

have access to Z. Hence, the problem is the same as the

Kaspi problem for sources (X̃, Ỹ ) that correspond to “(X,Y )
conditioned on Z”.

From Corollary 3, we conclude that the rate-distortion

function of the conditional Kaspi problem can be written as

R−
Z (D1,D2) = min

pW |XY Z∈B(D1,D2)
I(X,Y ;W |Z), (4)

where B(D1,D2) is the set of all conditional distributions of

random variables W such that

• W is Gaussian or binary symmetric, respectively, and

jointly distributed with (X,Y,Z),

• ∃ a function X̂1(W,Y,Z) such that E
[

d(X̂1,X)
]

≤ D1,

• ∃ a function X̂2(W,Z) such that E
[

d(X̂2,X)
]

≤ D2.

We can apply the exact same reasoning also for the case

when the genie makes Y available to Decoder 2. In this case,

we obtain a different lower bound on R(D1,D2), namely

R−
Y (D1,D2) = min

pW |XY Z∈C(D1,D2)
I(X,Z;W |Y ),

where C(D1,D2) is the symmetric counterpart of B(D1,D2).
The following lemma provides a simplification of the lower

bounds given so far.

Lemma 1: In R−
Z (D1,D2) and in R−

Y (D1,D2), the sets

B(D1,D2) and C(D1,D2) can both be replaced by

A(D1,D2), without changing the outcome of the optimiza-

tions.

The proof of Lemma 1 can be found in the appendix. By

combining the two bounds R−
Z (D1,D2) and R−

Y (D1,D2), the
claim of the theorem follows.

C. Proof of Theorem 4

From (2), we know that

R
−

Z (D1, D2) = min
A(D1,D2)

[I(X, Y, Z; W ) − I(Z; W )] . (5)

4



is a lower bound on R(D1,D2). The upper bound (1), on the

other hand, can be written as

R+(D1,D2) = min
pW |XY Z∈A(D1,D2)

[

I(X,Y,Z;W )

− min{I(W ;Z), I(W ;Y )}
]

. (6)

Let W ∗ be a random variable whose distribution is a minimizer

of (5), and assume that I(W ∗;Z) ≤ I(W ∗;Y ) Then,

R−(D1,D2) ≥ R−
Z (D1,D2)

=I(X,Y,Z;W ∗) − I(Z;W ∗)

=I(X,Y,Z;W ∗) − min{I(W ∗;Z), I(W ∗;Y )}
≥R+(D1,D2)

where we used (6) in the last inequality. From Corollary 2

and Theorem 3, it is clear that R+(D1,D2) ≥ R−(D1,D2).
Hence, R−(D1,D2) = R+(D1,D2).
When I(W ∗∗;Z) ≥ I(W ∗∗;Y ), where W ∗∗ is as defined in

Definition 4, an analogous argument holds, with R−
Z (D1,D2)

replaced by R−
Y (D1,D2).

D. Proof of Theorem 5

We only prove the result for the Markov chain X −−◦
Y −−◦ Z. The proof for the other Markov chain is analogous.

Gaussian case: W.l.o.g., we can assume that X ∼ N (0, σ2
X),

Y = X+N1 and Z = Y +N2, where Ni ∼ N (0, σ2
i ), i = 1, 2

are Gaussian random variables, independent of X and of each

other. We parametrize W as

W = aX + bN1 + cN2 + ξ,

where ξ ∼ N (0, 1), and ξ is independent of everything else.

Using Lagrange multipliers, we find that (3) is optimized by

a W ∗ for which c = 0. It follows that W ∗ −−◦ (X,Y ) −−◦ Z.

This, together with Lemma 2 below and Theorem 4, lets us

conclude the Gaussian part of the theorem. Details regarding

the computation of the Lagrange equations can be found in [6].

Binary-erasure case: Let X be a Bernoulli random variable

with mean 1
2 . Let Y be the output of a BEC with erasure

probability p1, when X is the input, and let Z be the output

of a BEC with erasure probability p2, when Y is the input.

