View metadata, citation and similar papers at core.ac.uk

brought to you by

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Automated Dynamic Memory Data Type Implementation
Exploration and Optimization

Marc Leeman** Chantal Ykman?, David Atienza!!l Vincenzo De Florio* Geert Deconinck*
ESAT K.U.Leuven
Kasteelpark Arenberg 10
B-3001, Leuven (Heverlee), Belgium
* firstname.lastname @esat kuleuven.ac.be. ¥ lastname @imec.be.

Abstract

The behavior of many algorithms is heavily determined
by the input data. Furthermore, this often means that mul-
tiple and completely different execution paths can be fol-
lowed, also internal data usage and handling is frequently
quite different. Therefore, static compile time memory al-
location is not efficient, especially on embedded systems
where memory is a scarce resource, and dynamic mem-
ory management is the only feasible alternative. Including
applications with dynamic memory in embedded systems
introduces new challenges as compared to traditional sig-
nal processing applications. In this session, an automated
framework is presented to optimize embedded applications
with extensive use of dynamic memory management. The
proposed methodology automates the exploration and iden-
tification of optimal data type implementations based on
power estimates, memory accesses and normalized memory
usage.

1 Introduction

In order to optimize algorithms, the embedded devel-
oper must be aware of a number of constraints: these sys-
tems have typically a more constrained memory hierarchy
than General Purpose Processors (GPP) where algorithms
typically are developed upon. Furthermore, the optimiza-
tion objectives are not only dominated by performance,
but memory accesses and power consumption are (at least)
equally important.

*Partially supported by the Fund for Scientific Research - Flanders
(Belgium, EW.0.) through project G.0036.99 and a Postdoctoral Fellow-
ship for Geert Deconinck.

TAlso at DACYA/UCM. Madrid, Spain. Partially supported by the
Spanish Government Research Grant TIC2002/0750 and E.C. Marie Curie
Fellowship contract HPMT-CT-2000-00031.

When memory usage is deterministic, all memory usage
and access patterns can be determined at compile time. The
required memory is reserved in one single allocation and
freed when no longer needed. Moreover, since this allo-
cated memory is contiguous, the addresses of the elements
are known and accessible in a minimum of time. However,
this is not longer certain when Dynamic Memory Manage-
ment (DMM) is required.

MATISSE [4, 3, 1, 2] is a methodology for system-level
dynamic memory management. It is intended for applica-
tions operating on large and irregular data structures, dy-
namically allocated and stored in sets, called dynamic data
sets. It uses a fast, stepwise and cost-driven exploration and
specification refinement at the system level of the needed
dynamic data sets. As a result, optimized distributed mem-
ory architectures can be achieved in embedded systems.

In the remainder, automation and modification of the first
sub-step of the MATISSE methodology' is discussed in or-
der to handle applications with multiple dynamic data sets
which change their behavior during the application: Ab-
stract Data Type refinement (ADT). In addition, a compari-
son of dynamic memory usage between the original version
and the optimized one of the main dynamic data type in the
application is shown in Figure 2 to illustrate the final results
accomplished.

2 Method and Results

In an ADT context, data dependencies can be divided
into two distinct types. First, design or algorithmic depen-
dencies dependencies built in the program as a result of the
control flow of the algorithm, e.g. ordered or unordered

I'The first sub-step generates for each dynamic data set an optimized
implementation. This is called Abstract Data Type (ADT) Transforma-
tion and Refinement. The second step organizes the dynamic memory
space and selects custom memory managers to handle dynamic memory
(de)allocation of the needed data structures. This sub-step is call Dynamic
Memory Management Refinement.

@
Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI'03) CSFK/[PUQTER
0-7695-1904-0/03 $17.00 © 2003 IEEE SOCIETY

https://core.ac.uk/display/147947195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(Derived [Derived] (Denva i
Class Class

Oject) Object) ‘Object) Obiect)

@w) [ObT,a) IObjectj 4 ! Objec}ﬁrf

Profile) 4 Profile)
Object Object |

Figure 1. Automatic Profile Framework with
application objects reporting their behavior
to profile objects.