Any Bernoulli- 12 random variable W jointly distributed with

(X,Y,Z) can be expressed using three parameters (q, r, s):

q = P(W 6= X|Y 6= ǫ, Z 6= ǫ)

r = P(W 6= X|Y 6= ǫ, Z = ǫ)

s = P(W 6= X|Y = ǫ, Z = ǫ).

In other words, depending on the values of (Y,Z), X is

connected to W through one of three virtual BSC’s that have

crossover probabilities q, r and s, respectively. Using the

parameters (q, r, s), the objective function in (3) can be written
as

I(X,Y ;W |Z) =I(X,Y,Z;W ) − I(W ;Z)

=H(W |Z) − H(W |X,Y,Z)

=p1 + (1 − p1)p2

− (1 − p1)p2h(r) − p1h(s), (7)

where the last equality follows after the terms containing h(q)
have cancelled out. The best estimate of X given (W,Y ) is

simply X̂ = Y whenever Y 6= ǫ and X̂ = W otherwise.

Hence, the distortion constraint for Decoder 1 is

P(X̂1 6= X) = p1s ≤ D1. (8)

Likewise, for Decoder 2, we require

P(X̂2 6= X) = p1s + (1 − p1)p2r ≤ D2. (9)

The parameter q figures in none of (7), (8) and (9). Hence,

q can be freely chosen in the optimization. In particular, one

optimal solution to (3) is a W ∗ such that q = r∗, where

(r∗, s∗) are the optimizers of (7) subject to the distortion

constraints (8) and (9). For that particular choice of q, we

have W ∗ −−◦ (X,Y ) −−◦ Z. This, together with Lemma 2 and

Theorem 4, concludes the binary-erasure part of the theorem.

Lemma 2: Let (W,X, Y, Z) be arbitrary random variables

such that the two Markov chains W −−◦ (X,Y ) −−◦ Z and

X −−◦ Y −−◦ Z are satisfied. Then, I(W ;Z) ≤ I(W ;Y ).
The proof of this lemma is given in the appendix.

VI. CONCLUSION

The binary-erasure setting is promising as a tool to analyze

problems in source coding with side-information. All the re-

sults that we provide for the Gaussian case hold in a analogous

way for the binary-erasure case. In addition, the binary-erasure

case is often more easy to analyze. This is due to the fact that

in the binary-erasure case, the side-information is either perfect

or completely useless. The results here suggest that there may

be more connections between the Gaussian and erasure setups

and it is likely that one may find further analogies between

them. Such connections may provide insights into previously

unresolved questions.

For the problem of source coding for two informed de-

coders, we intend to provide a more complete discussion on

how to apply Theorem 2 in future work.
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LICOS-REPORT-2005-001, École Polytechnique Fédérale de Lausanne,
Switzerland, Nov. 2005. http://licos.epfl.ch/index.php?p=pubs&l=en.

[4] , The Kaspi rate-distortion problem with encoder side-

information: Binary erasure case, Tech. Rep. LICOS-REPORT-2006-
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VII. APPENDIX

A. Proof of Corollary 3

For the Gaussian case, we have:

1) if D1 ≥ σ2

Xσ2

N

σ2

X
+σ2

N

and D2 ≥ σ2
X , then W = 0,

2) if D1 ≥ D2σ2

N

D2+σ2

N

and D2 < σ2
X , then W =

√

σ2

X
−D2

σ2

X
D2

X +ξ,

3) if D1 <
σ2

Xσ2

N

σ2

X
+σ2

N

and D2 ≥ D1 +
σ4

X

σ2

X
+σ2

N

, then

W =

√

1
D1

− (σ2

X
+σ2

N
)

σ2

X
σ2

N

(

− σ2

N

σ2

X
+σ2

N

X +
σ2

X

σ2

X
+σ2

N

N
)

+ ξ,

4) otherwise, W = 1√
1−ρ2

0

(

√

σ2

X
−D2

σ2

X
D2

X + ρ0

σN
N + ξ.