(Related
Class

[@T) Object)

sets. This kind of dependencies cannot be removed and/or
changed without modifying the algorithm itself. Second,
data dependencies that are implementational data depen-
dencies. These are introduced while moving from speci-
fication to implementation due to rigid (immutable) choices
that concern e.g. the data type implementation. Once these
choices are made, a set of data dependencies will affect the
cost of the final implementation, e.g. cache conscious struc-
ture reorganizations. These data type induced dependencies
are avoidable as long as the final application is not deployed
on the target system.

MATISSE employs three basic data types, namely lists,
arrays and trees, and organizes them in multi-layered struc-
tures. All these structures share a number of basic opera-
tions like add, insert, delete, etc. In addition, they
can have multiple implementations, reflecting different fea-
tures of the pursued final system, e.g. a different garbage
collection system. As a result, this rises exponentially the
search space as more alternatives are considered.

This MATISSE methodology provides as one of its key
concepts a representative estimate on algorithm and code
changes early in the development flow for system develop-
ers. Thus, it reduces the number of ulterior costly and time
consuming reconfigurations during system design. In order
to have these early estimates on the implementation and on
important objectives (e.g. power, memory usage and ac-
cess), MATISSE automatically adds timing information at
the source code level.

The driver application that is presented is part of a larger
3D image processing application and has several properties
that challenge dynamic memory optimization:

e The application has 4 dynamic data sets with several
distinct access patterns.

e The behavior of some data types changes during the
application run.

Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI'03)

0-7695-1904-0/03 $17.00 © 2003 IEEE

223

5 Abstract Data Type Refinement

6* 10
—— Original: Candidates
Original: Static Copy \
5 ----- DDTR Optimised \\
\
A4 \\
(%)
Q
z \
= \
o \
£
[
=) A
P2 \ i
s \ oo
25T \ i
1 //’ \ E
/’// h\\ E
| Y
0 02 0.8 1

0.4 0.6
Application Life

Figure 2. Result of the profiling: the memory
usage of dynamic data types is plotted. In this
case, the data types of Candidates and Static
Copy are optimized. The DDTR optimized plot
shows the result after removal of a crucial
application dependency.

The presence of multiple data sets required a new profil-
ing and instrumentation framework (see Figure 1) both easy
to use in an automated code instrumentation tool and flexi-
ble enough to handle all kinds of combinations and loose re-
lationships between the data sets. Since MATISSE uses C++
as an abstract data type description language, the profiling
information cannot be collected at the object level. In fact,
several objects, possibly from different classes can define
a multi-layered dynamic data type description. Therefore,
the profiling framework decouples this information from
the data type class hierarchy. Furthermore, these objects
are able to report their memory and timing behavior to ded-
icated profiling objects without the intervention from the
developer, enhancing their versatility. Hence, the number
of these objects depends on the amount of data type occur-
rences visible from the application (e.g. if an application
has 2 variables to be optimized, 2 profiling objects are cre-
ated during the code transformation). The code trans-
formation accomplishes several tasks, next to basic code
transformations, a reconstruction of the class hierarchy, an
instrumentation of the dynamic data type definition code
and the creation and and inclusion of the MATISSE specific
code. This instrumented source code is used to compose
run time information on memory accesses and usage, tim-
ing information and function calls. Because the data sets
change their behavior at run time, normalized memory us-
age is used to compute power estimates.

As a matter of fact, in the presence of multi-objective
optimizations (optimizing for memory accesses, usage and
power consumption), a single optimal point is unlikely. In-
stead, Pareto optima are constructed during exploration of

YF]',F.

COMPUTER
SOCIETY

Accesses

Memory

Power

1000

100000000 350000

300000 1

250000 7

100 +

200000

10000000 1

150000 1
100000 1

[

50000

_—

1000000

T
Qriginal Pareto (with 0

=

01

Pareto
(without
algorithmic

algorithmic
dependency)

Qriginal

T
Pareto

algorithmic
dependency)

T
Pareto {without
algorithmic
dependency

T
Parefo {without
algorithmic
dependency

(with Qriginal Pareto (with
algorithmic

dependency)

Figure 3. Effect of applying Matisse on the driver application in a logarithmical scale.

the search space?.