Here, ξ is independent of (X,Y ) and ξ ∼ N (0, 1).
For the binary-erasure case, we have:

1) if D1 ≥ p
2 and D2 ≥ 1

2 , then W =

{

X̄ w.p. 1
2

X w.p. 1
2 ,

2) if D1 ≥ pD2 and D2 < 1
2 , then

W =

{

X̄ w.p. D2

X w.p. 1 − D2,

3) if D1 < p
2 and D2 ≥ D1 + 1−p

2 , then

W =















0 w.p. 1
2 if Y 6= ǫ

1 w.p. 1
2 if Y 6= ǫ

X̄ w.p. D1

p
if Y = ǫ

X w.p. 1 − D1

p
if Y = ǫ.

4) otherwise,

W =



















X̄ w.p. D2−D1

1−p
if Y 6= ǫ

X w.p. 1 − D2−D1

1−p
if Y 6= ǫ

X̄ w.p. D1

p
if Y = ǫ

X w.p. 1 − D1

p
if Y = ǫ.

Above, x̄ stands for x⊕ 1. It can be verified that by plugging

the above choices of W into the expression I(X,Y ;W ), one
obtains the rate-distortion trade-off given in Theorems 6 and

7. By inspecting the proof of Theorem 6 in [3] and the proof

of Theorem 7 in [4], one can verify that the above choices of

W also satisfy the distortion requirements.

B. Proof of Lemma 1

We only prove the result for R−
Z (D1,D2); the proof for

R−
Y (D1,D2) follows by the symmetry of the setup. Let

rA(D1,D2) , min
pW |XY Z∈A(D1,D2)

I(X,Y ;W |Z) (10)

and

rB(D1,D2) , min
pW |XY Z∈B(D1,D2)

I(X,Y ;W |Z). (11)

The aim is to show that rA(D1,D2) = rB(D1,D2). Note
that if for a given W , there exists a function X̂1(W,Y ) such

that E
[

d(X̂1,X)
]

≤ D1, then there exists also a function

X̂1(W,Y,Z) with that same property. Hence, A(D1,D2) ⊆
B(D1,D2) and therefore,

rB(D1,D2) ≤ rA(D1,D2).

It remains to show that rA(D1,D2) ≤ rB(D1,D2).
Gaussian case:

Let W̆ be the minimizer of (11). Since (W̆ , Y, Z) are jointly

Gaussian, the best estimate of X given (W̆ , Y, Z) (computed

at Decoder 1) is a linear combination X̂1 = aW̆ + bY + cZ.

Define W̃ = aW̆ + cZ. Using Y and W̃ , Decoder 1 can

produce the same estimate X̂1, and therefore,

Var
(

X|W̃ , Y
)

=Var
(

X|W̆ , Y, Z
)

≤ D1.

In addition,

Var
(

X|W̃ , Z
)

=Var
(

X|aW̆ + cZ, Z
)

=Var
(

X|W̆ , Z
)

≤ D2.

Hence, W̃ ∈ A(D1,D2). In addition,

I(X,Y ; W̃ |Z) =H(X,Y |Z) − H(X,Y |Z, aW̆ + cZ)

=H(X,Y |Z) − H(X,Y |Z, W̆ )

=I(X,Y ; W̆ |Z).

Hence,

rA(D1,D2) ≤I(X,Y ; W̃ |Z)

=I(X,Y ; W̆ |Z)

=rB(D1,D2).

Binary-erasure case:

Again, let W̆ be the minimizer of (11). The optimal recon-

struction functions should be

X̂1 =







W̆ if Y = Z = ǫ

Z if Y = ǫ, Z 6= ǫ

Y if Y 6= ǫ

and

X̂2 =

{

W̆ if Z = ǫ

Z if Z 6= ǫ.

This is due to the fact that when the side-information sources

are erasures, the optimal estimate of X given W̆ is W̆ itself.

Assume that W̆ is such that

P(W̆ 6= X) =q if Y = ǫ, Z = ǫ

P(W̆ 6= X) =r if Y 6= ǫ, Z = ǫ

P(W̆ 6= X) =s if Y 6= ǫ, Z 6= ǫ

P(W̆ 6= X) =t if Y = ǫ, Z 6= ǫ.
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Then,

I(X,Y ; W̆ |Z) =H(W̆ |Z) − H(W̆ |X,Y,Z)

=P(Z = ǫ)h(
1

2
)

+ P(Z 6= ǫ)h((1 − a)s + at)

− P(Y = ǫ, Z = ǫ)h(q)

− P(Y 6= ǫ, Z = ǫ)h(r)

− P(Z 6= ǫ)(1 − a)h(s)

− P(Z 6= ǫ)ah(t),

where we defined a , P(Y = ǫ|Z 6= ǫ). Note that the terms

that depend on s and t can be written as

P(Z 6= ǫ)
(

h((1 − a)s + at) − (1 − a)h(s) − ah(t)
)

. (12)

By Jensen’s inequality, since h(·) is a concave function, the

above expression is non-negative. It is also smaller than one

because h(·) ≤ 1. Define a new auxiliary random variable W̃

such that

P(W̃ 6= X) =q if Y = ǫ, Z = ǫ

P(W̃ 6= X) =r if Y 6= ǫ, Z = ǫ

P(W̃ 6= X) =s̃ if Y 6= ǫ, Z 6= ǫ

P(W̃ 6= X) =0 if Y = ǫ, Z 6= ǫ,

for some s̃ to be defined. The terms in I(X,Y ; W̃ |Z) that

depend on s̃ can be written as

P(Z 6= ǫ)
(

h
(

(1 − a)s̃
)

− (1 − a)h(s̃)
)

. (13)

As s̃ varies in [0, 1], (13) can take any value in [0, h(1 − a)].
Hence, one can always find a value of s̃ for which (13) is

smaller than (12), and hence

I(X,Y ; W̃ |Z) ≤ I(X,Y ; W̆ |Z).

In addition, define the new reconstruction functions

X̃1 =

{

W̃ if Y = ǫ

Y if Y 6= ǫ

and

X̃2 =

{

W̃ if Z = ǫ

Z if Z 6= ǫ.

One can verify that X̃i = X̂i, i = 1, 2. Because of this and

because we use only (W̃ , Y ) to compute X̃1, we conclude

that W̃ ∈ A(D1,D2). Hence,

rA(D1,D2) ≤I(X,Y ; W̃ |Z)

≤I(X,Y ; W̆ |Z)

=rB(D1,D2).

C. Proof of Lemma 2

From the Markov chain W −−◦ (X,Y ) −−◦ Z, we obtain

I(W ;X,Y,Z) =I(W ;X,Y )

I(W ;Z) + I(W ;X,Y |Z) =I(W ;Y ) + I(W ;X|Y ).

Hence, to prove Lemma 2, it suffices to show that when X −−◦
Y −−◦ Z is a Markov chain, then

I(W ;X,Y |Z) − I(W ;X|Y ) ≥ 0.

Indeed, we have

I(W ;X,Y |Z) − I(W ;X|Y )

=I(W,Z;X,Y ) − I(Z;X,Y ) − I(W ;X|Y )

=I(W,Z;Y ) + I(W,Z;X|Y )

− I(Z;X,Y ) − I(W ;X|Y )

=I(W,Z;Y ) + I(Z;X|W,Y ) − I(Z;X,Y )

=I(Z;Y ) + I(W ;Y |Z)

+ I(Z;X|W,Y ) − I(Z;X,Y )

=I(W ;Y |Z) + I(Z;X|W,Y )

≥0,

where the last simplification follows because X −−◦ Y −−◦ Z

implies that I(Z;Y ) = I(Z;X,Y ).
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