The output of the simulation gives feedback to the de-
veloper about possible algorithmic bottlenecks, while the
implementational ones are optimized automatically:

e Profiling information can indicate clear algorithmic
problems that were hidden in the code. In one exam-
ple, a very high access count in one part of the program
was identified while scanning a large data structure.
After a closer code inspection, the algorithm assumed
that the data was created without order and had to ac-
cess all the elements in order to construct exhaustive
subsets. In fact, the data did contain order and the sub-
sets were located one after another.

In a different part of the execution of the applica-
tion, data in one large dynamic data structure was de-
stroyed before the following dynamic data set was con-
structed. This showed a hidden matrix where the data
was copied for faster access. As a consequence of this,
the original implementation doubled the memory bot-
tleneck. With the combined profiling information, this
was removed safely, without compromising the per-
formance.

Like many multimedia applications, the driver applica-
tion has multiple dynamic data types. In figure 2, the re-
sult of the Dynamic Data Type Refinement (DDTR) step
for one of them is illustrated. As the figure shows, the large
Candidates list is copied in a dynamically allocated ar-
ray. From that point onwards, this array is used for fast
access to the data that is processed. Even though this obvi-
ously speeds up the application to a great extent, it comes
at a high price since there is a duplication of the memory
bottleneck when the data is copied. In addition, Figure 2
shows the dynamic memory usage for the DDTR optimized
version during the application execution. Evidently, an ef-
ficient selection of the dynamic data type results in a much
lower memory usage and a faster execution (note that while
the data is being copied to the fast array, the algorithm can-
not make progress).

2 A point is Pareto Optimal when it is no longer possible to improve one
of the objectives without worsening another.

224

As a summary, the first step is to change algorithmic de-
pendencies before examining algorithmic ones. Then, once
the optimal hierarchical implementation is selected for each
data set under investigation, the code is instantiated (obvi-
ously without the profiling information of the framework).
In fact, for a number of implementations, C counterparts of
the C++ code are available, but their instantiation is cur-
rently not included in the tools. These C definitions have
the advantage that they eliminate much of the C++ code
size overhead.

For the driver application where we have applied our
methodology, it allows to improve memory footprint, mem-
ory accesses and power by 98.5 %, 51.7 % and 99.9 % re-
spectively, and is illustrated in Figure 3. In the bar charts,
the results for memory accesses, memory usage and power
are plotted for the original implementation, a DDTR opti-
mized version where the copy to the array (see Figure 2) is
kept and the case where both DDTR and the removal of the
algorithmic dependency are applied . Similar behavior has
been identified in several multimedia applications and algo-
rithms, thus, without any doubt, they can be optimized with
this methodology as well.

References

[1] D. Verkest, J. da Silva, C. Ykman, K. Croes, M. Miranda,
S. Wuytack, G. de Jong, F. Catthoor, and H. De Man. Matisse:
A system-on-chip design methodology emphasizing dynamic
memory management. Journal of VLSI Signal Processing,
21(3):277-291, July 1999.

S. Wuytack, J. da Silva, F. Catthoor, G. de Jong, and C. Yk-
man. Memory management for embedded network appli-
cations. IEEE Transactions on Computer-Aided Design,
18(5):533-544, May 1999.

C. Ykman, J. Lambrecht, A. Van der Togt, and F. Catthoor.
Multi-objective abstract data type refinement for mapping ta-
bles in telecom network applications. In ACM SIGPLAN
Workshop on Memory System Performance, Berlin, Germany,
June 2002.

C. Ykman, J. Lambrecht, D. Verkest, F. Catthoor, B. Svantes-
son, A. Hemani, and F. Wolf. Dynamic memory management
methodology applied to embedded telecom network systems.
Accepted for publication in IEEE Transactions on VLSI Sys-
tems, 2002.

(2]

(3]

(4]

YF]',F.

COMPUTER
SOCIETY

Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI'03)
0-7695-1904-0/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

